

Mobile	Game	Design	Essentials

Table	of	Contents

Mobile	Game	Design	Essentials
Credits
About	the	Authors
About	the	Reviewers
www.PacktPub.com

Support	files,	eBooks,	discount	offers	and	more
Why	Subscribe?
Free	Access	for	Packt	account	holders

Preface
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support
Downloading	the	color	images	of	this	book

Errata
Piracy
Questions

1.	Operating	Systems	–	Mobile	and	Otherwise
Operating	systems
Mobile	operating	systems

Android
Google	Play	and	Amazon	Appstore
App	development
Games	for	Android
Eclipse	versus	Intellij

iOS
The	App	Store
Development	on	iOS
Xcode
Using	Xcode

Windows	Phone
Windows	Phone	Store
Developing	apps	with	Windows	Phone

Developing	a	game	for	Windows	Phone	with	XNA
Java	ME

Developing	games	with	Java	ME
NetBeans

BlackBerry
The	BlackBerry	App	World
Developing	games	for	BlackBerry

Summary
2.	The	Mobile	Indie	Team

A	matter	of	size
Key	roles	in	a	successful	team
What	it	takes

Commitment
Cohesion
Software	development	methodologies
Discipline
Professional	training
Passion	for	games

The	roles	in	an	indie	mobile	team
The	game	designer

Designer	at	work
Designer	tools
The	practices	of	game	design
Academic	formation	and	personality

No	game	is	ever	done!
The	game	artist

Brushes	and	canvas
Forms	of	art
2D	graphic	assets
3D	graphic	assets
Art	schools	and	creative	types

The	programmer
The	programmer's	kit
Coding	departments
Learning	to	be	a	programmer

The	game	tester
The	tools	of	deconstruction
Aspects	of	game	testing

Skills	of	a	professional	player

University	of	Gamestop
The	game	producer

Keeping	things	organized
Key	questions	of	a	producer
Skills	for	all!
Who	is	the	producer?

The	sound	designer
Creating	music	and	sound	fx
Audio	skills	and	tasks

Schools	of	sound	production
Audio	personality

Summary
3.	Graphics	for	Mobile

Pixels	and	vectors
Pixels
Vectors

The	graphic	file	formats
Raster	graphics
Vector	graphics
Videos	in	videogames

Software	to	create	game	graphics
Resolution	issues	with	mobile	games
2D	graphic	assets

Sprites
Backgrounds
Tiles
The	parallax	motion
Masking

3D	graphic	assets
3D	models
Texturing
Materials
UV	Mapping
More	on	textures
Baking
Animations

Designing	a	character	for	mobile
The	character	design	process
Silhouettes

Colors	for	mobile
The	user	interface	and	HUD
Summary

4.	Audio	for	Mobile
Digital	sound	technology

Analog	versus	digital
Recording	and	playback

Recording
The	sample	rate
The	word	length
Compression

Uncompressed
Lossless	compression
Lossy	compression

Playback
Types	of	game	sounds

Dynamic	audio
Adaptive	audio
Interactive	audio

Non-Dynamic	linear	sounds	and	music
Diegetic	sounds

Adaptive
Interactive
Non-Dynamic

Non-Diegetic	sounds
Adaptive
Interactive

Kinetic	gestural	interaction
The	audio	editing	software

Avid	Pro	Tools
Sound	Forge/Sonic	Foundry
Audacity
Ableton	Live

Designing	audio	for	mobile	games
Planning	the	audio	in	advance
Hardware	limitations	for	mobile	games	audio
The	role	of	audio	in	mobile	games
Listening	conditions	for	mobile	games

Best	practices	for	mobile	games	audio	design

Scripting	skills	for	a	mobile	audio	designer
File	compression
Looping	background	music
To	learn	more
Final	advice

Summary
5.	Coding	Games

Main	features	of	programming	languages
Libraries
Abstraction
Implementation
Usage

Game	programming
C++

Memory	management
Objects
Complaints	about	C++

Java
Memory	management
Syntax
Java	for	mobile	–	Java	ME
Objective-C

Cocoa
Cocoa	Touch

Xcode
Working	with	objects
Extending	classes	with	categories
Protocols	define	messaging	contracts
Values	and	collections
Blocks
Objective-C	conventions
Getting	started

HTML5
Canvas
HTML5	and	Flash
Issues	with	HTML5
HTML5	games

Conclusions
Scripting	languages

Structure	of	a	game	program
Initialization
The	game	loop
Termination
Conclusion

Summary
6.	Mobile	Game	Controls

Input	technology
Touchscreens
Keypads
Touchscreen	gestures

Single–tap
Double–tap
Long	press
Scroll
Spread	and	pinch
Pan
Flick
Multifinger	tap
Multifinger	scroll
Rotate

Input	interfaces	for	mobile	games
Built-in	devices

GPS
Accelerometer
Camera
Microphone
External	controllers

Gamepads
Analog	sticks
Touch-enabled	cases
Grip
Cabinets
Headphones

Future	technologies
Eye	tracking
Brainwave	readers

Summary
7.	Interface	Design	for	Mobile	Games

The	role	of	the	user	interface
Approaching	user	interface	design

UI	in	videogames
Designing	the	UI

Aesthetics
More	on	vectors	and	rasters
Designing	icons

Best	practices	in	UI	design
Search	for	references
The	screen	flow
Functionality
Wireframes
The	button	size
The	main	screen
Test	and	iterate
Evergreen	options

Multiple	save	slots
Screen	rotation
Calibrations	and	reconfigurations
Challenges
Experiment

Summary
8.	Mobile	Game	Engines

What	engines	can	do
What	engines	can't	do
Game	engines

2D	game	engines
Torque	2D
Cocos2D
Corona	SDK

3D	game	engines
Shiva	3D
Unity	3D

Top-quality	engines
Unreal/UDK

Educational	engines
GameMaker
GameSalad

Unity3D	Tutorial	–	part	1

Tutorial	part	1A	–	importing	3D	models
Tutorial	part	1B	–	setting	up	the	scene

Summary
9.	Prototyping

Steps	in	the	prototyping	process
Defining	the	prototype
Building	the	prototype
Testing	the	prototype
Fixing	the	prototype

Prototyping	styles
Horizontal	prototype
Vertical	prototype

Types	of	prototyping
Disposable	code

Your	imagination
Pencil	and	paper
Visual	prototypes
Interactive	prototypes
Reusable	code

Why	prototype?
What	to	avoid
Tools

Tools	for	rapid	prototyping
Unity3D	tutorial	–	part	2

The	player's	ship
The	aliens
Firing

Summary
10.	Balancing,	Tuning,	and	Polishing	Mobile	Games

Balancing
Symmetry
Randomization
Feedback	loops
Game	director
Statistics

Tuning
Tuning	strategies

Difficulty	settings
Global	difficulty

Unity	3D	tutorial	–	part	3
The	barriers
The	player's	ship	reprise
Refining	the	details
Adding	a	GUI
Adding	audio	effects
Particle	system	effects
Unity	3D	tutorial	summary

Summary
11.	Mobile	Game	Design

The	basic	game	design	process
The	dos	and	don'ts	of	game	design

Dos
Don'ts

Designing	mobile	games
Hardware	limitations

Screen	size
Game	controls
Audio	output
File	size
Processing	power

Mobile	design	constraints
Play	time
Game	depth
Mobile	environment
Smartphones
Single	player	versus	multiplayer

The	mobile	market
Mobile	gamers
Business	models

Premium
Freemium
Ad	supported
Hybrid
Choosing	the	right	business	model

What	makes	games	fun
The	four	keys	to	fun	–	the	game	mechanics	that	drive	play

Hard	fun	–	emotions	from	meaningful	challenges,	strategies,	and
puzzles

Easy	fun	–	grab	attention	with	ambiguity,	incompleteness,	and	detail
The	people	factor	–	create	opportunities	for	player	competition,

cooperation,	performance,	and	spectacle
Raph	Koster	and	Roger	Caillois

Summary
12.	Pitching	a	Mobile	Game

The	pitch	document
Importance	of	pitching

Game	concept
References
Prototypes
Stuck?
Genre
Target	audience
Key	features
Target	platform	and	competitors

Game	mechanics
Control	scheme	and	interface
Scoring	system	and	achievements
A	gameplay	example
Screen	flow	and	screens	relationship
Game	flow

Tech
Screenshot
Team/Designer	resume

Lilypads	pitch	document
Concept
Genre
References
Target
Platform
Competitors
Key	features

Character	design
Game	mechanics

Score
Virtual	currency
IAP	(In-App	Purchase)
Achievements	and	leaderboards

Additional	game	elements
Screen	flow
Game	flow

Tech
Game	features
Platform

The	iPhone	4
Game	screen	study
A	list	of	assets

Graphics
Audio
Software
Schedule	and	budget

Summary
Index

Mobile	Game	Design	Essentials

Mobile	Game	Design	Essentials
Copyright	©	2013	Packt	Publishing	All	rights	reserved.	No	part	of	this	book
may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by
any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the
case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy
of	the	information	presented.	However,	the	information	contained	in	this	book	is
sold	without	warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt
Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for	any	damages
caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of
the	companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of
capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this
information.

First	published:	November	2013

Production	Reference:	1141113

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-84969-298-4

www.packtpub.com

Cover	Image	by	Jarek	Blaminsky	(<milak6@wp.pl>)

http://www.packtpub.com
mailto:milak6@wp.pl

Credits
Authors

Dr.	Claudio	Scolastici

David	Nolte

Reviewers

Diane	Harding

Kahl	Sada

Mehul	Shukla

Francis	Styck

Sergio	Viudes	Carbonell

Acquisition	Editor

Rubal	Kaur

Lead	Technical	Editor

Neeshma	Ramakrishnan

Technical	Editors

Shashank	Desai

Iram	Malik

Manal	Pednekar

	

Project	Coordinator

Shiksha	Chaturvedi

Proofreader

Lucy	Rowland

Indexer

Mariammal	Chettiyar

Graphics

Yuvraj	Mannari

Production	Coordinator

Adonia	Jones

Cover	Work

Adonia	Jones

About	the	Authors
Dr.	Claudio	Scolastici	is	a	former	researcher	at	the	Department	of	Cognitive
Sciences	of	the	National	Research	Council	of	Rome.

In	2002,	he	started	working	in	the	video	game	industry	as	a	tester	for	Electronic
Arts.	After	he	graduated	in	General	and	Experimental	Psychology	with	a
specialization	in	Artificial	Intelligence,	he	worked	as	a	consultant	game	designer
for	Italian	game	developers	such	as	SpinVector	and	Palzoun	Game	First.

In	2012,	he	joined	the	No.One	indie	team	to	develop	XX	La	Breccia,	the	first
quality	first	person	shooter	ever	made	in	Italy	using	the	Unreal	Engine.

Today	he	authors	tutorials	on	game	development	for	Digital	Tutors	and	Game
Programming	Italia,	and	acts	as	a	game	design	consultant	for	indie	developers
and	start-ups	in	Rome,	where	he	currently	resides.

David	Nolte	graduated	with	a	Bachelor	of	Fine	Arts	degree	from	the	University
of	Hawaii,	Manoa.

He	spent	15	years	in	the	advertising	industry	in	Honolulu,	working	his	way	from
paste-up	artist	to	print	production	manager.	He	then	worked	23	years	in	the
video	game	industry	as	a	game	designer	and	production	manager.	Most	of	that
was	time	spent	working	on	Tetris	and	its	variants	for	a	variety	of	platforms.

He	was	the	producer	of	Faceball	2000,	the	only	real-time	first	person	shooter
released	on	the	original	Gameboy.	It	won	best	Gameboy	Game	of	the	Year
award	at	the	Consumer	Electronics	Show,	1991.	He	has	over	20	published	games
to	his	credit	on	a	variety	of	platforms.

About	the	Reviewers
Diane	Harding	has	been	a	software	developer	for	over	35	years,	and	has
extensive	expertise	in	the	design	and	development	of	large-scale	software
packages	that	integrate	data	from	a	wide	variety	of	sources,	for	interactive	screen
editing	and	display,	as	well	as	database	archival.	She	has	developed	web-based
applications	with	access	via	web	browser	(portal)	or	graphical	user	interface,	and
has	been	a	fluent	programmer	in	Fortran,	C,	C++,	SQL,	Perl,	XML,	Java,	and
JSP.	Her	background	also	includes	extensive	technical	and	numerical	analysis
experience	in	Ocean	Sciences	including	side-scan	sonar,	bathymetry,	and	multi-
static	acoustics.	She	was	born	and	raised	in	Hawaii	and	went	on	to	attend	the
Massachusetts	Institute	of	Technology,	where	she	received	a	degree	in	Applied
Mathematics.	She	currently	resides	in	Kailua,	Hawaii.

Over	her	career,	Diane	Harding	has	been	a	senior	software	engineer	for	the
Smithsonian	Astrophysical	Observatory,	Cambridge	Massachusetts,	for	the
University	of	Hawaii	Institute	of	Geophysics,	Honolulu,	for	Fugro	Seafloor
Surveys,	Inc.	based	in	Seattle,	Washington,	and	for	Applied	Marine	Solutions,	a
DOD	contractor	based	in	Hawaii.

Diane	Harding	has	co-authored	and	contributed	to	articles	and	abstracts
published	in	EOS,	Transactions	of	the	American	Geophysical	Union	and	other
journals,	as	well	as	worked	as	a	technical	editor	and	a	contributor	on	numerous
work-related	proposals	submitted	to	various	government	funding	agencies.	She
has	also	generated	user	and	technical	manuals	for	the	software	packages
developed,	for	distribution	to	the	end	users	and	installation	of	the	applications.

Kahl	Sada	fell	in	love	with	video	games	thanks	to	Alley	Cat,	but	only	with
Metal	Gear	Solid	did	he	realize	that	being	a	game	designer	was	his	lifetime
dream.	He	started	creating	games	with	RPG	Maker	then	moved	to	Unity	3D	to
create	more	interesting	and	deep	gameplay.	Specializing	in	Guerrilla	Prototyping
and	in	Gameplay	Balancing,	he	is	now	a	full-time	employee	of	Lunar	Walkers
LTD.

Mehul	Shukla	is	one	of	the	PlayStation®	Mobile	specialists	in	the	SCEE	R&D
Developer	Services	Team.	The	Developer	Services	Team	provides	front-line
engineering	support	for	all	game	developers,	large	or	small,	on	all	PlayStation
platforms.	He	provides	technical	support	and	performance	advice	to	developers

all	over	the	globe	on	the	PSM	community	forums	on	a	daily	basis.

He	has	also	given	technical	talks	about	PlayStation®	Mobile	development	at	a
number	of	games	industry	conferences	and	academic	events.

Mehul	joined	SCEE	R&D	right	after	his	University	education.	He	has	a	Master's
degree	in	Games	Programming	and	a	Bachelor's	degree	in	Computer	Systems
Engineering.

He	has	also	worked	as	a	technical	reviewer	for	PlayStation	®	Mobile
Development	Cookbook,	Packt	Publishing.

	

I	would	like	to	thank	the	authors,	David	Nolte	and	Claudio	Scolastici,	for	the
hard	work	they	have	put	in	and	for	sharing	their	invaluable	experience	of	the
games	industry.	There	is	a	lot	I	have	learned	during	the	reviewing	of	this	book
and	I	hope	others	too	can	benefit	from	it.	I	wish	the	authors	all	the	best	for	the
future.

Francis	Styck	has	been	developing	games	since	his	college	days	at	UNLV,
while	pursuing	an	Engineering	degree	in	the	1980s,	when	games	were	written	in
Assembly	language	on	the	Atari	800	and	Commodore	64.	He	continued	with	his
education	at	UNLV	and	graduated	with	an	MBA	in	2001.	Today,	he	is	still
writing	games	but	now	uses	the	power	of	C++,	Marmalade,	and	Cocos2d-x	to
support	many	platforms	and	devices.	You	can	stay	in	touch	with	Francis	using
LinkedIn	at	http://www.linkedin.com/in/styck.

Sergio	Viudes	Carbonell	is	a	31-year-old	software	developer	from	Elche,
Spain.	He	works	developing	apps	and	video	games	for	the	Web	and	Android.

He	has	played	video	games	since	his	childhood.	He	started	playing	with	his
brother's	Spectrum	when	he	was	just	5	years	old.	When	he	bought	his	first	PC
(well,	his	parents	did),	he	was	14	years	old,	and	started	learning	computer
programming,	computer	drawing,	and	music	composition	(using	the	famous	Fast
Tracker	2).	When	he	finished	high	school,	he	studied	Computer	Science	at	the
University	of	Alicante.

His	interest	in	mobile	devices	started	with	his	first	smart	phone,	eleven	years	ago
in	2002,	when	he	bought	the	first	Symbian	device	from	Nokia,	the	Nokia	7650.
He	really	liked	the	idea	that	he	could	develop	software	that	could	run

http://www.linkedin.com/in/styck

He	really	liked	the	idea	that	he	could	develop	software	that	could	run
everywhere.	So,	along	with	his	studies	and	his	job,	Sergio	started	creating	simple
mobile	apps	for	his	phone.	About	three	years	ago	he	decided	to	create	his	first
video	game	for	mobile	devices.	He	really	enjoys	developing	for	mobile	devices,
he	likes	to	compose	music,	to	draw,	and	of	course,	he	likes	to	play	video	games.

So,	he	decided	to	put	all	his	hobbies	together	and	develop	his	first	video	game
for	his	favorite	mobile	platform—Android.

So	far	Sergio	has	released	three	games,	several	apps,	and	he	continues
developing	apps	and	games	for	Android.

He	has	worked	as	the	technical	reviewer	of	the	book,	AndEngine	for	Android
Game	Development	Cookbook,	Packt	Publishing.

www.PacktPub.com
Support	files,	eBooks,	discount	offers	and	more

You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads
related	to	your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at
www.PacktPub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount
on	the	eBook	copy.	Get	in	touch	with	us	at	<service@packtpub.com>	for	more
details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,
sign	up	for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers
on	Packt	books	and	eBooks.

	

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt's	online
digital	book	library.	Here,	you	can	access,	read	and	search	across	Packt's	entire
library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	Access	for	Packt	account	holders

If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to
access	PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login
credentials	for	immediate	access.

http://www.PacktPub.com

Preface
The	mobile	segment	of	the	video	game	industry	has	quickly	become	the	best
opportunity	for	a	development	team	wishing	to	enter	the	video	game	market.
Since	the	appearance	of	the	Snake	game	for	the	Nokia	cell	phones	in	1997,	the
number	and	quality	of	video	games	developed	for	mobile	has	constantly
increased,	while	mobile	phone	hardware	has	improved	dramatically.

The	main	factor	that	makes	the	mobile	video	game	segment	a	very	interesting
opportunity	these	days	is	that,	although	not	everybody	has	a	console	or	a	PC	at
home,	in	most	parts	of	the	world	everybody	has	a	cell	phone.

Another	factor	is	that	the	hardware	capabilities	of	mobile	phones	have	improved
quickly.	In	about	ten	years,	we	have	moved	from	devices	with	monochromatic
small	screens	with	limited	input	opportunities	that	could	only	run	the	simplest
games,	to	devices	with	true	color	displays	and	gyroscopes	with	almost	the	same
potential	of	consoles	such	as	the	PS2,	if	not	better.

Also,	for	a	team	of	people	who	want	to	jump	into	this	industry,	it	is	a	good
opportunity	because,	generally,	it	takes	less	resources	to	develop	a	game	for
mobile	than	for	console	or	PC	games.

In	fact,	the	scope	of	a	mobile	game	tends	to	be	narrower	than	a	traditional	game,
which	means	that	to	make	a	mobile	game	it	requires	fewer	people	for
development,	less	time	to	get	to	shipping,	lower	investments	to	buy	the	tools,
and	in	the	end,	less	money	in	general.

Should	the	game	go	well	and	sell,	the	potential	revenue	can	be	very	high!

On	the	other	hand,	the	mobile	segment	is	not	necessarily	a	gold	mine	where
everybody	can	easily	find	nuggets.	The	design	of	a	mobile	game	requires	several
factors	to	be	taken	into	consideration,	as	we	will	show	you	throughout	this
manual.

First,	the	device	itself	puts	some	limitations	on	what	can	be	achieved.	Though
screens	are	getting	larger	and	allow	better	resolutions,	still	they	are	not	TV
screens	and	monitors.	The	audio	capabilities	of	mobile	phones	are	several	steps
below	their	console	or	PC	counterparts.

Game	controls	have	to	rely	on	the	touchscreen	or	make	use	of	sensors	available

Game	controls	have	to	rely	on	the	touchscreen	or	make	use	of	sensors	available
on	smartphones,	which	is	an	opportunity	but	also	a	constraint	if	we	consider	the
flexibility	of	a	common	gamepad,	or	the	combination	of	mouse	and	keyboard	in
PC	games.

The	experience	of	playing	a	mobile	game	on	the	bus	is	totally	different	from	that
of	a	console	game	played	on	the	couch	in	the	living	room.

If	we	exclude	the	iPhone	platform,	there	are	literally	thousands	of	different
handset	types	on	the	market.	Developing	for	a	market	this	diverse	can	be
daunting.	Compared	to	this	variety,	the	traditional	segmentation	of	the	video
game	market	among	the	three	consoles	made	by	Sony,	Microsoft,	and	Nintendo,
is	almost	nothing.

Finally,	and	this	is	a	consequence	of	all	that	we	stated	before,	there	have	never
been	so	many	games	available	at	the	same	time	as	there	are	now	for	mobile
phones.	This	means	that	any	new	game	for	mobile	phones	has	to	face	a	hard
struggle	against	other	games	which	compete	for	a	share	of	players.

The	aim	of	this	book	is	to	offer	a	guide	to	those	who	are	willing	to	test	their
skills	in	this	potentially	very	profitable	segment.	It	will	provide	useful
information	about	the	tools	you	need	to	develop,	well-done	games	for	mobile,
how	to	take	advantage	of	the	limits	of	a	mobile	phone	to	design	perfect
gameplay,	and	which	are	the	best	business	models	to	adopt	in	order	to	make
money	out	of	your	games.

Examples	of	mobile	games	such	as	Doodle	Jump,	Fruit	Ninja,	and	Angry	Birds
show	us	that	the	right	decisions	and	the	proper	tools	make	success	possible.
We'll	help	you	with	that	by	offering	you	hands-on	examples,	extensive
background	information,	useful	insights,	and	a	wealth	of	knowledge	on	the
subject!

What	this	book	covers
Chapter	1,	Operating	Systems	–	Mobile	and	Otherwise,	describes	the	differences
between	the	most	important	mobile	platforms	(iOS,	Android,	and	Windows
Phone)	and	the	most	popular	software	which	are	used	to	develop	games	and	apps
for	each	one	of	them.

Chapter	2,	The	Mobile	Indie	Team,	offers	a	description	of	the	main	roles	to	be
covered	in	an	indie	team	of	mobile	game	developers,	the	suggested	formation
background,	and	the	tasks	each	one	of	them	is	accountable	for.

Chapter	3,	Graphics	for	Mobile,	offers	an	explanation	of	the	relevant	2D	and	3D
graphic	formats	used	for	mobile	games,	the	techniques	used	to	create	such
assets,	and	the	most	popular	software	to	create	2D	and	3D	graphics	for	mobile
games.

Chapter	4,	Audio	for	Mobile,	discusses	the	creation	of	audio	for	mobile	games,
the	different	audio	types	used	in	games,	and	the	most	popular	software	the
professionals	make	use	of	to	create	audio	for	games.

Chapter	5,	Coding	Games,	offers	a	description	of	the	most	popular	coding	and
scripting	languages	used	in	game	development,	their	strengths	and	weaknesses,
and	the	description	of	the	basic	structure	of	a	game	program.

Chapter	6,	Mobile	Game	Controls,	focuses	on	the	characteristics	of	the	touch
interface	of	today's	smartphones	and	the	use	of	built-in	sensors	and	other
external	devices	as	input	devices	to	control	mobile	games.

Chapter	7,	Interface	Design	for	Mobile	Games,	delves	into	the	theory	of	user
interface	design	and	offers	a	description	of	popular	models	and	techniques	to
create	user	interfaces	for	games	in	general	and	mobile	games	in	particular.

Chapter	8,	Mobile	Game	Engines,	is	about	the	most	popular	game	engines	used
to	develop	games	for	mobile,	detailing	the	strengths	and	weaknesses	of	each	one
of	them.	With	this	chapter	we	also	begin	our	tutorial	to	create	a	game	with	Unity
3D	from	scratch.

Chapter	9,	Prototyping,	is	focused	on	the	techniques	and	tools	used	to	prototype
games,	providing	a	list	of	useful	software	to	achieve	the	task.	The	chapter	also

contains	the	second	part	of	the	Unity	3D	tutorial.

Chapter	10,	Balancing,	Tuning,	and	Polishing	Mobile	Games,	offers	a
description	of	the	actions	required	to	smooth	the	angles	of	a	game's	gameplay
and	the	techniques	used	to	achieve	a	perfectly	balanced	gameplay.	In	this
chapter,	we	also	get	to	the	conclusion	of	the	tutorial	with	Unity	3D.

Chapter	11,	Mobile	Game	Design,	explains	the	design	process	of	a	mobile	game
and	delves	into	the	specific	difficulties	related	to	designing	games	for	today's
smartphones,	based	on	their	hardware,	the	specific	fruition	models	of	mobile
games,	and	the	characteristics	of	the	mobile	market.

Chapter	12,	Pitching	a	Mobile	Game,	is	a	practical	guide	to	the	creation	of	the
presentation	document	of	an	actual	mobile	game.	The	document,	which	contains
a	description	of	the	most	relevant	aspects	of	a	mobile	game,	is	essential	to
explain	your	projects	to	potential	investors.

What	you	need	for	this	book
As	the	book	will	provide	you	with	all	the	basic	knowledge	you	need	to	develop
mobile	games,	there	is	no	prior	knowledge	or	skills	that	are	required	to
understand	its	contents.

On	the	other	hand,	we	tried	our	best	to	make	this	book	a	practical	guide	to
mobile	game	development	and	therefore	a	basic	knowledge	of	any	2D	and	3D
modeling	software,	as	well	as	some	familiarity	with	the	interface	of	Unity	3D	is
welcome.

As	they	are	industry	standard,	we	mainly	used	Photoshop	for	2D	assets,	3D
Studio	Max	for	modeling,	and	Unity	3D	as	the	game	engine	to	create	the
practical	contents	of	this	book.	What	follows	here	are	the	links	to	download	the
trial	version	of	each	one	of	them:

https://creative.adobe.com/products/photoshop
http://www.autodesk.com/products/autodesk-3ds-max/free-trial
http://unity3d.com/unity/download

https://creative.adobe.com/products/photoshop
http://www.autodesk.com/products/autodesk-3ds-max/free-trial
http://unity3d.com/unity/download

Who	this	book	is	for
This	book	is	for	anyone	who	ever	happened	to	have	an	idea	for	a	mobile	game
but	didn't	know	how	to	approach	its	actual	development.

If	you	ever	thought	about	creating	an	indie	team	of	mobile	game	developers,	this
book	will	help	you	build	it.	We	will	also	guide	you	in	choosing	the	software
required	for	mobile	game	development.	We	will	help	you	understand	the
strengths	and	weaknesses	of	each	mobile	platform,	defining	optimal	gameplay
based	on	the	specific	characteristics	of	today's	smartphones.	Finally,	we	will
assist	you	in	choosing	the	right	business	model	for	your	games	and	finally
helping	you	to	create	pitch	documents	to	present	your	mobile	game	ideas	to
potential	investors.

If	mobile	games	development	is	your	passion,	this	book	is	the	right	starting	point
to	trigger	your	career	in	the	gaming	industry!

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an
explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file
extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown
as	follows:	All	noncode	files	are	held	in	a	directory	called	Supporting	Files,
where	you'll	want	to	put	images,	text	files,	and	other	stuff.

A	block	of	code	is	set	as	follows:

while(!gameEnded)

{

		HandleInput();		//Reads	keyboard,	mouse	or	any	other

																		//kind	of	input	used	by	the	player

	

		Update();							//Updates	game	logic	and,	based	on	info

																		//gathered	with	the	previous	step

	

		Draw();									//Draws	graphics	on	screen,

																		//a	process	called	Render.

		}

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the
screen,	in	menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	"Once
Windows	Phone	Game	(4.0)	is	selected,	type	a	name	for	the	project	in	the	text
box	and	click	on	OK."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	book—what	you	liked	or	may	have	disliked.	Reader	feedback	is
important	for	us	to	develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to
<feedback@packtpub.com>,	and	mention	the	book	title	via	the	subject	of	your
message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either
writing	or	contributing	to	a	book,	see	our	author	guide	on
www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things
to	help	you	to	get	the	most	from	your	purchase.

Downloading	the	color	images	of	this
book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots
used	in	this	book.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/2984OT_Images.pdf.

https://www.packtpub.com/sites/default/files/downloads/2984OT_Images.pdf

Errata

Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake
in	the	text	or	the	code—we	would	be	grateful	if	you	would	report	this	to	us.	By
doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking
on	the	errata	submission	form	link,	and	entering	the	details	of	your	errata.
Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata
will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your
title	from	http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy

Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all
media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works,	in	any	form,	on	the
Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected
pirated	material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you
valuable	content.

mailto:copyright@packtpub.com

Questions

You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem
with	any	aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Operating	Systems	–	Mobile
and	Otherwise
Developing	games	for	mobile	requires	many	decisions	to	be	taken.	Two	very
important	ones	concern	the	platform	to	develop	your	game	for	and	the	tools	you
are	going	to	use.

Will	your	game	be	developed	for	a	single	platform	or	many?	Which	are	the	most
popular	operating	systems	of	today's	mobile	phones?	Which	are	the	best	tools	to
work	with	each	of	them?

In	this	chapter,	we	will	describe	what	an	operating	system	is	and	we	will	provide
an	introduction	to	the	most	important	mobile	operating	systems	(OS).

We	will	also	introduce	the	reference	tools	and	software	to	develop	games	for
each	mobile	platform	mentioned.

In	this	chapter,	we	will	cover	the	following	topics:

A	general	discussion	on	operating	systems
Mobile	operating	systems
Android	development
iOS	development
Windows	Phone	development
Java	ME	development
BlackBerry	development

Operating	systems
An	operating	system	(OS)	is	a	collection	of	software	that	manages	device
hardware	and	provides	common	services,	which	allow	programs	to	run	on	a
device,	be	it	a	mobile	phone	or	a	personal	computer.

The	operating	system	acts	as	an	intermediary	between	programs	and	the
computer	hardware,	and	thus,	operating	systems	can	be	found	on	almost	any
device	that	contains	a	computer—from	cellular	phones	and	video	game	consoles
to	supercomputers	and	web	servers.

	

The	revolution	of	personal	computers	(PC)	began	with	the	introduction	of
BASIC	and	DOS	Operating	Systems.	These	operating	systems	ran	on	terminals
composed	of	a	case	containing	the	main	hardware,	a	monochromatic	screen,	and
a	keyboard.	All	these	fit	on	a	common	desk,	allowing	computers	to	enter
people's	houses.

At	that	time,	software	used	to	run	on	magnetic	tapes	or	on	a	number	of	5'1/4"
disks.	The	following	image	shows	an	old	school	PC	of	the	early	'80s:

	

The	PC	became	an	object	of	common	use	with	the	introduction	of	visual
environments	made	of	icons	that	could	be	processed	with	the	use	of	a	device
called	mouse.	This	solution	turned	operations	into	metaphors	of	real	world
actions:	select	and	drag	an	icon	to	move	a	file,	single-clicks	to	select	contents,
and	double-clicks	to	open	them.

The	main	advantage	of	this	new	approach	to	computing	was	that	it	didn't	need	an
expert	to	use	a	computer	for	basic	operations.	Anyone	could	use	a	PC!

The	evolution	of	visual	interfaces	led	to	touch	interfaces,	made	possible	with	the
introduction	of	screens	that	could	process	touch	actions	directly	on	the	screens	of
the	devices.	This	system	allows	users	to	use	their	fingers	instead	of	the	mouse	of
desktop	PCs,	thus	triggering	a	revolution	in	user	interfaces	and	user	experience,
as	well	as	offering	the	possibility	of	developing	devices,	such	as	tablets	and
smartphones,	that	could	handle	the	same	basic	operations	available	on	a	desktop
PC	on	a	smaller	mobile	device.

	

At	present,	the	computing	environment	is	dominated	by	a	few	operating	systems.
For	mobile	devices,	there	are	iOS,	Android,	Windows	Phone,	Java	ME,	and
BlackBerry.	BREW	and	Bada,	which	used	to	be	quite	popular,	are	now	out	of
the	race.

Each	OS	has	distinctive	characteristics	and	a	development	story	of	its	own.	So
before	we	start	talking	about	mobile	development,	we	will	provide	you	with	an
overview	on	each	one	of	them.

Mobile	operating	systems
Android:	Android	is	the	open	source	mobile	OS	(developed	by	Google	and
Open	Handset	Alliance	and	released	in	2007)	that	powers	smartphones	of
the	last	generation.	The	main	manufacturers	of	such	phones	are	Samsung,
HTC,	Sony,	LG,	and	Motorola.	Android-equipped	devices	were	developed
to	be	the	competitors	of	the	Apple	iPhone;	they	share	a	similar	touch
interface	and	the	same	orientation	towards	the	development	of	applications
made	by	third	party	developers	to	meet	any	user's	need.	Apps	can	be
downloaded	from	an	online	store	called	Google	Play.
iOS:	iOS	is	Apple's	mobile	OS	used	on	the	iPhone,	iPod	Touch,	iPad,	and
AppleTV.	Released	in	2007,	iOS	is	based	on	OSX,	the	operating	system
running	on	Mac	PCs.	Like	OSX,	it	is	closed	source	and	proprietary	to
Apple	devices.	It	uses	the	Cocoa	Touch	interface	for	use	solely	with	touch
screen	technology.	It	shares	the	benefits	of	OSX's	stability	and	rapid
development,	as	well	as	the	capability	of	easy	porting	between	iOS	and
OSX.
Windows	Phone:	This	is	a	proprietary	OS	developed	by	Microsoft.	It
replaced	its	predecessor	Windows	Mobile	in	2010.	The	latest	version
(Windows	Phone	8)	has	many	common	features	and	components	with
Windows	8	which	facilitates	moving	apps	between	the	two.	It	is	possible	to
port	Windows	Phone	games	to	iOS	and	Android	using	tools,	libraries,	and
resources	made	available	by	Microsoft.
Java	ME:	Java	ME	is	an	open	source,	free-to-use	OS,	developed	by	Sun
Microsystems.	It	is	a	trimmed-down	version	of	Java	so	it	can	run	on	any
Java-enabled	device.	It	is	very	popular	among	developers	due	to	its	ease	of
use	and	that	its	games	don't	need	porting	to	run	on	various	devices.	There	is
a	vast	community	that	supports	Java	with	tools,	code	libraries,	and
instruction.	Though	not	as	popular	in	the	US	as	it	once	was,	it	is	still	in	use
in	Eurasia	and	South	America.
BlackBerry:	This	is	a	proprietary	OS	developed	by	RIM	for	its	line	of
smartphones	that	mainly	aim	at	the	enterprise	market.	Thanks	to	its	peculiar
instant	messaging	and	push	e-mail	features,	and	to	high	level	security
protocols	as	well,	BlackBerry	smartphones	are	the	devices	of	choice	for
people	who	need	a	reliable	handset	to	support	their	business	needs.

Android

Android	is	a	Linux-based	operating	system	designed	to	run	on	touch-screen
mobile	devices,	mainly	smartphones	and	tablets.

Released	around	2007,	Android	was	initially	developed	by	the	Android
Corporation.	It	was	then	acquired	by	Google,	who	founded	a	consortium	of
hardware,	software,	and	telecommunication	companies,	named	the	Open
Handset,	to	further	support	and	develop	this	open	source	project.

Today,	Android	powers	hundreds	of	millions	of	mobile	devices	all	over	the
world.	Numbers	say	that	new	Android	phones	are	activated	at	the	rate	of	one
million	per	day!

The	main	factor	that	made	Android	a	favorite	for	consumers	is	its	open	source
approach.	It	can	count	on	an	enthusiastic	community	of	passionate	developers
and	hundreds	of	hardware,	software,	and	carrier	partners	whose	support	make
Android	the	fastest	growing	mobile	operating	system	to	date.

With	such	partners,	Android	is	capable	of	continuously	pushing	the	boundaries
of	mobile	hardware	and	software	forward,	allowing	developers	to	build	any	kind
of	applications	that	can	take	advantage	of	the	latest	mobile	technologies,	and	to
support	users	with	many	differentiated	and	powerful	applications	to	expand	the
capabilities	of	their	mobile	devices.

The	main	drawback	with	Android	is	that,	due	to	the	high	variety	in	the	hardware
it	runs	on,	updates	tend	to	be	quite	slow	in	reaching	devices	when	compared	to
iOS.	Porting	Android	to	specific	hardware	is	a	time	and	resource	consuming
activity	for	manufacturers,	with	the	result	that	newest	devices	are	prioritized,
leaving	older	ones	behind.

On	the	other	hand,	the	large	community	of	Android	enthusiasts	can	balance	this
bias,	building	and	distributing	their	own	modified	versions	of	the	OS	with	new
features	and	updates,	faster	than	the	official	manufacturers.

Android	gives	its	developers	a	wide	range	of	tools	to	take	full	advantage	of	the
hardware	capabilities	of	each	device,	both	smartphones	and	tablets.	For	example,
it	allows	having	a	user	interface	that	automatically	adapts	to	look	its	best	on	each
device	regardless	of	the	screen	size,	by	defining	a	common	set	of	instructions	for
all	shared	form	factors	and	a	separate	set	which	contains	optimizations	for	each

all	shared	form	factors	and	a	separate	set	which	contains	optimizations	for	each
specific	device.

Android	UI	is	based	on	direct	manipulation	through	touch	inputs	that	resemble
real	world	actions,	such	as	swiping,	tapping,	and	pinching.	It	also	takes	full
advantage	of	internal	hardware,	such	as	accelerometers,	gyroscopes,	and
proximity	sensors,	to	further	improve	the	experience.

Google	Play	and	Amazon	Appstore

Google	Play	is	the	premier	marketplace	to	sell	and	distribute	Android	apps,	and
has	been	used	to	download	more	than	25	billion	apps	at	the	rate	of	1.5	billion	per
month.

It	gives	complete	freedom	to	its	users	to	define	when	and	what	to	publish,	letting
developers	maintain	full	control	with	regard	to	the	devices	to	develop	for,	the
technology	to	use,	and	the	target	audience	to	address.

Users	also	have	complete	freedom	to	adopt	any	business	model	for	their	apps:
priced,	free,	with	in-app	products	or	subscriptions,	as	well	as	defining	pricing
and	supported	currencies	for	transactions.

Google	Play	also	helps	its	users	to	get	visibility	for	their	products,	with	weekly
sales	charts	and	rankings,	thus	allowing	even	more	visibility.

The	premier	language	to	develop	Android	apps	is	Java,	using	the	Android
software	development	kit.	Other	tools	are	available	as	well,	such	as	the	Native
Development	Kit	that	allows	applications	to	be	built	in	C	and	C++.	Cross
platform	mobile	frameworks	are	available	too,	such	as	Phonegap,	Titanium,	or
Rhomobile.

App	development

When	developing	apps	for	Android,	especially	if	you	are	new	to	Android
development,	it	is	recommended	that	you	use	the	Eclipse	Integrated
Development	Environment	(IDE).	It	is	the	fastest	way	to	get	started	and	it	offers
several	guide	projects	as	well	as	tools	integration	to	make	the	the	developer's	life
as	easy	as	possible.

The	Eclipse	IDE	is	an	open	source	project	that	basically	consists	of	a	collection
of	plugins	that	integrate	with	the	platform,	to	provide	a	wide	range	of	features.

Most	of	these	plugins	are	written	in	Java.

Android	Development	Tools	(ADT)	is	a	plugin	for	the	Eclipse	IDE	that	is
designed	to	provide	a	powerful,	integrated	environment	in	which	to	build
Android	applications.

The	ADT	plugin	for	Eclipse	is	provided	with	the	Android	SDK.	The	SDK	is	a
collection	of	tools	that	allow	developing,	testing,	and	debugging	applications
developed	for	Android.

Though	the	premier	code	language	for	Eclipse	is	Java,	Eclipse	is	a	multi-
language	environment	that	allows	other	languages	to	be	used	as	well.

If	you	are	an	eager	C\C++	programmer	and	prefer	to	develop	your	games	in
native	code	language,	then	the	NDK	is	a	very	helpful	tool	set	that	allows,	for
example,	reusing	already	existing	code	libraries	and	possibly	increasing
performance.	But	such	options	have	their	costs.	Generally	speaking,	native	code
on	Android	doesn't	always	produce	a	performance	improvement,	while	it
increases	the	app	complexity.	So,	the	decision	whether	to	use	the	NDK	or	not
should	never	be	dictated	by	the	assumption	that	"I	simply	prefer	programming
with	C\C++".

Games	for	Android

When	pondering	the	decision	whether	to	develop	a	mobile	game	on	Android,
there	are	two	types	of	device	to	take	into	consideration	as	reference	models,
based	on	their	processor	(CPU)	and	Graphic	Processing	Unit	(GPU),	the	piece	of
hardware	that	specifically	takes	care	of	graphics	on	the	display.	As	we	write,
there	is	the	HTC	Dream	(or	G1),	the	first	Android	powered	phone,	which	is
equipped	with	Half	Video	Graphics	Array	(HVGA)	screens	and	average	500
MHz	CPUs	(low-end).	The	other	model	is	the	Nexus	One,	which	is	equipped
with	a	Wide	Video	Graphics	Array	(WVGA)	screen,	a	faster	CPU,	and	a	GPU
that	support	OpenGL	ES	2.0	hardware	acceleration	(high-end).

Since	performance	changes	very	much	between	the	two	groups,	it	is	very
important	to	carefully	choose	the	target	device	for	your	game,	because	games
that	can	scale	between	high	and	low	end	devices	get,	obviously,	a	broader
audience.

What	follows	is	a	description	about	how	a	new	Android	project	is	started	with
Eclipse:

Eclipse:

1.	 First	you	need	to	create	an	Android	Virtual	Device	(AVD).
2.	 Navigate	to	Window	|	Android	SDK	|	AVD	Manger	|	New.
3.	 You	can	leave	all	parameters	with	the	current	default	settings,	but	if	you

plan	to	use	multi-touch	features,	you	need	to	work	with	Version	2.2	or
higher.

	
4.	 Click	on	Create	AVD	to	create	your	virtual	Android	Virtual	Device	to

work	with.

Then	you	need	to	create	a	project.

1.	 From	the	menu,	navigate	to	New	|	Project	and	choose	Android	Project.
2.	 The	name	of	your	game	is	set	in	the	Application	name:	space,	while

classes	are	grouped	in	the	Package	name:.
3.	 Again,	set	Android	2.2	as	Build	Target.

It	is	then	very	important	to	flag	the	Create	Activity:	check.	The	activity	is
the	class	that	is	instantiated	when	starting	application.	It	handles	input
(actions	on	touch	screen),	creates	the	window	that	displays	the	game,	and
other	necessary	activities.

	
4.	 Click	on	Finish	to	create	your	application.	Now	you	can	run	your	newly

created	application.
5.	 Right-click	on	the	project	and	navigate	to	Run	As	|	Android	Application.
6.	 Choose	the	Virtual	Device	you	configured	before	and	remember	that	you

don't	need	to	close	its	window	once	it	has	started—Eclipse	launches	the
application	you	are	working	on	inside	the	current	running	device,	so	it	will
save	you	some	time	having	the	Virtual	Device	already	running!

These	are	the	basic	steps	to	create	a	new	project	and	launch	an	application	on	a
Virtual	Device	with	Eclipse.	The	creation	of	a	working	app	is	beyond	the	scope

of	this	preparatory	chapter	on	the	Android	platform,	but	we	will	come	back	with
more	details	in	the	later	chapters	of	the	book.

Eclipse	versus	Intellij

Eclipse	is	not	the	only	possible	choice	to	develop	games	for	Android.	Among	the
others,	Intellij	can	be	considered	the	main	competitor	of	Eclipse,	which	mainly
works	with	Java.

Eclipse	offers	a	larger	number	of	plugins	and	supports	multiple	coding
languages,	because	it	is	easier	to	extend,	compared	to	Intellij.	When	working	on
specific	new	technologies,	it	is	very	likely	that	if	a	plugin	exists,	it	will	be	an
Eclipse	plugin.

On	the	other	hand,	when	dealing	with	completion	of	code	and	assistance,	Intellij
is	definitely	better	(and	faster)	than	Eclipse.	Especially	for	rookie	developers,
Intellij	can	give	you	a	hand	improving	your	code	and	offers	a	friendlier	user
interface.	The	learning	curve	is	smoother	and	developing	with	Intellij	generally
feels	easier	and	more	natural.

From	a	performance	point	of	view,	Eclipse	works	better	than	Intellij.	Projects
open	faster	and	they	are	handled	more	efficiently,	especially	very	large	ones.

To	make	a	general	statement,	Intellij	is	easier	to	use,	thanks	to	a	more	user
friendly	user	interface,	while	Eclipse	is	more	versatile,	thanks	to	a	larger	number
of	available	plugins	and	a	stronger	community	behind	it.

A	last	thing	to	consider:	Intellij	provides	a	full	functional	30	day	trial	version,
and	then	a	license	is	required	for	commercial	purposes,	while	Eclipse	is	an	open
source	project	and	thus,	its	license	is	totally	cost	free.

iOS

iOS	is	a	mobile	operating	system	developed	by	Apple.	It	was	released	in	2007
for	the	iPhone	and	the	iPod	Touch,	and	then	was	extended	to	support	the	iPad.	It
is	Apple's	specific	policy	that	the	iOS	cannot	be	installed	on	non-Apple	devices.

With	around	25	million	devices	sold	in	the	last	quarter	of	2012	(falling	from	35
million	in	Q2)	and	more	than	250	million	of	total	units	sold,	the	iOS	that	powers
the	iPhone	(the	iPad	and	iPod	as	well)	is,	together	with	Android,	the	best	target
platform	for	those	who	intend	to	develop	mobile	games.

The	Apple	Store,	the	distribution	platform	where	iPhone	apps	can	be
downloaded,	hosts	more	than	700,000	applications	and	downloads	have	been
counted	in	the	order	of	more	than	30	billion.

The	direct	manipulation	of	icons	using	multi-touch	gestures	is	the	basic	concept
behind	the	iOS	user	interface	and	a	trademark	of	mobile	devices	developed	by
Apple.	Regardless	of	many	attempts	to	imitate	its	distinctive	user	experience	by
other	manufacturers,	the	iPhone	must	be	acknowledged	as	the	device	that	offers
the	best	UI\UX	in	the	entire	smartphone	market.

The	interface	elements	are	sliders,	switches,	and	buttons.	The	interaction	is	via
actions,	such	as	swiping,	tapping,	and	pinching,	with	each	of	these	actions
having	a	meaning	in	the	Apple	iOS	environment.

Applications	also	make	use	of	the	sensors	and	other	features,	such	as	the
accelerometer,	to	obtain	effects,	such	as	shaking	the	device	to	undo	the	last
action	or	rotating	it	to	switch	between	portrait	and	landscape	modes.

iOS	is	Apple's	mobile	version	of	the	OS	X	operating	system	used	on	Apple
computers,	but	not	many	people	know	that	the	OS	X	operating	system	is	Unix
based.

Apple	tends	to	be	a	company	with	a	strong	bottom-up	control	policy	on	their
devices.	A	positive	consequence	is	that	updates	of	the	iOS	platform	are	released
methodically	and	developers	are	informed	when	updates	will	be	coming,	in	order
to	plan	accordingly	and	be	sure	that	their	newly	developed	apps	will	keep
working	and	will	be	stable	on	the	new	platform.

Together	with	the	fact	that	all	iOS	devices	are	built	by	the	same	manufacturer,

Together	with	the	fact	that	all	iOS	devices	are	built	by	the	same	manufacturer,
there	is	no	need	for	multiple	tests	on	many	different	devices	for	newly	developed
apps,	as	can	be	the	case	for	example,	when	developing	software	for	Android	or
Java	ME.

The	App	Store

When	a	new	application	is	developed	for	the	iOS,	it	can	be	distributed	through
the	Apple	Store.	Developers	are	free	to	set	any	price	above	a	minimum	for	their
apps	or	games,	of	which,	Apple	takes	30	percent	of	the	revenue,	while	the
developers	take	70	percent.	In	case	the	app	is	distributed	for	free,	the	only	cost	to
the	developer	is	the	necessary	membership	fee	needed	to	install	newly	created
apps	on	physical	devices.

To	submit	your	game	to	the	Apple	Store,	you	first	set	its	selling	price,	then	you
need	a	descriptive	text	for	the	game	that	will	be	found	in	the	App	Store,	three
icons	(29x29,	57x57,	and	512x512),	a	launch	image	that	appears	while	the	game
is	loading,	one-four	screenshots	of	your	game,	and	the	contract	information.	If
the	game	is	not	rejected	for	some	reason	by	Apple's	full	time	reviewers,	in
around	10	to	15	days	it	will	be	available	in	the	store	(depending	on	the	shipping
date	you	provided	for	your	game).	Reasons	that	games	are	rejected	can	be,
among	others,	that	it	contains	pornography,	it	is	considered	malicious	software,
or	it	is	not	stable.

Development	on	iOS

Most	consumers	agree	that	iOS	devices	offer	a	better	UI	experience	and	its
development	tools	are	generally	considered	more	user	friendly.

This	is	a	result	of	the	importance	Apple	always	gives	to	design	and	its	distinctive
focus	on	innovation	and	user	experience.	The	down	side	of	this	approach	is	that
Apple	wields	quite	lot	of	control	on	what	people	can	or	cannot	do	with	its
devices.

The	iOS	is	not	an	open	environment	in	the	first	place.	It	puts	excellent	tools	in
the	hands	of	developers,	tools	that	generally	allow	making	hard	things	as	easy	as
possible,	but	the	cost	is	that	when	working	with	iOS	it	can	be	frustrating	being
limited	to	Apple's	features.	When	compared	to	Android	or	Java	ME	platforms,
which	are	open	source	and	thus,	put	total	control	in	the	hands	of	the	developer,
working	with	iOS	may	seem	limited	in	some	ways,	as	its	approach	is	based	on
the	assumption	that	"the	platform	developer	knows	better	than	you".	In	other
words,	if	you	need	to	achieve	something	that	was	not	provided	by	the

words,	if	you	need	to	achieve	something	that	was	not	provided	by	the
manufacturer,	you	need	to	struggle	to	bypass	several	constraints.

The	iOS	SDK	is	the	software	development	kit	used	to	make	native	applications
for	the	iPhone	and	iPod	touch,	released	in	2008	by	Apple.

Though	developers	can	make	use	of	the	SDK	to	build	their	own	applications	for
the	iPhone,	loading	an	application	onto	the	devices	is	only	possible	after	paying
an	iPhone	Developer	Program	fee,	which	costs	$99	per	year.

The	no-cost	alternative	is	to	run	apps	in	the	iPhone	simulator,	which	is	provided
with	the	SDK	and	runs	your	application	in	pretty	much	the	same	way	as	an
actual	iOS	device.	The	simulator	is	quick	to	launch	and	debug,	and	is	a	very
efficient	tool	to	test	both	logic	and	interface	of	your	apps	or	games.	Touch
gestures	and	sensor	events	can	be	simulated	as	well	with	the	mouse.	For	testing
multi-touch	interactions	well,	you	need	to	pay	the	fee.

All	the	necessary	tools	for	the	SDK	are	contained	in	a	single	installer	package
that	is	easy	to	download,	though	not	very	light	(it	is	a	single	4.5	GB	file).
Moreover,	if	a	new	update	is	available,	you	need	to	download	and	reinstall
everything.	It	seems	like	the	iOS	SDK	team	doesn't	believe	in	patches!

There	are	other	barriers	which	may	come	into	play	when	developing	for	the	iOS.
Unless	you	use	specific	cross	platform	tools,	iOS	apps	require	a	Mac	to	be
developed,	which	means	that	if	you	don't	already	have	one,	you	may	be	forced	to
buy	a	Mac	to	develop	with	iOS.	This	can	be	a	high	entry	cost	since	Macs
generally	are	much	more	expensive	than	their	PC	equivalents.	Naturally,	a
developer	needs	a	computer	to	develop	apps	anyway,	but	for	example,	Android
apps	can	be	developed	on	Mac,	PC,	and	Linux	machines	equally	and	without
much	effort.

Another	crucial	element	when	deciding	whether	to	develop	apps	and	games	for
the	iOS,	is	the	lack	of	a	feature	called	garbage	collection.	Garbage	collection
means	that	the	developer	is	not	asked	to	learn	the	rules	to	manually	manage	the
memory	of	the	device	when	developing	apps.	With	such	a	feature,	a	programmer
is	not	required	to	specify	which	objects	to	de-allocate	in	order	to	free	memory
resources	for	other	computing.

Garbage	collection	is	a	way	to	enhance	the	performance	of	an	application	and	to
drastically	accelerate	the	development	process.	For	this	reason	alone,	most

programmers	would	agree	that	the	absence	of	such	a	feature	in	the	iOS
environment	makes	it	preferable	for	beginners	to	develop	apps	for	Android.

Xcode

The	development	environment	for	iOS	SDK	is	called	Xcode	(now	distributed	in
its	Version	4)	and	like	iOS	and	OS	X,	it	is	written	in	objective-C.

Xcode	contains	all	the	necessary	development	tools	made	by	Apple	to	build
applications	for	OS	X	and	iOS:	a	source	code	editor	and	a	user	interface	editor.

Together	with	the	Cocoa	framework,	it	provides	a	very	productive	and	easy-to-
use	development	environment,	powerful	enough	to	develop	the	same	kind	of
tools	used	by	Apple	to	produce	iOS.

For	example,	as	you	write	code,	Xcode	finds	mistakes	in	syntax	and	logic,
highlights	them,	and	also	suggests	fixes.

Workflow	in	the	IDE	is	performed	in	a	single	window,	so	that	all	relevant	info	is
available	at	once.

The	UI	editor,	called	the	Interface	Builder,	permits	specifying	the	details	of	the
user	interface	and	its	connections	to	the	logic	and	data	of	the	app	in	a	very
intuitive	graphical	environment,	and	to	work	very	closely	with	the	source	code
editor	to	get	from	design	to	implementation	as	quickly	as	possible.

Using	Xcode

To	create	a	new	project	with	Xcode,	follow	the	given	steps:

1.	 Navigate	to	File	|	New	Project.	A	dialog	will	appear,	as	shown	in	the
following	screenshot:

	
2.	 Once	a	new	project	has	been	started,	you	need	to	name	it	and	choose	the

device	type	for	it	to	be	built	(generally	iPhone).
3.	 In	the	Company	Identifier	field,	use	a	unique	string.	It	will	be	used	to

generate	a	Bundle	Identifier	for	your	game.

	

Now	a	quick	glimpse	at	the	structure	of	the	app,	which,	as	we	said,	is	written	in
Objective-C	language.

There	will	be	a	main.m	file	that	instantiates	the	App	Controller,	while	objects	are
declared	in	header	files	(*.h).

All	non-code	files	are	held	in	a	directory	called	Supporting	Files,	where	you'll
want	to	put	images,	text	files,	and	other	stuff.

The	directory	structure	of	your	newly	created	project	could	look	like	this:

	

More	on	game	developing	for	iOS	will	be	seen	in	the	later	chapters	about	mobile
engines.	For	now,	this	ends	our	trip	in	the	iOS	world.

Windows	Phone

Windows	Phone	is	the	operating	system	developed	by	Microsoft	for	mobile
devices	and	is	the	successor	to	its	former	Windows	Mobile	platform.

While	Windows	Mobile	OS	was	mainly	aimed	at	enterprises,	with	Windows
Phone,	Microsoft	turned	its	attention	to	the	consumer	market,	allowing	easier
access	to	third	party	services	and	development,	and	thus	to	indie	mobile	games
development	as	well.

To	further	improve	the	usability	of	Windows	Phone,	Microsoft	developed	a	new
design	language,	called	Modern	Style	UI,	to	create	a	new	user	interface	and	set
minimum	requirements	for	the	hardware	the	new	services	run	on.

To	get	to	the	widest	audience	and	target	the	emerging	Asian	markets	(China	in
primis),	in	2012,	Microsoft	released	an	update	to	its	OS,	known	as	Tango,	which
lowered	the	requirements	for	devices	to	run	Windows	Phone,	allowing	the	new
OS	to	effectively	run	on	lower-end	hardware.

On	February	2011,	at	a	press	event	in	London,	Microsoft	and	Nokia	CEOs
announced	a	partnership	between	the	two	colossi	for	Windows	Phone	to	become
the	primary	operating	system	for	Nokia	smartphones,	thus	declaring	Windows
Phone	as	the	third	competitor	in	the	smartphones	OS	market	against	Android	and
iOS.

The	first	Nokia	phone	models	to	run	Windows	Phone	are	the	Lumia	800	and	the
Lumia	710.

By	the	end	of	2012,	Microsoft	released	the	latest	edition	of	its	mobile	platform,
Windows	Phone	8,	that	replaces	the	previous	CE-based	architecture	with	one
based	on	the	Windows	NT	kernel	and	several	shared	components	with	the	new
Windows	8	(developed	for	PCs	and	tablets),	allowing	applications	to	be	easily
ported	between	these	two	platforms.

As	we	said,	Windows	Phone	features	a	new	user	interface	named	Modern	Style
UI.	The	main	innovation	of	the	new	UI	consists	in	Live	Tiles	that	are	displayed
on	the	so-called	Start	Screen.	Tiles	are	links	to	apps	(contacts,	web	pages,	and
media	items)	that	dynamically	update	their	icons	in	real	time,	for	example,
showing	the	number	of	unread	messages	for	an	e-mail	account	or	live	updates
for	a	weather	app.

for	a	weather	app.

Another	innovation	is	the	organization	of	features	into	Hubs	that	allow	content
integration	with	popular	social	networks,	such	as	Facebook,	Windows	Live,	and
Twitter,	so	that,	for	example,	the	Pictures	hub	shows	photos	made	with	the
camera	equipped	on	the	phone.	From	the	Hub,	users	can	directly	comment	and
like	updates	on	their	favorite	social	networks.

The	main	Hub	for	the	interests	of	this	book	is,	obviously,	the	Widows	Phone
Store!

Windows	Phone	Store

The	Windows	Phone	Store	(formerly,	Windows	Phone	Marketplace)	is	the
service	provided	by	Microsoft	to	allow	users	to	browse	and	download
applications	developed	by	third	parties	for	their	Windows	Phone	powered
phones.	The	Modern	Style	UI	presents	a	panoramic	view,	where	users	can
browse	items	by	categories,	see	featured	items,	and	get	details,	such	as	ratings,
reviews,	screenshots,	and	pricing	information.

The	Windows	Phone	Store	was	launched	in	2010	along	with	Windows	Phone	7
and	by	2012,	it	already	offered	more	than	100,000	available	apps.

To	submit	apps	to	the	Windows	Phone	Store,	an	annual	subscription	fee	of	$99
is	required,	which	offers	an	unlimited	number	of	submissions	on	the
Apps+Games	section	of	the	store.

Apps	must	be	approved	by	Microsoft:	a	strict	control	is	wielded	on	the	contents
in	order	to	forbid	pornography,	promotion	of	violence,	discrimination,	hate,
usage	of	drugs,	and	the	like	to	be	included	in	the	applications	available	on	the
Windows	Phone	Store.

For	apps	that	are	sold	on	the	store,	Microsoft	takes	30	percent	of	the	revenue	(70
percent	goes	to	the	developer).	Developers	are	paid	only	if	they	reach	a	set	sales
figure,	but	above	a	revenue	of	$25k,	the	shares	become	20	percent	to	Microsoft
and	80	percent	to	the	developer.

Developing	apps	with	Windows	Phone

Apps	and	games	for	Windows	Phone	can	be	designed	with	Visual	Studio	2010,
Standard	and	Express	editions.

Windows	Phone	8	offers	full	support	for	native	C\C++	libraries,	thus	allowing
easy	porting	of	Windows	programs	to	Windows	Phone	8.	This	also	allows
developers	to	port	iOS	and	Android	applications,	since	much	of	their	code	can
be	maintained,	thus	widening	the	range	of	available	apps	for	Windows	Phone.

Desktop	games	designed	for	Windows	8	can	also	be	easily	ported,	thanks	to	the
full	support	Windows	Phone	offers	to	Direct	X	architectures,	and	HTML	5	can
be	used	to	develop	apps	as	well,	depending	on	the	features	needed	by	games	and
apps.

To	specifically	develop	high	performance	games,	XNA	is	the	optimal	IDE
Microsoft	offers	to	developers	to	include	the	best	graphics	and	audio	for	your
mobile	games	for	Windows	Phone.

There	is	also	the	Windows	Phone	SDK	8.0,	which	offers	all	the	tools	needed	to
develop	games	for	Windows	Phone:	editors,	software	templates,	and	the
Windows	Phone	Emulator	8	for	testing	your	apps.	The	Windows	Phone	SDK
provides	a	stand	alone	Visual	Studio	Express	2012	edition	for	Windows	Phone
or	works	as	an	add-on	to	Visual	Studio	2012	Professional,	Premium,	or	Ultimate
editions.

Testing	apps	on	Windows	phone	devices	requires	a	developer's	account	and	a
registered	testing	device.

Remember	that	the	development	of	Windows	Phone	8	apps	is	supported	only	on
64-bit	Windows	8	Pro	or	higher:	Windows	Phone	apps	cannot	be	developed	on
Windows	7,	Windows	Server	2008,	and	2012.

Developing	a	game	for	Windows	Phone	with	XNA

To	create	a	new	Windows	Phone	project,	follow	the	steps	shown:

1.	 Navigate	to	File	|	New	Project.

A	dialog	window	that	lists	several	project	templates	appears	as	shown	in	the
following	screenshot:

	

The	dialog	window	contains	the	following	project	templates:
Windows	Phone	Game	(4.0):	This	is	a	project	for	creating	an	XNA
Framework	4.0	game	application	for	Windows	Phone.
Windows	Phone	Game	Library	(4.0):	A	project	for	creating	an	XNA
Framework	4.0	game	library	for	Windows	Phone.
Windows	Phone	Silverlight	and	XNA	Application:	A	project	for
creating	a	Windows	Phone	Silverlight	Application	capable	of
rendering	graphics	using	the	XNA	Framework.
Content	Pipeline	Extension	Library	(4.0):	A	project	for	creating	an
XNA	Framework	4.0	Content	Pipeline	Extension	Library.

2.	 Once	Windows	Phone	Game	(4.0)	is	selected,	type	a	name	for	the	project
in	the	text	box	and	click	on	OK.

A	new	dialog	appears	which	requires	us	to	select	the	version	of	Windows
Phone	to	target,	as	shown	in	the	following	screenshot:

	
3.	 Select	the	Windows	Phone	OS	version	and	click	on	OK.

The	following	screenshot	shows	the	features	contained	in	the	new	Windows
Phone	project:

	

The	properties	control	several	aspects	of	your	current	project.	They	include
general	application	settings,	debug	settings,	and	additional	project	resources.	The
Project	Designer	can	be	used	to	modify	the	values	of	these	properties.

Many	tutorials	on	how	to	develop	apps	for	Windows	Phone	can	be	found	on	the
Internet.	You	can	start	your	searches	from	http://dev.windowsphone.com/en-us.

http://dev.windowsphone.com/en-us

Java	ME

Java	ME	is	a	platform	designed	for	mobile	devices	and	PDAs	by	Sun
Microsystems.

Although	it	is	not	used	on	today's	newest	mobile	platforms,	such	as	iPhones	and
Android-powered	smartphones,	it	is	still	very	popular	on	low-end	devices,	such
as	the	Nokia's	Series	40,	and	in	general,	on	several	million	devices	worldwide
that	are	Java	enabled.

For	the	first	decade	of	the	21st	century,	Java	has	been	the	most	popular	choice
for	game	development,	as	it	was	identified	as	the	most	convenient	and	versatile
platform	to	develop	mobile	games.	It	has	been	considered	as	a	standard	and	was
backed	by	all	major	mobile	phones	makers,	and	still	most	of	the	present	day
mobile	phones	are	Java-enabled.

The	reason	why	Java	ME	is	so	popular	is	that	it	is	a	free	and	open	platform	that
keeps	the	development	costs	low	and	provides	all	the	necessary	flexibility,	while
support	for	developers	is	freely	available.

Its	highly	portable	nature,	expressed	by	the	sentence	"write	once,	run	anywhere",
ensures	that	a	game	written	having	a	specific	handset	in	mind	will	work	with	all
other	handsets	which	are	Java	enabled	as	well.

Applications	and	games	written	with	Java	ME	are	stable	and	robust,	allowing
developers	to	create	the	best	performing	mobile	apps.

Its	programming	environment	is	especially	suitable	for	developing	games,
considering	that	Java	ME	apps	can	run	both	online	and	offline.	And,	in	any	case,
Java	ME	is	supported	by	most	of	today's	smartphones.

The	usual	problems	with	mobile	games	development,	that	relate	to	screen	size,
memory	availability,	and	app	download	size,	can	be	effectively	approached	with
Java	ME,	thanks	to	specific	development	frameworks	that	detect	the	device
characteristics	and	provide	enough	flexibility	so	that	the	app	itself	can	adjust.

Java	ME	is	an	industry-wide	technology,	with	most	manufacturers	offering	a
range	of	devices	that	support	it.	Your	Java	ME	game	will	not	only	have	the
opportunity	to	run	on	over	one	billion	Nokia	cell	phones	in	use	today,	but	it	can
also	reach	over	three	billion	devices	which	are	still	in	use	all	over	the	world!

also	reach	over	three	billion	devices	which	are	still	in	use	all	over	the	world!

Though	Java	ME	is	losing	a	significant	share	of	the	mobile	phone	market	due	to
the	proliferation	of	the	iPhone,	Android,	and	BlackBerry	platforms,	there	are	still
several	reasons	to	consider	this	technology,	the	most	important	being	that
development	with	Java	ME	is	cheaper	and	easier,	compared	to	the	other
platforms.

Even	if	it	can	be	said	that	it	is	a	dying	platform	for	mobile	apps,	and	games	in
particular,	Java	ME	is	still	the	prevalent	supported	platform	in	many	parts	of	the
world,	especially	India,	Middle	East,	and	Southeast	Asia,	which	are,	as	we
know,	emerging	and	promising	markets,	as	well	as	North	Africa	and	South
America,	the	latter	being	a	very	profitable	market	for	mobile	games,	too.

Developing	games	with	Java	ME

Mobile	devices	powered	by	the	Java	ME	platform	implement	a	profile	called
Mobile	Information	Device	Profile	(MIPD).	Profiles	contain	a	configuration	of
a	restricted	number	of	Java	libraries,	a	minimum	amount	of	classes	needed	for
the	Java	virtual	machine	to	work.

The	profile	which	is	implemented	on	Java	ME	powered	mobile	phones	is	called
Connected	Limited	Device	Configuration	(CLDC),	and	it	provides	the	most
basic	libraries	and	virtual	machine	features	to	run	a	Java	ME	environment.

The	CLDC,	coupled	with	the	MIPD,	allows	us	to	develop	downloadable	apps
and	games	that	run	on	a	very	large	number	of	cell	phones	and	PDAs.

The	MIPD	basically	contains	a	GUI,	a	data	storage	API,	and	a	basic	gaming	API
that	allow	developers	to	build	their	own	applications,	called	MIDlets.

The	latest	available	MIPD	version,	the	3.0	specification	approved	on	December
2009,	includes	several	new	features	that	enable	Java	ME	developers	to	create
sophisticated	and	compelling	mobile	applications.

The	MIPD	3.0	extends	the	capabilities	of	Version	2.1	with	the	following
features:

Enables	multiple	concurrent	MIDlets
Enables	MIDlets	to	run	in	background
Enables	auto-launched	MIDlets	and	screensavers
Enables	inter	MIDlet	communication

Tightens	specs	to	improve	cross	device	interoperability
Improves	the	UI	for	applications
Better	support	for	devices	with	larger	displays
Enables	richer	and	higher	performance	games

There	are	several	different	ways	and	tools	to	create	MIDP	applications:	code	can
be	written	in	a	plain	text	editor,	or	one	can	use	a	more	advanced	IDE,	such	as
NetBeans,	IntelliJ	(with	bundled	Java	ME	plugin),	or	Eclipse	(with	plugins,	such
as	Eclipse	ME).

NetBeans

NetBeans	is	an	open	source	IDE	to	develop	apps	and	games	for	Java	ME-
powered	devices.	Applications	can	be	developed	from	a	set	of	modular	software
components	called	modules	and	can	be	extended	by	third	party	developers.
Among	its	features,	it	includes	the	Update	Center	module	that	allows	users	to
download	upgrades	and	new	features	into	the	running	application,	so	that
reinstalling	an	upgrade	or	a	new	release	does	not	force	the	users	to	download	the
entire	application	again.

The	latest	released	version	of	NetBeans	is	7.2.

To	create	a	new	project	with	NetBeans,	follow	the	given	steps:

1.	 Start	the	NetBeans	IDE.
2.	 Navigate	to	File	|	New	Project.

The	New	Project	Wizard	will	open.	Expand	the	Java	category	and	select
Java	Application	as	shown	in	the	following	screenshot:

	
3.	 Click	on	Next.

In	the	Name	and	Location	page	do	the	following	(refer	to	the	following
screenshot):

1.	 Name	your	project	in	the	Project	Name:	field,	such	as	HelloWorldApp.
2.	 Leave	the	Use	Dedicated	Folder	for	Storing	Libraries	unchecked.
3.	 In	the	Create	Main	Class	field,	type	something	like

helloworldapp.HelloWorldApp.

	
4.	 Click	on	Finish.

Your	project	is	now	ready	to	go.

The	Project	window	contains	a	tree	view	of	the	components	of	the	actual	project,
in	particular,	the	source	files	and	the	libraries.

The	Source	Editor	window	contains	a	file	called	HelloWorldApp	with	code.

Use	the	Navigator	window	to	navigate	between	elements	related	to	the	selected
class.

	

No	need	to	delve	into	further	details	here.	The	Web	is	full	of	good	tutorials,	if
you	are	interested	in	improving	your	knowledge	of	the	Java	ME	platform,
starting	with:

https://netbeans.org/kb/docs/javame/gamebuilder-screencast.html

https://netbeans.org/kb/docs/javame/gamebuilder-screencast.html

BlackBerry

For	the	sake	of	completeness,	we	mention	here	the	characteristics	of	the
BlackBerry	operating	system.	Though	it	doesn't	offer	the	same	commercial
opportunities	as	iOS	or	Android-based	phones,	with	about	eight	million	devices
worldwide,	BlackBerry	can	be	an	interesting	market	niche,	less	competitive	but
not	necessarily	less	remunerative	than	the	iOS	or	Android	markets.	Studies	state
that	the	average	revenue	for	a	BlackBerry	app	is	about	$4000	per	month,	much
higher	than	average	revenues	for	the	apps	developed	for	iOS	and	Android.

Moreover,	Reasearch	In	Motion	(RIM)	(the	company	behind	BlackBerry
devices)	offers	a	guarantee	that	if	a	quality	certified	app	doesn't	make	$10,000	in
the	first	year,	they	will	pay	up	the	difference	to	the	developers.	No	other
platform	owner	company	offers	such	a	guarantee!

BlackBerry	is	a	brand	of	smartphones	and	handheld	devices	developed	by	RIM.
The	main	features	of	these	devices	are	the	ability	to	send	and	receive	push	e-
mails	and	instant	messages,	while	maintaining	a	high	level	security.	That's	what
made	BlackBerry	an	optimal	choice	for	companies	that	provide	their	employees
with	smartphones	for	business	use.	They	also	share	many	features	of	other
smartphones,	including	media	players,	Internet	browsers,	cameras,	and
obviously,	gaming	capabilities.

The	OS	used	by	BlackBerry	devices	is	a	proprietary	environment	developed	by
RIM	and	designed	to	take	advantage	of	their	distinctive	input	devices:	the	track
wheel,	the	track	ball,	the	track	pad,	and	the	QWERTY	keyboard.	The
BlackBerry	OS	also	provides	support	for	Java	MIPD	1.0	and	2.0	(refer	to	the
Java	ME	section),	thus	allowing	third	party	developers	to	create	apps	for	this
platform.

A	developer	must	have	an	account	with	RIM	and	be	digitally	signed	in	order	to
guarantee	his/her	authorship.

There	are	several	tools	that	can	be	used	to	develop	games	for	BlackBerry,	such
as	the	open	source	project	GamePlay,	that	don't	require	developers	to	learn
entirely	new	skills	to	build	apps	for	the	platform.

With	the	BlackBerry	10	platform	released	in	2013,	one	can	find	many	reasons	to
consider	this	option,	having	the	BlackBerry	Play	Book	tablets	in	mind!

The	BlackBerry	App	World

The	BlackBerry	App	World	is	the	service	provided	by	RIM	to	BlackBerry
owners	to	browse	and	download	apps	for	their	devices.	Launched	in	April	2009
and	with	fewer	apps	than	the	Apple	Store	or	Google	Play,	the	BlackBerry	App
World	offers	all	fundamental	services	provided	by	its	direct	competitors:
intuitive	user	interface	to	browse	applications	by	category,	the	possibility	of
reinstalling	already	purchased	apps,	several	flexible	payment	options,	and	a
rating	and	review	system	for	apps	available	for	shopping.

Apps	submitted	to	the	App	World	must	be	approved	by	RIM	and	a	fee	of	$200	is
involved	in	the	submission	process,	which	covers	10	submissions.	Note	that	the
fee	is	refunded	if	the	developer's	account	is	not	approved.

Developing	games	for	BlackBerry

When	getting	to	the	game	development	for	BlackBerry,	there	are	two	options
available.

The	first	is	to	build	native	apps	using	the	BlackBerry	SDK	and	its	C++
framework.	The	BlackBerry	SDK	is	aimed	at	the	newest	devices	equipped	with
OS	10	and	to	the	BlackBerry	tablet,	known	as	the	PlayBook.	Being	a	framework
for	native	apps,	it	guarantees	better	performances,	thanks	to	the	full	integration
with	the	specific	APIs	of	the	BlackBerry	platform.

The	other	possibility	is	to	use	the	Java	SDK,	or	even	better,	the	Java	Plugin	for
Eclipse	which	extends	the	Eclipse	development	framework.	The	main
advantage,	for	a	developer,	of	using	Java	to	create	games	for	BlackBerry	is	that
MIDlets	(Java	applications)	can	equally	run	on	any	device	powered	by	OS	7	and
on,	thus	widening	the	potential	audience	for	their	games.

Everyone	interested	in	delving	into	the	game	development	for	BlackBerry	can
research	on	the	Internet,	starting	from:

For	native	apps:

https://developer.blackberry.com/develop/platform_choice/ndk.html
For	Java	MIDlets	with	Eclipse

https://developer.blackberry.com/java/documentation/overview_2006571_11.html

https://developer.blackberry.com/develop/platform_choice/ndk.html
https://developer.blackberry.com/java/documentation/overview_2006571_11.html

Summary
We	have	discussed	what	an	operating	system	is	and	how	it	acts	as	the	interface
between	the	hardware	and	software	of	a	computer	or	a	handheld	device.

We	mentioned	the	general	characteristics	and	evolution	of	the	operating	systems
running	on	Personal	Computers	and	examined	in	detail	today's	most	popular
mobile	OS	(Android,	iOS,	Windows	Phone,	Java	ME,	and	BlackBerry).

We	also	provided	the	basic	references	to	approach	the	development	and
distribution	of	apps	and	games	for	mobile	platforms	and	gave	a	general
description	of	the	best	tools	to	develop	for	each	of	them.

In	the	next	chapter,	we	will	discuss	the	working	pipeline	of	a	typical	indie
mobile	team	and	provide	a	description	of	the	main	roles.	We	will	also	describe
the	tasks	each	role	is	accountable	for,	the	most	popular	tools	to	accomplish	these
tasks,	and	provide	information	on	the	academic	background	expected	for	each
role.

Chapter	2.	The	Mobile	Indie	Team
Assembling	a	good	team	with	the	right	people	is	the	first	step	towards	the
production	of	a	well-done	title.	The	process	of	videogame	development	is	a
pretty	tough	one	and	it	requires	talent,	skill,	patience,	and	an	iron	will.

This	is	especially	true	for	an	indie	team,	because	as	a	team	of	people	who
usually	don't	work	under	the	constraints	of	a	solid	company,	they	can	easily
break	up	during	the	development	process	for	the	most	unexpected	reasons!

When	choosing	the	members	of	your	mobile	team,	you'd	better	look	for	people
who	have	both	talent	and	the	ability	to	effectively	cooperate	with	other	people	to
create	the	perfect	title,	in	order	to	trigger	your	career	in	the	gaming	industry.

The	following	chapter	provides	a	detailed	description	of	the	key	roles	to	cover	in
a	mobile	indie	team,	the	tasks	they	are	responsible	for,	the	skills	they	need,	and
the	academic	courses	that	can	help	them	get	those	skills.

In	this	chapter,	we	will	cover:

A	presentation	of	the	mobile	team	and	the	key	roles	to	cover
What	it	takes	to	develop	mobile	games
The	game	designer
The	game	artist
The	programmer
The	game	tester
The	game	producer
The	sound	designer

A	matter	of	size
One	of	the	most	interesting	aspects	of	mobile	game	development	is	that	it	offers
opportunities	to	small	teams	to	effectively	get	into	the	competition.	From	a
certain	perspective,	mobile	game	development	recalls	the	age	of	early	computer
games,	when	a	team	of	few	members	shipped	games	that	could	gain	worldwide
popularity.	Electronic	Arts	got	their	start	by	publishing	indie	developers'
products.

Generally	speaking,	mobile	games	tend	to	have	a	limited	scope	when	compared
to	common	high	budget/high	quality	(AAA)	console	or	PC	titles.	Mobile	games
are	designed	to	be	played	in	small	chunks	and	rely	on	simple	game	mechanics
that	require	fewer	assets,	less	programming,	and	shorter	testing	and	debug	time.
This	means	that	mobile	games	require	less	people	for	development	and	can	be
developed	by	teams	of	one	or	few	individuals	for	every	key	role.

A	good	reason	to	keep	the	mobile	dev	team	small	has	very	much	to	do	with	the
progress.	Working	progress	can	slow	down	either	if	the	team	is	too	small	or	too
big.	With	a	limited	amount	of	work	and	too	many	people	on	each	role,	the
responsibility	is	shared	among	too	many	members	and	the	progress	slows	down
because	nobody	feels	really	responsible	for	what	needs	to	be	done.	The	more
people	on	the	team,	the	greater	the	chance	of	miscommunication	and	wasted
effort.

Another	important	reason	to	keep	the	team	small	is	that	the	larger	the	group,	the
higher	it	costs!	Though	mobile	gaming	can	become	a	very	profitable	niche,	the
low	price	of	such	products	means	that	you	usually	don't	make	millions	out	of	a
single	mobile	game	and	it	is	imperative	to	keep	the	development	costs	as	low	as
possible.

Key	roles	in	a	successful	team
Though	it	is	very	important	that	each	member	has	a	well-defined	role,	when
dealing	with	small	teams	it	is	likely	that	one	member	will	have	multiple	roles
and	that	those	roles	are	shared	between	more	than	one	member.

This	is	one	reason	why	small	teams	usually	offer	better	career	opportunities	to
those	who	can	cover	several	roles.	Working	in	a	small	team,	where	people	are
required	to	work	on	different	aspects	of	the	game	at	the	same	time,	they	have	the
opportunity	to	show	their	different	talents	and	thus	to	advance	their	careers.	It	is
also	a	good	opportunity	to	learn	new	skills	and	expand	their	overall	expertise.

Generally	speaking,	the	key	roles	that	need	to	be	covered	in	a	mobile	dev	team
are:	Design,	Art\Modeling,	Programming,	Sound,	QA\Testing,	and	Production.
These	are	all	key	aspects	of	a	game	development	and	each	of	these	roles	will	be
explored	in	the	following	sections	of	this	chapter.

The	following	figure	represents	the	average	subdivision	of	total	cost	for	the
production	of	a	game	among	the	different	departments	(source:
gamecareerguide.com/).

	

http://gamecareerguide.com/

What	it	takes
Game	development	is	a	lot	of	work!	There	is	a	huge	amount	of	things	to	do	even
to	make	simple	games.	Before	we	delve	into	the	details	of	each	role	in	a	team,	it
is	worth	saying	something	about	the	cross	competencies	that	each	individual
should	have	for	that	team	to	be	effective	and	reach	its	goals.

Commitment

In	videogame	development,	(almost)	any	element	of	the	game	needs	to	be
created	from	scratch.	Every	pixel	requires	someone	to	draw	it,	any	action
performed	by	a	character	needs	someone	to	animate	it,	any	event	needs	to	be
coded,	any	sound	effect	must	be	composed,	and	the	list	is	long.	It	is	not	by
chance	that	the	inclusion	of	digital	contents	in	movies	led	to	a	large	increase	in
cost.

Cohesion

Any	activity	that	is	shared	among	different	people	requires	the	group	to	hold
together	on	the	common	goal,	especially	in	a	small	group	where	each	person	is
responsible	for	a	key	element	of	the	project.

To	develop	a	game	requires	weeks,	or	months,	more	reasonably.	During	this
period,	any	sort	of	problem	that	arises	can	hinder	the	course	of	the	project:	the
code	doesn't	work	as	expected,	graphics	mess	up	when	imported	in	the	engine,
design	questions	with	no	clear	answers,	for	example.

If	all	the	team	members	don't	support	each	other	and	cooperate	in	such	tight
spots,	the	project	can	easily	turn	into	a	failure,	with	the	consequent	loss	of	time,
money,	and	more	important,	team	morale.	When	things	go	bad,	you	simply	need
the	right	people	around	you,	who	can	provide	constructive	criticism	and	help
team	mates	to	make	the	best	use	of	their	talents.

The	first	experience	of	one	of	the	authors	with	an	indie	team	risked	to	turn	into	a
complete	failure,	with	the	consequent	loss	of	time	and	money,	when	the
professional	we	were	supposed	to	work	with	decided	to	quit.	When	that
happened,	we	all	felt	very	bad	and	our	morale	was	as	low	as	it	could	be.	If	it
wasn't	for	our	friendship	as	a	group,	we	couldn't	have	reached	the	goal	to	make
that	game	anyway!

Software	development	methodologies

Videogames	are	software,	of	course,	and	software	has	proven	processes	and
methodologies	that	increase	the	chance	of	reaching	one's	goal	while	minimizing
waste.

There	are	several	methodologies	to	develop	a	software,	each	one	with	its	own
pros	and	cons.	Agile	software	development	is	a	very	popular	software
development	methodology	among	today's	game	developers,	based	on	an	iterative
and	incremental	approach,	where	teams	periodically	examine	the	short	term
progresses	of	their	work	and	set	new	short	term	milestones	according	to	their
results.	You	can	find	resources	on	Agile	development	at
http://agilemanifesto.org/.

http://agilemanifesto.org/

Discipline

When	developing	a	game,	there	is	never	enough	time.	The	iterative	nature	of	the
creative	process	implies	that	it	is	very	likely	that	the	project's	initial	schedule
suffers	delays	and	missed	milestones.

It	is	thus	very	important	that	each	team	member	is	well	organized	with	his	work
and	is	able	to	advance	his	work	day	by	day.	This	is	especially	important	when
dev	teams	work	remotely,	which	is	often	the	case	with	indie	projects.

People	who	have	freedom	to	work	on	their	projects	as	they	please	tend	to
postpone	work	for	other	activities,	with	the	consequence	that	project	deadlines
may	be	delayed	leading	into	a	disaster.

Be	sure	that	the	people	in	the	team	are	reliable	and	will	take	their	responsibilities
seriously.

Professional	training

Whenever	possible,	look	for	people	who	have	degrees	in	their	field.	There	are
many	skilled	people	who	are	self-taught,	and	experience	is	what	counts	more	in
the	end.	Still,	a	good	formal	training	helps	people	learn	fast	and	overcome	their
limits	due	to	lack	of	experience.

A	general	rule	is	that,	when	building	up	the	team,	people	covering	the	key	roles
should	have	previous	experience	working	on	a	project	in	the	same	or	a	similar
position.	They	should	at	least	have	already	worked	on	a	true	project,	working	in
a	team.	The	reason	for	having	experienced	people	in	key	roles	is	that	they	can
provide	reliable	previsions	when	drafting	the	schedule	of	the	project.	They	know
what	they	can	do	and	the	time	it	takes	to	do	it.	Inexperienced	people,	on	the
other	hand,	could	underestimate	their	assigned	task,	with	the	result	that	the
project	deadlines	fail	and	a	new	schedule	needs	to	be	made.

It	is	also	true,	however,	that	once	the	key	roles	are	assigned	to	experienced
people,	hiring	talents,	even	with	few	or	none	experience,	can	provide	an
invaluable	resource	for	the	team	on	the	long	run.

Passion	for	games

Well,	it	is	very	easy	to	understand	that	to	develop	games	for	a	living,	it	is
important	that	those	who	are	part	of	the	team	love	videogames.	We	have	spoken
about	the	high	level	of	commitment	required	to	achieve	important	goals	and	the
need	to	make	a	lot	of	personal	sacrifices.	Out	of	our	personal	experience,	it	is
very	likely	that	a	brand	new	dev	team	interested	in	developing	videogames	will
be	asked	to	do	other	things	in	order	to	be	able	to	develop	games,	such	as
working	on	web	sites	or	other	kinds	of	non-gaming	apps	to	support	their
business.

If	these	people	are	passionate	about	developing	games,	it	will	be	easier	to
commit	themselves	to	things	which	they	don't	really	like	doing,	having	their
main	goal	in	mind.	Otherwise,	they	could	simply	give	up,	for	working	takes
away	the	most	important	resource	from	people:	their	time.	Indie	game
development	is	an	opportunity	to	turn	a	passion	into	a	profession,	but	only	if	you
can	give	the	time	it	takes!

The	roles	in	an	indie	mobile	team
What	follows	here	is	a	review	of	the	main	roles	required	for	an	ideal	mobile
indie	team.	For	each	role,	we	provide	a	description	of	duties,	skills,	personal
traits,	and	the	academic	formation.

We	don't	mean	that	this	list	of	roles	is	a	requirement	for	any	team;	it	is	possible
for	people	getting	into	the	game	industry	to	have	different	backgrounds.

Also,	we	don't	mean	that	each	role	represents	a	person.	There	can	be	people
covering	more	than	one	role,	as	it	is	likely	that	more	people	will	share	one	role.

The	game	designer

The	game	designer	defines	what	happens	in	a	game	and	what	the	player	does	to
progress	through	it.	He	is	responsible	for	turning	a	game	play	idea	into	a	detailed
design	document,	which	is	constantly	updated	and	used	by	all	other	team
members	as	a	reference	guide	to	develop	their	part	of	the	project.

During	the	pre-production	phase	of	a	game,	the	designer	is	responsible	for
defining	what	the	game	is	about,	its	story	and	the	game	world,	what	the	game
mechanics	are,	which	features	the	game	will	implement,	what	its	Unique	Selling
Points	are,	and	its	main	competitors.

This	information	flows	into	the	pitch	document	of	the	game,	a	sort	of
presentation	document	of	a	game-to-come,	usually	presented	to	potential
investors	to	get	the	approval	on	the	project,	as	for	example,	with	the	videos	on
Kickstarter.	We	will	address	the	pitch	document	again	by	the	end	of	the	book,
when	we	will	create	one	for	a	mobile	game.

During	the	production	phase,	the	work	of	a	game	designer	consists	of	checking
that	all	the	team	members	work	towards	the	realization	of	the	vision	he	has	in
mind.	With	the	producer,	the	game	designer	acts	as	the	coordinator	of	the	project
and	a	living	wiki.	Whenever	a	team	member	has	a	question	on	how	a	specific
piece	of	game	should	work	or	look	like,	he	will	look	to	the	game	designer	to
provide	the	answer.	Be	ready	for	that	and	know	your	game!

Designer	at	work

Game	design	starts	with	a	good	idea.	It	can	be	a	nice	game	mechanic,	the	idea	of
a	cool	character	or	a	piece	of	a	story:	anything	can	provide	the	inspiration	for	a
good	game.	A	popular	indie	game	called	Braid	finds	its	premises	in	the
consequences	of	a	bad	love	delusion.

The	next	step	is	to	convey	this	idea	to	the	rest	of	the	team	in	a	way	that	ensures
everyone	understands	what	the	idea	is.	This	sounds	simple,	but	is	far	from	it.	A
game	designer	needs	a	wide	variety	of	skills	as	well	as	good	ideas.	Good	ideas
are	plentiful,	everyone	has	a	few.	The	trick	is	getting	something	built	that
somewhat	resembles	that	good	idea.	The	main	tool	the	designer	uses	to	convey
his/her	idea	to	the	other	members	of	the	team	is,	as	we	have	already	said,	the
design	document.

The	designer	should	have	a	working	knowledge	of	the	team's	skills,	such	as	art,
sound,	programming	as	well	as	a	background	in	playing	games.	A	designer
needs	the	ability	to	analyze	game	play	and	to	articulate	what	works	and	what
doesn't	work	in	a	game.

Since	mobile	game	development	is	involved	here,	the	designer	should	also	have
a	thorough	knowledge,	from	both	commercial	and	technical	perspectives,	of	the
mobile	platform:	trends,	technical	advancements	and	solutions,	successful	genre
and	control	schemes,	profitable	business	models,	strengths,	and	weaknesses.	We
expect	to	provide	you	with	such	fundamentals	within	this	book!

Designer	tools

There	are	several	tools	the	designer	is	expected	to	be	able	to	use	to	accomplish
his/her	tasks.

Pencils	and	paper:	Any	game	mechanic	description	should	begin	with	a
sketch	of	some	sort	to	explain	how	it	works.	If	you	can't	sketch	the	idea	for
a	game	mechanic,	it	probably	isn't	a	good	mechanic.
Text	editors	and	software:	To	create	mind	maps	and	schemes,	text	editors
and	software	are	a	strongly	recommended	requirement,	as	they	are
necessary	to	create	documents	and	presentations	that	can	be	shown	and
shared	with	the	other	team	members	to	better	communicate	the	ideas	behind
a	game	and	throughout	all	its	development	process.	Spreadsheets	with	data
and	formulas	are	included.
Image	editors:	These	are	necessary	as	well	to	create	schemes,	fake
screenshots,	basic	level	sketches,	and	any	other	reference	image	that	can	be
helpful	to	convey	the	idea	the	designer	has	in	mind.	A	design	document
with	no	images	is	not	a	good	one.

It	is	also	very	likely	that	the	game	designer	is	required	to	create	the	so-called
white	boxes	for	the	game	levels,	at	least	the	main	ones.	In	such	cases,	the	ability
to	use	3D	modeling	software	to	create	geometries	becomes	very	important,	as
well	as	an	advanced	knowledge	of	the	most	popular	game	engines	to	create	basic
terrains	and	the	relevant	geometry	of	a	game	level.

The	practices	of	game	design

In	a	small	team,	the	designer	can	be	accounted	for	practically	implementing	the
specific	aspects	of	a	game.	Depending	on	his/her	background,	he	can	help	the
programmer	with	additional	coding	and	scripting,	he	can	be	in	charge	of	level
design	or	help	the	artists	with	graphic	assets,	he	can	take	care	of	updating	a

design	or	help	the	artists	with	graphic	assets,	he	can	take	care	of	updating	a
developer's	blog	for	the	project	for	communication	purposes,	and	he	is
responsible	for	designing	and	managing	testing	sessions	of	the	game	during	its
development.

Being	in	charge	of	so	many	different	tasks,	a	game	designer	needs	many	other
skills	to	accomplish	all	of	them.	Some	of	these	skills	are	acquired	during	high
school	studies,	while	others	require	academic	studies	or	experience	coming	from
confronting	specific	working	situations,	so	it	takes	time	to	develop	them.

Communication:	The	number	one	most	important	skill	for	a	game	designer
is	communication.	Being	able	to	talk	to	a	programmer,	artist,	writer,	tester,
sound	designer,	producer,	marketer,	and	financier	in	a	way	they	each
understand	is	crucial	to	the	success	of	your	project.
Technical	writing:	Formal	technical	writing	skills	are	also	very	important
for	the	game	designer.	Grammar,	punctuation,	and	spelling	are	essential	for
creating	a	clear	design	document.	The	design	document	is	the	source	your
team	will	go	to	when	they	have	questions.	Keeping	it	easy	to	read	and	up	to
date	is	crucial	for	the	success	of	your	project.
Drawing:	A	designer	should	be	able	to	draw	at	least	a	bit.	Mocking	up
screens	is	essential	for	the	design	document.	Knowing	how	to	use
Photoshop	and/or	Visio	will	aid	the	designer	greatly.	A	picture	is	worth	a
thousand	words,	especially	in	game	design.
Programming\Scripting:	A	designer	should	have	an	understanding	of	the
principles	of	programming.	You	don't	need	to	be	able	to	actually	write
code,	but	it	wouldn't	hurt.	Knowing	the	basics	of	programming	will	allow
you	to	format	the	information	in	your	design	document	to	best	serve	the
programmer.
Scripting	languages:	Familiarity	with	scripting	languages,	such	as	Java	or
LUA,	will	allow	you	to	directly	interact	with	the	game	engine	your
programmer	has	built,	saving	time	and	money.	You	can	also	test	your	own
ideas	without	using	up	the	programmer's	work	cycles.
Math:	A	designer	should	know	math,	at	least	to	algebra	level.	When	boiled
down	to	the	basics,	games	are	a	set	of	math	problems.	This	sounds	boring,
but	go	back	and	look	at	the	paper	and	pencil	version	of	Dungeons	&
Dragons.	It's	all	statistics!
Finance:	The	game	designer	must	understand	the	costs	of	the	decisions
they	make.	Changing	direction	mid-project	can	cost	a	lot	of	money/time.
Prototype	early	and	often	to	make	sure	the	design	works.

Psychology:	Yes,	games	punch	some	very	basic	human	feedback	buttons,
such	as	reward	behavior,	aversion	feedback	loops,	and	the	like.
Understanding	what	these	are	will	allow	you	to	build	a	truly	addictive
experience.	Yeah,	that	sounds	bad,	but	it's	what	we	do!

Academic	formation	and	personality

How	does	one	learn	how	to	design	games?	A	good	place	to	start	is	by	using
pencil	and	paper,	a	deck	of	cards,	a	chess	board,	poker	chips,	whatever	is	at
hand.	Take	an	existing	game	and	modify	it.	ForAC	example,	tick	tack	toe	is	an
interesting	game	to	start	with.	Fundamentally,	it's	a	broken	game,	since	the
player	who	moves	first	will	always	win	unless	they	make	a	mistake.	Try	to	think
of	ways	to	fix	that:	a	bigger	board,	different	types	of	moves	or	pieces,	add	dice
and/or	cards,	and	so	on.	A	game	designer	is	a	person	who	asks	himself	how
things	work	and	how	their	behavior	can	be	described	by	rules.

As	Raph	Koster	(a	brilliant	game	designer)	once	wrote:

"Games	are	not	their	graphics	or	their	frame	rate,	they	are	their	rules."

A	good	rule	of	design	is	to	take	the	action	the	player	will	do	most	often	and
prototype	it.	If	your	testers	enjoy	it,	perfect	it	and	set	it	aside.	Then	define	the
second	most	frequent	action	the	player	will	do,	find	how	it	will	complement
action	#1,	implement	and	test	it.	Continue	on	to	action	#3,	repeat	the	process.
For	a	first	time	project,	it's	probably	best	to	lock	down	the	design	at	action	3-5.
Every	action	added	will	significantly	increase	the	complexity	of	testing	and
debugging.

A	designer	must	be	open	to	criticism	coming	from	other	team	members	and
testers.	Ideas	come	and	go	and	it	is	very	important	for	a	designer	to	never	feel
too	attached	to	any	of	them.

Finally,	if	you	want	to	be	a	designer,	you	need	to	have	a	life.	Go	out	and	get	a
liberal	arts	degree,	take	up	a	sport,	make	lots	of	friends,	and	have	adventures.	All
of	these	things	will	enrich	your	life	and	give	you	the	material	to	make	great
games.

Most	videogame	designers	have	a	Bachelor's	Degree	in	Computer	Science,	Arts,
Computer	Engineering,	or	Experimental	Psychology.

Though	not	strictly	required,	a	strong	University	background	can	help	you

Though	not	strictly	required,	a	strong	University	background	can	help	you
develop	those	skills	that	can	get	your	first	step	into	the	gaming	industry.

More	important,	a	University	background	can	help	you	develop	that	specific
forma	mentis	that	makes	you	willing	to	keep	learning	as	you	progress	in	your
career.	That	is	really	important	when	your	line	of	work	has	to	do	with
technologies	and	habits	that	change	so	fast,	as	in	the	world	of	game
development.

In	the	last	few	years,	several	universities	and	private	schools	worldwide	have
started	offering	various	courses	in	game	design	that	teach	the	basics	of	this
extraordinary	discipline.

No	game	is	ever	done!

You	will	always	find	things	you	want	to	change.	It	is	the	nature	of	the	beast.
Usually	you	just	run	out	of	resources	and	say,	"it's	good	enough".	If	you	have
ideas	on	how	to	improve	the	game,	file	them	away	and	save	them	for	the	sequel.

More	about	the	role	of	game	designer	and	his/her	tasks	can	be	found	at	the
following	links:

http://penny-arcade.com/patv/episode/so-you-want-to-be-a-game-designer

http://www.raphkoster.com/2012/09/26/mailbag-i-want-to-become-a-
designer/#more-4280

http://penny-arcade.com/patv/episode/so-you-want-to-be-a-game-designer
http://www.raphkoster.com/2012/09/26/mailbag-i-want-to-become-a-designer/#more-4280

The	game	artist
The	game	artist	is	responsible	for	creating	in-game	art:	characters,	animations,
game	objects,	backgrounds,	environments,	and	game	interface.

No	need	to	say,	artwork	is	very	important	in	a	videogame!	Graphics	are	the	most
prominent	characteristic	of	a	videogame	and	they	are	also	important	from	a
marketing	point	of	view.	Most	of	the	time,	customers	are	attracted	to	a	title	by	its
visual	characteristics.	When	judging	a	game	from	its	preview,	if	gameplay	is
unavailable,	the	game	is	judged	solely	on	its	visual	appeal.

In	the	early	days	of	computer	videogames,	a	single	artist	could	cover	all	the
graphic	needs	of	a	game.	As	time	passed,	it	required	more	people	to	be	involved
in	the	creation	of	the	graphics	for	a	title,	and	this	lead	to	the	creation	of	groups	of
artists	as	part	of	the	development	team.

In	a	mobile	team	it	is	very	likely	that	graphics	will	be	made	by	two	to	three
people	with	a	separation	of	duties,	such	as	one	artist	on	2D	graphics	(concept,
sprites,	game	interface,	and	textures)	and	one	or	two	on	the	production	of	3D
assets	(models,	animations,	3D	environments,	and	lighting).

Brushes	and	canvas

Game	artists	need	several	tools.	First	and	foremost,	an	artist	must	be	able	to
draw	and	sketch,	using	pencil	and	paper.	Once	the	sketches	are	approved,	there
comes	the	time	to	create	real	assets	for	the	game	using	dedicated	software.	The
most	important	tools	for	a	game	artist	are	image	editors,	such	as	Photoshop,
Paintshop,	Illustrator	and	modeling	software,	such	as	3D	Studio	Max,	Maya,
Blender,	and	Zbrush.	We	will	talk	about	them	in	the	chapter	on	game	graphics.

Forms	of	art

The	production	of	graphic	assets	for	games	involves	many	different	activities.
We	will	delve	into	the	details	of	the	operations	related	to	the	production	of
graphic	assets	for	mobile	games	in	the	next	chapter	of	the	book.	For	now,	let's
just	have	a	look	at	the	main	duties	of	the	game	artist.

2D	graphic	assets

The	2D	graphics	are	the	foundation	of	any	game.	Videogames	were	born	2D	and
2D	graphics	are	always	required,	even	for	3D	games.	The	following	list
describes	the	main	fields	of	2D	graphics	for	games:

Concept	art:	This	consists	of	sketches,	storyboards,	and	free	hand
drawings	that	reproduce	key	aspects	of	a	game,	such	as	the	main	character,
the	villain,	relevant	game	environments,	and	crucial	game	mechanics.
Concept	art	is	mainly	used	to	convey	the	look	and	feel	of	a	game:	the
ability	to	convey	maximum	content	with	minimal	complexity	is	a	key	factor
for	creating	optimal	concept	art.
Sprites:	These	are	2D	representations	of	any	game	object	of	a	title.	The
ability	to	draw	convincing	characters	and	objects	using	few	pixels	is	a	talent
that	is	fundamental	to	those	who	want	to	be	proficient	with	2D	assets
creation.
Backgrounds,	terrains,	and	tilesets:	These	are	the	construction	blocks	for
any	bidimensional	game.	Tilesets,	in	particular,	are	very	important,	because
they	save	system	memory	for	your	game.
Interface:	Any	game,	whether	it	is	2D	or	3D,	needs	an	interface	to	provide
the	player	with	relevant	information	during	gameplay	(score,	lives	and
energy,	ammo),	as	well	as	menus	and	presentation	screens	for	the	game.
The	artist	takes	care	of	creating	the	assets	for	the	game	interface.
Textures	and	materials:	3D	objects	and	characters	need	to	be	improved
with	2D	graphic	assets	that	add	details	to	a	model	and	make	its	surface
interact	with	the	lighting	environment	of	the	game	engine.	The	artist	is
accounted	for	creating	these	assets.

The	following	figure	represents	a	concept	design	sketch	for	a	space	ship,	taken
from	the	material	for	a	space	shooter	made	by	one	of	the	authors:

	

3D	graphic	assets

The	advent	of	3D	and	the	improvement	of	mobile	devices	hardware	offer	the
opportunity	to	mobile	developers	to	create	beautiful	3D	titles	for	the	mobile
market.

The	following	list	describes	the	main	fields	of	3D	graphics	in	games.

Models:	3D	characters	and	game	objects	must	be	modeled	with	dedicated
software.	Actual	games	and	mobile	games	too	tend	to	make	extensive	use
of	3D	graphics,	so	it	is	very	important	for	a	game	artist	to	be	proficient	with
3D	modeling	and	for	a	team	who	wants	to	develop	mobile	games	to	have	at
least	one	guy	good	at	that.
Animations:	Animations	for	game	characters	are	usually	made	with	the
same	software	used	to	model	them.	Characters'	animation	is	crucial	for	a
game's	appeal,	because	everyone	is	good	at	evaluating	if	an	animation	is
good,	especially	for	humanoid	characters,	thanks	to	their	experience	of	the
real	world.	An	inferior	animated	character	immediately	stands	out	from	the
rest	of	the	game	to	ruin	the	player's	experience.
3D	environments:	These	are	crucial	elements	of	a	polished	game;	it	is	very
important	for	a	game	artist	to	be	capable	of	depicting	believable	worlds	that
make	the	player	feel	immersed	in	the	game	action.
Lighting:	Though	mobile	games	don't	usually	rely	very	much	on	player's
immersion,	the	use	of	light	and	colors	is	very	important	to	produce	nice
game	levels.	It	is	thus	important	for	a	game	artist	to	have	at	least	some	basic
understanding	on	how	to	use	light	to	convey	emotions.

A	typical	mobile	game	development	team	can	rely	on	just	two	or	three	artists.
Consider	the	previous	list	as	a	reference	to	evaluate	candidates	for	the	position
of	an	artist,	based	on	their	proven	skills.

Art	schools	and	creative	types

The	artists	should	study	the	basics	of	fine	art:	art	theory	and	history,
composition,	color	and	form,	and	space	and	light.

Art	schools	and	academies	are	the	institutions	of	choice	for	those	interested	in
becoming	artists.	These	are	schools	that	provide	their	students	with	the	necessary
courses	on	life	drawing,	graphic	design,	color	theory,	photography,	animation
and	technical	drawing,	anatomy	and	the	dynamics	of	movement,	among	others.

Naturally,	a	good	art	school	is	only	the	first	step.	Then	it	is	necessary	for	these
people	to	practice	as	much	as	they	can	and	get	proficient	with	their	tools	to
develop	real	assets	for	games.

As	for	the	artist's	character,	there	is	no	need	to	explain	that	an	artist	has	a
creative	nature	and	as	such,	creative	types	may	not	be	comfortable	with
discipline.	On	the	other	hand,	artists	who	want	to	work	in	the	videogame
industry	need	to	balance	this	aspect	of	their	personality	to	complete	their	daily
tasks.

They	must	be	analytical	as	much	as	they	are	creative,	and	fight	their	innate
tendency	to	chaos	to	allow	the	other	team	members	to	work	effectively	with
them	and	keep	up	with	the	project	schedule.

Finally,	artists	must	be	capable	of	putting	their	creativity	at	the	game's	target
audience	service,	sacrificing	their	personal	taste,	and	possess	a	thick	skin	to	deal
with	the	daily	criticism	that	their	creativity	will	undergo	during	the	development
of	the	game.

More	about	the	game	artist	and	the	creation	of	graphics	for	games	can	be	found
at
http://www.gamecareerguide.com/features/413/game_art_and_animation_an_introduction.php

http://%20http://www.gamecareerguide.com/features/413/game_art_and_animation_an_introduction.php

The	programmer
Programming,	and	videogame	programming	in	particular,	can	be	pretty	similar
to	performing	magic,	in	some	ways.

It	has	to	do	with	crafting	formulas	learned	from	books,	a	knowledge	hard	to
grasp	and	to	understand,	that	allows	those	who	are	initiated	to	make	anything
they	wish	happen	on	a	computer	or	other	device	screen!

Out	of	the	fantasy	metaphor,	the	programmer	is	the	guy	who	takes	care	of
coding	things	that	happen	in	a	videogame,	the	one	who	turns	the	math	and	logic
behind	it	into	commands	and	functions	and	he	is	probably	the	most	important
professional	in	a	videogame	team.	You	can	have	the	most	appealing	design	in
the	world,	the	best	graphics	and	sounds,	but	without	someone	coding	this	stuff,
your	game	simply	won't	exist!

In	the	early	days	of	videogames,	when	games	were	nothing	more	than	geometry
performing	on	the	screen,	the	programmer	was	the	team,	as	he	took	care	of
design	and	artwork	too.

As	the	complexity	of	games	increased,	programmers	began	to	focus	on	just
coding.	Over	time,	different	kinds	of	programmers	became	necessary	and	now
we	have	specialized	roles,	such	as	lead	programmers,	engine\physics
programmers,	AI	programmers,	and	gameplay	programmers.

A	mobile	team,	on	the	other	hand,	will	hardly	have	more	than	two	people	taking
care	of	coding.	The	team's	game	designer	is	more	likely	to	help	the	programmer,
if	not	with	hard	coding	stuff,	at	least	with	scripting	game	events.

The	programmer's	kit

The	basic	tools	of	a	programmer	falls	into	three	main	categories:	coding
languages,	Integrated	Development	software,	and	Version	Control	Systems.

Coding	languages	are	a	topic	that	could	cover	entire	books	by	itself.	Packt
already	offers	several	books	on	the	different	coding	languages	and	their
characteristics;	we	suggest	referring	to	these	books	for	an	in-depth	analysis	on
the	subject.

Generally	speaking,	C++	is	the	language	of	choice	for	game	developers.	Any
ideal	candidate	for	the	programmer	position	in	a	mobile	game	dev	team	must	be
at	ease	with	such	a	language	and	have	developed	some	kind	of	project	with	it,
even	as	an	indie	game	or	some	school	project.	He	must	be	proficient	with
concepts	like	destructors,	classes,	inheritance,	constructors,	and	constants.

Integrated	Development	Environment	is	software	that	allows	you	to	develop
code	for	projects	and	games.	The	development	environment	of	choice	for	C++	is
Microsoft	Visual	Studio,	a	professional	tool	that	offers	everything	you	need	to
produce	high	quality	coding,	including	a	code	editor,	debugger,	several
development	tools	to	design	GUIs,	web	apps,	classes,	data	schemes,	content
exploring	tools,	and	much	more	useful	stuff.

Game	engines	may	have	their	own	built-in	coding	IDE,	for	example,	Unity	3D
now	comes	with	a	tool	named	MonoDevelop.

A	true	IDE	is	not	even	always	necessary.	Many	coders,	especially	when	dealing
with	scripting	languages,	such	as	UScript,	are	happy	enough	with	text	editors,
such	as	ConText,	which	offers	some	basic	functions	of	auto	indent	and	text
aligning	according	to	a	given	set	of	available	coding	languages,	recognized	by
the	software.

Version	Control	Systems	are	software	used	to	manage	the	changes	in	documents
and	computer	programs.	These	software	cover	a	strategic	role	when	more	than
one	person	work	on	the	same	part	of	a	project;	as	it	is	usually	the	case	for
programmers	on	a	game.

GIT	is	one	of	popular,	free,	and	open	source	Version	Control	software	which
you	can	use	for	your	projects.	You	can	find	it	at	http://git-scm.com/.

http://git-scm.com/

Coding	departments

The	mobile	team	game	programmer	has	several	duties	to	attend	to,	mainly
because	he	basically	is	in	charge	of	everything	involving	coding.	The	list
includes,	among	others:

Game	engine\Physics	programming:	The	game	engine	consists	of
developing	a	framework	of	some	sort	that	can	effectively	manage
everything	that	makes	a	game	what	it	is:	graphics,	audio,	input	and	controls
system,	data	saving,	networking,	and	anything	else	that	is	necessary.	Since
there	are	already	excellent	game	engines	today,	such	as	Unity	3D,	Corona,
or	the	Unreal	Engine,	the	mobile	programmer	very	rarely	needs	to	create	a
game	engine	from	scratch.
Physics:	Physics	simulation	is	a	very	common	feature	of	today's	3D
videogames.	Game	engines	include	a	plugin	to	manage	physics	and	so-
called	rigid	bodies	(game	objects	subjected	to	physics).	A	coder	is	hardly
requested	to	develop	a	brand	new	physic	engine,	except	when	he's
requested	to	develop	the	game	engine	itself.
Artificial	Intelligence:	As	a	general	statement,	mobile	games	generally	aim
to	be	not	too	challenging	,	so	as	not	to	frustrate	the	player,	thus	they	rarely
rely	on	sophisticated	AI	algorithms.	The	smaller	scope	of	mobile	games
implies	that	AI	programming	for	such	games	may	be	considered	less
problematic	than	that	of	popular	AAA	titles,	in	many	ways.
User	Interface:	The	User	Interface	of	your	game	will	strongly	affect	its
appeal	to	players.	Touch	controls	must	work	as	expected,	they	must	be
responsive,	and	the	information	displayed	on	screen	must	be	clear	and	well
displayed.	By	ensuring	this	is	so,	you	improve	the	chances	of	selling	your
game.
Network:	With	the	outbreak	of	social	networks	and	the	demand	for	sharing,
no	mobile	game	should	lack	a	feature	that	allows	people	to	upload	their
scores	on	public	online	leaderboards	or	share	their	results	with	friends.
Moreover,	the	free-to-play	business	model	that	is	so	popular	among	today's
developers	requires	a	reliable	data	exchange	dynamic	between	the	game
and	the	servers	accounted	for	the	service.	Most	of	all,	the	game-server
communication	must	be	hack-proof	and	trustworthy.	Network	programming
is	so	important	that	it	is	considered	one	of	the	hardest	and	most	challenging
aspects	of	game	programming	in	general.

Learning	to	be	a	programmer

Exceptionally	talented	people	apart,	programmers	will	typically	have	a	degree	in
Computer	Science	or	Engineering.	They	need	a	very	robust	knowledge	in	linear
algebra	and	mathematics,	both	in	2D	and	3D	space.	Vectors,	rotations,	distances,
curves,	and	matrices	must	be	their	daily	bread.

They	need	to	know	several	coding	and	scripting	languages,	such	as	C\C++,	Java,
and	LUA,	because	the	more	experience	they	have	with	game	engines	and	their
scripting	languages,	the	easier	it	will	be	to	get	hired	by	a	team.	Programmers
also	need	to	know	about	efficient	programming,	because	efficient	code
optimizes	performances.	Code	that	provides	consistent	performances	on	both
high	end	and	low	end	devices	can	be	a	key	factor	for	the	success	of	your	game!

They	must	excel	at	problem	solving.	Whenever	a	game	designer	depicts	a	game
mechanic,	he	is	actually	defining	a	problem	for	the	coder	to	solve.	The	best
problems	are	those	which	don't	have	a	single	solution,	so	it	is	very	important	that
a	game	programmer	is	solid	with	analysis	and	is	able	to	define	a	set	of	potential
solutions	before	choosing	the	one	which	seems	better.

As	for	their	personal	characteristics,	the	times	of	the	weird,	introvert	guy	who
codes	alone	in	a	dark	room	are	long	gone.	Efficient	software	development	and
teamwork	relies	on	communication,	it	is	mandatory	for	a	good	programmer	to	be
able	to	meet	with	the	other	team	members	to	correctly	address	problems	and
define	an	optimal	job	schedule.	As	a	fact,	the	most	popular	game	development
practices,	such	as	Agile	development,	require	team	members	to	continuously
interact	with	each	other.

A	programmer	should	also	be	in	constant	thirst	for	knowledge.	The	coders	with
30	years	experience	will	tell	you	that	they	are	still	learning,	for	game
programming	never	reaches	its	end	point:	new	technologies	arise,	new
methodologies	become	popular,	and	new	languages	become	available.	Most	of
all,	when	something	is	new,	it	is	very	likely	that	no	one	can	help	you	to
understand	it.	You	need	to	become	a	disciplined	self-learner	if	you	want	to	be	a
cutting	edge	programmer!

More	about	videogame	programming	and	the	role	of	game	programmer	can	be
found	at	the	following	link:

http://www.gamecareerguide.com/features/412/game_programming_an_introduction.php

http://www.gamecareerguide.com/features/412/game_programming_an_introduction.php

The	game	tester
The	game	tester	is	the	member	of	the	team	who	takes	care	of	checking	that	the
game	works	as	expected	and	doesn't	crash,	that	controls	are	clear,	intuitive,	and
effective,	that	game	mechanics	are	consistent,	that	the	game	logic	works
properly,	and	that	gameplay	is	fun.

Game	testing	can	be	called	into	play	at	different	moments	during	the
development.	As	a	general	rule,	a	game	should	enter	its	testing	phase	as	soon	as
a	prototype	is	available.	There	is	no	better	way	to	understand	if	a	game	mechanic
is	a	good	one	than	by	asking	someone	to	try	it	and	provide	feedback.

It	is	mandatory	that	the	tester	is	not	a	person	who's	developing	the	game,
because	the	objectivity	of	the	tester's	opinion	is	a	crucial	element	in	any	stage	of
its	development,	and	in	the	early	stages	in	particular.	Generally	speaking,	the
cost	of	correcting	a	mechanic	is	proportional	to	the	time	that	has	passed	since	its
implementation.

The	thing	that	should	be	immediately	clear,	especially	to	our	younger	readers,	is
that	testing	a	game	doesn't	mean	that	people	are	paid	to	merely	play	it!	Sure,
they	need	to	play	the	game	to	test	it,	but	finding	and	reporting	bugs	has	little	to
do	with	playing	games.	A	good	tester	must	be	able	to	describe	the	bug	in	detail
and	explain	how	it	can	be	reproduced	to	help	the	development	team	to	identify
its	causes	and	correct	them.

That	the	testing	is	a	low	entry	level	job	in	the	game	industry,	is	just	half	the
truth.	As	we	will	see	during	the	course	of	this	section,	a	good	tester	requires
competency,	and	exceptional	communication	skills.	But	it	is	also	true	that	if	you
cannot	prove	your	talent	in	art,	programming,	or	business	administration	with	a
strong	portfolio	or	work	experience,	then	starting	out	as	a	full	time	tester	for	a
big	game	developer	or	a	team	is	a	very	good	way	to	kick-start	your	career	in	the
game	industry!

The	tools	of	deconstruction

The	main	tools	for	a	mobile	game	tester	are	mobile	phones	and	their	interfaces,
mostly	touch	interfaces	and	gyroscopes.	The	tester	thus	needs	to	be	at	ease	with
mobile	devices	and	their	features	to	test	mobile	games.

During	the	early	stages	of	development,	it	is	very	likely	that	testing	will	be
accomplished	on	emulators,	software	that	approximates	the	functionality	of	a
mobile	device	on	a	PC	for	testing	purposes.	There	are	several	reasons	to	use
emulators	in	the	early	stages	of	development.	One	is	that	sometimes	application
development	involves	the	use	of	scripts	that	can	be	dangerous	to	run	on	actual
devices,	because	they	could	destroy	some	phone	functionality	or	lead	to	a	break
of	terms	of	agreement	with	an	operator.	Another	is	merely	that	the	actual	devices
may	not	be	available.

On	the	other	hand,	the	fact	that	a	game	works	on	the	emulator	doesn't	mean	that
it	won't	have	problems	when	running	on	the	actual	phone,	due	to	the	fact	that,	as
we	said,	the	emulator	only	approximates	the	functionality	of	a	phone,	it's	not	the
phone	itself.

Another	problem	with	emulators	is	that,	since	they	run	on	PCs,	they	don't	allow
testing	the	touch	interface	of	the	phone.	Most	of	the	times,	touch	commands	are
replicated	via	the	mouse,	which	means,	for	example,	that	multitouch
functionality	cannot	be	tested	at	all.	At	some	point,	a	game	needs	to	be	tested	on
the	real	devices	it	is	meant	to	run	on!	More	on	the	practices	of	game	testing	will
be	seen	in	Chapter	9,	Prototyping.

The	following	screenshot	represents	a	screenshot	from	a	standard	software
debug	report:

	

Aspects	of	game	testing

There	are	several	aspects	of	a	game	that	need	to	be	tested	and	different	game
genres	require	different	testing	methodologies.	A	mobile	game	tester	must
accomplish	specific	tasks	that	depend	on	the	distinctive	characteristics	of	mobile
phones	and	handheld	devices.	Among	them	are	the	following:

Functionality	testing:	This	aims	to	look	for	general	problems	with	the
game	or	its	User	Interface,	in	order	to	check	for	issues	regarding	stability,
game	mechanics,	and	glitches	(game	asset	failures).
Compatibility	testing:	This	is	meant	to	check	that	the	game	works	with
different	hardware	and	software	configurations.	It	is	a	very	important
practice	for	PC	games	and	for	mobile	titles	in	particular.	It	is	crucial	to	test
the	game	performances	on	low	end	and	high	end	devices	to	check	them.
Localization	testing:	This	checks	that	all	in-game	text	and	speech	are
correct	in	titles	that	are	shipped	in	different	languages.	There	is	no	need	to
say	that,	to	be	a	localization	tester,	you	need	to	be	native	in	the	language	in
which	the	game	must	be	translated	and	at	least	fluent	in	the	original
language	of	the	game.
Stress	testing	(monkey	testing):	This	is	meant	to	check	how	the
application	responds	to	chaotic	and	unpredictable	events.	Mobile	phones
are	subjected	to	several	kinds	of	such	events:	incoming	calls	and	messages,
updates,	undesired	button	presses,	screen	locks,	automatic	standby,	and	so
on.	It	takes	a	lot	of	time	to	carry	these	tests	over,	especially	if	they	need	to
be	repeated	on	different	devices.
Compliance	testing:	This	is	required	to	check	if	a	game	meets	standards,
license	agreements,	and	terms	of	use	that	are	specific	for	each	developing
platform.	To	ship	a	game	on	the	Apple	Store,	for	example,	it	must	have	a
unique	name,	refer	to	a	certain	category,	must	provide	a	link	to	the
developer	for	customer	care	issues,	it	must	not	contradict	the	Human
Interface	Guideline,	and	so	on.	All	these	aspects	are	the	responsibility	of	the
tester.
Beta	testing:	This	is	done	during	the	final	stage	of	development;	it	refers	to
the	first	publicly	available	version	of	a	game.	Public	betas	are	effective
because	thousands	of	fans	may	find	bugs	that	the	developer's	testers	did	not.
Mobile	games	don't	usually	go	under	beta	testing	though.	It	is	a	very	time
consuming	process	and	it	needs	licenses	to	be	exchanged	between
developers	and	testers	in	order	to	allow	their	devices	to	run	the	tests.	We
mention	this	practice	here	mainly	for	the	sake	of	completeness	to	describe

the	role	of	the	game	tester.

Skills	of	a	professional	player
A	tester	first	of	all	needs	exceptional	linguistic	skills,	both	written	and	spoken,	to
be	able	to	write	clearly	and	in	concise	ways.	He	must	be	proficient	in	writing
clear	algorithms	that	exactly	explain	how	a	series	of	gaming	actions	determine
an	in-game	bug,	and	that	describe	that	bug	in	detail.	Getting	used	to	explaining
hard\technical	stuff	to	not-proficient	people	is	a	good	way	to	improve	these
skills.

There	are	also	several	kinds	of	tests	that	a	potential	tester	can	be	asked	to	fulfill
in	order	to	be	considered	for	a	tester	position,	such	as	the	paper	clip	and	the
building	block	exercises.	You	can	search	on	the	Internet	to	find	out	more	about
them.

The	game	tester	needs	to	be	good	at	any	kind	of	game	and	must	be	able	to	play
them	professionally	at	any	difficulty	setting.	Game	content	may	vary	depending
on	the	difficulty,	so	the	tester	needs	to	be	capable	of	beating	games	in	conditions
most	players	can't.	He	also	must	be	very	proficient	with	installment	and	update
procedures	on	different	devices	and	operating	systems,	in	order	to	check	the
accuracy	of	system	messages	text.

Being	proficient	in	two	or	more	languages,	written	and	spoken,	is	definitively	an
advantage,	because	many	tester	positions,	especially	entry	level	ones,	are
available	for	localization	testers.	Showing	the	right	attitude	as	a	localization
tester	can	give	a	chance	to	more	desirable	functional	testing	openings	within	the
same	company.

A	tester	must	be	a	very	sharp	observer	and	must	demonstrate	exceptional
attention	to	detail.	He	needs	to	be	like	some	kind	of	bulldog	that	never	gets	tired
of	repeating	a	game	sequence,	until	he	knows	for	sure	what	happened	in	a
specific	game	situation	and	why.	He	must	have	an	iron	will	to	keep	playing	the
game	again	and	again,	examine	the	same	part	over	and	over,	trying	everything
that	can	be	done	in	order	to	trigger	any	outcome	and	thus,	thoroughly	test	any
fold	of	the	game	logic,	even	after	18	hours	of	playing	the	same	game.	At	the
same	time,	he	must	be	an	excellent	lateral	thinker,	because	he	needs	to	force
himself	to	think	out	of	his	own	mental	schemes	in	order	to	exploit	all	the
opportunities	offered	by	the	gameplay	of	the	title	he's	working	on.

Localization	testing	requires	a	great	attention	effort,	because	with	speech	and
writing,	we	have	several	cognitive	mechanisms	that	tend	to	automatically	correct

writing,	we	have	several	cognitive	mechanisms	that	tend	to	automatically	correct
errors,	such	as	repetitions	and	typing	errors.	You	must	force	yourself	to	always
put	all	your	attention	and	resources	at	maximum	levels	to	such	cognitive	biases.

One	example	of	tester	endurance	and	patience	was	during	the	beta	test	of
Faceball	2000	for	the	original	Gameboy.	It	was	the	only	multiplayer	first	person
shooter	for	Gameboy.	We	handed	a	build	over	to	a	colleague's	four	year	old	son
who	dived	right	into	the	game.	The	boy	came	back	a	while	later,	saying	he	was
stuck.	Indeed	he	was	in	a	room	with	no	exit.	Upon	further	analysis,	the	boy	had
been	running	into	a	corner	where	two	walls	met,	over	and	over.	Eventually,	he
popped	through	the	intersection	between	the	walls,	into	the	interior	of	a	pillar.
None	of	the	other	testers	had	tried	this.

University	of	Gamestop
Differently	from	the	other	roles	in	a	mobile	dev	team,	the	testers	are	not
expected	to	achieve	a	specific	academic	formation	to	accomplish	their	tasks.	For
entry	testing	positions,	a	high	school	diploma	is	enough.

Instead,	we	could	say	that	games	are	the	school	of	choice	for	a	tester.	Having
played	tons	of	them,	on	different	platforms,	genre,	and	input	devices	is	a	must.
The	more	games	and	gaming	devices	a	tester	has	experience	with,	the	better	he
is	at	playing	them	and	at	fully	exploring	their	features,	in	order	to	find	out	what
doesn't	work	as	expected.

It	is	also	important	for	a	tester	to	have	a	glossary	on	essential	gameplay	and	bug
reporting	definitions.	Terms	such	as	alpha,	beta,	QA,	gold	master,	and	bug
definitions	are	much	appreciated	by	those	who	decide	if	you	are	worthy	of	a	full
time	tester	position.

As	a	professional	player,	the	game	tester	needs	to	resist	the	temptation	of	playing
for	fun	to	experience	games	from	an	objective	perspective.	For	a	tester,	playing
is	not	fun;	it	is	a	means	to	accomplish	his/her	job!	He	is	requested	to	play	games
regardless	of	whether	he	likes	them	or	not.

There	is	a	very	interesting	and	detailed	article	about	the	role	of	the	game	tester
that	we	suggest	you	check	out	at	the	following	link:

http://www.sloperama.com/advice/lesson5.html.

http://www.sloperama.com/advice/lesson5.html

The	game	producer
The	producer	is	responsible	for	keeping	the	project	on	time,	in	budget,	and	top
quality.	The	term	producer	was	introduced	by	Trip	Hawkins	to	Electronic	Arts	in
the	1980s.	His	vision	was	to	bring	some	of	the	qualities	of	music	and	video
producers	to	the	video	game	industry.	Today,	a	producer	manages	schedules,
costs,	and	resources,	keeping	the	team	on	track.	The	producer	will	take	the
design	document	and	build	a	timetable	with	milestones,	as	well	as	a	list	of	assets
needed	to	complete	the	game.	He	is	also	responsible	for	getting	what	the	team
needs	in	a	timely	manner.

Typically,	the	producer	is	the	liaison	between	the	team	and	any	corporate
entities,	such	as	a	publisher,	marketer,	and	financier.	This	may	involve
negotiating	contracts,	licensing,	and	the	like.	The	producer	coordinates	the
actions	of	the	dev	team	to	hit	milestones,	he	checks	the	quality	of	work,	and
manages	the	testing	team.	He	will	oversee	any	localization	that	is	needed.

Even	if	no	third-party	publisher	is	involved	in	a	project	(as	it	usually	is	for	a
mobile	indie	team)	the	producer	covers	a	vital	role	for	the	success	of	the	game.

Indie	development	is	subjected	to	the	most	unexpected	events:	other	paid	jobs
could	take	time	away	from	game	development,	money	could	be	scarce	until	the
game	is	shipped,	the	game	could	fail	for	some	reason	and	not	provide	income,
team	members	could	become	undisciplined	if	they	are	not	hired	with	a	contract,
difficulties	could	arise	when	working	remotely	if	an	office	for	all	team	members
to	work	together	is	not	available,	and	so	on.	If	the	producer	can	deal	with	such
issues,	only	then	can	an	indie	team	can	reach	its	goal	of	making	games	for	a
living.	The	producer	should	be	prepared	to	live	in	crisis	management	mode:	he	is
the	chief	fire	fighter	and	train's	the	engineer,	keeps	the	project	on	track	by
fighting	fires	as	they	arise	and	preventing	them	as	much	as	possible.

Keeping	things	organized

A	good	spread	sheet	or	database	program	will	help	with	this	task.	Microsoft
Excel	and	Filemaker	both	can	serve	in	this	purpose.	Another	option	is	to	use	a
project	planning	program,	such	as	Microsoft	Project.	If	you	are	working
remotely,	with	team	members	in	different	locations,	be	sure	to	pick	a	software
package	that	allows	you	to	publish	to	the	web.

Filemaker	also	provides	web	hosting	with	their	server	software.	Both	Filemaker
and	Project	will	require	you	to	set	up	your	own	host	server.	There	are	pre-
configured	hosting	servers,	such	as	FMGateway.com,	that	provide	complete
hosting	services	for	a	monthly	fee.

Another	inexpensive	solution	is	to	use	a	spread	sheet	in	MS	Skydrive	(formerly
Windows	Live)	or	Google	Docs.	They	are	free,	but	lack	the	robustness	of
dedicated	project	management	software	packages.

http://FMGateway.com

Key	questions	of	a	producer

The	producer	must	keep	three	questions	clear	in	his	or	her	mind	to	fulfill	his/her
duties:

What	are	we	building?	It	is	important	to	have	an	exact	answer	to	this
question	throughout	the	development	process.	The	team	should	have	access
to	up	to	date	documentation	at	all	times.
Who	is	building	it?	The	quality	of	the	product	is	directly	related	to	the	skills
and	talents	of	the	team	building	it.	Be	honest	and	objective	when	evaluating
the	team's	skill	sets.	Although,	traditionally	the	producer	does	not	hire	and
fire	team	members,	it	is	the	producer's	responsibility	to	keep	upper
management	informed	of	any	personnel	change	recommendations.
How	will	we	build	it?	Software	development,	including	games,	has	proven
procedures:	we	suggest	you	do	some	research	on	the	most	popular
techniques	and	talk	to	your	team.	They	may	have	used	one	or	two	in	the
past	and	may	have	suggestions.

As	we	will	see	in	the	next	section,	the	producer	needs	several	distinctive	skills	to
accomplish	those	duties!

Skills	for	all!

The	skills	required	by	the	producer	to	accomplish	his/her	duties	are	as	follows:

Cat	Herding:	The	producer's	key	skill	is	that	of	cat	herder	or	human
relations	management.	A	development	team	is	made	up	of	a	wide	variety	of
personalities	that	think	about	solutions	to	problems	in	a	very	different	way:
a	programmer	may	have	a	different	approach	to	an	artist.	The	producer's
primary	goal	is	to	keep	this	group	of	individuals	functioning	as	a	team.	A
good	catchphrase	is	"commitment	over	ego".	The	producer	can't	let
personal	pride	cloud	their	judgment	or	let	a	dispute	with	a	team	mate	derail
the	project.
Scheduling:	The	producer	writes	and	maintains	the	project	schedule,	so	it	is
very	important	he/she	understands	how	successors	work:	task	A	is
dependent	on	task	B	which	is	dependent	on	task	C.	He/she	must	be	able	to
arrange	a	correct	and	effective	working	pipeline.
Budgeting:	Along	with	making	a	schedule,	the	producer	will	write	up	a
budget.	This	is	especially	important	when	using	outside	parties	or
independent	contractors	to	supply	assets,	such	as	graphics	and	sound.	It	will
fall	on	the	producer's	shoulders	to	negotiate	bids	with	these	suppliers.	The
producer	must	monitor	costs	to	make	sure	the	project	stays	in	budget.	A
typical	problem	is	that	a	team	requests	numerous	changes	to	an	asset,	such
as	the	graphic	of	a	character.	Sometimes,	it	is	the	producer's	job	to	say	"it's
good	enough".
Production	Management:	After	the	schedule	and	budget	are	set,	the
producer	makes	sure	milestones	are	hit,	and	that	the	game's	quality	is	as
high	as	the	schedule	and	budget	allow.	A	useful	tool	for	this	is	regular	team
meetings,	where	completed	work	can	be	reviewed	by	the	team	and
milestones	set	for	the	next	meeting.

A	word	of	warning	on	team	meeting:	have	an	agenda	written	up	ahead	of
time	and	circulate	this	to	the	team	prior	to	the	meeting.	This	will	help	keep
the	meeting	on	track	and	as	brief	as	possible.	Remember,	while	in	a
meeting,	little	or	no	actual	work	is	getting	done.
Arbitrate:	As	with	any	group	effort,	there	will	be	disputes	within	the	team.
The	producer	needs	to	be	on	top	of	any	possible	conflict	and	should	find	a
resolution	as	quickly	as	possible.	Remember	that	you	have	a	team	of
brilliant	people	who	may	not	have	the	best	social	skills.	Be	kind,	but	firm	in
your	decisions.	The	success	of	the	project	rests	with	your	management

skills.
Negotiating:	The	producer	is	responsible	for	any	contract	negotiations	with
publishers,	marketers,	financiers,	and	the	like.	Learn	how	to	read	a	contract;
lack	of	this	skill	alone	can	turn	a	great	project	into	failure.	When	in	doubt,
do	research!	Talk	to	a	lawyer	if	you	can	afford	one.	An	entire	book	could	be
written	on	this	subject:	look	online	for	sample	contracts.	If	you	don't
understand	something	in	the	document,	ask.
Quality	Assurance	expert:	The	producer	will	be	responsible	for	finding
competent	testers,	as	well	as	scheduling	the	testing	around	project
milestones.	The	producer	is	responsible	for	getting	the	testing	results	to	the
correct	people	so	that	any	necessary	fixes	can	be	implemented.

All	the	tasks	the	game	producer	accounts	for,	is	shown	in	the	following	figure:

	

Who	is	the	producer?

You	may	have	deduced	that	there	is	a	lot	to	learn	on	the	job.	Luckily,	other
professionals	have	figured	this	out	and	education	in	this	role	is	available	through
institutions	of	higher	learning.	Many	colleges	and	universities	offer	certification
in	Software	Production	Management	as	well	as	Computer	Science.

Business	administration	is	an	obvious	choice,	but	also	training	in	game	design
and	development,	production	and	more	specialized	courses	in	animation,	music,
or	scriptwriting	can	help	to	gain	a	foothold	in	the	industry.

It	is	definitely	worth	considering	spending	the	time	and	money	on	nailing	down
the	basic	skills	before	joining	the	school	of	hard	knocks.	It	will	save	you	money
and	can	pay	for	itself	during	your	first	project	from	the	mistakes	you've	avoided.

As	a	producer,	be	prepared	for	a	high	level	of	stress,	lack	of	sleep,	and	possible
burnout.	You	are	everything	to	the	team	and	they	will	look	to	you	for	solutions,
resolutions,	and	endless	snacks	and	drinks.	Along	the	high	demands	come	great
rewards;	however,	the	satisfaction	of	a	successful	product	is	priceless.

So	keep	smiling,	get	as	much	sleep	as	you	can	along	with	some	exercise	and	a
healthy	diet.	Take	up	a	sport,	learn	to	meditate,	find	some	old	comedies	on	the
tube.	Find	healthy	ways	to	relax	and	stay	balanced.

There	is	a	prime	example	of	this	from	a	project	one	of	the	authors	worked	on,	a
few	years	ago.	He	took	the	position	of	producer	with	a	couple	of	fellows	who
had	financing,	but	little	game	production	experience.	He	arranged	for	a	seasoned
team	with	many	games	under	their	belts	to	handle	all	aspects	of	the	project.

Unfortunately,	the	partners	decided	that	they	would	save	some	money	by
handling	some	of	the	asset	production	themselves.	They	tackled	a	challenging
area:	motion	capture,	and	character	rigging.	After	they	delivered	the	goods,	the
programmer	determined	that	formats	were	wrong	for	a	mobile	app;	the	game
choked	on	all	the	data	in	the	files.	Fixing	the	files	raised	the	cost	over	what	the
developer	was	going	to	charge;	a	classic	example	of	false	economy.	Eventually,
the	game	did	go	to	market	and	it	was	fun,	but	it	was	late	and	over	budget.	This
could	have	been	avoided	by	checking	with	the	developer	on	what	their
requirements	were,	instead	assuming	that	the	bosses	knew	best.

More	on	the	role	and	tasks	of	a	game	producer	can	be	found	at	the	following
link:

http://www.gamecareerguide.com/features/1009/producing_a_videogame_products_people_and_processes.php?
page=3.

http://www.gamecareerguide.com/features/1009/producing_a_videogame_products_people_and_processes.php?page=3

The	sound	designer
The	sound	designer	is	the	person	responsible	for	creating	all	music	and	sound
effects	for	a	game.

The	thing	that	is	most	expected	from	the	sound	designer	is	to	provide	the	game
with	a	unique	and	distinct	sound	that	can	make	a	difference	in	the	player's
involvement	in	the	game	he's	playing.

There	is	one	distinctive	factor	that	makes	the	job	of	a	game	sound	designer
different	from	that	of	his	closest	relative,	the	audio	designer	for	movies,	which	is
randomness.

In	games,	there	is	never	(or	should	never	be)	a	total	control	on	the	exact
sequence	of	events	that	will	be	triggered	by	the	player.	This	is	the	reason	why
sound	design	in	games	tends	to	be	based	on	things	that	may	or	should	happen,
rather	than	what	will	happen	next.	As	a	fact,	sound	in	games	is	usually	broken
down	into	chunks	that	can	then	be	played	as	needed.

Though	audio	is	an	important	feature	in	games,	there	are	two	main	reasons	to
consider	the	sound	designer	role	less	relevant	for	the	purpose	of	this	chapter	on
the	mobile	development	team.

The	first	is	that	the	sound	designer	is	rarely	a	permanent	member	of	the
development	team	working	on	a	game,	and	audio	in	games	is	generally	added
during	the	final	steps	of	production.	For	the	most	part	of	development,	games	are
worked	on	and	tested	with	just	audio	placeholders.	More	likely,	the	audio
designer	is	hired	as	a	contract	employee	during	the	last	phase	of	development.

The	second	is	that	audio	is	not	as	important	as	other	features	of	a	mobile	game
due	to	the	distinctive	kind	of	fruition	of	mobile	games.	As	they	run	on	handheld
devices,	mobile	games	are	likely	played	outdoors	or	in	crowded	locations,	such
as	bus	and	metro	stations.	Unless	the	player	wears	headphones,	the	music	and
sound	effects	of	the	game	are	not	very	much	appreciated.	In	many	cases,	the
player	himself/herself	will	deactivate	sound	and	sound	effects	to	not	bother	other
people	around	him/her	(or	be	caught	playing	by	his/her	teacher,	for	example!).

Creating	music	and	sound	fx

It	is	not	very	easy	to	make	a	full	list	of	the	tools	of	a	sound	designer.	Sounds	can
be	produced	with	many	different	techniques	and	tools	and	their	creation	requires
operations,	such	as	playing	musical	instruments,	recording	from	a	source,
mixing,	and	then	editing	the	sounds	with	software.

A	sound	designer	works	with	several	tools,	such	as	musical	instruments,
everyday	objects	that	produce	specific	sounds,	microphones,	recording	devices,
sound	libraries,	and	digital	audio	workstations.

Sound	libraries	are	an	important	asset	for	a	sound	designer,	because	they	provide
already	made	sound	effects	that	can	be	mixed	together	to	get	original	sounds	and
music.	Some	of	these	include	the	East	West	Quantum	Symphonic	Library,	Sonic
Implants,	Garritan,	and	ProjectSam	Symphobia.

The	following	is	a	list	of	basic	equipment	that	a	sound	designer	should	have	at
his/her	disposal:

A	multi	track	digital	audio	workstation	(DAW)	for	PC	and	or	MAC.
There	are	several	such	programs	and	it	is	impossible	to	list	all	of	them.	We
can	mention:	Garage	Band	(which	is	very	cheap),	Logic	Pro,	Reaper	(which
is	very	cheap)	or	Sound	Forge,	Magix,	Pro	Tools,	and	Cubase.	You	can
search	on	the	Internet	to	find	out	more	about	the	specific	features	of	each	of
them.
A	two	track	audio	editor,	such	as	Audacity	(free	license).
A	portable	hard	disk	recorder,	if	you	can	afford	it.
Sound	libraries	of	pre-made	music	and	sounds.
Software	to	keep	libraries	organized,	such	as	iTunes.

The	following	figure	represents	the	working	station	of	a	professional	sound
editor:

	

Audio	skills	and	tasks

As	a	freelance	audio	contractor	and	the	one	and	only	person	on	the	team	who
knows	anything	about	sound,	the	sound	designer	is	expected	to	cover	all	aspects
of	sound	for	games:	composing	music,	creating	special	effects,	mixing,	scripting
audio	events,	managing	problems	of	audio	formats,	and	memory	allocation
issues	related	to	the	game	audio.	The	sound	designer	must	be	ready	to	deal	with
different	kinds	of	problems	every	day	to	accomplish	his/her	task.	He/she	is	also
expected	to	discuss	with	other	team	members	about	any	decision	that	can	have
an	impact	on	the	audio	assets	he	is	delivering	for	the	project.	As	you	may
understand,	this	means	a	lot	of	responsibility	for	a	single	person!

It	goes	without	saying	that,	the	sound	designer	must	be	a	person	with	music
talents.	He/she	needs	to	know	how	to	play	at	least	one	musical	instrument,	how
to	compose	original	music,	how	to	record	sounds,	how	to	edit	them	and	most
importantly,	he	must	be	able	to	convey	emotions	through	music	and	sounds.

A	less	obvious,	but	still	very	useful	skill	is	that	the	sound	designer	must	possess
some	basic	programming	capabilities,	especially	the	most	commonly	used	APIs.

Scripting	proficiency	is	a	very	valuable	resource	too.	It	can	be	of	help	in	better
understanding	the	needs	of	the	programmer	for	specific	tasks	and	help	him/her
(or	the	game	designer)	with	the	implementation	of	audio	events	in	the	game,
should	they	be	overburdened	with	other	tasks.

Schools	of	sound	production

Though	music	talents	and	a	strong	interest	in	music	are	necessary	to	trigger	the
career	of	a	sound	designer,	a	background	in	audio	from	an	accredited	college	or
university	is	very	important	to	be	considered	for	a	position	on	a	project.	Music
production,	sound	engineering,	recording	techniques,	post	production	and
editing	are	the	necessary	theoretical	requirements	to	be	able	to	work	on	a	game
development	team	and	take	care	of	audio.

Then	experience	comes	into	play,	which	is,	as	usual,	the	most	important	thing!
Try	to	get	involved	in	projects,	and	experiment	with	tools	and	musical
instruments	if	you	are	interested	in	making	audio	for	games,	or	find	someone
who	can	prove	his\her	skills	with	a	good	portfolio	of	self	made	sounds	and	music
for	your	team.

Audio	personality

As	with	any	other	creative	personality,	a	good	sound	designer	should	possess	an
attitude	for	experimenting.	Sound	editing,	in	particular,	requires	a	lot	of
creativity	in	the	way	different	(and	sometimes	unexpected!)	sounds	are	mixed
together	to	obtain	that	specific	"door	crack"	effect	you	are	searching	for.	A
sound	designer	should	never	be	scared	of	trying	something	completely	new.

He	must	also	have	that	special	sensibility	to	help	him	create	sounds	and	music
that	convey	the	right	emotions	for	any	specific	in-game	situation	as	he	must	be
empathetic	with	people,	in	order	to	use	music	and	sounds	to	get	to	their	hearts
and	take	control	of	their	emotions.

Being	a	good	communicator	is	also	fundamental	to	discuss	with	the	game
designer	and	understand	his	requests	about	the	specific	kind	of	sounds	and	music
he	desires	for	the	game.	There	is	an	interesting	article	about	the	communication
between	designer	and	audio	expert	we	suggest	you	read,	from	Gamasutra	at:
http://www.gamasutra.com/view/feature/175427/getting_the_most_from_your_sound_php

If	you	are	interested	in	finding	resources	for	audio	(game)	designers,	you	can
begin	with	the	following	link:

http://www.gamesounddesign.com/articles.html.

http://%20http://www.gamasutra.com/view/feature/175427/getting_the_most_from_your_sound_php
http://www.gamesounddesign.com/articles.html

Summary
We	have	described	the	composition	of	the	mobile	development	team,	the	key
roles	that	need	to	be	covered,	and	explained	the	commitment	required	to	develop
games.

Then	we	analyzed	each	role	in	the	team,	providing	information	on	the	tools	and
duties	of	each	one,	and	examined	the	characteristics	of	their	personalities.

We	also	provided	Web	references	to	examine	in	more	depth	each	role	and	tables
with	salary	expectations	for	key	roles	in	a	mobile	indie	development	team.

In	the	next	chapter,	we	will	delve	into	the	intricacies	of	the	creation	of	graphic
assets	for	mobile	games.	What	are	the	tools	and	the	techniques	used	by	game
artists?	What	kind	of	2D	and	3D	assets	must	be	created	and	how?	What	are	the
tricks	to	save	system	memory	when	producing	graphic	assets?

Follow	us	to	the	next	chapter	to	find	the	answers	to	these	questions!

Chapter	3.	Graphics	for	Mobile
Videogames	strongly	rely	on	graphics.	The	production	of	graphic	assets	for
mobile	games	poses	several	challenges	to	game	artists,	mostly	dependent	on	the
necessity	to	both	create	nice-looking	and	appealing	graphics	while	dealing	with
reduced	screen	dimensions	and	limited	memory	allocation.	In	this	chapter	we
will	describe	how	to	create	2D	and	3D	assets	for	mobile	games,	what	software
packages	and	techniques	can	be	used	and	what	file	formats	support	graphics	for
mobile	games.

In	this	chapter,	we	will	cover	the	following	topics:

Raster	and	vector	graphics
Graphics	file	formats
Game	videos	and	cinematics
Software	to	create	graphics	for	games
2D	game	assets
3D	game	assets
Character	design	for	mobile	games
Interface	and	HUD	for	mobile	games	graphics

After	gameplay	quality,	graphics	are	the	most	important	factor	in	selling	a	game.
Some	have	argued	that	good	graphics	are	the	most	important	factor	in	impulse
buying,	since	most	of	the	time	a	gameplay	demo	is	not	available.	It	sure	looks
good,	it	must	be	good.

This	has	been	an	ongoing	discussion	for	decades,	notably	with	the	release	of	two
games	in	1990:	Wing	Commander	by	Chris	Roberts	and	Balance	of	Power	by
Chris	Crawford.	Wing	Commander	had	cutting	edge	graphics	with	light	game
play	and	storyline.

The	following	figure	represents	a	screenshot	from	Wing	Commander	(source:
Moby	Games).

Source:	Moby	Games

	

On	the	other	hand,	Balance	of	Power	had	brilliant	and	deep	game	play	but
amateurish	graphics.	At	that	year's	Game	Developers'	conference,	a	debate	(to
put	it	mildly)	ensued	between	the	the	two	developers.	Given	limited	resources,
which	is	more	important:	content	(game	play)	or	context	(graphics	and	sound)	to
the	success	of	a	game?

The	following	figure	is	a	screenshot	from	Balance	of	Power	(source:	Moby
Games):

Source:	Moby	games

	

At	present,	hardware	capabilities	have	increased	enough	to	allow	both,	with
proper	planning.	The	production	of	graphic	assets	for	mobile	games	requires
several	gimmicks	to	make	things	work	properly.	Mobile	devices	have,	in	fact,
relatively	limited	hardware	capabilities:	they	lack	the	computational	power	of
PCs	and	consoles.	Since	games	give	the	most	stress	on	the	hardware	capabilities
they	run	on,	it	is	very	important	to	have	assets	that	minimize	the	requirements
while	providing	an	optimal	result.

Another	important	aspect	that	must	be	taken	into	consideration	for	mobile	games
is	that,	differently	from	home	consoles	and	PCs,	handheld	devices	rely	on	their
battery.	The	more	computationally	expensive	the	app	(or	game),	the	shorter	the
battery	life.

There's	no	point	in	having	a	beautiful	game	running	on	the	device,	if	it	runs	for	a
few	minutes	and	then	the	device	shuts	off.	Again,	optimization	of	a	game's
system	requirements	is	a	key	factor,	starting	with	graphics.

The	hardware	of	today's	devices	varies	very	much	from	one	model	to	the	other,
so	that	for	a	game	to	run	smoothly	on	the	highest	number	of	devices,	it	must
have	the	lowest	possible	computational	requirements.

With	so	many	different	mobile	phones	available,	each	with	its	own	hardware
configuration,	it	can	be	a	hard	struggle	to	have	your	game	running	smoothly	on
the	highest	number	of	devices,	which	is	mandatory	for	it	to	be	profitable.

Fortunately,	there	are	ways	to	overcome	such	obstacles.	A	good	starting	point	is
comparing	the	hardware	of	different	mobile	phones.	The	following	link	points	to
one	such	site:

http://www.mobiledia.com/phones/compare/compare.php

First,	several	techniques	have	been	developed	to	allow	the	production	of	quality
graphics	that	minimize	the	hardware	requirements	for	games.

Second,	technological	development	constantly	pushes	forward	the	hardware
capabilities	of	mobile	devices,	and	there	are	several	models	today	that	are
equipped	with	a	Graphic	Processing	Unit	(GPU),	a	piece	of	hardware	that
specifically	takes	care	of	computing	graphics.	This	way,	the	mobile	phone's	CPU
is	relieved	from	taking	care	of	all	the	calculations	required	by	a	game,	and	as	a
result,	games	can	run	smooth	and	have	excellent	graphics	at	the	same	time.

http://www.mobiledia.com/phones/compare/compare.php

Pixels	and	vectors
As	we	said	in	the	The	game	artist	section	in	Chapter	2,	The	Mobile	Indie	Team,	a
game	artist's	duties	involve	the	creation	of	graphic	assets	with	both	2D	and	3D
techniques.	The	decision	whether	to	use	2D	or	3D	graphics	is	made	at	a	game
design	level.

Generally	speaking,	most	mobile	blockbusters	are	2D	games.	There	are	several
reasons	for	that:	2D	games	tend	to	be	easier	to	play	and	rely	on	simple
mechanics,	which	is	a	plus	when	targeting	occasional	players.	Playing	mobile
games	is	usually	a	time-limited	diversion,	something	you	do	while	you	are
waiting	for	something	else	(a	person,	a	bus,	your	turn	in	a	line,	and	so	on).
Simple	gameplay	mechanics	better	fit	such	occasions	and	that's	why	mobile
games,	such	as	Doodle	Jump,	Fruit	Ninja,	or	Angry	Birds	are	so	popular.

2D	games	also	require	less	computational	power	and	they	can	run	smoothly	on
low-end	devices.	Even	though	developing	a	high-end-device-only	game	with
excellent	photorealistic	graphics	is	a	good	way	to	show	the	potential	of	a	new
technology	and	the	ability	of	a	team	of	developers,	when	going	to	market,	the
higher	the	potential	number	of	people	who	can	play	your	game,	the	better	the
chances	that	you	can	get	a	profit	from	it.	Not	all	the	people	out	there	possess	the
latest	and	most	powerful	devices	available.

When	drawing	2D	assets,	an	artist	has	two	options	to	consider.	2D	graphics	can
in	fact	be	created	using	two	different	techniques:	pixel	art	(or	bitmap	art)	and
vector	graphics.

Pixels

The	pixel	art	refers	to	a	technique	used	since	the	early	stages	of	videogame
making,	and	consists	of	drawing	characters,	game	objects,	and	backgrounds	by
drawing	on	every	single	pixel	of	the	final	bitmap.

Since	the	computational	power	to	manage	graphics	was	reduced	and	the	drawing
tools	were	not	very	sophisticated	at	that	time,	this	was	an	optimal	choice	to
produce	nice	graphics	in	small	sized	files.	The	main	drawback	with	this
technique	is	that	bitmap	images	cannot	be	scaled	without	losing	the	details	and
quality,	due	to	a	phenomenon	called	anti-aliasing.	You	can	find	more
information	on	this	on	Wikipedia	at:	http://en.wikipedia.org/wiki/Aliasing

The	following	is	a	screenshot	of	a	popular	mobile	game	called	Sword	and
Sorcery	made	with	pixel	art	technique:

	

http://en.wikipedia.org/wiki/Aliasing

Vectors

As	the	computational	power	of	gaming	devices	improved	and	better	drawing
tools	became	available,	artists	turned	to	a	different	technique	called	vector
graphics.	In	vector	graphics,	every	line	drawn	by	the	artist	is	transformed	into	a
mathematical	function.	As	such,	vector	graphics	can	be	scaled	at	will	without
any	loss	of	details.	Software,	such	as	Illustrator	and	Flash,	work	with	vector
graphics	to	suit	the	needs	of	developing	digital	artworks	for	the	Web	and	print
use	and	almost	all	web-based	games	make	use	of	vector	graphics	to	allow	full
scalability	of	the	graphic	assets.	On	the	other	hand,	vector	graphics	files	tend	to
be	larger	than	their	bitmap	counterparts.

The	advent	of	mobile	games	gave	new	life	to	the	earlier	technique	of	pixel	art.
The	reduced	dimensions	of	mobile	phone	screens	and	the	smaller	size	of	graphic
files	made	with	this	technique	turned	pixel	art	into	a	useful	tool	to	produce	nice
looking	graphics	of	smaller	file	size,	when	compared	to	the	more	advanced
vector	graphics.

The	graphic	file	formats
There	are	literally	hundreds	of	image	file	types.	The	PNG,	JPEG,	and	GIF	file
formats	are	most	often	used	to	display	the	most	common	image	types.	They	are
listed	as	follows,	divided	by	family.

Raster	graphics

The	following	file	formats	are	from	the	family	of	raster	graphics:

Joint	Photographic	Experts	Group	(JPEG):	This	is	a	compression
method;	JPEG-compressed	images	are	usually	stored	in	the	JPEG	File
Interchange	Format	(JFIF)	file	format.	JPEG	applies	lossy	compression
to	images,	which	can	result	in	a	significant	reduction	of	the	file	size.	The
amount	of	compression	can	be	specified,	and	the	amount	of	compression
affects	the	visual	quality	of	the	result.	When	not	too	great,	the	compression
does	not	noticeably	detract	from	the	image's	quality,	but	JPEG	files	suffer
generational	degradation	when	repeatedly	edited	and	saved.
Tagged	Image	File	Format	(TIFF):	This	is	a	flexible	format	that	normally
saves	eight	bits	or	16	bits	per	color	(red,	green,	and	blue)	for	24-bit	and	48-
bit	totals,	respectively,	usually	using	either	the	TIFF	or	TIF	filename
extension.	TIFF's	flexibility	can	be	both	an	advantage	and	disadvantage,
since	a	reader	reads	for	every	type	of	TIFF	file	that	does	not	exist.	TIFFs
can	be	lossy	and	lossless;	some	offer	relatively	good	lossless	compression
for	bi-level	(black	and	white)	images.	TIFF	image	format	is	not	widely
supported	by	web	browsers.	TIFF	remains	widely	accepted	as	a	photograph
file	standard	in	the	printing	business.	TIFF	can	handle	device-specific	color
spaces,	such	as	the	CMYK	color	model	defined	by	a	particular	set	of
printing	press	inks.
RAW:	This	refers	to	a	family	of	raw	image	formats	that	are	available	as
options	on	some	digital	cameras.	These	formats	usually	use	a	lossless	or
nearly	lossless	compression,	and	produce	file	sizes	much	smaller	than	the
TIFF	formats	of	full-size	processed	images	from	the	same	cameras.
Although	there	is	a	standard	raw	image	format,	(ISO	12234-2,	TIFF/EP),
the	raw	formats	used	by	most	cameras	are	not	standardized	or	documented,
and	differ	among	camera	manufacturers.
Graphics	Interchange	Format	(GIF):	This	is	limited	to	an	8-bit	palette,	or
256	colors.	This	makes	the	GIF	format	suitable	for	storing	the	graphics	with
relatively	few	colors,	such	as	simple	diagrams,	shapes,	logos,	and	cartoon
style	images.	The	GIF	format	supports	animation	and	is	still	widely	used	to
provide	image	animation	effects.	It	also	uses	a	lossless	compression	that	is
more	effective	when	large	areas	have	a	single	color,	and	ineffective	for
detailed	images	or	dithered	images.
BMP:	This	file	format	(Windows	bitmap)	handles	graphics	files	within	the
Microsoft	Windows	OS.	Typically,	the	BMP	files	are	uncompressed,	hence

they	are	large;	the	advantage	is	their	simplicity	and	wide	acceptance	in
Windows	programs.
Portable	Network	Graphics	(PNG):	This	file	format	was	created	as	the
free,	open-source	successor	to	GIF.	The	PNG	file	format	supports	8-bit
paletted	images	(with	optional	transparency	for	all	palette	colors)	and	24-bit
true-color	(16	million	colors)	or	48-bit	true-color	with	and	without	alpha
channel;	while	GIF	supports	only	256	colors	and	a	single	transparent	color.
Compared	to	JPEG,	PNG	excels	when	the	image	has	large,	uniformly
colored	areas.	Thus	lossless	PNG	format	is	best	suited	for	pictures	still
under	edition,	and	the	lossy	formats,	such	as	JPEG,	are	best	for	the	final
distribution	of	photographic	images,	because	in	this	case,	the	JPG	files	are
usually	smaller	than	the	PNG	files.

PNG	provides	a	patent-free	replacement	for	GIF	and	can	also	replace	many
common	uses	of	TIFF.	Indexed-color,	grayscale,	and	true-color	images	are
supported,	plus	an	optional	alpha	channel.

PNG	is	designed	to	work	well	in	online	viewing	applications,	such	as	web
browsers,	so	it	is	fully	stream	able	with	a	progressive	display	option.	PNG
is	robust,	providing	both	full-file	integrity	checking	and	simple	detection	of
common	transmission	errors.	Also,	PNG	can	store	gamma	and	chromaticity
data	for	improved	color	matching	on	heterogeneous	platforms.	For	more
details	refer	to	http://en.wikipedia.org/wiki/Graphics_file_formats.

http://en.wikipedia.org/wiki/Graphics_file_formats

Vector	graphics

As	opposed	to	the	raster	image	formats	discussed	previously	(where	the	data
describes	the	characteristics	of	each	individual	pixel),	vector	image	formats
contain	a	geometric	description	which	can	be	rendered	smoothly	at	any	desired
display	size.

At	some	point,	all	vector	graphics	must	be	rasterized	in	order	to	be	displayed	on
digital	monitors.	However,	vector	images	can	be	displayed	with	analog	CRT
technology,	such	as	that	used	in	some	electronic	test	equipment,	medical
monitors,	radar	displays,	laser	shows,	and	early	videogames.	Plotters	are	printers
that	use	vector	data	rather	than	pixel	data	to	draw	graphics.

Computer	Graphics	Metafile	(CGM):	This	is	a	file	format	for	2D	vector
graphics,	raster	graphics,	and	text	and	is	defined	by	ISO/IEC8632.	All
graphical	elements	can	be	specified	in	a	textual	source	file	that	can	be
compiled	into	a	binary	file	or	one	of	the	two	text	representations.	CGM
provides	a	means	of	graphics	data	interchange	for	computer	representation
of	2D	graphical	information	independent	from	any	particular	application,
system,	platform,	or	device.	It	has	been	adapted	to	some	extent	in	the	areas
of	technical	illustration	and	professional	design,	but	has	largely	been
superseded	by	formats,	such	as	Scalable	Vector	Graphics	(SVG)	and
Drawing	Exchange	Formats	(DXF).
Scalable	Vector	Graphics	(SVG):	This	is	a	2D	graphics	format	with
properties	similar	to	CGM	that	uses	an	XML-based	text	format.	Like	CGM,
it	supports	vector	and	raster	graphics	as	well	as	text.	SVG	is	supported	by
many	popular	graphics	applications,	such	as	Inkscape	or	Adobe	Illustrator.
All	major	web	browsers	and	most	smartphones	include	SVG	rendering
support.
Drawing	Exchange	Formats	(DXF):	This	is	a	computer-aided	design
(CAD)	data	file	that	provides	a	bridge	from	Autodesk's	AutoCAD	DWF
format	to	other	CAD	programs.	DXF	supports	both	ASCII	and	binary
versions.	It	shares	many	of	the	properties	of	CGM,	including	interactivity,
portability,	and	compressibility.	Due	to	inherent	limitations	in	the	file
structure,	DXF	is	being	phased	out	in	favor	of	DWF	and	SVG.

Videos	in	videogames

The	following	are	the	techniques	for	creating	videos	in	videogames:

Full	motion	video	(FMV):	This	is	a	videogame	narration	technique	that
relies	upon	pre-recorded	video	files	(rather	than	sprites,	vectors,	or	3D
models)	to	display	action	in	the	game.	While	many	games	feature	FMVs	as
a	way	to	present	information	during	cut	scenes,	games	that	are	primarily
presented	through	FMVs	are	referred	to	as	full-motion	videogames	or
interactive	movies.
QuickTime:	This	is	a	complete	cross-platform	multimedia	architecture	that
supports	creating,	producing,	and	delivering	a	broad	variety	of	media.
QuickTime	provides	support	for	the	entire	process	including	real-time
capture,	generating	media	programmatically,	importing	and	exporting
existing	media,	editing	and	compositing,	compression,	delivery,	and
playback.
MPEG-2:	This	is	a	standard	for	the	generic	coding	of	moving	pictures	and
associated	audio	information.	It	describes	a	combination	of	lossy	video
compression	and	lossy	audio	data	compression	methods	which	permits
storage	and	transmission	of	movies	using	currently	available	storage	media
and	transmission	bandwidth.

Software	to	create	game	graphics
The	following	software	are	used	for	creating	the	game	graphics:

Photoshop:	When	dealing	with	image	editing	tasks,	Photoshop	is
universally	considered	the	best	available	software.	It	can	work	with	and
export	to	any	kind	of	image	format,	it	offers	the	largest	selection	of	tools	to
edit	images	and	an	endless	number	of	tutorials	are	available	on	the	Internet
to	learn	anything	you	may	need	to	do	with	it.

All	this	power,	on	the	other	hand,	comes	at	a	price.	The	full	Photoshop	C6
license	costs	$699!
DeBabelizer:	Photoshop	is	not	the	only	choice,	naturally.	Other	options	are
available.	One	that	may	be	not	popular	but	which	is	very	good,	especially
for	compressing	images,	is	DeBabelizer
(http://www.equilibrium.com/debabelizer/).	It	is	an	image	editing	software
with	almost	the	same	capabilities	of	Photoshop,	but	it	creates	lighter	*.png
files.
GNU	Image	Manipulation	Program	(GIMP):	Another	interesting
possibility	for	those	who	follow	the	path	of	open	source	software	is	GIMP.
GIMP	(http://www.gimp.org)	is	a	free	image	manipulation	package	that
offers	anything	you	may	need	to	produce	high	quality	graphics.	It	even
supports	distinctive	image	formats	of	its	competitors!

The	main	advantage	of	GIMP	is	that	it	is	completely	free,	and	as	any	other
well-done	open	source	software,	it	is	supported	by	a	large	community	of
aficionados	who	provide	plugins,	hints,	and	tutorials.	The	main
disadvantage	is	that	GIMP	does	not	have	the	ease	of	use	of	Photoshop.
When	you	work	with	Photoshop,	you	understand	where	all	the	money	you
spent	for	its	license	went.
Adobe	Flash:	This	is	a	multimedia	and	software	platform	used	for
authoring	vector	graphics,	animations,	games,	and	Rich	Internet
Applications	which	can	be	viewed,	played,	and	executed	in	Adobe	Flash
Player.	Flash	is	frequently	used	to	add	streamed	video	or	audio	players,
advertisement,	and	interactive	multimedia	content	to	web	pages.

Flash	manipulates	vector	and	raster	graphics	to	provide	animation	of	text,
drawings,	and	still	images.	It	supports	bidirectional	streaming	of	audio	and
video,	and	it	can	capture	user	input	via	mouse,	keyboard,	microphone,	and

http://www.equilibrium.com/debabelizer/
http://www.gimp.org

camera.	Flash	applications	and	animations	can	be	programmed	using	the
object	oriented	language,	called	ActionScript.	Adobe	Flash	Professional	is
the	most	popular	and	user-friendly	authoring	tool	for	creating	the	Flash
content,	which	also	supports	automation	via	the	JavaScript	Flash
language	(JSFL).
3D	Studio	Max/Maya:	When	3D	graphics	come	into	play,	3D	Studio	Max
and	Maya	are	the	obvious	choices,	as	they	are	recognized	as	industry
standards.	They	are	well-known	by	artists,	their	export	formats	are	included
in	most	popular	game	engines,	and	they	allow	production	of	the	best	3D
graphics	and	animations	available.	They	have	a	price,	too:	both	3D	Studio
Max	and	Maya	license	costs	€3,900	each,	VAT	excluded!
Milkshape	3D:	For	those	who	are	not	willing	to	pay	for	3D	software,	there
are	two	options	available.	One	is	Milkshape	3D	(www.milkshape3d.com),	a
shareware	software	which	only	allows	low-poly	3D	modeling,	and	is	a
favorite	for	indie	game	developers.	It	doesn't	have	the	capabilities	of	more
professional	tools,	but	it's	free	and	the	community	supporting	it	is	strong
and	offers	several	tutorials.
Blender:	The	other	option	is	Blender	(www.blender.org),	an	open	source
tool	which	is	getting	more	and	more	popular	and	has	almost	the	same
capabilities	of	3D	Studio	Max.	The	main	difference	is	that	Blender	cannot
be	exported	in	*.fbx	format.	The	*.fbx	format	is	a	very	useful	graphics
format	which	allows	to	export	a	3D	model	together	with	its	materials,
animations,	and	other	useful	stuff.	Popular	game	engines,	such	as	Unity	3D,
support	the	*.fbx	format;	so	lacking	this	option	is	a	disadvantage	for
Blender.	But	at	least	it	it's	free!
Zbrush\Mudbox:	These	software	packages	consist	of	digital	sculpting
tools	that	are	used	to	create	extremely	detailed	high-poly	models.	They
basically	use	brushes,	like	the	ones	of	Photoshop,	to	add	polygons	and
create	details	on	a	3D	model.	The	details	of	the	high-poly	models	are	then
exported	as	normal	maps	(explained	later)	or	displacement	maps	and	then
used	on	low-poly	models	to	fake	a	large	number	of	details	on	a	model	with
few	polygons.

Both	ZBrush	and	Mudbox	allow	full	integration	with	software,	such	as	3D
Studio	Max	and	Maya,	among	others.	The	license	cost	is	$699	for	ZBrush
and	$825	for	Mudbox.

http://www.milkshape3d.com
http://www.blender.org

Resolution	issues	with	mobile	games
When	dealing	with	resolution,	mobile	phones	present	the	highest	variability.
Classic	phones,	those	which	used	to	be	the	most	common	devices	some	years
ago,	had	screen	resolutions	of	176x208	pixels,	while	recent	iOS	and	Android
based	smartphones	can	range	anywhere	between	320x240	to	1920x1080	pixels
for	the	latest	Samsung	Galaxy	S4.

There	are	even	more	options	when	taking	tablets	into	consideration.	Apple	iPad
screens	range	between	1024x768	of	first	generation	models	to	the	2048x1536	of
third	and	fourth	generation.	The	Asus	Transformer	Pad	Infinity	TF700,	the
fastest	Android-based	tablet	available	as	we	write	this	book,	has	a	screen
resolution	of	1920x1200	pixels;	the	Samsung	Galaxy	Tab	and	the	Google	Nexus
7	have	both	a	screen	resolution	of	1280x800	pixels.	The	list	of	options	is	very
long.

This	exceptional	variety	within	mobile	devices	poses	two	problems.

The	first	is	with	smaller	screens	of	older	cell	phone	models:	when	the	screen	size
is	so	reduced,	every	pixel	is	important.	An	artist	must	be	very	careful	when
deciding	what	to	draw	and	why,	since	inefficient	use	of	graphics	can	create	noise
on	smaller	screens	which	negatively	affects	gameplay.

The	second	order	of	problems	arise	when	porting	games	designed	to	run	on	a
specific	set	of	phones	to	other	devices,	and	mainly	affect	the	user	interface	of
your	game.	As	we	said,	Android	devices	offer	the	highest	variability:	if	you	don't
plan	in	advance	and	take	some	precautions	when	designing	your	game	for
Android,	you	can	find	yourself	spending	a	lot	of	time	adapting	graphic	assets
and	user	interface	from	one	device	to	another.

Fortunately,	Google	offers	several	well	documented	tools	to	help	developers
deal	with	such	problems,	and	starting	from	Version	3.0,	Android	introduced
elements	called	fragments	which	support	a	more	dynamic	and	flexible	UI	design
for	larger	screens.

You	can	find	what	is	considered	the	Bible	of	Google's	UI	design	documentation
at	http://developer.android.com/guide/practices/screens_support.html.

iOS	devices,	on	the	other	hand,	are	much	more	consistent	and	have	limited
variability	when	compared	to	Android	devices.	Designing	separate	UI	for	iPhone

http://developer.android.com/guide/practices/screens_support.html

variability	when	compared	to	Android	devices.	Designing	separate	UI	for	iPhone
and	iPad	and	using	vector	graphics	is	enough	to	ensure	that	your	games	will
work	on	either	device.

2D	graphic	assets
In	the	following	section,	we	will	describe	the	most	important	types	of	2D	assets
used	in	the	game	development.

Sprites

Sprites	can	be	defined	as	game	objects	that	have	a	role	in	the	gameplay	of	a	title:
the	main	character	(we	use	the	word	character	here	in	its	broadest	meaning:	a
space	ship	is	a	character),	enemies,	bullets,	and	collectibles	are	all	examples	of
sprites.	Sprites	are	usually	animated,	which	means	that	the	artist	draws	a
sequence	of	frames	representing	the	key	positions	the	game	object	assumes
during	the	animation	for	each	animated	character	and	for	each	specific
animation.	The	final	result	is	an	image	called	spritesheet	that	contains	all	the
animations	of	a	game	character.	The	following	figure	represents	part	of	the
spritesheet	of	Super	Mario	Bros	for	the	NES.

	

Once	the	sequences	are	made,	it's	up	to	the	programmer	to	invoke	the	correct
sequence	for	each	desired	animation	through	code.	The	2D-oriented	game
engines,	such	as	GameMaker	(http://www.yoyogames.com/studio),	provide	easy
sprite	animation	management	tools.	We	will	discuss	the	topic	of	game	engines
with	more	detail	in	Chapter	8,	Mobile	Game	Engines.

To	reduce	the	size	of	the	file	of	images	used	in	a	game,	there	is	a	very	popular
and	long-used	technique	which	consists	of	cutting	down	the	number	of	colors
(color	depth)	used	in	the	image:	the	fewer	the	colors,	the	smaller	the	file	size.
Such	an	operation	can	be	automatically	done	by	common	image	editors,	such	as
Photoshop.	Since	cutting	down	the	number	of	colors	of	an	image	can	result	in	a
speckled	image,	it	is	a	good	practice	to	hand-retouch	the	image	before	reducing
the	number	of	colors	to	get	the	file	size	reduction	while	keeping	a	good	image
quality.

The	following	figure	represents	the	result	of	a	progressive	so	called	palettization
of	an	image	from	full-color	to	only	two	colors.	With	some	additional	hand-

http://www.yoyogames.com/studio

retouching,	it	is	possible	to	obtain	a	smaller	file	size	without	losing	too	much
quality.

Source:	http://en.wikipedia.org/wiki/Color_depth

	

http://en.wikipedia.org/wiki/Color_depth

Backgrounds

Backgrounds	are	the	images	that	stay	behind	the	game	objects	of	a	game.	They
are	very	important	because	they	represent	the	environment	where	the	game
action	takes	place	and	strongly	affect	the	visual	appeal	of	a	title.	If	your	game
doesn't	have	nice	backgrounds,	players	may	be	turned	off	and	they	won't
download	it	and	play	it.

Depending	on	the	gameplay	characteristics	of	a	game,	it	can	have	fixed	or
scrolling	backgrounds.	Fixed	backgrounds	are	generally	used	on	puzzle	games
or	titles	where	the	game	action	takes	place	in	a	single	screen.	Tetris,	Puzzle
Bobble,	and	Pang	are	examples	of	games	with	fixed	backgrounds.

In	this	definition,	the	term	"fixed"	only	refers	to	the	fact	that	the	background	of
the	game	doesn't	scroll.	It	is	possible	in	fact	that	animation	occurs	in	the
background	of	the	game.	Anyway,	if	no	scrolling	is	involved,	we	call	it	a	fixed-
background	game.

Scrolling	backgrounds,	on	the	other	hand,	is	a	feature	of	a	game	where	the
screen	represents	only	a	portion	of	the	total	game	level.	Super	Mario	Bros,	R-
Type,	or	even	soccer	games	where	only	a	portion	of	the	playfield	is	represented
at	a	time,	are	examples	of	scrolling	games.

In	a	2D	game,	scrolling	can	both	occur	on	the	horizontal	and	vertical	axis	or	both
at	once.	In	Super	Mario	Bros,	for	example,	the	character	can	run	from	left	to
right	(and	vice	versa),	but	he	can	also	jump	on	platforms	to	climb	to	a	higher
section	of	a	level.	As	Mario	navigates	the	game	level,	the	game	camera	follows
his	movements,	showing	a	portion	of	the	level	corresponding	to	the	character's
position	at	any	time.

When	scrolling	backgrounds	are	involved,	there	are	several	techniques	that	are
used	to	obtain	the	effect	of	continuity	of	the	background	image	and	to	give	the
illusion	of	depth	to	players.

Tiles

Tiles	are	images	that	are	cut	so	that	they	can	be	put	one	close	to	each	other
without	the	player	noticing	the	end	of	the	first	image	and	the	beginning	of	the
second.	All	images	are	then	put	close	to	one	another	to	obtain	a	larger
composition,	called	tileset,	which	contains	all	the	elements	needed	to	create	the
backgrounds	of	the	game.	Most	available	game	engines	allow	using	tiles	to
create	seamless	backgrounds	for	your	games.	The	advantage	of	this	technique	is
that	it	saves	system	memory	for	the	creation	of	your	game	levels;	a	tileset	is	a
relatively	small	image	that	can	be	used	to	create	endless	levels	through	the
repetition	of	its	elements.

The	following	is	a	figure	that	shows	a	tileset	to	create	a	Zelda-like	2D	game
(courtesy	of	WesleyFG	from	http://wesleyfg.webs.com/tiles.html).

	

http://wesleyfg.webs.com/tiles.html

The	parallax	motion

The	parallax	motion	is	a	technique	that	consists	of	putting	different	images	on
separate	layers	and	then	letting	the	code	scroll	those	layers	at	different	speeds.
The	layers	closer	to	the	player	character	scroll	faster,	while	those	farther	from
the	character	scroll	slower.	The	final	effect	is	that	the	character	and	the	elements
close	to	it	move	at	a	different	speed	than	the	more	distant	elements.	If	you	have
ever	travelled	in	a	train	or	in	a	car	watching	the	landscape	from	the	window,	you
know	what	we	are	talking	about.	When	used	correctly,	this	simple	technique
grants	a	very	nice	looking	illusion	of	depth	for	a	2D	scrolling	game.

Masking

The	last	technique	we	would	like	to	describe	for	the	creation	of	nice	2D	assets
for	your	games	is	masking.	Masking	is	a	technique	to	edit	images	that	allows	the
game	engine	to	display	parts	of	those	images	as	transparent.

It	consists	of	putting	your	sprites	on	a	homogenous	background	of	some	specific
color	that	is	not	used	for	any	other	graphic	asset	of	the	game,	then	setting	that
color	as	transparent	in	the	game	engine.	The	engine	will	show	the	sprite,	hiding
the	transparent	part	of	the	image.

There	are	actually	two	kinds	of	transparency	which	are	used	in	game
development.

Full	transparency:	This	means	that	each	part	of	the	image	is	either	visible
or	invisible.	To	use	full	transparency,	it	is	necessary	to	reduce	the	number
of	colors	of	the	image	to	256	and	then	set	one	color	as	the	transparent	one
in	the	game	engine.	The	engine	will	show	all	the	colors	of	the	image,	except
the	one	you	set	as	transparent.
Alpha	transparency:	This	is	a	more	refined	technique	that	allows	having	a
full	range	of	transparency	for	an	image,	from	fully	opaque	to	fully
transparent.	For	example,	it	allows	representing	part	of	an	image	as	if	you
were	looking	at	it	through	a	colored	glass.	To	obtain	the	effect,	a	fourth
channel,	called	the	alpha	channel,	needs	to	be	added	to	the	already	existing
channels	of	an	image	(red,	green,	and	blue).	A	value	of	zero	(black)	in	the
alpha	channel	means	that	that	pixel	is	fully	transparent,	while	a	value	of	one
(white)	means	that	it	is	fully	opaque.	Any	intermediate	value	represents
semi-transparency.	A	semi-transparent	pixel	is	composed	partly	with	the
image	color	and	partly	with	the	background	color,	depending	on	the
specific	value	set	in	the	alpha	channel	of	that	pixel.

Both	full	transparency	and	alpha	transparency	are	supported	by	the	*.png	image
format,	so	save	your	graphic	assets	as	*.png	when	you	need	part	of	them	to	be
transparent.

The	following	figure	represents	a	texture	for	a	plant	and	its	alpha	channel:

	

Now	that	we're	done	describing	the	fundamental	techniques	for	creating	2D
assets	for	your	games,	we	can	delve	into	the	more	complex	field	of	3D
modeling,	animation,	and	skinning	(the	process	of	defining	which	part	of	a	3D
model	is	covered	by	which	part	of	a	2D	texture).

Much	additional	and	useful	information	about	the	creation	and	editing	of	2D
assets	can	be	found	on	the	Internet.	You	can	begin	your	research	from:
http://www.gamedev.net/page/index.html

http://www.gamedev.net/page/index.html

3D	graphic	assets
The	advent	of	3D	graphics	offered	a	brand	new	set	of	possibilities	for	game
developers	and	posed	new	problems	for	the	production	of	graphic	assets.

As	mobile	phones	incorporated	the	hardware	required	to	run	3D	games,	mainly
Graphic	Processing	Units	designed	to	take	care	of	graphics,	mobile	game
developers	turned	to	this	new	technology	and	began	developing	successful	3D
games	for	mobile	devices.

3D	models

The	production	of	3D	assets	for	games	begins	with	the	creation	of	a	3D	model	of
a	game	object	using	software,	such	as	3D	Studio	Max,	Maya,	Blender,	or	any
other	you	like.	This	is	usually	a	basic	3D	model	with	no	detail.	This	model	is
then	exported	in	a	sculpting	software,	such	as	ZBrush	or	Mudbox,	to	convert	it
into	an	extremely	detailed	3D	model,	or	high	poly,	a	very	detailed	asset,	thanks
to	the	use	of	thousands	of	polygons	(depending	on	the	importance	of	that
specific	game	asset).

In	the	following	figure,	a	beautifully	detailed	3D	model	made	with	ZBrush	is
shown:

	

The	high-poly	model	is	first	used	to	create	a	normal	map	(or	a	displacement
map)	and	then	turned	into	its	low-poly	counterpart:	a	3D	model	that	uses	fewer
polygons	and	thus,	requires	less	computational	resources	to	run	in	real	time	and
produces	a	smaller	file	size.

This	is	where	the	artist's	skills	come	into	play.	He	must	be	very	good	to	obtain
an	optimal	result	when	producing	a	low-poly	model	that	visually	matches	the
quality	of	its	high-poly	counterpart.

There	is	a	specific	software,	such	as	Polygon	Cruncher,	that	automatizes	the
conversion	of	a	high-poly	model	into	a	low-poly,	but	to	obtain	an	optimal	result
it	is	always	best	to	do	such	things	manually!

The	following	figure,	taken	from	Wikipedia
(http://en.wikipedia.org/wiki/Low_poly),	represents	the	procedure	to	get	a
detailed	low-poly	model	using	a	normal	map	created	from	the	high-poly
counterpart.

Source:	http://en.wikipedia.org/wiki/Low_poly

	

http://en.wikipedia.org/wiki/Low_poly
http://en.wikipedia.org/wiki/Low_poly

Texturing

Once	a	model	has	been	created,	it	is	necessary	to	put	one	or	more	textures	on	the
mesh.	The	mesh	of	a	3D	model	only	represents	its	basic	geometry	which
constitutes	a	collection	of	polygons.	The	texture	is	the	image	that	covers	the	3D
mesh	to	give	it	its	correct	aspect	for	the	game.

The	following	is	the	figure	of	a	simple,	flat	texture	for	a	wall	made	of	bricks:

	

Materials

Texturing	a	model	is	not	enough	to	bring	it	to	life.	As	we	said,	textures	represent
the	visual	aspect	of	a	3D	model	and	generally,	don't	take	into	consideration	the
way	light	interacts	with	the	surface	of	the	model.

To	make	a	3D	model	look	nicer,	it	is	also	important	to	represent	the	way	light
interacts	with	its	surface.	A	vest	doesn't	reflect	light	as	a	metal	weapon	does,	for
example.	As	we	said	in	The	game	artist	section	in	Chapter	2,	The	Mobile	Indie
Team,	to	recreate	the	interactions	of	light	with	the	surface	of	a	mesh,	artists
make	use	of	assets,	called	materials.

A	material	is	a	collection	of	data	that	define	both	the	generic	visual	aspect	of	a
model	and	the	way	its	surface	interacts	with	light.

A	material	is	usually	a	collection	of	at	least	two	maps.	The	first	map	is	the
texture	of	the	mesh	and	the	second	is	the	bump	map,	a	black	and	white	texture
that	defines	where	the	surface	is	concave	and	where	it	is	convex.	With	just	two
such	maps,	the	look	of	a	3D	model	can	definitely	be	improved.

Bump	mapping	is	also	a	technique	that	saves	system	memory	for	a	3D	model,
reducing	the	number	of	required	polygons	to	make	it	look	like	it	is	actually
modeled.

Let's	take	the	example	of	the	wall	texture	displayed	previously.	By	adding	a
bump	map	to	the	material	of	the	wall,	as	we	said,	it	is	possible	to	fake	the
concaveness	and	convexity	of	the	wall.

You	first	model	the	wall	as	a	flat	parallelepiped	(a	three-dimensional	figure
formed	by	six	parallelograms).	Then	you	create	a	material	for	the	wall,	which
makes	use	of	two	maps.	The	first	is	a	texture	where	the	bricks	of	the	wall	are
simply	drawn.	The	second	is	a	black	and	white	bump	map	that	represents	the
protrusions	and	indentations	of	the	bricks	composing	the	wall.	Both	the	maps	are
included	in	the	material	and	then	applied	to	the	3D	mesh.	The	final	result	is	a
wall	that	looks	like	it	is	fully	modeled,	but	instead,	it's	just	a	flat	parallelepiped
with	a	nice	looking	material.

The	following	figure	represents	a	bump	map	that	can	be	added	to	the	wall
material	to	make	it	look	more	realistic:

	

To	get	a	better	result	when	using	low-poly	models,	game	artists,	as	we	said,	use
normal	mapping.	It	is	an	improvement	over	simple	bump	mapping	because	it
creates	a	map	of	how	light	bounces	on	the	surface	of	the	high-poly	model,	which
is	more	detailed,	and	apply	that	map	to	the	low-poly	model.	The	main	difference
between	a	bump	map	and	a	normal	one	is	that	normal	maps	represent	the
refraction	of	light	in	the	3D	world,	because	they	allow	the	re-direction	of	light
bouncing	on	a	surface	according	to	the	orientation	of	its	pixels	in	the	3D	world.
Normal	mapping	is	very	useful	to	fake	the	details	of	a	high-poly	model	on	a	low-
poly	one,	but	requires	the	original	model	to	get	the	normal	map	to	be	fully
detailed	(as	we	said,	these	high-poly	models	are	created	with	sculpting	tools	like
ZBrush	or	Mudbox).

The	following	figure	represents	a	normal	map	to	be	added	to	the	material	of	the
wall	instead	of	the	bump	map:

	

The	creation	of	normal	maps	is	a	basic	skill	for	any	3D	artist	and	it	is	a	feature
available	with	any	modeling	software	we	mentioned.	You	can	learn	more	about
it	at	http://en.wikipedia.org/wiki/Normal_mapping.

http://en.wikipedia.org/wiki/Normal_mapping

The	use	of	materials	for	3D	models	could	cover	several	books	by	itself.
Modeling	software	and	3D	game	engines	offer	a	plethora	of	tools	to	create
amazing	materials	for	your	models,	for	example,	animating	materials	that
represent	the	way	snow	slowly	covers	objects	in	a	game	environment.

You	can	find	more	about	it	starting	from	http://www.3d-tutorial.com/.

http://www.3d-tutorial.com/

UV	Mapping

It	is	very	likely	that	the	game	objects	your	artists	create	for	a	game	will	not	be	as
simple	as	a	brick	wall.	Most	of	the	time,	they	will	need	to	create	complex
models	of	irregular	game	objects,	such	as	cars,	space	ships,	or	humanoid
characters.

To	put	a	flat	texture	on	a	complex	3D	model,	there	is	a	very	popular	technique
used	by	artists	called	UV	Mapping.	It	basically	consists	of	converting	the
configuration	of	the	polygons	of	a	3D	mesh	into	a	flat	plane.	The	image
representing	the	texture	of	the	model	is	then	aligned	to	this	map,	so	that	each
part	of	the	texture	covers	the	corresponding	part	on	the	3D	mesh.	If	you	think	of
a	six-faced	die	and	the	way	you	can	unfold	its	faces	to	get	a	flat	representation	of
it,	you	can	understand	what	the	UV	Map	of	a	3D	mesh	is.	The	operation	of
converting	a	3D	model	into	a	plane	is	commonly	called	unwrap.

The	following	figure	represents	the	unwrapping	of	a	cube:

	

Unwrapping	and	UV	Mapping	of	a	3D	model	can	be	a	labor	intensive	operation,
depending	on	the	complexity	of	the	3D	model.	It	takes	time,	but	still	it	is	a
required	skill	for	any	3D	modeler.	If	you	want	to	be	a	3D	artist,	you'd	better
learn	to	do	it	well.

More	about	the	technical	aspects	of	UV	Mapping	can	be	found	on	the	Internet	at
http://en.wikipedia.org/wiki/UV_mapping.

http://en.wikipedia.org/wiki/UV_mapping

More	on	textures

Textures	do	not	always	need	to	be	simple	flat	images.	To	get	the	final	touch	for
your	3D	models	in	addition	to	using	bump	and	normal	maps,	the	texture	of	an
important	game	object,	such	as	the	main	character	of	your	game,	can	be
"painted"	by	a	2D	artist	to	represent	things,	such	as	the	folds	and	shading	of	their
vest	or	its	pieces	of	armor.	By	painting	the	texture	of	a	3D	model,	it	is	possible
to	generate	a	lot	of	detail	for	that	model	which	would	not	be	possible	to	achieve
by	conventional	lighting	methods.

In	the	end,	the	final	decision	about	which	specific	techniques	to	use	for	detailing
3D	models	for	a	game	depend	on	the	artistic	direction	of	the	project.	To	recreate
realistic	objects,	such	as	guns	and	rifles	for	a	First	Person	Shooter,	you	will	need
several	maps	for	each	game	asset	to	get	full	detailed	objects,	while	for	a	more
cartoon-looking	style	you	can	sacrifice	details	in	favor	of	colors.	The	producer
and	game	designer,	together	with	the	leading	artist	of	your	game,	are	in	charge
of	such	matters.

An	important	aspect	that	we	haven't	mentioned	yet	is	that	textures	must	always
have	dimensions	which	are	a	power	of	two	and	conform	to	regular	dimensions.
There	are	reasons	for	that,	which	depend	on	how	computers	manage	and	process
data	which	we	won't	explain	here.	Remember	that	computers	only	understand
zeros	and	ones.	It	is	important	to	stick	to	this	rule!

Though	textures	don't	necessarily	need	to	be	square	images,	still	their	size	must
be	in	the	range	of	8,	16,	32,	64,	128,	256,	512,	1024,	or	2048	(though	we
suggest,	for	most	mobile	devices,	to	make	small	use	of	textures	above	512	or
1024	pixels	in	size,	to	save	system	memory.	Small	screens	don't	need	extra
detailed	textures.).

Baking

A	technique	to	save	computational	power	to	calculate	real-time	lights	for	game
environments	is	called	baking.	It	consists	of	"printing"	the	shadows	generated	by
the	elements	which	populate	a	game	environment	in	real	time	directly	on	the
textures	which	cover	floors	and	walls	and	then	apply	the	texture	with	the	baked
shadows	to	the	game	environment.	This	way,	they	can	be	put	in	the	game	engine
as	objects	that	don't	generate	real-time	shadows,	thus	saving	power	to	keep	the
frame	rate	of	your	game	as	high	as	possible.

It	is	important	to	remember	that,	to	use	baking,	the	objects	with	baked	shadows
must	be	static	objects.	If	you	move	a	crate	with	a	baked	shadow,	the	trick	will	be
revealed	to	your	players	and	will	result	in	a	poor	and	inconsistent	visual
experience.

Animations

The	techniques	to	animate	2D	and	3D	characters	are	similar	and	very	different	at
the	same	time.	They	both	require	breaking	up	each	animation	in	a	given
(hopefully	small)	number	of	key	frames	and	then	inserting	each	frame	into	a
sequence.

The	difference	is	that	in	2D	animation,	the	brain	of	the	player	fills	in	the	blank
spaces	between	two	successive	frames	at	a	typical	rate	of	24	frames	per	second,
creating	the	illusion	of	continuity	in	the	animation,	while	in	3D	animation,	a
tool,	usually	provided	with	the	modeling	software,	takes	care	of	interpolating	the
positions	of	each	part	of	the	model	according	to	a	set	of	rules	and	parameters
between	two	subsequent	positions.

To	animate	a	3D	model,	you	first	need	to	make	its	bones,	which	are	the	part	of
the	model	that	is	actually	animated.	Once	the	model	is	provided	with	bones,	the
mesh	of	the	model	is	rigged	to	the	bones.	This	is	a	delicate	operation	which	can
take	a	lot	of	time,	depending	on	the	importance	of	that	model	in	the	economy	of
your	game	and	its	complexity.	Rigging	a	model	means	to	define	which	points	on
the	surface	of	the	3D	model	follow	the	movement	of	each	specific	bone	and	the
strength	of	their	connection.	If	a	model	is	not	correctly	rigged,	once	you	animate
it	you	will	see	the	mesh	messing	up	badly!

For	animating	humanoid	characters,	special	tools	are	available,	for	example,	3D
Studio	Max	has	a	tool	called	biped.

The	biped	is	basically	a	humanoid	skeleton	made	of	a	given	number	of	bones
and	their	connections.	It	saves	the	time	needed	to	create	a	humanoid	skeleton
from	scratch	and	allows	the	user	to	define	both	the	number	of	bones	and	their
size.

The	following	figure	represents	the	3D	Studio	Max	biped	in	a	typical	karate
position:

	

The	number	of	bones	is	important	to	define	what	kind	of	animations	can	be
created	for	the	character:	the	number	of	fingers	in	the	hands,	for	example,	the
number	of	segments	for	the	spine,	or	the	bones	to	animate	a	tail,	should	the
character	have	one.

Scaling	the	size	of	the	bones,	on	the	other	hand,	is	important	to	fit	the	size	of	the
mesh	in	order	to	better	rig	the	mesh	to	its	biped.

Once	the	mesh	is	provided	with	bones	and	is	rigged,	a	model	is	animated
through	a	sequence	of	key	frames.	Each	animation	is	broken	down	into	a	number
of	key	positions	which	represent	it.	For	each	key	frame,	the	model	is	put	in	a
specific	position,	acting	on	its	bones	(the	mesh	follows	accordingly,	thanks	to	its
rigging).	The	software	takes	care	of	interpolating	the	movement	of	each	bone	in
the	model	according	to	a	set	of	rules	called	inverse	kinematics	and	a	set	of
parameters	defined	by	the	user.

Animating	3D	characters	is	no	joke!	It	requires	both	talent	and	knowledge	of
anatomy	and	the	rules	of	body	language.	Take	a	look	at	any	Disney	movie	to	get
an	idea	on	how	to	make	objects	express	emotion	through	motion.

To	stick	to	the	scope	of	this	book,	we	won't	go	into	further	details	with	regard	to
3D	animation.	Big	developers	have	teams	of	animators	who	not	only	work	with
modeling	software,	but	also	make	use	of	techniques,	such	as	motion	capture,	if
they	need	to	create	detailed	animations	for	humanoid	characters.	It	is	a	branch	in

the	field	of	3D	computer	graphics	by	itself	and	we	suggest	searching	on	the
Internet	starting	from	http://www.animationarena.com/.

http://www.animationarena.com/

Designing	a	character	for	mobile
As	we	said,	the	look	and	feel	of	your	game	will	influence	your	potential	players
before	they	even	start	playing	your	game.	It	is	thus	a	general	rule	to	have	your
graphics	match	the	game's	genre:	this	rule	addresses	both	the	creation	of	the
graphic	assets	for	your	environments	and	the	character	design.

The	character	design	process

The	process	of	designing	game	characters	always	starts	with	the	definition	of	its
basic	qualities,	both	visual	and	character.	Use	a	list	of	adjectives	to	create	a
mental	map	of	both	the	character	and	the	visual	aspect	of	your	character.

The	next	step	is	to	search	for	visual	references	which	can	represent	the
adjectives	in	the	mental	map.	Anything	can	be	a	visual	reference:	shapes,
materials,	landscapes,	and	kinetics.	Anything	that	can	visually	describe	a
concept	related	to	your	game	character	is	a	source	for	the	visual	aspect	of	that
character.

Once	you	have	a	small	library	of	visual	references	for	your	character,	it	is	time
to	start	drawing	it.	A	general	rule	is	to	begin	by	drawing	basic	geometric	shapes
and	compose	them	to	create	the	outline	for	your	character.

Since	the	most	important	thing	for	small	characters	that	populate	mobile	games
is	to	have	a	strong	silhouette,	don't	focus	on	the	fine	details	of	your	design	at	this
step:	just	work	on	getting	a	well-balanced,	nice-looking	outline	for	your
character.

Once	you	are	satisfied	with	the	outline,	you	can	then	begin	working	on	its	fine
details	to	make	it	even	more	distinctive.	On	the	other	hand,	too	many	details	can
add	nothing	but	noise	to	your	design,	not	to	mention	the	additional	time	needed
to	model	such	details	in	the	case	of	3D	characters.

Balance	is	the	key;	as	we	said,	for	mobile	games	running	on	small	cell	phone
screens	every	pixel	is	important.	Put	in	any	detail	you	feel	is	important	to	define
your	game	characters	and	get	rid	of	everything	you	don't	actually	need!

Silhouettes

When	designing	the	character	for	your	game,	you	want	players	to	immediately
differentiate	it	from	anything	else	in	the	game	and	(hopefully)	identify	with	it.	A
basic	way	to	achieve	this	goal	consists	of	creating	a	strong	silhouette	for	your
character.	A	strong	silhouette	helps	your	player	quickly	identify	the	main
character	against	the	backgrounds	and	tell	it	apart	from	the	other	game	objects	in
the	scene.	As	human	beings,	we	recognize	patterns.	A	strong	silhouette
represents	a	pattern	that	our	brain	can	easily	spot	so	to	perceive	it	as	different
from	anything	else	in	the	game	to	positively	affect	the	gameplay	of	your	title.

A	very	useful	technique	to	check	if	your	character	fits	the	requirements	of	good
character	design	is	to	shade	the	character	black	and	check	if	it	can	be	recognized
by	its	silhouette.	If	the	silhouette	looks	nice	and	distinctive,	you	will	know	that
once	it	will	be	scaled	down	to	fit	the	size	of	the	screen	of	a	mobile	phone,	it	will
still	be	well	recognizable	by	your	players.

The	following	figure	is	the	silhouette	of	a	very	popular	game	character.	Can	you
recognize	him?

	

Colors	for	mobile
The	next	trick	in	creating	strong	characters	is	to	smartly	use	colors.	Since
drawings	are	made	of	shapes	and	colors,	you	cannot	create	a	good	drawing	if	its
colors	don't	match	the	quality	of	the	shape.

Use	a	unique	palette	for	your	game	characters	and	make	their	color	different
from	those	of	the	other	less	relevant	game	objects	of	your	game.	If	the	main
color	of	your	game	character	is	a	tone	of	blue,	don't	use	blue	for	your	game
enemies.	Once	things	start	moving	on	screen,	the	better	the	player	can	tell	his
controlled	character	apart	from	the	rest,	the	better	the	gameplay	of	your	title.

It	is	also	a	good	practice	to	create	game	backgrounds	that	help	the	players	spot
the	relevant	game	objects	and	focus	on	them.	By	using	background	colors	which
strongly	contrast	with	the	game	objects,	your	players	are	provided	with	an
optimal	gameplay	environment	to	make	the	best	of	the	game	mechanics	of	your
game.

Once	you	have	succeeded	in	defining	the	basic	shape	and	palette	for	your
characters	and	have	made	them	distinctive	from	other	game	objects	and
backgrounds,	you	can	then	choose	to	create	the	game	objects	to	intentionally	get
your	players	confused.	You	can,	for	example,	have	enemies	that	hide	in	the
background	or	have	a	shape	or	colors	similar	to	that	of	elements	the	player	must
collect.	It	is	an	easy	and	cheap	way	to	add	gameplay	to	a	title,	but	it	works	if	the
visual	style	of	your	game	is	designed	following	the	good	practices	we
mentioned.

The	user	interface	and	HUD
The	user	interface	is	a	core	aspect	of	games	which	is	sometimes	overlooked	until
the	end	of	a	project.	Instead,	it	has	a	fundamental	role	to	assure	that	both	the
flow	and	the	playability	of	your	game	appeals	to	players	and	encourages	them	to
keep	playing.

For	mobile	games,	the	interface	requires	even	more	attention.	Despite	the	fact
that	it	is	not	practical	for	any	game	to	get	players	lost	in	its	menus,	mobile	games
run	on	screens	that	are	both	small	and	different	in	size	from	one	another,	and
thus	require	to	display	useful	gameplay	information	clearly	in	a	quite	small
space.

The	number	of	screens	that	compose	the	interface	of	the	game	must	be	adequate;
it	should	avoid	repetitions	and	the	structure	of	the	screens	map	must	be
reasonable	and	intuitive.	Also,	you	must	choose	the	right	font	for	each	menu
item.

Another	important	element	of	the	game	interface	is	the	Head's	Up	Display
(HUD).	The	HUD	is	both	the	graphic	frame	for	the	game	and	the	set	of
information	that	is	constantly	displayed	on	screen	to	provide	the	player	with	the
information	needed	to	succeed	playing:	available	ammo	for	his	guns,	time	left	to
complete	a	race	or	reach	a	checkpoint,	score,	available	lives,	and	more.

As	this	information	is	constantly	displayed	on	screen	during	gaming	sessions,	it
is	important	to	be	sure	that	the	info	is	clearly	displayed	and	it	doesn't	hinder	the
playability	of	the	game	due	to	the	reduced	device	screen.

The	following	figure	is	one	of	the	best	HUD	ever:	the	helmet	of	Samus	Aran
from	Metroid	Prime!

	

When	designing	a	HUD	for	a	mobile	game,	game	artists	not	only	need	to	deal
with	placing	all	interface	elements	correctly	on	screen,	so	that	the	info	provided
is	clearly	readable;	they	also	have	to	deal	with	technical	problems,	such	as
scaling	the	interface	appropriately,	depending	on	the	different	screen	resolution
of	the	device	the	game	could	run	on.

The	first	order	of	problems	can	be	resolved	at	a	design	level.	Creating	the	right
user	interface	for	your	game	is	a	matter	of	studying	your	game	with	the	designer
to	set	the	limits	of	what	specific	information	the	player	needs	to	have
permanently	displayed	on	screen,	then	deciding	how	to	display	it	smartly,
without	distracting	the	player	from	the	actual	game.

The	second	order	of	problems	requires	planning	in	advance.	We	have	said	many
times	that	mobile	phones	have	the	maximum	number	of	variability	with	regard
to	screen	size.	Planning	prevents	your	artists	from	having	to	redraw	the	interface
of	your	game	every	time	a	different	device	is	supported.

Easily	put,	for	iOS	devices,	which	only	introduce	one	new	standard	with	each
generation	of	devices,	it	is	enough	to	create	two	different	interfaces:	one	for	the
iPhone/iPod	touch	and	one	for	the	iPad/iPad	Mini.	Create	it	for	retina	resolution,
and	then	scale	it	down	for	non-retina	models.

For	Android	games	there's	no	official	standard,	so	the	best	choice	is	to	take	two
or	three	reference	models	and	design	the	game	interface	to	fit	those	models

or	three	reference	models	and	design	the	game	interface	to	fit	those	models
perfectly.	When	running	on	screens	different	from	the	reference	models,	the
game	graphics	won't	be	perfect,	but	will	still	work	and	won't	demand	too	much
effort.

Keep	a	different	interface	design	for	Android	tablets,	also.

Vector	graphics	automatically	scale	without	any	loss	of	quality	and	we	suggest
using	them	whenever	you	can.

Summary
In	this	chapter,	we	covered	the	importance	of	graphics	in	videogames	in	general
and	the	challenges	specific	to	creating	mobile	game	graphics.

We	reviewed	the	most	common	file	formats	for	raster	and	vector	graphics.

We	discussed	the	creation	and	application	of	2D	and	3D	assets,	animation,	and
the	software	needed	to	create	them.

Chapter	4,	Audio	for	Mobile,	will	cover	audio	for	mobile	games,	including	music
and	sound	effects,	and	we	will	cover	the	most	effective	uses	of	sound	in	games
and	the	most	popular	software	to	create	sounds.

Chapter	4.	Audio	for	Mobile
Sound	design	involves	specifying,	acquiring,	manipulating,	or	generating	audio
elements.	It	is	employed	in	a	variety	of	disciplines	including	video	game
development.	Sound	design	generally	involves	modifying	recorded	audio,	such
as	music	and	sound	effects.	In	some	cases,	it	may	also	involve	the	composition
or	manipulation	of	audio	to	create	a	desired	effect	or	mood.	A	person	who
practices	the	art	of	sound	design	is	called	a	sound	designer.	For	information	on
sound	designer,	visit	http://en.wikipedia.org/wiki/Sound_design.

Sound	was	once	an	afterthought	in	terms	of	game	design;	now	videogame	music
is	a	legitimate	industry	of	its	own.	Music	is	one	of	the	many	elements	of	the
overall	sound	design	of	videogames,	where	huge	leaps	have	been	made	in	a
relatively	short	time.	With	the	advent	of	directional	and	simulated	surround
sound,	game	audio	became	integral	to	the	action	itself.	Stealth-based	games,
such	as	the	popular	Assassin's	Creed	series	turned	the	art	of	listening	and
eavesdropping	into	a	survival	skill	in	itself.	Even	early	games,	such	as	Tetris	and
Pac-Man	(wacka	wacka),	earned	much	of	their	addictive	appeal	by	getting	into
your	head	with	thumping,	repetitive	sound	schemes.	Every	Tetris	player	will
recognize	its	theme	song	in	the	first	few	bars.	Well-designed	sound	and	graphics
complement	each	other	to	produce	rich	and	enjoyable	game	play.	In	this	chapter
will	will	cover:

The	history	of	videogame	music
Recording
Playback
Videogame	sound	types
Digital	audio	editors
Issues	of	mobile	game	audio	design
The	best	practices	of	mobile	game	audio	design

http://en.wikipedia.org/wiki/Sound_design

Digital	sound	technology
Musical	Instrument	Digital	Interface	(MIDI)	and	digital	technology	helped	to
drive	the	rapid	evolution	of	sound	design	during	the	1980s	and	1990s.	Also,	the
Internet	is	a	great	resource	for	sound	designers,	allowing	them	to	acquire	source
material	quickly,	easily,	and	cheaply.	Advances	in	digital	audio	editing	software
have	enabled	sound	designers	to	create	and	modify	samples	on	their	own.

Analog	versus	digital

Sound	recording	involves	recording	an	original	set	of	sound	waves	and
reproducing	those	waves	in	a	variety	of	ways.	The	two	basic	recording	methods
are	called	analog	and	digital.	Both	types	of	recordings	require	a	sensor,	such	as	a
microphone	or	an	electric	guitar	pick-up.	With	analog	recording,	a	physical
record	is	created	by	moving	a	phonograph	stylus	to	imprint	a	pattern	on	a	vinyl
record	or	fluctuating	a	magnetic	field	via	a	magnetic	tape	recording	head.

Digital	recording	bypasses	the	physical	element	and	creates	a	record	directly	on
a	hard	drive	or	other	digital	medium	as	a	series	of	binary	numbers	representing
samples	of	the	amplitude	of	the	audio	signal	at	regular	intervals.	An	advantage
of	digital	over	analog	recording	is	the	ability	to	make	an	exact	replica	of	the	file.
Analog	duplication	often	results	in	a	degraded	quality	replica.

Both	the	methods	use	analog	playback	by	vibrating	the	head	of	a	speaker	or
headphone	to	replicate	the	original	sound	waves.

Recording	and	playback

This	section	covers	the	recording	and	playback	technology	involved	in	sound
design.

Recording

The	process	of	capturing	an	analog	audio	signal	and	converting	it	to	a	digital
format	is	done	with	an	analog-to-digital	convertor	(ADC).	This	is	a	piece	of
hardware	that	measures	electrical	input	and	records	in	binary	format.	The	fidelity
of	the	conversion	process	is	dictated	by	several	factors:	the	sample	rate,	the	word
length,	and	compression.

The	sample	rate

The	frequency	at	which	the	ADC	measures	the	level	of	the	analog	wave	is	called
the	sample	rate.	The	higher	the	sampling	rate	the	higher	the	upper	cutoff
frequency	of	the	digitized	audio	signal.	Sample	rates	are	measured	in	frequency
of	samples	per	second;	the	higher	the	frequency,	the	better	the	audio	quality.

The	word	length

Word	length	is	the	amount	of	data	in	an	individual	sample.	The	longer	the	word
length,	the	more	accurate	the	sample.	Word	size	is	measured	in	bits	of	data.

The	number	of	bits	used	to	represent	a	single	audio	wave	(the	word	size)	directly
affects	the	signal.	Increasing	a	sample's	word	length	by	one	bit	doubles	its
possible	values;	the	practical	limit	of	which	is	24	bits,	since	that	is	the	maximum
that	today's	sound	equipment	can	detect.

Compression

Compression	is	a	process	to	reduce	the	size	of	the	stored	audio	file.	There	are
three	basic	types	of	compressions:	uncompressed,	lossless	compression,	and
lossy	compression.
Uncompressed

An	uncompressed	(raw	or	PCM)	audio	file	requires	about	a	megabyte	of	storage
per	second	of	playback.	This	format	is	generally	used	only	for	archiving	original
master	studio	recordings.
Lossless	compression

This	format	removes	data	that	is	generally	unperceivable	by	audio	equipment
and	the	listener.	A	good	example	is	the	FLAC	format,	which,	while	having	a
smaller	space	footprint	than	PCM,	is	still	too	large	to	be	used	in	the	game
development.
Lossy	compression

This	format	sacrifices	a	varying	amount	of	fidelity	for	a	game-friendly	space
requirement.	A	typical	example	is	the	*.MP3	format	which	uses	on	an	average
about	one	megabyte	per	minute	of	playback	time.	This	is	the	format	we	will
focus	on	in	this	chapter.

Playback

The	sequence	of	numbers	is	transmitted	from	a	storage	medium	into	a	digital-to-
analog	converter	(DAC),	which	converts	the	numbers	back	to	an	analog	signal
by	sticking	together	the	level	information	stored	in	each	digital	sample,	thus
rebuilding	the	original	analog	waveform.

This	signal	is	amplified	and	transmitted	to	the	speakers	or	headphones.

Types	of	game	sounds
There	are	a	number	of	sound	types,	including	dynamic,	adaptive	interactive,
diegetic,	non-dynamic,	adaptive,	and	non-diegetic	versions.	The	classification	is
based	on	the	perspective	we	assume	to	consider	sounds	in	games.	From	the	point
of	view	of	the	player's	actions,	sounds	can	be	divided	into	Dynamic	and	Non-
Dynamic.If	we,	on	the	other	hand,	consider	the	sounds	from	the	perspective	of
"where"	they	occur,	we	have	Diegetic	sounds,	which	happen	in	the	character's
space,	and	Non-Diegetic	sounds.	In	the	following	sections	we	provide
explanations	for	each	of	these	categories.

Dynamic	audio

Dynamic	audio	is	any	sound	which	is	designed	to	be	changeable,	encompassing
both	the	interactive	and	adaptive	audio.	Dynamic	audio	is	the	sound	which	reacts
to	the	changes	in	the	gameplay	environment	and/or	in	response	to	the	user's
actions.

Adaptive	audio

Adaptive	audio	occurs	in	the	game	environment,	reacting	to	gameplay,	rather
than	responding	directly	to	the	user.	An	example	is	during	timed	gameplay,	the
music	may	speed	up	as	time	runs	out.

Interactive	audio

Interactive	audio	refers	to	the	sound	events	occurring	in	reaction	to	gameplay,
which	can	respond	to	the	player	directly.	For	example,	in	Tetris,	when	the	player
drops	a	piece	into	place	there	is	a	thump	sound.	The	thump	is	an	interactive
sound	effect.

Non-Dynamic	linear	sounds	and	music

Non-Dynamic	linear	sounds	and	music	usually	occur	in	movies	or	cut-scenes.
These	will	play	in	a	set	series	without	input	from	the	player.

Diegetic	sounds

Diegetic	audio	are	sound	effects	or	music	that	occur	in	the	character's	space.
There	are	three	types	of	diegetic	sounds:	non-dynamic,	adaptive,	and	interactive.

Adaptive

Diegetic	adaptive	audio	occurs	in	the	game	space	and	may	change	based	on
conditions	in	the	gameplay.	For	example,	during	the	daylight	conditions,	birds
may	chirp,	while	during	night,	crickets	chirp.

Interactive

Interactive	diegetic	sounds	occur	in	the	character's	space,	with	which	the	player's
character	can	directly	interact.	The	player's	actions	trigger	the	sound	effect	but
the	player	can't	directly	affect	it.	Examples	include	the	character's	footsteps,	the
creaking	of	an	opening	door,	or	choosing	a	tune	on	a	juke	box.

Non-Dynamic

Non-Dynamic	diegetic	occurs	during	gameplay,	but	the	player's	actions	have	no
effect	on	playback.	Examples	would	include	the	background	music	and	sound
effects,	such	as	traffic	noise.

Non-Diegetic	sounds

Non-Diegetic	audio	takes	place	outside	of	the	character's	space.	There	are	two
types	of	non-diegetic	audio:	adaptive	and	interactive.

Adaptive

Adaptive	Non-Diegetic	sounds	are	sound	events	occurring	in	reaction	to
gameplay,	but	which	are	unaffected	by	the	player's	direct	movements,	and	are
outside	the	diegesis	or	game	narrative.	An	example	would	be	the	different
background	music	for	day	and	night	conditions.

Interactive

Interactive	Non-Diegetic	sounds	can	react	to	the	player	directly,	but	are	also
outside	of	the	game	narrative.	An	example	would	be	the	music	changing	or
starting	when	the	character	enters	a	cafe	where	a	jukebox	is	playing.

Kinetic	gestural	interaction

Kinetic	gestural	interaction	can	occur	in	both	diegetic	and	non-diegetic	sound,	in
which	the	player	(as	well	as	the	character,	typically)	physically	participates	with
the	sound	on	screen.	This	usually	involves	a	specialized	controller,	such	as	the
Nintendo	Wii	controller,	MS	Xbox	360	Kinect,	and	the	guitar	in	Guitar	Hero.

The	audio	editing	software
There	are	literally	dozens	of	Digital	Audio	Editors	(DAE)	available	in	the
market.	The	following	are	a	few	of	the	more	popular	ones:

Avid	Pro	Tools

Arguably,	Avid	Pro	Tools	is	one	of	the	best	DAE	in	the	market.	It	is	an	industry
standard	with	a	full	range	of	features.	Developed	by	Avid	Technology,	Pro	Tools
is	available	for	both	Microsoft	Windows	and	Mac	OS	X	operating	systems.	The
suite	is	widely	used	by	professionals	for	recording	and	editing	across	music
production,	film	scoring,	film	and	television	post	production,	musical	notation,
and	MIDI	sequencing.	Pro	Tools	can	run	as	standalone	software,	or	operate
using	a	range	of	external	A/D	converters	and	internal	PCI	or	PCIe	audio	cards
with	onboard	DSP.	Pro	Tools	can	be	purchased	and	downloaded	from
http://www.avid.com/US/products/family/pro-tools.

Avid	Pro	Tools	screenshot

	

http://www.avid.com/US/products/family/pro-tools

Sound	Forge/Sonic	Foundry

Sony	Sound	Forge	by	Sony	Creative	Software	is	a	digital	audio	editing	suite
which	is	aimed	at	the	professional	and	semi-professional	markets.	It	is	capable
of	recording,	editing,	and	reformatting	sound	files	in	a	number	of	formats
including	WAV,	AIFF,	and	MP3.	A	limited	version,	sold	as	Sound	Forge	Audio
Studio,	provides	an	inexpensive	entry-level	digital	audio	editor.	Sound	Forge	can
be	bought	and	downloaded	at	the	following	website:

http://www.sonycreativesoftware.com/audiostudio

Sound	Forge	screenshot

	

http://www.sonycreativesoftware.com/audiostudio

Audacity

Audacity	is	a	powerful,	open	source	free	digital	audio	recorder	and	editor
available	for	Windows,	Mac	OS	X,	Linux,	and	other	operating	systems.
Audacity	has	been	available	on	Source	Forge	from	October	2011	with	over	76
million	downloads.	Audacity	has	won	multiple	awards,	including	the
SourceForge	2007	and	2009	Community	Choice	Award	for	Best	Project	for
Multimedia.	Audacity	is	available	for	download	here:

http://audacity.sourceforge.net/

Audacity	running	on	MacOS	screenshot

	

http://audacity.sourceforge.net/

Ableton	Live

Ableton	Live	is	a	software	available	for	both	Windows	and	iOS	which	is
especially	good	to	rapidly	and	easily	create	sound	effects.	The	basic	suite	of
upcoming	Version	9	is	quite	cheap	and	you	can	try	the	free	trial	version	before
deciding	if	it	is	the	right	software	for	your	needs	(https://www.ableton.com/).

Ableton	Live	screenshot

	

https://www.ableton.com/

Designing	audio	for	mobile	games
The	creation	of	good	audio	and	sounds	for	mobile	games	poses	specific
problems	to	audio	designers	that	depend	on	both	the	technical	characteristics	of
mobile	devices	and	the	distinctive	conditions	at	which	mobile	games	are	played.

In	the	following	sections,	we	will	discuss	the	most	important	considerations
which	specifically	relate	to	the	creation	of	optimized	audio	for	your	mobile
games.

Planning	the	audio	in	advance

The	speed	at	which	the	mobile	games	are	developed	usually	means	that	music
and	sounds	are	often	the	last	element	to	be	added	to	a	game.	However,	poorly
designed	audio	can	negatively	affect	the	appeal	of	a	title	to	its	target	audience
and	thus	its	sales.

Therefore,	if	you	want	your	title	to	sell	well,	we	suggest	taking	care	of	sound	as
any	other	crucial	element	of	your	game	from	the	beginning	of	the	development
process.	Of	course,	gameplay	must	be	fun,	but	poor	sound	can	hurt	an	otherwise
high	quality	game.

Hardware	limitations	for	mobile	games	audio

As	far	as	the	hardware	capabilities	of	mobile	phones	constantly	evolve,	users
expect	better	audio	for	their	mobile	games	and	developers	can	go	beyond	the
standard	of	a	few	kilobytes	for	their	music	scores.

Still,	mobile	devices	have	limited	audio	capabilities	when	compared	to	PCs	and
home	consoles	that	mobile	audio	designers	need	to	take	into	account.

For	example,	mobile	phones	are	generally	provided	with	a	single	speaker.	Using
headphones	can	improve	the	audio	experience,	and	with	additional	hardware	the
iPhone	can	output	stereo	sound	(on	Wikipedia,	you	can	read	that	Stereo	audio
was	added	in	the	3.0	update	for	hardware	that	supports	A2DP
http://en.wikipedia.org/wiki/IPhone).

In	any	event,	as	a	developer,	you	can't	rely	on	your	audience	to	always	use
headphones	when	playing	mobile	games.	Many	games	these	days,	advise	that
they	are	best	played	with	headphones,	but	this	depends	on	the	gameplay	and	how
dependent	it	is	on	sound	cues.

Another	technical	obstacle	is	that	the	audio	capabilities	of	a	mobile	device	are
usually	optimized	for	speech	and	don't	necessarily	work	as	well	for	other	audio
purposes.	It	takes	experience,	a	good	sound	editing	tool,	such	as	those	we
mentioned,	and	a	lot	of	fine	tuning	to	deliver	an	adequate	sound	experience	for
your	games.

Fortunately,	creating	audio	for	mobile	games	doesn't	only	mean	dealing	with
limitations.	High-end	devices	allow	pretty	good	audio	performance	that	can	be
exploited	by	audio	designers	to	improve	the	overall	experience	of	a	mobile
game.	For	example,	iPhone	and	iPad	developers	can	make	use	of	advanced
APIs,	such	as	Open	AL,	to	create	excellent	sounds	for	their	games.	These
libraries	even	allow	simulated	audio	positioning	in	the	3D	space	or	giving
players	the	option	to	choose	the	music	played	in	their	games.

http://en.wikipedia.org/wiki/IPhone

The	role	of	audio	in	mobile	games

Generally	speaking,	mobile	audio	design	follows	the	same	rules	of	audio	design
for	any	other	game	platform.	The	goal	of	the	game	audio	is	to	immerse	players
in	the	game	world	and	improve	their	gameplay	experience.

Typically,	your	mobile	title	will	require	the	following	audio	elements:	looping
background	music,	in-game	sound	effects,	dialog,	and	interface	sounds.

A	key	aspect	is	that	those	sounds	that	are	most	often	played	don't	bother	players
even	after	being	heard	hundreds	of	times.	Work	with	volume,	pitch,	and	sound
modulation	over	time	(game	engines	usually	offer	tools	to	do	that)	and	test	as
much	as	you	can	to	be	sure	that	the	final	experience	should	always	be	pleasant	to
players,	rather	than	annoying.

Listening	conditions	for	mobile	games

Mobile	gaming	has	distinctive	characteristics	of	its	own	that	need	to	be	taken
into	account	by	audio	designers	with	regard	to	the	kind	of	experience	that	mobile
games	deliver	to	the	players.

For	example,	the	listening	conditions	for	a	mobile	game	are	hardly	comparable
to	that	of	a	title	you	can	play	on	a	home	console	or	PC.	The	spatial	sound
available	for	house	speakers,	as	well	as	the	difference	between	left	and	right
channels,	may	not	be	available	on	a	mobile	phone	when	playing	on	a	bus	or	in
the	doctor's	waiting	room.	As	we	said,	headphones	could	help	here,	but	you
cannot	rely	on	players	using	them.

Then	there's	noise!	When	playing	outdoors,	all	kinds	of	noise	can	interfere	with
your	game	sounds:	background	sounds,	other	people's	conversations,	dogs
barking,	and	the	like,	which	will	negatively	affect	your	game	audio,	if	not
masking	it	at	all.	Testing	your	game	audio	in	different	environments	and	with	or
without	headphones,	is	crucial	to	find	the	optimal	setting	and	tuning	for	your
game	audio.

Another	aspect	to	be	taken	into	account	is	the	social	aspect	of	playing	in	public.
People	around	our	player	shouldn't	be	bothered	with	audio	coming	from	his
mobile	phone	or	the	player	may	not	want	people	to	know	what	he	is	doing.
Those	facts	imply	several	decisions	to	be	taken	at	a	design	level,	for	example,
setting	the	ideal	volume	game	sounds	should	be	played	at	or	the	conditions	at
which	audio	starts	and	stops	playing.

As	you	can	see,	sound	design	for	mobile	games	should	not	be	seen	as	a	task
independent	from	the	more	general	design	of	a	game	as	a	whole!

Best	practices	for	mobile	games	audio
design
In	the	following	sections	we	will	suggest	a	few	basic	practices	that	can	help
audio	designers	to	address	the	most	common	problems	when	creating	audio	and
sounds	for	mobile	games.

Scripting	skills	for	a	mobile	audio	designer

Due	to	the	reduced	size	of	mobile	developing	teams,	a	very	useful	skill	for	your
audio	designer	to	have	is	the	capability	to	use	the	scripting	language	of	your
game	engine	of	choice	to	manage	in-game	audio.	This	will	have	two	main
advantages:	the	first	is	that	the	other	team	members	won't	have	to	take	care	of
this	specific	aspect,	as	they	will	already	be	overburdened	with	the	other	elements
of	game	development:	designing,	programming,	or	artwork	production.	The
second	advantage	is	that,	as	the	sound	expert	takes	care	of	putting	audio	and
sounds	in	the	game,	the	overall	quality	of	the	project	will	improve.

Most	game	engine	scripting	languages,	as	we	will	see	in	the	following	chapters
of	the	book,	are	Java	or	JavaScript-based	(UDK	and	Unity	among	the	others).	If
your	audio	designer	can	deal	with	such	tools,	not	only	the	overall	quality	of	your
game	will	be	better,	but	it	can	also	help	meet	the	deadlines	of	your	project.

File	compression

As	mobile	devices	lack	the	memory	capabilities	of	home	consoles	and	PCs,	it	is
fundamental	to	use	compression	algorithms	to	reduce	the	size	of	your	audio
files,	while	keeping	an	acceptable	quality.	For	example,	in	order	for	your	iPhone
game	to	be	downloadable	under	the	3G	standard,	its	size	cannot	exceed	the
threshold	of	20Mb.

As	we	said,	the	lower	the	bitrate	of	an	audio	file,	the	lower	its	quality.
Fortunately,	when	developing	audio	for	mobile	games,	there	is	no	need	to
produce	optimal	5.1	sound	quality.	It	is	thus	easier	for	the	audio	designer	to
balance	the	reduction	in	the	bitrate	of	the	audio	files	and	yet	have	those	sound
good	on	a	mobile	device.	For	example,	with	MP3	compression,	which	is
generally	accepted	by	most	popular	game	engines,	stereo	audio	file	size	is
almost	the	same	as	their	mono	counterparts.

Looping	background	music

A	very	annoying	problem	that	may	arise	when	creating	audio	for	mobile	games
is	with	looping	background	music.	When	an	uncompressed	file	is	converted	into
an	MP3,	the	algorithm	generally	adds	samples	that	can	make	it	impossible	to
create	seamless	looping	music	backgrounds.	Game	engines	provide	solutions	to
this	issue.	As	an	audio	designer,	you'd	better	be	ready	to	face	such	problems.

To	learn	more

Further	details	on	the	development	of	audio	and	sounds	for	iOS	mobile	games
can	be	found	in	this	very	good	article	on	Gamasutra:

http://www.gamasutra.com/view/feature/134597/ios_audio_design_what_everyone_.php

http://www.gamasutra.com/view/feature/134597/ios_audio_design_what_everyone_.php

Final	advice

We	mentioned	several	times	that	adding	audio	to	a	game	only	in	the	final	steps
of	the	development	process	is	a	bias	of	mobile	game	development	and	we
stressed	the	importance	of	considering	audio	and	sounds	for	as	part	of	the
general	design	of	a	game.	We	would	like	to	say	more	on	this	topic.

Since	game	developers	and	sound	experts	don't	share	very	much	common
knowledge	and	hardly	possess	a	common	terminology,	if	the	game	designer	and
audio	expert	don't	discuss	their	opinions	on	what	kind	of	audio	and	sounds	are
required	for	a	game,	a	lot	of	confusion	may	arise,	with	the	consequence	that	time
and	money	can	be	wasted.

Communication	is	crucial	in	this	matter.	Always	take	your	time	to	instruct	your
audio	designer	on	what	exactly	is	expected	from	him/her	and	make	every	effort
to	be	sure	that	you	two	share	a	common	vision	on	the	audio	and	sounds	desired
for	your	title.	Provide	your	sound	designer	with	a	full	list	of	the	audio	and
sounds	for	your	game	early	on	during	the	development	process	and	also	send
him	examples	and	references	of	what	you	have	in	mind.	This	will	reduce	the
number	of	iterations	the	sound	expert	has	to	go	through	before	creating	the
perfect	sound	asset	and	will	help	him	to	fulfill	his	tasks	while	meeting	the
deadlines,	thus	saving	time	and	money.

With	some	practice,	you	will	see	that	developing	a	communication	channel	with
your	sound	designer	will	provide	your	game	with	better	audio	and	sounds	and
improve	the	overall	quality	of	your	project.

A	very	interesting	article	on	this	topic	can	be	found	at:
http://www.gamasutra.com/view/feature/175427/getting_the_most_from_your_sound_.php

http://www.gamasutra.com/view/feature/175427/getting_the_most_from_your_sound_.php

Summary
In	this	chapter	we	discussed	the	history	of	videogame	music.	We	reviewed	how
sound	is	recorded	and	played	back.	We	listed	the	sound	types	for	games	and	the
most	popular	digital	audio	editing	software.

Finally,	we	described	the	main	issues	and	best	practices	when	dealing	with	the
creation	of	audio	and	sounds	for	mobile.

During	the	course	of	the	following	chapter,	we	will	delve	into	the	details	of
mobile	game	programming.

We	will	describe	the	most	popular	coding	and	scripting	languages	and	their
characteristics,	the	development	environments	that	are	most	commonly	used,
and	the	best	practices	of	mobile	games	programming.

Chapter	5.	Coding	Games
In	this	chapter,	we	deal	with	programming	languages	to	create	mobile	games.	It
is	a	very	rich	topic	that	cannot	be	entirely	discussed	in	a	single	chapter	dedicated
to	mobile	game	development,	though	we	will	give	you	all	the	information
needed	to	approach	the	matter,	and	provide	useful	hints	to	find	the	programming
language	that	best	fits	your	needs	to	develop	mobile	games.

We	begin	with	a	general	discussion	on	the	characteristics	of	programming
languages	and	then	we	describe	the	most	useful	languages	to	create	games	for
the	mobile	market.	We	end	the	chapter	with	the	description	of	the	program
structure	of	a	game.

In	this	chapter,	we	will	cover	the	following	topics:

Main	features	of	programming	languages
C++
Java
Scripting	languages
Game	programming	for	mobile
Objective-C
HTML5
The	game	structure

Main	features	of	programming
languages
A	programming	language	is	an	artificial	language	used	to	create	programs	that
express	precise	algorithms	to	make	a	computer	perform	computations.

Programming	languages	allow	the	manipulation	of	data	structures	and	the	flow
of	execution	of	a	program.

There	are	several	different	kinds	of	programming	languages,	which	differ	in
many	aspects,	the	most	important	of	them	being	the	computations	they	are
capable	of,	also	known	as	the	expressive	power	of	a	programming	language.

Each	programming	language	provides	a	basic	set	of	elements,	which	describes
data	and	the	processes	and	transformations	which	can	be	applied	to	them,	also
called	primitives	of	that	language.

A	very	important	element	of	programming	languages	is	their	syntax.	Most
programming	languages	are	textual	and	their	syntax	includes	words,	numbers,
and	punctuations.	However,	there	are	other	programming	languages	that	make
use	of	a	graphical	approach,	where	programs	are	created	by	a	visual
representation	of	symbols,	for	example,	a	flowchart.

The	syntax	of	a	program	defines	the	possible	combinations	of	symbols	that
constitute	a	syntactically	correct	program.

Another	way	to	differentiate	between	programming	languages	is	whether	they
require	static	typing	or	allow	dynamic	typing.

Static	typing	means	that	all	expression	types	of	that	language	are	predetermined
before	the	program	is	executed.	If	an	expression	expects	a	string	data	type	and
you	pass	them	integers,	the	output	is	an	error	message.

In	the	category	of	static	typing,	we	can	also	distinguish	between	programming
languages	that	require	types	to	be	specified	at	the	beginning	of	a	program
(variable	declarations)	and	languages	which	can	infer	the	type	of	data	passed	to	a
function	by	the	context	in	which	the	operations	occurs.

A	mainstream	language	such	as	C++	is	an	example	of	statically-typed	languages,

A	mainstream	language	such	as	C++	is	an	example	of	statically-typed	languages,
while	C#	(C	sharp)	and	Java	make	use	of	variable	declarations,	but	can	also	infer
data	types	in	limited	cases.

On	the	other	hand,	dynamically-typed	languages	do	not	require	types	to	be
explicitly	defined	at	some	point	of	a	program	and	allow	a	variable	to	refer	to
different	types	of	data	at	different	points	of	the	program's	execution.	This	could
be	both	an	advantage	and	a	problem;	it	allows	a	more	flexible	approach	to
programming,	but	it	also	makes	debugging	difficult.	Lisp,	Perl,	Python,	and
JavaScript	are	examples	of	dynamically-typed	languages.

Orthogonal	to	the	dichotomy	between	static	and	dynamic	typing,	there	is	the	one
between	strong	and	weak	typing.

Strong-typing	languages	don't	allow	operations	to	be	carried	out	on	wrong	types
of	data,	such	as	multiplying	a	string	by	a	number.	Weak-typing	languages	allow
these	kinds	of	operations	with	the	same	risks	we	mentioned	previously;	it	is	a
more	flexible	way	to	create	computer	programs,	but	it	is	also	more	prone	to
generate	errors	that	are	hard	to	detect	as	well.

Libraries

The	core	operations	that	are	available	for	a	programming	language	are	contained
in	libraries.	Libraries	include	definitions	for	algorithms,	data	structures,	and
input	and	output	operations.	Programming	languages	such	as	C++	or	Java	cannot
work	at	all	if	such	core	libraries	are	not	included	as	a	part	of	any	program	written
with	them.

Abstraction

The	capability	of	a	programming	language	to	perform	operations	strongly
depends	on	its	abstraction	level.	Early	programming	languages	were	tightly
related	to	the	hardware	they	ran	on,	thus	limiting	the	utilization	of	programs
written	for	different	hardware.	However,	more	recent	programming	languages
are	designed	so	that	programmers	can	write	programs	that	are	less	tied	to	the
complexity	of	the	computer	for	which	the	program	is	written,	thus	requiring	less
effort	from	programmers	to	write	computer	programs	that	can	run	on	different
hardware	configurations.	The	process	of	converting	a	program	to	run	on	a
different	hardware	platform	is	called	porting.

Implementation

The	abstraction	level	of	a	programming	language	is	directly	related	to	its
implementation.	Implementation	provides	a	way	to	execute	a	program	on
different	hardware	and	software	configurations.	Programming	languages	can	be
implemented	in	two	ways:	by	compilation	or	by	interpretation.

Compiled	programs	are	directly	executed	by	the	hardware	of	the	computer	they
run	on,	while	interpreted	languages	are	executed	by	an	interpreter,	software	that
takes	care	of	converting	the	instructions	of	the	program	into	machine	code,	the
lowest-level	programming	language.	As	such,	interpreters	can	be	considered	as
an	interface	between	a	programming	language	and	the	hardware	of	a	computer.

Generally	speaking,	compiled	languages	allow	for	operations	to	be	carried	out
faster	when	compared	to	interpreted	languages,	as	they	take	direct	control	of	the
operations	carried	on	by	the	computer	hardware.

For	example,	the	technique	of	Just-in-Time	compilation	speeds	up	the	execution
of	a	Java	interpreted	program,	by	using	a	so-called	virtual	machine	that
translates	specific	chunks	of	code	called	bytecode	into	machine	code	just	before
the	execution	of	the	program.

Usage

There	are	thousands	of	different	programming	languages	available	and	not	all	of
them	are	able	to	carry	out	the	same	kind	of	operations	or	treat	the	similar	kinds
of	data.

When	we	use	spoken	languages,	we	can	commit	small	errors,	and	still	expect	to
be	understood	by	our	listener.	Programming	languages,	on	the	other	hand,	don't
allow	such	flexibility	because	we	cannot	expect	the	computer	to	understand	what
we	intended	to	write.	A	computer	program	can	only	work	if	the	programmer	is
absolutely	precise	when	writing	the	code.	This	is	why	programming	languages
provide	very	structured	mechanisms	to	define	the	data	they	can	deal	with	and	the
operations	that	can	be	carried	out	on	that	data.	This	is	also	the	reason	why
debugging	a	piece	of	code	can	be	a	hard	task	if	the	program	is	not	written
according	to	the	syntax,	the	abstraction	rules,	and	the	best	practices	specific	to
that	programming	language!	Programmers	have	a	phrase	for	this:	Garbage	in,
garbage	out	(GIGO).

There	are	several	books	and	online	resources	that	you	can	refer	to	delve	further
in	the	details	of	programming	languages.	A	good	starting	point	is	the	Wikipedia
page	at	http://en.wikipedia.org/wiki/Programming_language.

http://en.wikipedia.org/wiki/Programming_language

Game	programming
When	developing	video	games,	the	decision	on	which	programming	language	to
use	cannot	only	be	dictated	by	the	proficiency	of	your	game	programmer.	As	a
developer,	you	must	also	take	into	consideration	the	libraries	and	APIs	which
best	support	the	design	characteristics	of	your	game.	For	example,	there	are
libraries	entirely	focused	on	managing	game	AI	tasks,	such	as	path	finding.	If
you	plan	to	develop	a	game	whose	gameplay	strongly	relies	on	AI,	you'd	better
consider	which	programming	language	offers	libraries	that	perform	such	tasks,
before	starting	development.	This	is	the	reason	why	it	is	so	important	for	a	game
programmer	to	be	at	ease	with	more	than	just	one	programming	or	scripting
language.

When	graphics	come	into	play,	there	are	several	APIs	available	designed	to
manage	2D	and	3D	graphics	for	games.	OpenGL	and	Direct3D	are	the	most
popular	3D	graphic	APIs,	which	offer	native	support	for	Microsoft	Windows
OS.	If	you	want	to	know	more	about	OpenGL	and	Direct3D,	we	suggest	the
following	links:

http://www.opengl.org/

http://social.msdn.microsoft.com/search/en-US/windows/desktop?
query=direct3d&Refinement=181

With	regard	to	mobile	game	development,	the	decision	about	the	programming
language	to	use	also	depends	on	the	target	platform	of	your	game.

We	already	mentioned	that	Java	should	be	your	choice	when	developing	games
for	the	Android	platform,	while	Objective-C	is	the	programming	language	for
iOS	game	development.	There	are	other	options	as	well,	naturally.	C++	can	be
used	to	program	games	for	the	iOS,	using	the	game	engine	of	your	choice	(game
engines	will	be	discussed	in	Chapter	8,	Mobile	Game	Engines)	and	for	the
Android	with	the	Android	Native	Development	Kit,	available	at
http://developer.android.com/tools/sdk/ndk/index.html.

If	you	plan	to	use	a	game	engine,	and	we	recommend	you	to	do	so,	get	proficient
with	JavaScript	if	you	intend	to	use	Unity3D,	learn	UnrealScript	if	you	are
oriented	towards	the	Unreal	Engine,	or	LUA	if	you	want	to	develop	games	with
Corona	SDK	(among	others).

http://www.opengl.org/
http://social.msdn.microsoft.com/search/en-US/windows/desktop?query=direct3d&Refinement=181
http://developer.android.com/tools/sdk/ndk/index.html

For	multiplatform	browser	games,	HTML5,	featuring	dedicated	engines	such	as
ImpactJS	(http://impactjs.com/)	and	Canvace	(http://canvace.com/)	is	a	good
choice	too.	Though	this	standard	is	not	yet	fully	featured	as	we	write	this	book,
when	compared	to	the	game	engines	we	mentioned	(for	example,	HTML5
doesn't	fully	support	audio	and	sounds),	still	it	is	considered	a	standard	for
upcoming	browser-based	games	and	the	most	promising	alternative	to	the
already	popular	Flash	ActionScript.

http://impactjs.com/
http://canvace.com/

C++
C++	is	a	statically-typed,	compiled,	intermediate-level	language	and	is	actually
the	most	used	programming	language	for	game	programming.	It	can	be
considered,	easily	put,	a	version	of	the	popular	C	language	with	object-oriented
features,	which	include	the	ability	to	create	classes.

C++	is	implemented	on	several	hardware	configurations	and	operating	systems,
and	being	a	very	efficient	way	to	compile	native	code,	it	is	used	to	develop
system	software,	applications,	device	drivers,	data	servers,	and	naturally,	video
games.

Renowned	companies	such	as	Microsoft	and	Intel	offer	C++	software	compilers
(for	example,	the	popular	Microsoft's	Visual	Studio)	to	create	and	manage
programs	written	with	C++.	You	can	check	the	latest	version	(at	the	time	of
writing)	Visual	Studio	2012	Express	at
http://www.microsoft.com/visualstudio/eng/products/visualstudio-express-
products.

Being	such	a	versatile	programming	language,	C++	has	influenced	several	other
languages	that	are	used	for	game	programming,	such	as	Java	and	C#.	If	you	are
about	to	decide	which	programming	language	to	learn	to	begin	with,	C++	should
be	your	first	choice!

http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products

Memory	management

When	programming	mobile	games,	memory	management	is	a	crucial	aspect	to
enhance	the	performance	of	your	code,	while	keeping	the	hardware	requirements
for	your	applications	as	low	as	possible.

C++	offers	four	types	of	memory	management	techniques:

Static	memory	allocation:	This	means	that	values	are	assigned	to	variables
once	and	for	all	inside	a	program,	so	that	these	values	do	not	change	during
the	execution	of	the	program.	To	achieve	that,	the	static	keyword	is	put
inside	the	variable	name	in	the	variable	declaration	section	of	the	code.
Automatic	memory	allocation:	This	implies	that	the	amount	of	memory
allocated	to	store	a	variable	value	is	automatically	freed	once	that	variable
goes	out	of	use	in	the	program.	This	operation	is	performed	by	a	special
method	available	in	C++	called	destructor.
Dynamic	memory	allocation:	This	happens	when	the	memory	allocation
for	a	variable	value	is	manually	assigned	using	the	new	and	delete
keywords.
Garbage	collection:	This	is	a	very	useful	operation	that	we	already
mentioned	when	discussing	the	basics	of	iOS	game	development	in	Chapter
1,	Operation	Systems	–	Mobile	and	Otherwise.	It	is	a	way	to	automatically
manage	memory	allocation	that	relieves	the	programmer	from	doing	it
manually	and	is	performed	by	dedicated	software	such	as	the	very	popular
Boehm-Demers-Weiser	garbage	collector
(http://en.wikipedia.org/wiki/Boehm_garbage_collector).

Memory	management	is	one	of	the	most	important	aspects	of	the	C++
programming	language.	It	is	both	a	welcome	feature,	as	it	gives	full	control	to
programmers	over	the	execution	of	a	piece	of	code,	and	a	blamed	characteristic,
for	it	requires	extra	work	of	programmers	when	compared	to	other	languages
such	as	Java	or	Perl,	which	don't	require	any	memory	management	at	all.	It	is	a
classical	situation	of	balancing	the	pros	and	cons	of	control	over	efficiency!

http://en.wikipedia.org/wiki/Boehm_garbage_collector

Objects

C++	is	an	object-oriented	programming	language	that	uses	classes.	Classes	are
definitions	of	types	of	data	structures	and	the	functions	that	operate	on	those
data.	Thanks	to	the	use	of	classes,	C++	allows	abstraction,	encapsulation,
inheritance,	and	polymorphism.

We	already	mentioned	that	abstraction	allows	a	piece	of	code	to	work
independently	of	the	hardware	it	runs	on.

Encapsulation	means	that	all	data	are	contained	and	hidden	in	a	class,	and	are
only	accessible	to	members	of	that	class,	so	that	classes	work	as	some	kind	of
black	boxes.	The	advantage	of	this	technique	is	that	it	prevents	human	errors,
since	the	class	can't	be	accidentally	modified	or	corrupted	while	writing	a	piece
of	code.

Inheritance	means	that	when	a	new	class	is	declared,	which	extends	a	pre-
existing	class,	it	automatically	gets	all	the	attributes	and	behaviors	that	were
available	to	the	class	it	extends.	Inheritance	saves	development	time	and	efforts.
For	example,	when	programming	game	objects	for	your	application,	the
programmer	can	create	a	general	class	which	defines	the	basic	properties
common	to	each	game	object,	and	then	extend	other	classes	from	that	which	will
share	the	same	so-called	members.

Polymorphism,	as	some	say,	can	be	considered	as	the	feature	of	object-oriented
programming	that	fully	expresses	the	potential	of	such	programming	languages.
It	means	that	the	same	code	or	operations	behave	differently	in	different
contexts.

A	full	explanation	of	this	feature	goes	beyond	the	scope	of	this	section	about
C++.	We	suggest	visiting
http://www.cs.bu.edu/teaching/cpp/polymorphism/intro/,	which	provides
examples	to	clear	the	concept	of	polymorphism.

http://www.cs.bu.edu/teaching/cpp/polymorphism/intro/

Complaints	about	C++

Being	a	multi-paradigm	and	all-purpose	programming	language,	C++	is	blamed
for	being	too	generic	and	for	not	enforcing	a	well-defined	programming	style.
There	is	a	very	funny	satirical	article	where	Bjarne	Stroustrup,	developer	of	the
C++	language,	is	portrayed	as	confessing	to	the	complexities	of	this
programming	language.	You	can	check	it	out	at	http://harmful.cat-
v.org/software/c++/I_did_it_for_you_all.

http://harmful.cat-v.org/software/c++/I_did_it_for_you_all

Java
Java	is	an	object-oriented,	multi-purpose	programming	language	based	on
classes.	It's	main	feature	is	portability	and	its	motto	is	"write	once,	run
anywhere!".	Java	is	designed	to	be	as	platform-independent	as	possible,	so	that
Java	programs	will	run	regardless	of	the	platform.	This	is	achieved	thanks	to	the
Java	Virtual	Machine	(JVM),	a	program	which	compiles	programs	written	in
Java	into	bytecode.	Bytecode	is	analogous	to	low-level	machine	code,	so	that
programs	can	run	with	different	operating	systems	or	hardware	configurations.

Java	derives	most	of	its	syntax	from	C	and	C++,	though	it	is	considered	to	be	far
easier	on	its	users!

Unfortunately,	portability	has	its	price;	as	with	any	interpreted	program,	Java
code	tends	to	be	slower	and	requires	more	memory	than	software	written	with
compiled	languages	such	as	C++.	Anyway,	since	Just-In-Time	compilation	was
added	in	1998,	the	execution	speed	of	programs	written	with	Java	has	improved.

The	Java	SE	platform,	which	is	derived	from	the	original	implementation	by
former	developer	and	owner,	Sun	Microsystems,	is	the	current	implementation
of	the	Java	platform	and	it	is	available	for	Mac	OS	X,	Windows,	and	Solaris.
The	Oracle	implementation	is	distributed	into	two	versions:	Java	Runtime
Environment	(JRE),	which	is	required	to	run	Java	programs	and	Java
Development	Kit	(JDK),	intended	to	develop	software	and	contains	the	usual
development	tools	(compiler,	debugger,	and	so	on).

Several	platforms	offer	direct	hardware	support	to	Java	code;	not	only
computers,	Microcontrollers,	TVs,	but	even	video-recorders	are	controlled
through	Java	code!

More	important	for	the	scope	of	this	book,	ARM-based	processors	can
implement	hardware	support	for	Java	bytecode,	and	95	percent	of	today's
smartphones	host	an	ARM	processor.

Memory	management

Besides	portability,	the	other	main	feature	of	Java	is	its	automatic	garbage
collector.	Java	doesn't	allow	explicit	memory	management.	Once	the
programmer	creates	an	object,	the	garbage	collector	takes	care	of	freeing	the
memory	allocated	to	it,	if	no	references	to	that	object	remain	as	the	code	is
executed.	This	cannot	entirely	prevent	memory	leaks,	though.	It	is	still	possible
that	a	reference	to	an	object	that	is	no	longer	needed	remains,	as	it	is	part	of
another	structure,	such	as	an	array,	which	is	still	active.

Nonetheless,	the	automatic	garbage	collector	of	Java	spares	a	lot	of	effort	to
programmers,	as	they	aren't	forced	to	explicitly	manage	memory.	Manual
memory	management	in	other	languages	can	be	a	source	for	errors	that	can
cause	instability	or	make	a	program	crash,	it	is	very	hard	to	identify	the	causes
unless	complex	methodologies	are	adopted.

Syntax

The	Java	syntax	is	basically	derived	from	C++,	and	similar	to	C++,	Java	is	an
object-oriented	language.	Java	differs	from	C++	in	the	fact	that	it	is	less
structured	than	C++.	In	Java,	every	piece	of	code	is	written	inside	a	class	and
everything,	except	the	usual	language	primitives	(strings,	integers,	Boolean
variables,	and	so	on),	is	treated	as	an	object.	Java	also	lacks	some	low-level
features	of	C++	we	discussed,	such	as	inheritance.

Java	for	mobile	–	Java	ME

Java	Micro	Edition	(Java	ME	or	J2ME)	is	a	subset	of	Java	SE,	designed	for
use	on	mobile	devices	such	as	cell	phones.	Java	ME	is	embedded	in	millions	of
dumb	(non-smart)	devices	around	the	world.	For	most	smartphones,	it	is	possible
to	download	and	run	Java-ME-based	games	that	have	been	approved	by	their
carrier.

As	we	already	mentioned	in	Chapter	1,	Operating	Systems	–	Mobile	or
Otherwise,	Android-based	smartphones	run	Java	ME	and	the	Android	SDK,
used	to	develop	mobile	games	for	the	Android	platform,	uses	Java	ME	as	well.

Gaikai	is	a	very	useful	Java	application	for	those	of	you	that	are	interested	in
playing	video	games	demos.	It	is	a	cloud-based	application,	which	allows
playing	PC	and	console	games	on	any	computer	or	mobile	device	(provided	it
has	access	to	an	Internet	connection).

Note

Since	Gaikai	was	acquired	by	Sony,	their	cloud	gaming	system	has	been	offline.
At	the	time	of	writing,	their	website	says	this	will	change	in	the	near	future.

There	are	many	Java-based	game	emulators	online,	including	ones	for	classic
console,	arcade,	and	mobile	games.	Mobile9	(www.mobile9.com)	has	all	three
platforms	and	more.

http://www.mobile9.com

Objective-C

Objective-C	is	the	main	programming	language	used	by	Apple	for	the	OS	X	and
iOS	operating	systems	and	their	respective	APIs:	Cocoa	and	Cocoa	Touch.
Based	on	the	C	programming	language,	it	adds	object-oriented	programming	via
a	thin	layer	of	interface	similar	to	Smalltalk.

It	was	developed	in	the	early	1980s	by	NeXT	for	its	NeXTSTEP	operating
system.	It	was	selected	by	Apple	as	the	main	language	from	which	OS	X	and
iOS	are	derived.	Generic	Objective-C	programs	that	do	not	use	the	Cocoa	or
Cocoa	Touch	libraries	can	also	be	compiled	for	any	system	that	can	run	basic	C
and	vice-versa.

Cocoa

Cocoa	is	Apple's	native	object-oriented	API	for	the	Mac	OS	X	operating	system.
Most	OS	X	and	all	iOS	applications	are	built	using	Cocoa.	Combining	Xcode
and	Cocoa	provides	an	excellent	set	of	development	tools	for	both	operating
systems.

Cocoa	Touch

Cocoa	Touch	is	a	UI	framework	for	building	software	programs	to	run	on	the
iPhone,	iPod,	and	iPad	from	Apple	Inc.	It's	mostly	written	in	Objective-C	and
adds	features	to	OS	X	that	are	targeted	specifically	at	iOS	devices.	Cocoa	Touch
provides	a	Model-View-Controller	software	architecture,	just	like	Cocoa.	Tools
for	developing	applications	based	on	Cocoa	Touch	are	included	in	the	iOS	SDK.

Xcode

Developed	by	Apple,	Xcode	is	an	SDK	for	developing	software	for	OS	X	and
iOS.	Initially	released	in	2003,	you	can	download	the	latest	stable	release
(version	4.5.2)	for	free	from	the	Mac	App	Store.	If	you	are	a	registered
developer,	you	can	download	preview	releases	and	previous	versions	of	the	suite
through	the	Apple	Developer	website.

The	suite	includes	the	Xcode	IDE	and	the	Interface	Builder.	It	also	has	most	of
the	Apple's	developer	documentation;	the	Interface	Builder	is	used	to	construct
graphical	user	interfaces.

Working	with	objects

When	building	apps	for	OS	X	or	iOS,	you'll	spend	most	of	your	time	working
with	objects.	In	this	case,	objects	are	instances	of	Objective-C	classes,	some	of
which	are	provided	for	you	by	Cocoa	or	Cocoa	Touch	and	some	of	which	you'll
write	yourself.

To	create	your	own	class,	you	need	to	start	with	a	description	that	includes	its
public	properties	and	a	list	of	methods.	Methods	must	include	what	kind	of
messages	it	can	receive,	what	happens	when	the	method	is	called,	and	the
necessary	code	to	implement	the	method.

Extending	classes	with	categories

Instead	of	creating	an	entirely	new	class	to	provide	minor	additional	capabilities
over	an	existing	class,	you	can	define	a	category	to	add	functionality	to	an
existing	class.	You	can	use	a	category	to	add	methods	to	any	class,	including
classes	for	which	you	don't	have	the	original	implementation	source	code.

With	a	class'	source	code,	you	can	add	new	properties	or	change	its	current
properties	with	class	extensions.	Class	extensions	are	particularly	useful	when
customizing	a	framework.

Protocols	define	messaging	contracts

Generally,	the	work	in	an	Objective-C	app	happens	when	objects	send	messages
to	each	other.	Usually,	the	construct	of	messages	is	determined	by	the	methods
defined	in	a	class.	At	times	you	will	find	it	helpful	to	define	a	set	of	related

methods	that	are	independent	of	a	specific	class.

Objective-C	provides	protocols	that	are	used	to	define	a	group	of	related
methods;	either	optional	or	required.	Any	class	can	use	a	protocol,	which	means
that	it	requires	implementations	for	all	of	the	methods	in	the	protocol.

Values	and	collections

In	addition	to	primitive	types	defined	by	the	C	language,	such	as	int,	float	or
char,	Objective-C	can	also	use	Cocoa	or	Cocoa	Touch	classes	to	represent
values.	These	classes	include:

Strings	of	characters	are	defined	with	NSString
Different	types	of	numbers	use	the	NSNumber	class
The	NSValue	class	for	other	values	such	as	C	structures.

Collections	are	generally	represented	as	instances	of	one	of	the	collection
classes,	such	as	NSArray	,	NSSet	or	NSDictionary	,	which	are	used	to	collect
other	Objective-C	objects.

Blocks

In	C,	Objective-C,	and	C++,	blocks	are	a	feature	that	represent	a	unit	of	work;
which	makes	them	similar	to	closures	in	other	programming	languages.	They
include	a	block	of	code	along	with	a	captured	state,	blocks	can	be	used	to
simplify	common	tasks	such	as:

Collection	enumeration
Sorting
Testing
Concurrent	or	asynchronous	schedule	tasks

Error	Objects:	Cocoa	and	Cocoa	Touch	handles	programming	errors,	which	need
to	be	fixed	before	an	app	is	submitted	to	the	App	Store.

All	other	errors	are	represented	by	instances	of	the	NSError	class.	Be	sure	to
plan	for	errors	and	decide	how	best	to	handle	them	in	such	a	way	that	does	not
negatively	impact	the	user	experience.

Please	note	that	Objective-C	includes	internal	exception	handling.

Objective-C	conventions

Objective-C	code	has	a	number	of	established	coding	conventions.	For	example,
method	names	start	with	a	lowercase	letter	and	use	camel	case	for	multiple
words	such	as	doThis	or	doThisInstead.	Make	sure	that	method	names	are
easily	understood	but	not	too	long.

Also,	there	are	a	few	conventions	that	are	required	if	you	want	to	use	the
language	or	framework	features.	For	example,	property	accessor	methods	must
follow	strict	naming	conventions	in	order	to	work	with	technologies	such	as
Key-Value	Coding	(KVC)	or	Key-Value	Observing	(KVO).

Apple	Developer	documentation	can	be	found	at
http://developer.apple.com/library/ios/#recipes/xcode_help-
documentation_organizer/BrowsingDocumentation/BrowsingDocumentation.html

Getting	started

To	get	started	with	programming	Objective-C,	you	will	need	a	Mac	running	OS
X	Version	10.7	or	later.	If	you	have	an	earlier	version	of	Mac	OS	X,	you	need	to
upgrade.

We	need	to	follow	the	ensuing	steps	for	getting	started:

1.	 Download	the	latest	version	of	Xcode.
2.	 Open	the	Mac	App	Store	app	on	your	Mac,	search	for	Xcode,	and	click	on

Free	to	download	Xcode.
3.	 Enroll	in	the	Mac	Developer	Program.

After	you	enroll	in	the	program,	you	have	access	to	the	tools	and	resources	you
need	to	distribute	your	app.	You	will	learn	more	about	these	tools	later	in	the
road	map.

For	more	information	on	getting	started,	go	to
https://developer.apple.com/library/ios/navigation/#section=Resource%20Types&topic=Getting%20Started

http://developer.apple.com/library/ios/#recipes/xcode_help-documentation_organizer/BrowsingDocumentation/BrowsingDocumentation.html
https://developer.apple.com/library/ios/navigation/#section=Resource%20Types&topic=Getting%20Started

HTML5

HTML5	is	a	markup	language,	which	extends	the	capabilities	of	former	markup
languages	and	introduces	new	APIs	to	create	complex	web	apps,	so	that	it	can	be
used	to	create	cross-platform	applications	and	games.	Among	its	features,
HTML5	is	designed	to	run	on	low	performance	devices	such	as	smartphones	and
tablets,	this	is	the	reason	we	decide	to	mention	it	in	this	chapter	about
programming	languages	for	mobile	games.	Have	you	ever	heard	of	a	game
called	Cut	the	rope?	Well,	it	has	been	developed	with	HTML5!

Well	known	by	web	developers	for	years,	the	decisive	push	towards	popularity
of	HTML5	was	given	in	2010	by	Steve	Jobs,	who	stated	that	since	Flash	was	not
open	platform,	as	it	is	controlled	by	Adobe,	it	could	no	longer	be	the	standard	for
multimedia	applications.

At	Cupertino	they	believed	that	HTML5,	with	its	open	platform,	could	become
the	new	standard	for	web	applications	and	overcome	Flash.	As	a	consequence,
iOS	devices	don't	support	Flash	and	this	is	the	reason	why	many	developers
turned	to	HTML5	to	develop	games	for	the	iPhone	and	the	iPad.

Canvas

The	main	feature	that	allows	HTML5	to	be	used	to	develop	games	is	its	APIs,
which	can	be	controlled	with	JavaScript	to	create	interactive,	multimedia
applications.

Among	the	APIs,	the	most	important	for	game	development	is	an	element	called
Canvas,	defined	by	the	<canvas>	tags.

The	canvas	block	can	be	added	to	a	web	page	and	then	manipulated	through
JavaScript	to	paste	images,	set	compositing	modes,	manage	alpha,
transformations	and	scaling,	and	to	draw	basic	shapes.

The	drawback	of	the	canvas	element	is	that,	though	it	is	well	supported	by	both
desktop	and	mobile	browsers,	the	rendering	speed	varies	very	much,	depending
on	each	specific	platform.

HTML5	and	Flash

While	HTML5	is	often	compared	to	Flash	and	is	considered	as	its	main
competitor,	the	two	technologies	differ	in	many	aspects.

competitor,	the	two	technologies	differ	in	many	aspects.

They	both	allow	to	play	audio	and	graphics	inside	web	pages	and	to	manage
vector	graphics.	On	the	other	hand,	Flash	is	a	complete	tool	of	its	own,	thanks	to
its	scripting	language	called	ActionScript,	while	interactions	between	elements
of	web	apps	created	with	HTML5	can	only	be	implemented	through	JavaScript.
In	the	end,	many	features	of	Flash	have	no	counterpart	in	HTML5	yet!

We	mentioned	that	Apple	gave	a	decisive	push	towards	the	spreading	of	HTML5
instead	of	Flash.	The	reason	is	that	Flash-based	apps	cannot	be	directly	rendered
by	web	browsers.	A	freely	available	component	called	Adobe	Flash	Player	is
required.	But,	Adobe	Flash	Player	is	supported	by	any	platform,	excluding	the
iOS	(and	Android	Version	4.1	and	higher)!	The	result	is	that	no	Flash-based
application	can	run	on	iPhones,	iPad,	iPod	Touch,	or	even	Apple	TV.

On	the	other	hand,	the	HTML5	standard	is	supported	by	all	major	web	browsers,
both	desktop	and	mobile.	This	is	why	some	game	developers	turned	to	HTML5
to	develop	iOS	games	and	why	HTML5	is	considered	the	optimal	choice	for	true
multiplatform	game	development.

Issues	with	HTML5

The	debate	on	whether	HTML5	is	the	ultimate	tool	to	create	cross-platform	web
application,	and	thus	games	that	can	equally	run	on	different	mobile	phones,	is
still	developing.

There	are	in	fact	two	main	issues	when	using	HTML5.	One	is	that	different
browsers	implement	HTML5	in	different	ways,	so	the	performance	of	a	HTML5
game	can	dramatically	differ,	depending	on	the	specific	browser	it	runs	on.

The	other	is	that	the	implementation	of	HTML5	games	rely	on	the	use	of	a
complex	chain	of	tools:	WebGL	to	have	3D	graphics	rendered	by	the	GPU	in	the
browser	window,	SVG	for	vector	graphics,	NaCl	to	compile	C/C++	native
modules,	WebSockets	to	support	multiplayer,	WebAudio,	Canvas,	DOM,	and
obviously,	JavaScript;	it	is	a	quite	long	list!

HTML5	games

We	guess	you	are	asking	yourselves	which	kind	of	games	can	be	developed	with
HTML5?

Desktop:	There	are	obviously	desktop	browser	games,	which	also	include
Facebook	games.	As	we	said,	HTML5	is	supported	by	all	major	web	browsers,
though	all	web	users	are	very	likely	to	already	have	the	latest	Flash	Player
installed	on	their	PCs.

Mobile	web	browser:	More	importantly	for	the	goal	of	this	book,	HTML5	is
supported	by	mobile	web	browsers.	Generally	speaking,	when	referring	to
mobile	gaming,	one's	likely	to	have	apps	in	mind,	stand	alone	programs	that	can
be	downloaded	and	then	run	on	a	mobile	device.	Developing	games	that	run	in
mobile	web	browsers,	on	the	other	hand,	is	a	viable	alternative,	as	it	is	a	growing
market	which	already	offers	dedicated	portals	to	buy	high	profile	games.	There
are	obviously	issues	related	to	performance	when	your	game	runs	on	different
iPhone	models	and	even	more	due	to	Android	devices	variability.	But	this	is	an
issue	of	mobile	development	in	general,	regardless	of	the	specific	technology
you	intend	to	use.	You	shouldn't	forget	that	HTML5	is	a	rather	new	technology
and	still	under	development;	the	issues	you	face	today	could	be	resolved
tomorrow!

Mobile	apps:	Mobile	games	in	the	form	of	downloadable	apps	can	also	be
developed	with	HTML5,	though	in	this	case,	you	will	need	a	third-party
development	framework	such	as	PhoneGap.	Using	PhoneGap,	HTML5	and	a
little	bit	of	JavaScript,	it	is	possible	to	create	games	that	natively	target	all
mobile	platforms	with	a	single	codebase.	Since	2012,	in	fact,	the	PhoneGap
Build	service	allows	source	code	to	be	cloud-compiled	and	generate	apps	that
can	run	on	any	desired	mobile	platform:	iOS,	Android,	Windows	Phone,
Blackberry,	and	so	on.

Even	tablets	such	as	the	Blackberry	PlayBook	offer	support	for	HTML5	games.

If	you	want	to	know	more	about	PhoneGap	we	suggest	to	check
http://phonegap.com/.

http://phonegap.com/

Conclusions

In	conclusion,	HTML5	is	both	a	viable	option	to	develop	mobile	games	and	a
source	of	problems	and	performance	issues.

On	one	hand,	it	allows	true	cross-platform	games	development.	For	example,
using	a	framework	such	as	PhoneGap,	the	same	JavaScript	code	can	target	any
platform	you	may	decide	to	develop	your	game	for.

On	the	other	hand,	since	HTML5	is	implemented	differently	on	each	platform,
your	game	will	very	likely	perform	differently,	depending	on	the	specific
platform	it	runs	on.	Moreover,	when	compared	to	Flash,	HTML5	games
development	is	no	easy	task,	as	you	need	several	side-tools	to	implement	the
required	features	for	your	game,	JavaScript	being	the	glue	between	all	such
tools.

Finally,	HTML5-based	games	are	generally	slow,	while	at	the	same	time,
HTML5	offers	very	easy	debugging	solutions.

So,	is	HTML5	the	right	choice?	It	depends	on	your	needs	and	what	you	want	to
achieve.	Right	now,	HTML5	still	seems	immature	when	compared	to	other
languages	and	the	tools	you	need	to	create	HTML5	games	are	still	buggy	and	not
perfected.	But	HTML5	is	also	considered	by	many	developers	as	the	future	of
mobile	game	development.

As	Morpheus	says	to	Neo:	"I	told	you	we	can	only	show	you	the	door,	you	have
to	walk	through	it!"

Scripting	languages
Scripting	languages	are	programming	languages	used	to	create	programs	that	run
in	another	software	application.	They	are	usually	interpreted	from	source	code	or
bytecode,	while	the	environment	in	which	they	run	is	programmed	with	a
compiled	programming	language	such	as	C++.	This	is	a	way	to	prevent	scripts
from	causing	fatal	errors,	since	users	cannot	access	the	original	source	code	or
modify	it.

Generally	speaking,	scripting	languages	are	easier	and	faster	to	pick	up,	when
compared	to	true	programming	languages,	thanks	to	the	implementation	of	a
simpler	syntax.

There	are	several	kinds	of	scripting	languages;	some	are	domain	specific,	with
very	specific	design	and	implementation	goals	while	others	address	more	general
purposes.	Scripting	languages	are	usually	meant	to	automate	a	specific	set	of
actions;	many	popular	software	packages	offer	internal	scripting	languages	to
perform	user	actions.	For	example,	3D	Studio	Max,	Maya,	or	Blender	have	an
internal	scripting	language	to	program	so-called	macros	that	automate	operations
available	in	the	software	environment.	Scripting,	in	this	case,	is	a	way	to	save
time	when	the	user	has	to	carry	out	repetitive	operations.

With	regard	to	the	scope	of	this	book,	we	discuss	scripting	languages	as
programming	languages	supported	by	game	engines	such	as	Unity,	UDK,
Corona	SDK,	and	so	on.	They	are	used	to	program	the	game	logic,	the	behavior
of	game	objects,	the	user	interface,	and	any	other	aspect	involved	in	the	creation
of	the	gameplay	inside	a	specific	game	engine.	ActionScript,	JavaScript,
UnrealScript,	and	LUA	are	the	examples	of	scripting	languages	that	are
supported	by	popular	game	engines.

Structure	of	a	game	program
Regardless	of	its	destination	platform	or	complexity,	each	game	has	a	basic
structure	made	of	three	sections:	initialization,	the	game	loop,	and	termination.
Let's	describe	each	one	of	them.

Initialization

The	initialization	is	where	you	set	anything	that	the	game	needs	to	get	going,
mainly	variables.	You	set	the	starting	position	and	parameter	values	of	the	main
character,	the	number	and	starting	position	of	enemies,	collectibles	and	bonus,
the	difficulty	settings,	activate	data	sharing,	and	run	connection	protocols;	the
list	may	be	pretty	long,	you	got	the	idea.

The	game	loop

The	game	loop	is	the	heart	of	the	game,	the	fundamental	routine	that	keeps	going
as	long	as	the	player	keeps	playing.	In	this	part	of	the	game	program,	you	get	the
input	from	the	player,	compute	the	consequences	of	his	actions,	and	draw	the
results	on	screen.	Then	repeat.

The	following	script	represents	the	basic	structure	of	a	game	loop:

int	main()

{

				bool	gameEnded=false;

	

				while(!gameEnded)

				{

								HandleInput();		//Reads	keyboard,	mouse	or	any	other

																								//kind	of	input	used	by	the	player

	

								Update();							//Updates	game	logic	and,	based	on	info

																								//gathered	with	the	previous	step

	

								Draw();									//Draws	graphics	on	screen,

																								//a	process	called	Render.

				}

}

In	this	piece	of	script,	the	loop	given	by	the	HandleInput(),	Update(),	and
Draw()	functions	is	repeated	as	long	as	the	gameEnded	variable	remains	true.

At	some	point	that	variable	turns	its	value	to	false,	likely	due	to	the	main
character	death.	The	loop	then	stops,	the	Game	Over	message	is	displayed,	and
the	game	gets	ready	to	start	a	new	match.

Termination

The	final	section	is	termination.	The	player	decided	to	quit	playing,	so	it	is	time
to	clean	up	the	system	memory	from	any	residual	of	the	game	routines	and
perform	any	shut-down	operation	required.

This	phase	is	especially	important	for	smartphones,	which	are	kind	of	omnitools
that	solve	many	different	tasks.	You	surely	don't	want	a	game	that	keeps	running
on	your	device,	sucking	down	system	resources,	and	slowing	down	its
performances.

Conclusion

This	is	the	basic	plan	all	games	stick	to,	regardless	of	platform	and	programming
language.	The	internet	is	full	of	resources	to	develop	the	game	structure	of	a
game	in	any	language	you	may	want	to	use.

We	thus	close	this	section	with	a	few	pieces	of	advice.	One	is	to	draw	on	screen
only	after	all	other	operations	regarding	the	game	logic	are	performed.
Otherwise,	the	player	could	experience	errors,	for	example,	on	the	position	of
game	objects.

The	other	is	to	learn	to	manage	the	time-related	functions	of	the	programming
language	of	your	choice	because	they	allow	to	keep	the	frame	rate	of	your	game
stable,	both	during	gameplay	sessions	and	across	different	devices.

Summary
In	this	chapter	we	discussed	the	general	characteristics	of	programming
languages	and	examined	the	two	most	popular	ones:	C++	and	Java.

We	described	what	a	scripting	language	is	and	provided	basic	details	of	two
programming	languages	used	for	game	development	today:	Objective-C	and
HTML5.

Finally,	we	provided	an	example	of	the	basic	structure	of	a	game	program	and	its
main	sections.

In	the	next	chapter,	we	will	discuss	today's	smartphones	and	tablets	as	gaming
devices.

We	will	analyze	their	I/O	characteristics	and	their	technical	features	such	as
touch	screen,	gyroscope,	proximity,	and	light	sensors,	and	describe	how	these
features	can	be	exploited	to	design	games	that	perfectly	fit	the	mobile	platform.

Chapter	6.	Mobile	Game	Controls
The	control	system,	together	with	graphics,	is	the	factor	that	most	affects	the
gameplay	experience.	If	game	controls	are	not	intuitive	and	easy	to	learn,	or
don't	respond	promptly	to	players'	actions,	players	won't	enjoy	playing	that	game
and	it	won't	sell	much.

We	thus	dedicate	a	chapter	to	describing	the	available	input	methods	and
technologies	available	on	today's	mobile	devices,	including	keypads,	touch
screens,	and	sensors	that	can	enhance	your	gameplay	experience.	By	knowing
the	strengths	and	weaknesses	of	each	input	method	available	on	today's
smartphones,	you	will	be	able	to	make	the	right	choice	when	designing	the
control	system	for	your	next	mobile	game.

In	this	chapter	we	will	cover	the	following	topics:

Input	technology
Touchscreens
Keypads
Touchscreen	gestures
Built-in	devices
Future	input	technologies

Input	technology
What	is	the	difference	between	passive	(video)	and	active	(games)	digital
entertainment?	The	answer	is	being	able	to	control	the	outcome	of	the
experience.	And	how	does	one	control	the	game's	outcome?	Well,	with	the
controls,	also	known	as	input.	The	two	most	common	forms	of	input	are	via	the
keypad	of	traditional	phones	featuring	physical	buttons,	and	the	touchscreen	and
sensors	that	smartphones	are	equipped	with.	As	smartphones	featuring
touchscreens	and	sensors	represent	the	latest	technology,	which	is	replacing
traditional	cell	phones,	this	chapter	concentrates	on	the	touchscreen	and	the
many	input	options	available	on	today's	smartphones.

Touchscreens
The	touchscreen	is	the	natural	evolution	of	the	icon-based	operating	systems	we
are	used	to.	Instead	of	selecting	data	represented	by	icons	and	then	issuing
commands	to	manipulate	them	with	a	mouse,	with	touch	interfaces	there	is	a
direct	manipulation	of	the	data	through	a	set	of	predefined,	touch-based	actions
performed	with	our	fingers	on	the	screen.

Mobile	devices	can	use	lots	of	different	methods	to	detect	a	person's	input	on	a
touchscreen.	Many	use	sensors	and	circuitry	to	monitor	changes	in	a	specific
state.	Many	monitor	changes	in	electrical	current.	Others	monitor	changes	in	the
reflection	of	sound	waves	or	beams	of	near-infrared	light.	Some	measure
changes	in	vibration	caused	when	your	finger	hits	the	screen's	surface,	or
cameras	to	monitor	changes	in	light	and	shadow.

Contemporary	devices	can	process	more	than	one	touch	at	a	time.	This	makes	it
possible	to	use	multitouch	gestures,	which	we	will	discuss	later	in	the	chapter.
Earlier	touchscreen	devices	may	or	may	not	be	able	to	process	more	than	one
touch.

For	example,	the	Apple	iPhone	has	a	multitouch	user	interface	that	requires
touching	multiple	points	on	the	screen	simultaneously.	One	example	is	called
spread	and	pinch,	where	the	thumb	and	forefinger	touch	the	screen	at	the	same
time;	bringing	the	fingers	together	(pinching)	zooms	out	the	image	while	moving
the	fingers	apart	(spread)	zooms	in.

The	iPhone	is	not	the	only	device	that	allows	multitouch	operations:	Android
and	Windows	Phone-based	devices	do	that	too.	To	allow	multitouch	operations,
screens	have	capacitors	arranged	on	a	grid.	When	a	touch	occurs,	the	device
detects	its	location	and	direction	of	movement.	A	feature	of	this	configuration	is
the	ability	to	process	more	than	one	touch	simultaneously.

Generally,	two	methods	are	used	to	detect	touch;	mutual	capacitance	and	self-
capacitance.	Mutual	capacitance	requires	two	distinct	layers	of	material;	one
carries	electrical	current	and	the	other	has	electrical	sensors.	Self-capacitance
combines	the	current	and	sensors	into	a	single	layer.

The	following	figure	shows	the	basic	construction	of	most	touchscreens.	The
processor	detects	changes	in	state	between	the	two	conductive	layers	and	then
calculates	where	the	cursor	should	be	displayed	on	the	LED	screen.

calculates	where	the	cursor	should	be	displayed	on	the	LED	screen.

	

Keypads
These	are	most	common	in	older	mobile	devices,	although	some	smartphones
have	a	keypad	and	a	touchscreen,	such	as	the	Blackberry.	There	are	three
configurations:	numeric,	alphanumeric,	and	directional.	Following	is	a	figure	of
the	Blackberry	Bold,	a	smartphone	featuring	all	three	configurations	and	that	is
also	equipped	with	a	touchscreen.	(This	screenshot	has	been	taken	from
http://us.blackberry.com/smartphones/blackberrybold.html?
lid=us:bb:devices:blackberrybold&lpos=us:bb:devices#!family=Bold.)	

http://us.blackberry.com/smartphones/blackberry-bold.html?lid=us:bb:devices:blackberrybold&lpos=us:bb:devices#!family=Bold

Touchscreen	gestures
Touchscreen	smartphones	allow	a	variety	of	operations	to	be	performed	by
users,	both	single	and	multitouch.	Multitouch	gestures	refer	to	touchscreen	input
that	uses	two	or	more	fingers	at	a	time.	The	following	is	a	list	of	the	most
common	touch-based	operations	available	with	Apple,	Android,	and	Windows
Phone	devices.

Single–tap

Touch	the	screen	with	one	finger,	once.	This	is	the	fundamental	operation
required	to	type	text	messages	and	notes,	and	to	launch	applications.

Double–tap

Tap	the	screen	twice,	with	one	finger.	This	is	usually	done	to	select	a	piece	of
text	to	edit	it.

Long	press

Press	the	screen	with	one	finger,	and	hold.	This	operation	is	generally	used	to
select	and	move	icons	around	the	screen.

Scroll

Touch	the	scroll	with	a	single	finger,	and	move	it	up	and	down,	or	left	and	right.
You	do	this	when,	for	example,	you	need	to	find	a	contact	in	your	list.

Spread	and	pinch

To	"spread"	means	to	touch	the	screen	with	thumb	and	forefinger	and	move	the
fingers	apart,	an	action	also	known	as	"pinch	in".	This	is	often	used	to	zoom	in.

Pinch	(or	pinch	out),	on	the	contrary,	means	to	touch	the	screen	with	thumb	and
forefinger	and	move	the	fingers	together.	This	is	usually	done	to	zoom	out.

Pan

Touch	the	screen	with	one	finger	and	move	in	any	direction.	This	operation	is
used	to	pan	the	view	when	an	application	offers	an	interactive	area	which	is
larger	than	the	available	screen,	as	is	the	case,	for	example,	when	playing
strategic	and	management	games.

Flick

Touch	the	screen	with	one	finger	and	move	it	rapidly	side-to-side	or	up	and
down.	In	games	this	is	used	to	kick	things	away,	like	the	ball	in	soccer	games.

Multifinger	tap

Touch	the	screen	briefly	with	two	or	more	fingers.	Different	applications
implement	this	action	to	perform	specific	tasks,	such	as	resizing	an	image,
zooming	in,	or	zooming	out.

Multifinger	scroll

Touch	the	screen	with	two	or	more	fingers	and	move	them	side-to-side	or	up	and
down.	For	example,	the	latest	Google	Map	application	allows	the	use	of	this
action	to	change	the	inclination	of	the	plane	with	respect	to	the	user's	view.

Rotate

Touch	the	screen	with	thumb	and	forefinger,	and	rotate	the	forefinger	around	the
thumb.	This	is	often	used	to	rotate	an	image	on	screen	and	is	a	popular	touch
operation	in	puzzles	and	investigation	games.

(Images	courtesy	of	Wikipedia)

http://en.wikipedia.org/wiki/Multi-touch_gestures#Multi-touch_gestures

http://en.wikipedia.org/wiki/Multi-touch_gestures#Multi-touch_gestures

Input	interfaces	for	mobile	games
The	advent	of	the	iOS	and	its	revolutionary	touch	user	interface	is	responsible
for	one	of	the	most	interesting	aspects	of	mobile	game	development:	the
possibility	of	creating	games	that	rely	on	very	innovative	input	control	systems.

Not	only	the	usual	touch	actions,	such	as	swiping	and	tapping,	have	been
exploited	to	create	the	mechanics	for	innovative	and	popular	games	belonging	to
various	genres,	such	as	Fruit	Ninja,	Spider	the	Secret	of	Bryce	Manor,	Angry
Birds,	or	Temple	Run.

As	the	iPhone	and	the	majority	of	smartphones	are	provided	with	sensors	to
detect	movement,	proximity,	light,	a	camera,	a	microphone,	and	a	headphone
jack,	these	pieces	of	hardware	have	been	taken	into	consideration	by	game
developers	to	create	games	that	were	simply	not	possible	before	the	advent	of
the	touch	interface	and	today's	smartphones.

In	the	following	sections,	we	examine	the	distinctive	features	of	mobile	devices
from	a	mobile	game	designer's	perspective.	How	can	we	exploit	the	potential	of
built-in	and	external	components	of	today's	smartphones	to	design	games?

Built-in	devices
We	begin	our	tour	with	the	features	of	a	smartphone	which	are	the	built-in
features.	Modern	smartphones	include	a	variety	of	built-in	sensors	that	can	be
accessible	for	mobile	games,	and	we	encourage	you	to	exploit	these	whenever
you	can	in	your	games.

There	is	more	than	one	reason	for	this.	The	successful	built-in	features	of	one
device	tend	to	be	adopted	by	competitors	over	a	period	of	time.	In	fact,	the	most
popular	smartphones	tend	to	share	relevant	and	appreciated	features,	such	as	the
accelerometer.	The	accelerometer	is	featured	by	any	smartphone	we	can	think	of
today,	and	it	is	a	piece	of	hardware	that	any	smartphone	owner	expects	to	have
on	his	device.

If	you	design	a	game	mechanic	around	the	accelerometer,	you	can	be	pretty	sure
that	your	game	can	reach	the	largest	audience	possible,	which	is	a	good	start	for
any	indie	game.

GPS

The	Global	Positioning	System	(GPS)	is	a	space-based	satellite	navigation
system	that	requires	an	unobstructed	line	of	sight	to	four	or	more	GPS	satellites.
The	GPS	can	provide	very	accurate	location	information	to	the	device,	for	itself
and	its	surroundings.	For	example,	it	is	possible	to	search	for	nearby	restaurants,
landmarks,	and	so	on.

GPS	games	usually	include	an	element	of	Augmented	Reality	(AR).	One
example	of	a	GPS	game	is	Shadow	Cities	by	Grey	Area.	Players	team	up	to
conquer	their	neighborhood,	street	by	street,	using	magic	spells.	One	of	the	few
MMORPGs	(Massively	Multiplayer	Role	Playing	Games)	on	mobile	devices,
Shadow	Cities	is	free	to	play	and	is	available	on	the	App	Store	on
www.shadowcities.com.

http://www.shadowcities.com

	

Accelerometer

Smartphones	are	provided	with	a	3-axis	accelerometer	which	detects	the
orientation	of	the	phone	in	the	space	and	changes	the	screen	orientation
accordingly.	Most	applications	take	advantage	of	this	feature	by	swapping
between	landscape	and	portrait	view,	for	example,	when	viewing	a	photo.

With	regard	to	games,	the	accelerometer	(and	the	gyroscope)	are	exploited	by
tons	of	games;	generally	all	games	which	simply	weren't	possible	on	any	other
kind	of	device.

So	many	games	use	the	accelerometer	for	driving,	that	there's	no	need	to
mention	any.	Tilt	the	iPhone	left/right	to	turn	your	vehicle	accordingly.

Doodle	Jump	is	a	completely	different	kind	of	game,	still	popular	regardless	of
its	age,	which	requires	the	player	to	tilt	the	iPhone	left	or	right	to	control	the
jumping	direction	of	the	game	character	as	he	climbs	an	endless	series	of
platforms.

	

Rolando	is	a	very	smart	physics-based	platformer	where	you	control	a	spherical
character	by	tilting	the	iPhone	to	exploit	gravity,	and	to	get	momentum	to
overcome	obstacles	and	get	to	the	end	of	each	level.

	

Camera

All	smartphones	have	a	built-in	camera	which	is	often	used	for	games	based	on
Augmented	Reality.	AR	is	a	technique	which	allows	enhancing	the	real-world
environment	by	overlaying	computer	generated	elements	such	as	3D	characters
that	are	visible	in	the	real	world	when	watching	through	the	camera.	It	provides
interactive	and	digitally	manipulatable	information	about	the	real	world	of	users
and	has	many	uses,	not	only	in	architecture,	tourism,	and	entertainment	but	also
has	uses	in	medicine,	the	military,	and	obviously,	in	gaming.	More	on	AR	can	be
found	at	http://en.wikipedia.org/wiki/Augmented_reality.

Among	recent	popular	titles	that	use	AR	to	enhance	gameplay,	we	would	like	to
mention	Star	Wars:	Falcon	Gunner	and	AR	Defender.

Falcon	Gunner	is	a	classical	First	Person	Shooter	(FPS)	in	which	the	player	is
asked	to	shoot	incoming	enemy	ships.	The	distinctive	feature	of	the	game	is	that,
thanks	to	AR	techniques,	the	player	can	see	the	enemy	ships	attacking	him	as
they	fly	in	his	actual	environment.

	

AR	Defender	is	a	tower	defense	game	where	the	player	controls	a	defensive
tower	as	it	fires	against	enemies	attacking	in	the	kitchen,	the	bathroom,	the	bus,

http://en.wikipedia.org/wiki/Augmented_reality

or	wherever	the	player	decides	to	land	the	marker.

	

	

Microphone

Speech	recognition	is	an	interesting	opportunity	for	mobile	developers,	since
Fonix	developed	its	VoiceIn	toolkit	for	the	iPhone.	The	most	important	game
developers	such	as	EA,	Ubisoft,	and	Harmonix,	creators	of	the	Guitar	Hero
franchise	are	already	licensees	for	this	technology,	which	means	that	the	number
of	games	which	feature	speech	recognition	will	grow	over	time	as	the
technology	gets	more	popular.	As	we	write,	there	are	several	applications	which
offer	speech	recognition	services	already	available	on	the	Apple	Store.

Smartphones,	on	the	other	hand,	are	provided	with	a	built-in	microphone	which
has	already	been	used	to	develop	many	quirky	games	that	use	the	microphone	as
an	input	device.

Zoom	Zoom	is	a	car	racing	game	in	which	the	car	speed	is	controlled	by	the
player's	voice:	the	more	noise	you	make,	the	faster	the	car	goes.

iBBQ	is	a	barbecue	simulator.	As	a	player,	you	are	requested,	among	the	other
things,	to	blow	in	the	iPhone	microphone	to	blow	on	the	embers	to	revive	the
fire.

	

Sonic	Lighter	is	a	lighter	simulator	with	a	distinctive	feature:	the	possibility	of
blowing	in	the	microphone	to	blow	out	the	flame.

But	the	most	popular	application	using	the	iPhone	microphone	as	an	input	device
is	Ocarina.	The	player	must	tap	the	holes	displayed	on	screen	and	blow	in	the

microphone	to	play	with	this	ocarina	simulator.

	

These	are	just	a	few	examples	of	creative	ways	to	exploit	the	technical
characteristics	of	a	device	to	create	innovative	gameplay	without	spending
millions.	Keep	these	in	mind	when	planning	your	next	indie	game	or
application!

External	controllers

A	number	of	manufacturers	provide	add-on	controllers	that	can	simulate	classic
console	controllers,	joysticks,	and	even	miniature	arcade	cases.	They	are	a
reasonable	alternative	to	virtual	buttons	on	the	screen	and	generally	provide	a
better	user	experience,	especially	for	the	more	retro-styled	mobile	games.

On	the	other	hand,	they	are	external	hardware,	and	as	such	you	cannot	expect
them	to	be	a	requirement	for	a	game.	Designing	a	mobile	game	around	an
external	control	only	makes	sense	if	you	are	developing	the	game	for	the
hardware	manufacturer	in	the	first	place.

Anyway,	they	exist,	and	are	quite	popular	too,	so	why	miss	the	opportunity	of
supporting	them	in	your	next	game	in	order	to	provide	extra	value?

Gamepads

These	are	Bluetooth	external	controllers	consisting	in	a	control	pad	and	a	full	set
of	buttons	to	offer	optimal	control	capabilities	for	more	console-style	oriented
titles.	Such	devices	offer	some	advantages	and	have	drawbacks.

The	first	advantage	is	that	a	gamepad	is	a	better	controlling	device	than	a
touchscreen	when	dealing	with	levers	and	buttons,	because	a	gamepad	offers	that
tactile	feedback	to	the	player's	actions	that	the	virtual	pad	on	a	touchscreen
cannot.	This	is	very	important	for	action	games.	Secondly,	the	player	has	his/her
hand	on	the	pad	and	don't	encumber	the	screen	area	with	their	fingers.	Finally,
playing	with	your	iPhone	won't	leave	any	oily	traces	on	the	screen,	which	is
good	anyway!

One	disadvantage	is	that	external	controllers	must	be	supported	by	titles,	to	work
with	games.	This	means	that	game	developers	are	supposed	to	take	care	of
supporting	one	or	more	of	these	controllers	in	their	games.	As	a	developer,	you
have	to	consider	the	extra	time	and	money	it	costs	to	support	gamepads	and
compare	it	with	the	popularity	of	such	devices.

Gamepad	models	range	from	those	that	apply	to	the	device	itself,	offering	a
better	grip	on	the	smartphone	and	turning	it	into	a	true	handheld	game	console,
while	others	are	provided	with	a	docking	station	for	the	mobile	device,	so	that
the	player	only	holds	the	gamepad	in	his	hands,	such	as	with	the	debated	Duo
Gamer,	the	first	gamepad	officially	approved	by	Apple,	which	costs	$79	at	the

time	of	writing,	and	is	only	compatible	with	the	Gameloft	titles.	There	is	also	the
retro	style	8-Bitty	controller	by	iCade	which	is	basically	a	NES	controller
connected	via	Bluetooth	to	your	iPhone.

	

Others	are	as	small	as	a	key	holder	and	only	offer	a	cross-directional	pad	and	a
couple	of	buttons,	enough	for	more	arcade-oriented,	old-school	titles.

For	those	of	you	with	a	steam-punk	soul,	it	is	even	possible	to	connect	Bluetooth
or	USB	gaming	devices	to	an	Android	phone.	We	know	of	gamers	who	use	their
PS3	controller	to	play	mobile	games!	If	you	are	interested,	we	suggest	you
checkout	the	following	link:

http://reviews.cnet.co.uk/mobile-apps/how-to-play-android-games-with-your-
ps3-controller-50004688/

Analog	sticks

For	those	not	interested	in	playing	mobile	titles	with	a	gamepad,	there	are
several	stick	controllers	that	directly	apply	to	the	screen,	right	above	the	virtual
pads,	to	offer	a	better	sensibility	when	playing,	such	as	the	well-designed	Fling
by	Targus	that	attaches	to	the	device	with	suction	cups	and	is	transparent,	in
order	to	not	obstruct	the	player's	view.

http://reviews.cnet.co.uk/mobile-apps/how-to-play-android-games-with-your-ps3-controller-50004688/

	

There	is	even	one	stick	controller	that	detects	the	player	input	through	the
iPhone	camera.	It	is	an	analog	stick	developed	by	a	group	of	Japanese
researchers	at	the	Kejo	University	(http://www.keio.ac.jp/)	which	uses	markers
to	send	input	to	the	on-built	camera.	The	markers	on	the	controller	are	detected
by	the	camera.	As	the	player	moves	the	stick,	the	markers	move	too,	and	their
movement	is	interpreted	through	the	iPhone	camera	and	turned	into	movement
of	an	object	on	the	screen,	like	a	game	character.

Touch-enabled	cases

Another	interesting	line	of	external	controllers	is	consists	of	touch-enabled	cases
such	as	the	Sensus	by	Canopy.	It	is	an	iPhone	case	equipped	with	capacitive
back	and	side	areas	to	control	games	and	the	device	in	general,	without
obscuring	the	screen	with	your	hands.	As	with	the	gamepad	discussed
previously,	these	kinds	of	accessories	help	keep	the	screen	free	and	clean,	but
need	to	be	supported	by	developers.	The	Sensus,	in	fact,	comes	with	a	free	SDK
to	help	game	developers	quickly	and	easily	offer	support	for	the	device	in	their
games.

http://www.keio.ac.jp/

	

Grip

Here	is	an	example	of	a	touch-enabled	device.	Docomo	has	a	new	technology
that	it	calls	the	Grip	UI	concept,	which	allows	users	to	interact	with	a
smartphone	by	gripping	it	in	different	ways.	In	addition	to	sensing	where
pressure	is	applied,	this	technology	will	detect	different	levels	of	pressure
applied,	and	can	execute	certain	functions	or	shortcuts	corresponding	to	specific
input.	So	for	example,	it	could	unlock	your	phone	by	gripping	it	in	a	certain
manner,	or	launch	an	application.	This	has	some	exciting	implications	for
gaming	input.

http://technology.xin.msn.com/technology-news/techinasia-article.aspx?cp-
documentid=250777765

http://technology.xin.msn.com/technology-news/techinasia-article.aspx?cp-documentid=250777765

	

Cabinets

For	those	who	are	really	hardcore	mobile	gamers,	the	iCade	and	the	iCade	Jr	are
accessories	that	turn	your	iPhone/iPad	into	a	true	old	school	cabinet.	Though
large,	the	selection	of	games	(mainly	Atari	titles)	supported	by	the	device	is	still
limited,	so	the	same	issues	that	arise	from	other	external	controllers	occur.	We
only	mention	the	iCade	for	its	aesthetic	qualities.

	

Headphones

As	we	switch	to	the	topic	of	audio-based	games,	we	also	move	from	input	to
output	systems.

Audio-based	games	are	important	for	two	reasons.	First	is	that	it	is	a	way	to
create	innovative	gameplay.

There's	a	game	called	Papa	Sangre,	where	the	player	is	asked	to	control	the
direction	the	game	character	moves	in,	to	reach	specific	sound	sources.	The
screen	only	displays	the	actual	direction	the	character	is	facing.	The	direction	it
must	move	to	is	to	be	inferred	by	sound	cues,	that	are	delivered	to	the	player
through	the	headphones	thanks	to	positional	audio	technology.	By	not	displaying

anything	on	the	screen	and	the	use	of	strange,	disturbing	sounds,	this	game	is
capable	of	providing	pretty	cool	immersion	and	an	uncommon,	and	almost	scary,
gaming	experience.

	

In	Audio	Invaders,	the	player	controls	the	popular	ship	from	Space	Invaders	by
tilting	the	iPhone	to	move	left	or	right.	The	screen	is	pretty	much	black	and
enemy	ships	are	not	fully	displayed.	The	player	must	infer	their	position	to	fire
at	them	using	audio	cues	provided	through	the	headphones	to	his	left	or	right	ear.

	

But	second	and	the	most	important	reason	in	mentioning	mobile	games	and
applications	that	rely	on	audio	as	the	main	output	channel	is	that	these	kinds	of
games	are	accessible	to	people	with	visual	impairments.	Still	today,	very	few
games	offer	such	feature,	and	most	of	the	time	this	fact	is	unavoidable,	since
after	all,	video	games	are	video	games.	Whenever	you,	as	a	developer,	create	a
game	that	can	be	played	even	by	those	with	impaired	vision,	you	not	only	show
that	you	are	a	very	smart	developer	who	can	design	games	that	target	the	largest
audience,	but	also	prove	that	you	have	sensibility	towards	other	people's	needs,
which	is	a	nice	personal	quality!

Future	technologies
There	are	some	technologies	on	the	horizon	that	will	be	widely	available	very
soon.	One	example	is	eye	tracking;	brainwave	readers	are	another.	Both	have	a
lot	of	gaming	potential,	so	we	would	like	to	say	a	few	words	on	each	of	them.

Eye	tracking

Using	eye	movement	as	an	input	device	has	been	around	for	a	long	time,	but	up
until	recently	it	was	prohibitively	expensive.	This	is	rapidly	changing,	with	eye-
tracking	add-ons	becoming	cheaper	over	time.

Senseye	is	an	example	that	has	been	designed	to	allow	users	to	interact	with	their
mobiles	through	eye	movement	tracking.	Uses	include	scrolling	a	web	browser,
controlling	game	objects,	and	turning	on	the	screen	as	it's	looked	at.

Starting	in	2013,	eyetribe.com	(Senseye's	maker)	plans	to	integrate	their
technology	into	new	smartphones	as	well	as	releasing	an	add-on	device	for	older
models.

Docomo's	I	Beam	invested	in	this	technology	and	their	tablet	has	eye	tracking
built	in.	Still	in	the	prototype	stage,	there	have	been	no	announcements	on	the
specifications	or	release	dates	at	this	time.

	

Brainwave	readers

The	second	interesting	technology	that	we	would	like	to	mention	is	that	of
brainwave	readers.

It	is	now	available	at	a	reasonable	cost;	there	is	hardware	that	allows	us	to	record
the	electric	signals	emitted	by	areas	of	our	brain	cortex	using	headsets	which
don't	require	expertise	to	be	worn,	and	gels	of	any	sort	that	are	used	to	improve
the	conduction	of	signals	coming	from	our	brain.

Such	a	headset	can	be	connected	to	a	mobile	phone	with	an	application	running
which	can	read	the	signal	coming	from	the	headset	and	perform	interesting	and
useful	functions,	ranging	from	the	field	of	pure	entertainment	to	more	medical	or
experimental	oriented	tasks.

NeuroSky	(http://www.neurosky.com/Default.aspx)	is	a	company	which	invests
in	the	brainwave	reader	technology,	and	they	have	developed	a	kit	with	the
headset	and	a	suite	of	applications	to	run	on	your	mobile	phone,	to	take
advantage	of	the	signal	coming	from	your	brain.

The	potential	for	gaming	is	unimaginable.	If	you	are	interested	in	this	topic,	we
suggest	you	checkout	the	following	link	showing	the	potential	of	the	brainwave
reader	technology:
http://www.ted.com/talks/tan_le_a_headset_that_reads_your_brainwaves.html

The	following	figure	represents	a	bluetooth	headset	for	reading	brainwaves	and
sending	the	signal	to	a	mobile	phone:

http://www.neurosky.com/Default.aspx
http://www.ted.com/talks/tan_le_a_headset_that_reads_your_brainwaves.html

	

Summary
This	chapter	covered	the	basic	technology	of	input	devices	and	the	standard
gestures	used	with	touchscreens.	It	also	discussed	the	uses	of	other	built-in
sensors	and	output	devices.	We	covered	a	variety	of	external	controllers	such	as
joysticks,	cabinets,	and	headphones.	We	looked	at	some	future	technology	such
as	eye-tracking	and	the	brainwave	readers.

In	the	next	chapter	we	will	cover	the	topic	user	interface	design.	We	will	discuss
relevant	theories	about	interface	design	and	describe	the	best	practices	to	design
interfaces	for	mobile	games.

Chapter	7.	Interface	Design	for	Mobile
Games
In	the	previous	chapter,	we	described	the	I/O	capabilities	of	today's	smartphones.
In	this	chapter	we	will	analyze	the	process	of	creating	user	interfaces	for	mobile
games	which	take	advantage	of	such	capabilities.

With	so	many	different	screen	sizes,	so	little	space	to	work	with,	and	no	real
standard	in	the	videogame	industry,	interface	design	is	one	of	the	toughest	parts
of	creating	a	successful	game.	We	will	provide	you	with	what	you	need	to	know
to	address	the	task	properly	and	come	up	with	optimal	solutions	for	your	mobile
games.	In	this	chapter,	we	will	cover	the	following	topics:

Approach	to	user	interface	design
Diegesis	theory	and	videogames
User	interface	design
Icons	design
Best	practices	of	UI	design
"Must-have"	game	options

The	role	of	the	user	interface
The	user	interface	is	the	element	that	most	affects	the	gameplay	of	a	title,	as	it
defines	how	the	player	interacts	with	the	game	and	accomplishes	the	task	he	is
presented	with.

A	well-designed	user	interface	can	make	a	game	with	simple	mechanics	feel
fresh	and	interesting,	while	fully	supporting	the	expectations	of	the	player.	It	is
always	a	nice	surprise	for	a	player	when	he	realizes	he	can	perform	some
specific	action	exactly	how	he	imagined	it	through	the	game	interface:	if	you	can
make	many	players	happy	like	that,	your	game	will	climb	up	the	sales	charts!

At	the	same	time,	the	contrary	is	true	as	well.	No	matter	the	number	of
innovative	game	features	and	mechanics,	the	quality	of	graphics	and	sound,	the
license	you	are	exploiting,	or	the	story	you	develop	throughout	a	game,	if	the
interface	is	patchy,	intricate,	not	intuitive	and	unappealing,	your	game	isn't	likely
to	sell	well.

As	we	saw	in	the	previous	chapter,	today's	smartphones	offer	a	completely	new
set	of	input	styles	for	games.	It's	up	to	you,	as	a	mobile	game	developer,	to	fully
exploit	those	features	to	create	an	interface	which	optimally	fits	the	needs	of
your	potential	players.

Approaching	user	interface	design
When	developing	a	game,	there	is	no	official	standard	or	pre-defined	set	of	rules
to	follow	to	design	its	interface.	Different	games	rely	on	different	mechanics	and
there	is	always	more	than	one	way	to	implement	effective	controls	for	a	game.

To	approach	the	task	correctly,	it	is	good	practice	to	invest	some	time	in
research.	A	good	starting	point	is	to	study	the	general	aspects	of	interaction
design.	Design	affects	the	shape	of	the	tools	we	use	in	our	everyday	activities	at
any	level	and	cognitive	psychology	has	thoroughly	investigated	the	means	to
design	effective	interactions	between	humans	and	the	tools	and	instruments	they
use.	We	suggest	having	a	look	at	The	Theory	of	Affordances	by	James	J.	Gibson,
described	in	his	book	The	Ecological	Approach	to	Visual	Perception
(http://en.wikipedia.org/wiki/Affordance)	and	reading	the	book	by	Donald	A.
Norman	The	Design	of	Everyday	Things.

The	next	step	is	to	get	proficient	with	general	UI	theory.	Game	engines	offer
several	assets	to	implement	the	graphic	interface	for	a	game,	but	how	can	you
make	the	best	of	it	if	you	don't	know	the	strengths	and	weaknesses	of	a	drop-
down	list	compared	to	a	combo	box?	Which	are	the	pros	and	cons	of	each
interface	element?

Once	you	understand	which	interface	element	is	good	for	what,	you	can	start
learning	from	the	success	or	failures	of	other	developers.	Take	some	time	to
study	the	interface	of	both	successful	and	unpopular	games	to	understand	what
worked	and	didn't	work	for	them,	what	were	the	reasons	they	adopted	a	specific
solution	for	a	game	mechanic,	if	there	were	other	options	available,	and	why
were	they	discarded.

Some	elements	of	the	UI	of	a	game	are	shared	regardless	of	the	genre,	while
others	are	distinctive	for	different	genre.	For	example,	any	game	should	provide
the	player	with	info	to	understand	if	he's	winning	or	losing.	Such	info	is	usually
provided	in	the	Heads	up	Display	(HUD)	of	a	game,	in	the	form	of	score,
available	lives\energy,	or	position	of	the	player	in	a	racing	game.

On	the	other	hand,	each	game	genre	has	its	own	distinctive	UI	characteristics
that	players,	especially	experienced	ones,	expect	to	find	in	a	title.	By	not
supporting	such	expectations,	you	enter	a	risky	gray	area,	as	you	may	find	your
game	frustrates	the	players,	as	it	contrasts	with	what	they	learned	during	their

http://en.wikipedia.org/wiki/Affordance

career.	For	example,	Real	Time	Strategy	(RTS)	games	allow	selecting	a	group
of	units	to	issue	orders.	The	possibility	to	drag	a	selection	box	around	a	group	of
units	is	an	expected	feature	of	any	RTS	title.	By	not	implementing	such	feature
you	basically	bet	against	your	players:	before	you	do	that,	take	some	time	to
think	if	it	really	makes	sense	for	your	game	to	deny	what	other	games	proved	to
have	worked	fine.	There	are	other	ways	to	be	innovative	when	designing	a	game
than	messing	up	with	the	interface,	which	could	result	in	a	total	failure	for	your
game!

Practicing	is	the	best	way	to	learn	to	design	effective	UI	for	games,	in	the	end.
Approach	different	genres	and	try	different	solutions,	then	test	them.	Have	both
experienced	and	un-experienced	players	try	your	game	interface.	Ask	them	what
worked	for	them	and	what	didn't,	and	why.	You	may	find,	for	example,	that	the
gaming	experience	affects	the	evaluation	of	a	game	interface,	as	experienced
players	know	what	to	expect,	while	casual	gamers	are	less	likely	to	make
comparisons.	To	please	all	of	them	is	hard	work	of	tuning	and	refinement,	which
takes	time	and	effort	to	accomplish.	If	you	do	it	right,	your	game	will	be	enjoyed
by	many	gamers	and	get	you	good	revenue.	A	good	rule	of	thumb	is	watch	as	a
player	encounters	a	new	feature.	If	it	takes	them	more	than	30	seconds	to	figure
it	out	and/or	they	ask	more	than	three	questions,	the	interface	needs	to	be
redesigned.

UI	in	videogames

Throughout	the	history	of	videogames,	interfaces	have	evolved	according	to	the
evolution	of	game	mechanics,	which	basically	got	more	complex	with	time.	If
you	think	that	an	Xbox	360	controller	has	two	analog	sticks,	a	D-pad,	and	13
buttons,	while	the	Atari	2600	pad	had	a	stick	and	one	button,	you	can	understand
what	we	mean!	The	way	you	take	advantage	of	such	potential	to	develop	the
proper	interface	for	your	gameplay,	can	make	a	difference	between	fame	and
failure.	As	we	saw	in	the	previous	chapter,	today's	smartphones	rely	on	touch-
screen	controls	and	a	few	sensors	for	input,	so	they	can't	compare	to	gamepads
with	regard	to	in-game	controls	capabilities.	But	it	is	also	true	that	a	very
interesting	aspect	of	mobile	gaming	is	that	it	brought	simple	mechanics	that
characterized	old-school	games	back	to	the	top.	Give	all	attention	you	can	to
converting	your	game	controls	in	an	effective	user	interface	for	your	target
device	and	your	gameplay	will	very	much	benefit	from	it.

When	games	were	basically	2D,	there	was	not	too	much	to	question	about
realism.	Games	weren't	realistic	and	the	interface	only	needed	to	show	the	score,
available	lives,	equipped	weapons,	or	actions	available.	Interface	design	only
required	being	effective	and	consistent,	and	the	suspension	of	disbelief	was	not	a
matter	of	concern.

With	the	advent	of	3D	in	videogames,	designers	had	to	face	the	problem	of
realism	and	how	to	preserve	the	players'	immersion	throughout	the	game.	If
one's	playing	from	the	perspective	of	the	game	character	in	a	First	Person
Shooter,	is	it	acceptable	to	provide	him	with	a	HUD?	Won't	this	break	his
suspension	of	disbelief?	Though	a	full	detailed	HUD	can	fit	Crysis,	which	is	set
in	the	future,	how	can	it	be	adapted	to	a	title	set	in	WWII?

Still,	players	need	plenty	of	info	when	playing	shooters,	especially	competitive
ones:	ammo	available,	direction	they	are	facing,	stance	of	the	character,	map,
and	others.	Correctly	displayed,	these	info	can	make	the	difference	between	"life
and	death"	during	a	multiplayer	death	match.

With	regard	to	the	types	of	different	interface	styles	adopted	by	videogames,	a
very	popular	theory,	adapted	from	the	diegesis	theory	used	in	literature	and	film,
defines	four	categories	to	classify	game	interfaces:	diegetic,	non-diegetic,
spatial,	and	meta.

The	classification	is	based	on	two	dimensions,	depending	on	the	answers	given
to	the	following	two	questions:

Is	the	interface	component	part	of	the	game	story\narrative?
Is	the	interface	component	part	of	the	actual	game	space?

The	following	figure	offers	a	representation	of	this	classification:

	

Let's	explain	these	concepts	through	examples	taken	from	actual	3D	games.

Diegetic:	A	diegetic	representation	answers	"yes"	to	both	the	questions	of
the	diagram:	the	component	is	part	of	the	game	narrative	and	it	is	located
inside	the	game	world.	It	is	experienced	by	both	the	player	and	his
character.

Shadow	of	the	Colossus	implements	a	diegetic	representation	of	the
compass	which	tells	the	player	where	he	should	go.	When	the	player	needs
to	know	where	to	go	next,	he	can	make	the	game	character	raise	his	blade	in
the	sun	and	a	light	beam	appears	that	shows	the	direction	to	take.	Check	the
following	figure	which	represents	a	screenshot	of	the	game:

	

Health	is	represented	by	a	bar	on	the	suit	of	the	game	character	in	Dead
Space	or	the	stealth	level	represented	as	colored	LEDs	on	the	suit	of	Sam
Fisher	(Splinter	Cell)	are	other	examples	of	this	approach.

The	good	thing	about	diegetic	representations	is	that	they	tell	the	player
what	he	needs	to	know	without	breaking	the	continuity	of	the	gaming
experience.	The	bad	thing	is	that,	if	not	done	properly,	it	can	be	very
destructive	to	the	game	flow	and	can	annoy	the	players.	In	Grim	Fandango,
the	inventory	can	only	be	scrolled	one	item	at	a	time.	Though	realistic,	this
option	frustrates	the	players	and	breaks	their	suspension	of	disbelief.
Non-diegetic:	Opposite	to	the	former	definition,	a	non-diegetic	component
is	rendered	outside	of	the	game	world	and	it	is	only	available	to	the	player,
not	to	his	character.	A	non-diegetic	component	answers	"no"	to	both
questions;	it	represents	the	approach	used	by	most	games	which	offer	a	full-
optional	HUD	to	their	players.

Call	of	duty:	Modern	warfare	uses	a	typical	non-diegetic	HUD,	which
perpetually	displays	several	pieces	of	useful	info	to	the	player:	the
weapon	he	is	wielding	and	its	cross-hair,	the	amount	and	types	of
ammo	and	grenades	available,	a	map	and	a	compass	for	directions,	and

the	stance	of	the	character,	among	the	others.

The	following	figure	is	a	screenshot	from	the	game:

	

If	it	is	well-designed,	a	non-diegetic	interface	goes	unnoticed	by	the	players
and	has	no	detrimental	effect	on	their	experience,	as	they	have	adapted	with
time	to	the	use	of	such	HUDs	in	games.

HUDs	can	be	very	complex	or	very	minimal,	according	to	the	complexity
of	the	game	mechanics	and	what	is	necessary	for	the	player	to	be	aware	of
to	play	the	game.	Tactical	shooters,	simulations,	and	RPGs	tend	to	have	the
most	complex	interfaces,	as	players	are	supposed	to	be	aware	of	many
things	to	effectively	play	such	games,	while	more	action	oriented	titles	tend
to	require	less	stuff	to	be	continually	displayed	on	screen.

A	very	interesting	example	of	a	game	with	basically	no	HUD	is	Peter
Jackson's	King	Kong,	an	adventure	FPS	with	no	ammo,	health,	or	even
cross-hair	displayed	on	screen.	Aiming	with	no	reticule	and	the	low	amount
of	ammo	available	in	the	game	made	every	fighting	sequence	pretty
engaging	and	full	of	tension.	Think	about	such	examples	whenever	you	are

engaging	and	full	of	tension.	Think	about	such	examples	whenever	you	are
about	to	decide	which	components	are	really	necessary	when	designing	the
HUD	for	your	user	interface.

The	following	figure	represents	the	absence	of	HUD	in	King	Kong.

	
Spatial:	These	components	are	elements	that	live	outside	the	game
narrative	("no"	to	the	first	question),	as	they	are	not	experienced	by	the
game	characters,	still	they	appear	inside	the	game	world	to	provide	specific
cues	to	the	players	("yes"	to	the	second	question).

In	Fable	2,	the	player	is	told	the	direction	of	his	next	objective	via	a	shiny
trail	that	appears	on	the	ground,	in	front	of	the	game	character.	Whether	we
assume	that	the	game	character	can	see	it	or	not,	the	trail	is	an	artifact
created	by	the	game	designer	to	help	the	player	never	get	lost	in	the	game
world,	which	doesn't	actually	affect	the	game	story	and	it	is	a	smart
implementation	of	the	compass	which	perfectly	adapts	to	the	look	and	feel
of	the	title.

The	trail	is	represented	in	the	following	image	taken	from	Fable	2:

	

Another	example	is	the	brackets	which	appear	on	selected	units	in	RTS
games.	If	those	brackets	weren't	put	inside	the	game	environment,	it	would
be	pretty	hard	for	a	player	to	understand	which	units	he	is	in	control	of	at
any	moment.	Still,	we	cannot	assume	that	the	brackets	are	perceived	by	the
game	units	or	affect	the	outcome	of	a	battle.

Spatial	components	tend	on	one	side	to	encumber	the	game	view,	as	they
consist	of	icons	and	text	displayed	on	screen	and	add	to	anything	else	which
is	already	in	the	player's	view.	On	the	other	side,	they	are	more	than
helpful;	they	can	be	necessary	to	fully	exploit	the	game	mechanics	of	a	title.
Ask	any	WOW	player	about	the	configurable	interface	of	their	favorite
title!
Meta:	This	is	the	last	category	and	it	stands	for	all	those	components	of	an
interface	which	exist	in	the	game	world,	so	"yes"	to	the	first	question,	but
are	not	visualized	spatially	in	the	game	world,	so	"no"	to	the	second
question.	The	blood	splatters	on	the	screen	which	reduces	visibility	for	a
short	while	in	shooters	are	an	example	of	such	components.	Another	one
we	would	like	to	mention	is	Samus'	face	reflection	in	the	helmet	in	Metroid
Prime,	as	shown	in	the	following	figure:

	

The	aim	of	such	components	is	generally	to	make	the	game	experience	feel	more
real	and	consistent	for	players,	they	are	little	touches	that	help	the	player	sustain
the	suspension	of	disbelief	as	he	plays	a	title.

It's	important	to	note	that	making	the	game	experience	feel	more	real	and
consistent	doesn't	necessarily	mean	more	realistic.	Think	of	the	lens	flare	effect
in	a	racing	game.	As	the	lens	flare	is	an	effect	generated	by	light	refracting	on	a
lens,	whenever	we	are	shown	a	lens	flare	in	a	game,	the	designer	is	telling	us
"this	is	just	a	game,	you	are	not	really	driving	a	car".	On	the	other	hand,	we	as
entertainment	consumers,	are	so	used	to	the	representation	of	sports	and	events
on	TV,	that	whenever	a	game	features	special	effects,	such	as	lens	flare,	we	feel
like	we	are	witnessing	the	real	event	through	a	TV	camera,	not	just	a	game.

The	diegesis	theory	provides	us	with	a	useful	scheme	to	make	a	basic
categorization	between	different	game	interfaces,	though,	as	any	model,	it	could
not	perfectly	apply	to	any	game	we	may	experience.	Definitions	are	useful,	but
more	important	is	that	the	interface	that	you	are	designing	for	your	game	fits	its
needs.	The	most	important	thing	for	a	game	interface	is	that	it	serves	the	purpose
of	the	game	mechanics	and	puts	the	player	in	the	optimal	conditions	to	fulfill	the
game	goals.	Never	stick	to	a	model	based	on	a	prejudiced	assumption	or	a	style
manifesto;	instead,	ask	yourself	what	is	the	look	and	feel	you	want	for	your
game	and	what	kind	of	involvement	you	want	for	your	players,	then	choose
wisely	the	kind	of	interface	that	best	adapts	to	your	assumptions.

If	you	want	to	examine	this	topic	in	more	depth,	we	suggest	the	following
articles	from	Gamasutra:

http://www.gamasutra.com/view/feature/4286/game_ui_discoveries_what_players_.php?
print=1
http://www.gamasutra.com/view/feature/132475/a_circular_wall_reformulating_the_.php?
page=4

http://www.gamasutra.com/view/feature/4286/game_ui_discoveries_what_players_.php?print=1
http://www.gamasutra.com/view/feature/132475/a_circular_wall_reformulating_the_.php?page=4

Designing	the	UI
The	UI	of	a	game	should	be	designed	while	taking	two	aspects	into
consideration:	what	the	look	and	feel	of	the	game	is	and	what	are	the	actions	the
main	character	will	perform,	and	how.

Begin	by	defining	a	list	of	functions	that	must	be	included	in	the	UI,	things	such
as	score,	available	lives,	real	and	virtual	money	amount,	cross-hair,	and	mini-
map,	whatever	is	absolutely	necessary	to	be	displayed	in	the	interface	of	the
game.

Then	map	these	fundamental	functions	to	different	interface	methods.	Take	each
item	on	the	list	and	ask	yourself	which	is	the	interface	method	that	better	fits	the
needs	of	the	game	with	regard	to	that	specific	interface	component.	For	example,
assume	we	need	to	show	the	health	status	of	units	in	a	strategic	title:	will	the
player	better	benefit	from	a	spatial	method,	such	as	drawing	a	health	bar	on	the
top	of	the	unit,	or	a	diegetic	method,	such	as	displaying	the	health	status	as
actual	damage	to	the	unit	model/sprite?

When	making	such	a	decision,	always	keep	in	mind	the	look	and	feel	you	want
for	your	game.	If	your	game	mainly	relies	on	immersion,	try	to	manage	the	most
important	components	with	diegetic	methods.	If	efficiency	and	clarity	of	the	info
displayed	on	screen	is	what	you	care	most	about,	it	is	very	likely	that	a	spatial	or
non-diegetic	representation	will	better	serve	such	purposes.

Iterate	the	process	many	times,	until	you	feel	like	the	main	components	of	the
interface	are	displayed	with	the	best	method	and	the	way	game	actions	are
performed	reflect	the	look	and	feel	of	the	game	and/or	the	main	character	style.

Remember	that	a	game	interface	is	not	only	made	of	graphics	juxtaposed	on	the
screen:	audio,	animations,	and	FX	can	be	used	as	well.	For	example,	the	position
of	enemies	in	the	game	world	could	be	displayed	as	colored	dots	on	radar,	but
you	could	also	use	audio	cues	and	audio	positioning	techniques	to	lure	the	player
toward	the	enemies.	Try	to	mix	things	up,	and	as	usual,	be	creative!

Aesthetics

Optimal	functionality	is	not	enough	for	a	game	interface	to	be	well-designed.
The	game	interface	should	also	be	consistent	with	the	aesthetics	of	your	game.	If
you	are	working	on	a	futuristic	title,	there's	no	question	that	the	interface	should
be	futuristic	as	well.

As	the	best	interface	is	the	one	which	the	player	doesn't	even	notice,	many
developers	agree	that	the	UI	is	secondary	to	the	artworks	of	a	game.	Always
create	interfaces	that	are	consistent	with	the	other	artwork	of	your	product	and
that	complement	them.	If	you	design	an	intrusive	interface,	it	will	pop	out	of	the
screen	and	distract	the	players	from	the	engagement	of	playing	your	title.

More	on	vectors	and	rasters

We	already	discussed	the	topic	of	rasters	and	vectors	graphics	in	Chapter	3,
Graphics	for	Mobile.	We	are	now	going	to	delve	into	the	details	of	these
drawing	techniques	with	specific	regard	to	UI	design.

The	variability	of	screen	sizes	and	resolutions	that	(from	a	game	developer
perspective)	affects	mobile	devices,	especially	Android	smartphones,	requires
specific	techniques	to	design	game	interfaces	to	deal	with	such	variability.

The	risk	that	must	be	avoided	at	all	costs	is	that	you	need	to	redesign	the	game
interface	every	time	you	target	a	new	device	for	your	game,	as	scaling	up	or
down	an	interface	can	be	very	problematic.

As	we	already	said,	when	creating	graphics	for	games,	there	are	two	options
available:	drawing	pixel	by	pixel	(raster	graphics)	or	drawing	with	curves	and
gradients	(vector	graphics).	Vector	graphics	result	in	lighter	files	but	they	are
less	efficient	for	real-time	graphics,	as	vectors	must	be	converted	into	raster
before	they	can	be	displayed	on	screen.	Raster	graphics,	on	the	other	hand,	don't
need	such	conversion,	resulting	in	better	game	performance.

The	important	thing	here	is	that	vector	graphics	can	be	scaled,	while	rasters
cannot.	A	good	solution	to	address	the	problem	of	scaling	the	game	interface	to
adapt	to	different	devices	is	to	create	a	basic	template	for	your	game	UI	using
vector	graphics	and	working	with	dedicated	software,	such	as	Adobe	Illustrator.
Scale	vectors	as	needed,	until	you	find	the	size	that	best	fits	the	needs	of	your
game.

Then	convert	vectors	into	rasters	(bitmap,	JPEG,	or	PNG	file	formats)	as	you
move	to	the	actual	interface	for	the	game.	This	procedure	will	help	you	save
time	and	money,	should	a	new	device	become	available	with	different	screen
size\resolution,	requiring	scaling	up	or	down	the	UI	you	already	designed.	In
such	cases,	you	just	need	to	scale	the	template	in	vector	graphics	and	then
recreate	the	rasterized	assets	from	that	template.	With	raster	graphics,	on	the
other	hand,	you	would	be	forced	to	redesign	every	interface	component
altogether.

Whether	to	use	vector	or	raster	graphics	also	depends	on	the	artwork	styles	you
chose	for	your	game.	For	example,	vectors	rarely	suit	realistic	graphics.	As	the
handheld	technology	advances,	players	generally	expect	more	realistic-looking

handheld	technology	advances,	players	generally	expect	more	realistic-looking
games.	In	such	cases,	you	should	prefer	to	produce	the	graphic	assets	for	your
interface	as	bitmaps.

On	the	other	hand,	vector	art	allows	creating	perfect	stylized	graphic	artworks
for	those	titles	with	a	strong	characterization,	in	terms	of	creative	direction.	Kid
Vector	is	one	such	title:	a	platformer	with	excellent	controls	and	vector	graphics,
as	you	can	see	in	the	following	figure:

	

Designing	icons

Icons	are	a	very	important	element	of	any	mobile	game	from	the	very	beginning
of	its	commercial	life.	When	you	upload	your	new	game	on	the	App	Store,	it's
mainly	the	icon	you	provide	that	will	convince	potential	customers	to	try	your
game.	Badly-	designed	and	crafted	icons	won't	attract	many	players	in	the	sea	of
potential	apps	to	download!

Creating	the	perfect	icons	for	your	game	is	not	to	be	overlooked.	But	which	are
the	best	techniques	to	create	nice,	crisp	icons?	In	the	previous	section	of	this
chapter,	we	discussed	the	differences	between	raster	and	vector	graphics.	Now
we	will	apply	those	concepts	to	the	creation	of	game	icons.

First	of	all,	we	need	to	re-formulate	the	concept	that	vector	graphics	can	be
scaled	at	our	wish	with	no	quality	loss.

Though	it	is	true	that	vectors	can	be	scaled,	when	the	size	of	an	icon	is	less	than
48x48	pixels,	some	weaknesses	of	the	vector	based	approach	emerge.	If	you
create	a	24x24	pixel	vector	image	and	scale	it	down	to	16x16	pixels,	some
blurring	will	occur,	as	there	is	no	way	to	match	the	proportions	between	the	two
sizes.

As	you	may	notice	in	the	following	figure,	the	first	line	of	icons,	created	as
separate	files,	are	far	more	detailed	and	crisp	than	the	second	line	of	icons,
obtained	by	scaling	a	single	vector	file.

	

Whenever	you	need	to	create	small	sized	icons,	the	best	thing	to	do	is	to	design
separate	bitmaps,	scaled	to	match	every	required	size.	Even	if	it	takes	a	little
more	time	to	achieve,	it	prevents	the	poor	results	obtained	when	scaling	a	single
vector	to	different	icon	sizes.

On	the	other	hand,	you	just	need	to	worry	about	it	for	small,	very	detailed	icons.
If	the	size	of	your	icons	is	more	than	48x48	pixels	and/or	your	icons	are	not
filled	with	many	fine	details,	you	won't	have	to	worry	about	the	vector	scaling
problem.

Best	practices	in	UI	design
Now	that	we	have	discussed	the	theoretic	aspects	of	interface	design	for	mobile
games,	in	the	following	section	we	will	provide	a	list	of	useful	hints	to	approach
the	creation	of	a	well-designed	UI	for	your	next	game.

The	first	golden	rule	is	that	the	better	the	game	interface	is	designed,	the	less	it
will	be	noticed	by	players,	as	it	allows	users	to	navigate	through	the	game	in	a
way	that	feels	natural	and	easy	to	grasp.

To	achieve	that,	always	opt	for	the	simplest	solution	possible,	as	simplicity
means	that	controls	are	clean	and	easy	to	learn	and	that	the	necessary	info	is
displayed	clearly.

A	little	bit	of	psychology	helps	when	deciding	the	positioning	of	buttons	in	the
interface.	Human	beings	have	typical	cognitive	biases	and	they	easily	develop
habits.	Learning	how	to	exploit	such	psychological	aspects	can	really	make	a
difference	in	the	ergonomics	of	your	game	interface.	We	mentioned	The	Theory
of	Affordances	by	Gibson,	but	there	are	other	theories	of	visual	perception	that
should	be	taken	into	consideration.	A	good	starting	point	is	the	Gestalt	Principles
that	you	will	find	at	the	following	link:

http://graphicdesign.spokanefalls.edu/tutorials/process/gestaltprinciples/gestaltprinc.htm

Finally,	it	may	seem	trivial,	but	never	assume	anything.	Design	your	game
interface	so	that	the	most	prominent	options	available	on	the	main	game	screen
lead	your	players	to	the	game.

Choose	the	target	platform.	When	you	begin	designing	the	interface	for	a	game,
spend	some	time	thinking	about	the	main	target	platform	for	your	game,	in	order
to	have	a	reference	resolution	to	begin	working	with.	The	following	table
describes	the	screen	resolutions	of	the	most	popular	devices	you	are	likely	to
work	with:

Device	model Screen	resolution	(pixels)

iPhone	3GS	and	equivalent 480x320

http://graphicdesign.spokanefalls.edu/tutorials/process/gestaltprinciples/gestaltprinc.htm

iPhone	4(S)	and	equivalent 960x640	at	326	ppi

iPhone	5 1136x640	at	326	ppi

iPad	1	and	2 1024x768

iPad	3	retina 2048x1536	at	264	ppi

iPad	Mini 1024x768	at	163	ppi

Android	devices variable

Tablets variable

As	you	may	notice,	when	working	with	iOS,	things	are	almost	straightforward,
as	with	the	exception	of	the	latest	iPhone	5,	there	are	only	two	main	aspect
ratios,	and	retina	displays	simply	doubles	the	number	of	pixels.	By	designing
your	interface	separately	for	the	iPhone/iPod	touch,	the	iPad	at	retina	resolution,
and	scaling	it	down	for	older	models,	you	basically	cover	almost	all	the	Apple-
equipped	customers.

For	Android-based	devices,	on	the	other	hand,	things	are	more	complicated,	as
there	are	tons	of	devices	and	they	can	widely	differ	from	each	other	in	screen
size	and	resolution.	The	best	thing	to	do	in	this	case	is	to	choose	a	reference,
high-end	model	with	HD	display,	such	as	the	HTC	One	X+	or	the	Samsung
Galaxy	S4	(as	we	write),	and	design	the	interface	to	match	their	resolution.	Scale
it	as	required	to	adapt	to	others:	though	this	way,	the	graphics	won't	be	perfect
for	any	device,	90	percent	of	your	gamers	won't	notice	any	difference.

The	following	is	a	list	of	sites	where	you	can	find	useful	information	to	deal	with
the	Android	screens	variety	dilemma:

http://developer.android.com/about/dashboards/index.html
http://anidea.com/technology/designer%E2%80%99s-guide-to-supporting-
multiple-android-device-screens/

http://developer.android.com/about/dashboards/index.html
http://anidea.com/technology/designer%E2%80%99s-guide-to-supporting-multiple-android-device-screens/

http://unitid.nl/2012/07/10-free-tips-to-create-perfect-visual-assets-for-ios-
and-android-tablet-and-mobile/

http://unitid.nl/2012/07/10-free-tips-to-create-perfect-visual-assets-for-ios-and-android-tablet-and-mobile/

Search	for	references

There	is	no	need	to	reinvent	the	wheel	every	time	you	design	a	new	game
interface.	Games	can	be	easily	classified	by	genre	and	different	genres	tend	to
adopt	general	solutions	for	the	interface	that	are	shared	among	different	titles	in
the	same	genre.

Whenever	you	are	planning	the	interface	for	your	new	game,	look	at	others'
work	first.	Play	games	and	study	their	UI,	especially	from	a	functional
perspective.	When	studying	others'	game	interfaces,	always	ask	yourself:

What	info	is	necessary	to	the	player	to	play	this	title?
What	kind	of	functionality	is	needed	to	achieve	the	game	goals?
Which	are	the	important	components	that	need	to	stand	out	from	the	rest?
What's	the	purpose	and	context	of	each	window?

By	answering	such	questions,	you	will	be	able	to	make	a	deep	analysis	of	the
interface	of	other	games,	compare	them,	and	then	choose	the	solutions	to	better
fit	your	specific	needs.

The	screen	flow

The	options	available	to	the	players	of	your	game	will	need	to	be	located	in	a
game	screen	of	some	sort.	So	the	questions	you	should	ask	yourself	are:

How	many	screens	does	my	game	need?
Which	options	will	be	available	to	players?
Where	will	these	options	be	located?

Once	you	come	up	with	a	list	of	the	required	options	and	game	screens,	create	a
flow	chart	to	describe	how	the	player	navigates	through	the	different	screens	and
which	options	are	available	in	each	one.

	

The	resulting	visual	map	will	help	you	understand	if	the	screen	flow	is	clear	and
intuitive,	if	game	options	are	located	where	the	players	expect	to	find	them,	and
if	there	are	doubles,	which	should	be	avoided.

Be	sure	that	each	game	screen	is	provided	with	a	BACK	button	to	go	back	to	a
previous	game	screen.	It	can	be	useful	to	add	hyperlinks	to	your	screen	mockups
so	that	you	can	try	navigating	through	them	early	on.

Functionality

It	is	now	time	to	define	how	the	interface	you	are	designing	will	help	users	to
play	your	game.	At	this	point,	you	should	already	have	a	clear	idea	of	what	the
player	will	be	doing	in	your	game	and	the	mechanics	of	your	game.	With	that
information	in	mind,	think	about	what	actions	are	required	and	what	info	must
be	displayed	to	deal	with	them.	For	every	piece	of	information	that	you	can
deliver	to	the	player,	ask	yourself	if	it	is	really	necessary	and	where	it	should	be
displayed	for	optimal	fruition.

Try	to	be	as	conservative	as	you	can	when	doing	that,	it	is	much	too	easy	to	lose
the	grip	on	the	interface	of	your	game	if	new	options,	buttons,	and	functions
keep	proliferating.	The	following	is	a	list	of	useful	hints	to	keep	in	mind	when
defining	the	functionality	of	your	game	interface:

Keep	the	number	of	buttons	as	low	as	possible
Stick	to	one	primary	purpose	for	each	game	screen
Refer	to	the	screen	flow	to	check	the	context	for	each	game	screen
Split	complex	info	into	small	chunks	and/or	multiple	screens	to	avoid
overburdening	your	players

Wireframes

Now	that	the	flow	and	basic	contents	of	the	game	interface	is	set,	it	is	time	to
start	drawing	with	a	graphic	editor,	such	as	Photoshop.

Create	a	template	for	your	game	interface	which	can	support	the	different
resolutions	you	expect	to	develop	your	game	for,	and	start	defining	the	size	and
positioning	of	each	button	and	any	pieces	of	information	that	must	be	available
on	screen.	Try	not	to	use	colors	yet,	or	just	use	them	to	highlight	very	important
buttons	available	in	each	game	screen.

This	operation	should	involve	at	least	three	members	of	the	team:	the	game
designer,	the	artist,	and	the	programmer.	If	you	are	a	game	designer,	never	plan
the	interface	without	conferring	with	your	artist	and	programmer:	the	first	is
responsible	for	creating	the	right	assets	for	the	job,	so	it	is	important	that	he/she
understands	the	ideas	behind	your	design	choices.	The	programmer	is
responsible	for	implementing	the	solutions	you	designed,	so	it	is	good	practice	to
ask	for	his/her	opinion	too,	to	avoid	designing	solutions	which	in	the	end	cannot
be	implemented.

There	are	also	many	tools	that	can	be	used	by	web	and	app	developers	to	quickly
create	wireframes	and	prototypes	for	user	interfaces.	A	good	selection	of	the
most	appreciated	tools	can	be	found	at	the	following	link:

http://www.dezinerfolio.com/2011/02/21/14-prototyping-and-wireframing-tools-
for-designers

http://www.dezinerfolio.com/2011/02/21/14-prototyping-and-wireframing-tools-for-designers

The	button	size

We	suggest	you	put	an	extra	amount	of	attention	to	defining	the	proper	size	for
your	game	buttons.	There's	no	point	in	having	buttons	on	the	screen	if	the	player
can't	press	them.

This	is	especially	true	with	games	that	use	virtual	pads.	As	virtual	buttons	tend
to	shadow	a	remarkable	portion	of	a	mobile	device,	there	is	a	tendency	to	make
them	as	small	as	possible.	If	they	are	too	small,	the	consequences	can	be
catastrophic,	as	the	players	won't	be	able	to	even	play	your	game,	let	alone	enjoy
it.	Street	Fighter	IV	for	the	iPhone,	for	example,	implements	the	biggest	virtual
buttons	available	on	the	Apple	Store.

Check	them	in	the	following	figure:

	

When	designing	buttons	for	your	game	interface,	take	your	time	to	make	tests
and	find	an	optimal	balance	between	the	opposing	necessities	of	displaying
buttons	and	saving	as	much	screen	space	as	possible	for	gameplay.

The	main	screen

The	main	goal	of	the	first	interactive	game	screen	of	a	title	should	be	to	make	it
easy	to	play.	It	is	thus	very	important	that	the	PLAY	button	is	large	and
distinctive	enough	for	players	to	easily	find	it	on	the	main	screen.

The	other	options	that	should	be	available	on	the	main	screen	may	vary
depending	on	the	characteristics	of	each	specific	game,	although	some	are
expected	despite	the	game	genre,	such	as	OPTIONS,	LEADERBOARDS,
ACHIEVEMENTS,	BUY,	and	SUPPORT.

The	following	image	represents	the	main	screen	of	Angry	Birds,	which	is	a
perfect	example	of	a	well-designed	main	screen.	Notice,	for	example,	that
optional	buttons	on	the	bottom	part	of	the	screen	are	displayed	as	symbols	that
make	it	clear	what	is	the	purpose	of	each	one	of	them.	This	is	a	smart	way	to
reduce	issues	related	with	translating	your	game	text	into	different	languages.

	

Test	and	iterate

Once	the	former	steps	are	completed,	start	testing	the	game	interface.	Try	every
option	available	to	check	that	the	game	interface	actually	provides	users	with
everything	they	need	to	correctly	play	and	enjoy	your	game.

Then	ask	other	people	to	try	it	and	get	feedback	from	them.	As	you	collect
feedback,	list	the	most	requested	modifications,	implement	them,	and	repeat	the
cycle	until	you	are	happy	with	the	actual	configuration	you	came	up	with	for
your	game	interface.

Evergreen	options

In	the	last	section	of	this	chapter,	we	will	provide	some	considerations	about
game	options	that	should	always	be	implemented	in	a	well-designed	mobile
game	UI,	regardless	of	its	genre	or	distinctive	features.

Multiple	save	slots

Though	extremely	fit	for	gaming,	today's	smartphones	are	first	of	all	phones	and
multi-purpose	devices	in	general,	so	it	is	very	common	to	be	forced	to	suddenly
quit	a	match	due	to	an	incoming	call	or	other	common	activities.

All	apps	quit	when	there	is	an	incoming	call	or	when	the	player	presses	the	home
button	and	mobile	games	offer	an	auto-saving	feature	in	case	of	such	events.

What	not	all	games	do	is	to	keep	separate	save	states	for	every	mode	the	game
offers	or	for	multiple	users.

Plants	vs.	Zombies,	for	example,	offers	such	a	feature:	both	the	adventure	and
the	quick	play	modes,	in	all	their	variations,	are	stored	in	separate	save	slots,	so
that	the	player	never	loses	his/her	progresses,	regardless	of	the	game	mode
he/she	last	played	or	the	game	level	he/she	would	like	to	challenge.	The
following	is	a	screenshot	taken	from	the	main	screen	of	the	game:

	

A	multiple	save	option	is	also	much	appreciated	because	it	makes	it	safe	for	your
friends	to	try	your	newly	downloaded	game	without	destroying	your	previous
progresses.

Screen	rotation

The	accelerometer	included	in	a	large	number	of	smartphones	detects	the
rotation	of	the	device	in	the	3D	space	and	most	software	running	on	those
devices	rotate	their	interface	as	well,	according	to	the	portrait	or	landscape	mode
in	which	the	smartphone	is	held.

With	games,	it	is	not	as	easy	to	deal	with	such	a	feature	as	it	would	be	for	an
image	viewer	or	a	text	editor.	Some	games	are	designed	to	exploit	the	vertical	or
horizontal	dimension	of	the	screen	with	a	purpose,	and	rotating	the	phone	is	an
action	that	might	not	be	accommodated	by	the	game	altogether.

Should	the	game	allow	rotating	the	device,	it	is	then	necessary	to	adapt	the	game
interface	to	the	orientation	of	the	phone	as	well,	and	this	generally	means
designing	an	alternate	version	of	the	interface	altogether.	It	is	also	an	interesting
(and	not	much	exploited)	feature	to	have	the	action	of	rotating	the	device	as	part
of	the	actual	gameplay	and	a	core	mechanic	for	a	game.

Calibrations	and	reconfigurations

It	is	always	a	good	idea	to	let	players	have	the	opportunity	to	calibrate	and/or
reconfigure	the	game	controls	in	the	options	screen.

For	example,	left-handed	players	would	appreciate	the	possibility	of	switching
the	game	controls	orientation.

When	the	accelerometer	is	involved,	it	can	make	a	lot	of	difference	for	a	player
to	be	able	to	set	the	sensibility	of	the	device	to	rotation.	Different	models	with
different	hardware	and	software	detect	the	rotation	in	the	space	differently	and
there's	no	single	configuration	which	is	good	for	all	smartphones.	So	let	players
calibrate	their	phones	according	to	their	personal	tastes	and	the	capabilities	of
the	device	they	are	handling.	Several	games	offer	this	option.

Challenges

As	games	become	more	and	more	social,	several	options	have	been	introduced
to	allow	players	to	display	their	score	on	public	leaderboards	and	compete
against	friends.

One	game	which	does	that	pretty	well	is	Super	7,	an	iPhone	title	that	displays,	on
the	very	top	of	the	screen,	a	rainbow	bar	which	increases	with	the	player's	score.
When	the	bar	reaches	its	end	on	the	right	half	of	the	screen,	it	means	some	other
player's	score	has	been	beaten.	It	is	a	nice	example	of	a	game	feature	which
continually	rewards	the	player	and	motivates	him	as	he	plays	the	title.

Experiment

The	touch	screen	is	a	relatively	new	control	scheme	for	games.	Feel	free	to	try
out	new	ideas.	For	example,	would	it	be	possible	to	design	a	first	person	shooter
that	uses	the	gestures	we	outlined	in	the	previous	chapter,	instead	of	traditional
virtual	buttons	and	D-pad?	The	trick	is	to	keep	the	playfield	as	open	as	possible
since	the	majority	of	smart	devices	have	relatively	small	screens.

Summary
During	the	course	of	this	chapter	we	introduced	some	basic	theory	behind
interface	design	with	The	Theory	of	Affordances	by	Gibson	and	the	book	The
Design	of	Everyday	Things	by	Norman.

Then	we	moved	to	the	specific	aspects	of	videogame	interface	design,	describing
the	diegesis	theory	and	listing	some	fundamental	problems	related	to	the	creation
of	optimal	interfaces	for	videogames.

In	the	last	part	of	the	chapter,	we	suggested	some	of	the	best	practices	for
videogame	interface	design	and	mentioned	a	few	options	that	no	game	should
lack.

In	the	following	chapter	we	will	discuss	game	engines,	their	features,	and	how	to
take	full	advantage	of	their	potential.

Chapter	8.	Mobile	Game	Engines
A	game	engine	is	a	software	used	to	develop	and	run	games.	It	is	based	on	a
collection	of	tools	to	create	or	import	all	assets	and	elements	of	a	videogame,
and	pull	them	together	to	make	them	work	as	a	whole.	Rendering,	materials	and
lighting,	physics,	particle	effects,	collision	detection	and	management,	AI	and
gameplay	scripting,	GUI	design	and	game	controls:	a	good	game	engine	either
allows	to	directly	create	such	game	elements	and	functions,	or	offers	the
possibility	to	import	elements	and	assets	from	other	software.	For	example,	3D
models	are	usually	created	with	third-party	programs	such	as	3D	Studio	Max	or
Maya,	and	are	then	imported	with	a	specific	file	format	(such	as	*.fbx	files)	in
the	game	engine

In	this	chapter,	we	will	cover	the	following	topics:

What	a	game	engine	is
What	engines	can	do
The	main	characteristics	of	the	most	popular	game	engines
The	first	part	of	the	tutorial	to	create	a	game	with	Unity	3D

For	quite	a	long	time,	game	companies	used	to	create	their	own	game	engines
and	then	used	that	technology	to	develop	a	series	of	titles	to	recoup	the	costs	and
speed	up	the	development	process.	Lucas	Arts'	SCUMM	engine	which	powered
so	many	graphic	adventures,	the	id	Tech	engine	developed	by	John	Carmack	(id
Software)	for	the	Quake	saga,	or	the	Unreal	Engine	are	examples	of	popular
game	engines	created	and	used	by	game	companies	to	develop	their	own	games.

As	the	costs	to	build	a	game	engine	from	scratch	improved	with	the	quick
advancement	of	computer	technologies,	many	developers	began	licensing	their
engines	or	even	turned	their	whole	business	towards	the	creation	of	game
engines	and	other	game-related	middleware,	rather	than	games.	At	the	same
time,	smaller	companies	found	the	opportunity	to	invest	their	money	in	buying
the	license	of	an	already	crafted	and	bug-proven	engine,	rather	than	developing
their	own,	resulting	in	saved	time	and	money,	and	the	opportunity	to	begin
development	from	day	one.

This	aspect	is	especially	true	for	mobile	indie	teams,	there	are	so	many	full-
featured	engines	available	today	which	target	single	or	multiple	platforms,	each
with	its	own	strengths	(and	weaknesses),	that	there	is	really	no	reason	for	not
using	them.	We	strongly	suggest	you	to	follow	this	advice,	unless	your	goal	as

using	them.	We	strongly	suggest	you	to	follow	this	advice,	unless	your	goal	as
developers	is	to	sell	engines	and	middleware	to	game	developers,	spend	some
time	understanding	your	specific	needs,	research	on	the	Internet	to	find	the
engine	that	best	fits	those	needs,	then	get	that	engine	and	begin	developing	your
game.	You	will	find	this	process	easier,	faster,	and	cheaper	than	building	your
own	tools	from	scratch.

What	engines	can	do
As	we	said,	there	are	several	engines	to	choose	from.	Some	are	very	easy	to	pick
up	and	learn,	though	limited	in	their	capabilities,	which	makes	them	excellent
tools	for	educational	purposes.	Others	target	a	single	platform,	as	it	is	with
Cocos2D,	which	in	its	first	versions	only	allowed	game	development	for	the
iOS.	Most	game	engines,	on	the	other	hand,	target	multiple	platforms,	as	is	a
more	profitable	marketing	strategy	to	widen	the	potential	gamers	audience	as
much	as	possible.	There	are	even	engines	which	are	considered	genre-specific,
as	it	is	the	case	with	the	Unreal	Engine,	which	many	people	regard	as	the	perfect
tool	for	crafting	only	3D	shooters,	although	several	unconventional	games
showed	that	with	good	ideas	and	a	little	bit	of	programming,	almost	any	game
genre	can	be	developed	with	a	professional	tool.

There	are	several	functions	that	all	game	engines	share.	In	the	following
sections,	we	will	list	the	most	important.

Importing	graphic	assets:	All	game	engines	offer	the	possibility	to	import
graphics	assets	for	games.	2D-oriented	engines	allow	users	to	import	sprites	and
spritesheets,	tilesets,	and	background	images,	while	3D	engines	import	3D
models,	materials,	textures,	and	animations.	Depending	on	the	specific
characteristics	of	each	game	engine,	not	all	file	formats	may	be	supported.	When
choosing	the	game	engine	for	your	next	game,	be	sure	that	*.png	files	are
supported	for	2D	assets	and	that	a	3D	engine	supports	the	*.fbx	file	format,	as
this	format	imports	3D	meshes	together	with	materials,	textures,	and	animations,
in	a	single	operation.

Creating	game	levels	and	environments:	Regardless	of	whether	they	are	2D-or
3D-oriented,	game	engines	offer	the	possibility	to	design	game	levels	with	the
graphic	assets	imported	from	a	third-party	software.	It	can	be	the	disposition	of
platforms	for	a	2D	game	or	the	terrains	of	a	3D	game.	Clearly,	the	creation	of
game	levels	with	a	3D	engine	is	far	more	complex	than	assembling	levels	for	a
2D	platform,	as	3D	requires,	for	example,	to	deploy	light	sources,	which	is	a	task
of	its	own.	It	is	not	by	chance	that	people	working	at	the	creation	of	3D	game
levels	are	called	environmental	artists!

Adding	audio	to	a	game:	Game	engines	provide	tools	to	implement	audio	in
your	game,	may	it	be	sound	effects,	which	are	played	when	specific	events	occur

or	the	background	music	to	make	it	more	immersive.	Engines	also	usually	allow
users	to	perform	sound	editing,	such	as	tuning	the	volume	or	changing	the	pitch
to	better	merge	them	into	the	gameplay	experience.

Creating	the	UI	for	the	game:	As	any	game	requires	a	UI,	game	engines
provide	the	tools	to	design	game	controls	and	the	graphic	interface	for	your
game.	It	is	generally	a	set	of	buttons	and	labels	to	display	useful	info	to	the
player,	but	the	most	professional	software	even	offer	compatibility	with
middleware	tools	to	create	very	advanced,	dynamic	GUIs,	as	is	the	case	of
Scaleform,	used	to	craft	the	interface	of	popular	games	such	as	Batman	Arkham
Asylum	and	Mass	Effect.

Programming	the	enemy	AI	and	script	game	events:	Not	all	engines	provide
effective	enemy	AI	design	tools.	For	example,	in	its	former	free	versions,	Unity
3D	was	offered	with	no	built-in	tool	to	create	paths	for	game	characters,	while
the	Unreal	Engine	implemented	waypoints	and	navigation	meshes	as	part	of	the
engine	itself,	from	the	very	beginning.	When	a	useful	function	is	not	natively
implemented	by	a	game	engine,	and	pathfinding	is	one	such	function,	it	is	very
common	that	a	third-party	developer	created	those	tools.	Such	is	the	case	with
the	A*	Pathfinding	Project	for	Unity,	a	package	developed	by	Aron	Granberg
that	provides	pathfinding	and	navigation	meshes	management	for	Unity.	You
can	check	it	out	at	http://arongranberg.com/astar/docs/index.php.

On	the	other	hand,	all	game	engines	offer	the	opportunity	to	code	game	events
triggered	by	the	players'	actions.	The	task	is	usually	achieved	through	a	scripting
language	that	is	easy	to	grasp	(when	compared	to	a	programming	language)	and
allows	quick	and	easy	implementation	of	game	events.	Lua	is	a	scripting
language	implemented	by	popular	game	engines	such	as	Corona	SDK.
JavaScript	is	another	and	it	is	used,	for	example,	to	script	events	in	Unity	3D.
Other	engines	may	implement	their	own	scripting	languages,	as	it	is	the	case	of
the	Unreal	Engine	(UnrealScript)	or	GameMaker	(GameMakerLanguage).

Building	the	executable	of	a	game:	The	last	feature	no	engine	can	miss	is
cooking	everything	you	put	inside	your	game	to	create	the	final	build,	the
executable	file	which	will	be	downloaded	by	your	players.	The	build	of	a	game
is	basically	the	final	result	you	get	from	a	game	engine	after	you	spent	weeks	or
months	feeding	it	with	graphic	assets,	script	files,	audio,	and	anything	else	you
needed	for	your	game.	Depending	on	the	scope	of	the	game	you	developed,
cooking	the	final	build	can	take	minutes	to	hours.	It	took	us	around	14	hours	to

http://arongranberg.com/astar/docs/index.php

cook	the	final	build	of	our	FPS	XX	The	Breach,	developed	with	UDK!

What	engines	can't	do
Generally	speaking,	each	game	engine	has	a	slogan,	which	more	or	less	tells	you
that	you	can	achieve	everything	without	doing	anything	with	that	engine,	the
most	advertised	sentence	being	"without	any	coding".	Our	advice	is	to	distrust
such	statements	if	a	game	engine	doesn't	allow	to	add	your	personal	pieces	of
code	in	one	way	or	another,	maybe	it	is	just	a	poor	tool,	probably	designed	for
specific	tasks	and	which	may	not	fit	your	specific	game	design	needs.

Game	engines
Generally	speaking,	each	engine	can	serve	several	purposes	with	regard	to	game
genre	and	no	engine	can	be	described	as	a	single-gameplay-style-oriented	one.
But	it	is	also	true	that	each	engine	has	its	own	weaknesses	and	strengths,	which
make	it	more	or	less	fit	for	a	specific	game	genre,	a	technology,	or	gameplay
styles.	In	the	following	sections,	we	are	going	to	provide	a	selection	of	different
game	engines,	mentioning	useful	information	on	their	strengths	and	weaknesses,
and	analyze	which	purposes	each	one	serves	the	best.	Our	selection	won't
obviously	include	all	game	engines	available	as	we	write,	we	will	only	focus	on
the	most	popular,	with	regard	to	their	features,	target	platforms,	and	professional
versus	educational	purposes.

2D	game	engines

Generally	speaking,	there	are	several	reasons	why	a	newly	assembled	team
should	begin	dealing	with	2D	games.

One	is	that	touchscreens	of	today's	smartphones	offer	a	better	support	for	2D-
style	gameplay.	Another	is	that	2D	games	are	usually	easier	to	develop,	as	they
require	less	mathematics	and	algebra	to	be	coded,	while	sprites	and	2D
backgrounds	are	easier	to	craft.	Finally,	2D	games	have	lower	hardware
requirements	to	run	on	mobile	devices.

As	you	are	going	to	begin	the	development	of	your	first	game,	we	suggest	you	to
go	for	a	2D	game.	The	following	engines	can	help	you	fulfill	this	goal.

Torque	2D

Torque	2D	is	a	2D	game	engine,	which	is	based	on	the	popular	Torque	Game
Engine	developed	by	Garage	Games	(http://www.garagegames.com/).

A	former	version	of	the	engine,	called	iTorque,	was	designed	to	develop	games
specifically	for	the	iOS	platform,	though	its	latest	incarnation	also	supports
publishing	for	Windows	OS	and	thus	the	development,	for	example,	of	browser
games.	We	will	now	review	the	features	of	Torque	2D:

Torque	2D	provides	a	very	intuitive	drag-and-drop	interface	and	a	robust
C++-based	scripting	language	called	TorqueScript,	which	makes	game
prototyping	quick	and	easy.
It	supports	OpenAL	libraries	for	full-featured	sound	capabilities	and	a
physics	engine	called	Box2D	to	add	physics	to	your	gameplay.
Its	simple	WhatYouSeeIsWhatYouGet	interface,	which	supports	several
image	formats,	particle	systems,	and	tilemaps	among	the	others,	allow	even
inexperienced	users	to	make	their	own	high-quality	games,	thanks	to	a
strong	community	support	and	very	little	coding	required.
Torque	2D	also	features	built-in	multiplayer	and	Internet	game	support	to
further	enhance	the	gameplay	of	your	titles	while	keeping	performances
high.
As	it	is	based	on	the	popular	Torque	3D	engine,	Torque	2D	is	a	very	solid
and	mature	development	tool,	which	has	been	recently	upgraded	to	support
3D	models	to	create	interesting	mixtures	of	2D	and	3D	elements,	though	it
is	customized	for	2D	gameplay.	If	you	aim	towards	the	creation	of	full-3D

http://www.garagegames.com/

games,	there	are	better	options	available,	which	we	will	analyze	in	the
following	sections	of	this	chapter.
Torque	2D	is	based	on	C++	source	code	and	as	such	it	requires	an	installed
C++	compiler	to	make	the	final	build	of	your	games.	A	license	is	also
required	to	make	use	of	this	game	engine,	which	is	around	$1000	as	we
write.

Cocos2D

Cocos2D	is	an	open	source,	free	framework,	based	on	an	MIT	license,	which
allows	development	of	games	for	the	iOS	and	Android.	Its	architecture	is	based
on	a	pre-existing	engine	written	in	Python	and	first	converted	to	Objective-C	for
the	iPhone,	and	then	to	JavaScript	to	support	Android	development.

Cocos2D	is	excellent	for	the	first	time	developer	for	the	following	reasons:

An	intuitive	interface
A	full	set	of	libraries	including	Box2D	and	Chipmunk	physics	engine
It's	open	source	and	free
It	allows	mixing	native	and	external	C++	libraries	to	extend	its	capabilities
It	now	supports	3D
It	has	a	strong	user	community

There	are	a	few	disadvantages	of	Cocos2D:

You	are	stuck	with	iOS.	There	is	no	native	support	for	Android,	so	you	will
have	to	port	to	JavaScript.
Objective-C	has	a	fairly	steep	learning	curve;	so	previous	experience	with
C++	is	recommended.

Being	approved	by	Apple	and	with	almost	3000	titles	available	on	the	Apple
Store	developed	with	this	tool,	Cocos2D	is	definitely	a	good	choice	for	any	indie
mobile	team	interested	in	making	2D	games.

You	may	want	to	check	the	following	link	for	a	list	of	best	practices	when	using
Cocos2D:

http://www.cocos2d-iphone.org/wiki/doku.php/prog_guide:best_practices

Corona	SDK

Corona	SDK	is	another	mobile-oriented	engine,	which	allows	developing	2D

http://www.cocos2d-iphone.org/wiki/doku.php/prog_guide:best_practices

games	for	the	iPhone,	iPad,	and	Android	devices.	It	is	based	on	OpenGL
libraries	and	C++	programming	language,	though	it	also	integrates	scripting	with
Lua.

Corona's	advantages	are	as	follows:

The	use	of	Lua	makes	it	easy	to	compile	for	iOS	and	Android	from	the
same	code	base.	This	saves	time	and	money	for	multiplatform	development.
Lua	is	a	very	efficient	scripting	language,	resulting	in	a	fraction	of	the
number	of	lines	of	code	than	needed	in	Objective-C	for	example.
It	supports	standard	physics	libraries	such	as	Box2D.
It	has	a	strong	community	of	people	to	help	with	development	issues.
Corona	offers	built-in	support	for	the	distinctive	hardware	features	of
today's	smartphones,	such	as	the	accelerometer,	the	GPS,	the	compass,	and
the	camera.
This	engine	offers	a	very	interesting	licensing	policy,	you	can	download	the
engine	and	use	all	of	its	features	for	free,	and	then	pay	only	if	you	wish	to
create	builds	for	the	iOS	or	Android	(though	they	have	separate	costs).

And	now	the	downside	of	Corona	SDK:

Android	support	is	pretty	bad,	causing	any	kind	of	flaw	you	can	imagine.
Inconsistency	between	the	performances	you	get	from	the	simulator	(yes,
Corona	SDK	offers	a	simulator	to	run	your	tests!)	and	the	actual	device.
Unexpected	crashes	without	proper	reporting,	which	generated	a	common
statement	among	the	community	of	developers	that	Corona	is	not	fit	to
develop	for	the	Android	platform	at	all.	Corona	SDK	requires	your	code	to
be	uploaded	to	Ansca	Mobile	servers	for	compilation.	You	send	them	your
code	and	they	return	you	the	executable.	This	fact	has	two	main
consequences:	the	first	is	that,	if	you	are	offline,	you	can't	compile	your
code.	The	second	and	more	severe	problem	is	that	you	must	send	them	your
code,	without	knowing	what	they	actually	do	with	it,	as	Ansca	Mobile	is
known	for	not	being	particularly	transparent	about	its	internal	procedures.
Finally,	many	users	complain	that	applications	developed	with	Corona	SDK
tend	to	be	slower	when	compared	to	other	frameworks	and	it	doesn't	allow
integration	with	external	libraries.

3D	game	engines

Though	mobile	gaming	instilled	new	life	in	2D	titles	and	strongly	propelled	old-
school	game	mechanics	to	appeal	to	the	casual	audience,	as	demonstrated	by	the
large	popularity	of	2D	games	such	as	Angry	Birds,	Fruit	Ninja,	or	Jetpack
Joyride,	3D	is	the	players'	most	expected	feature	in	today's	games.

What	follows	here	is	a	description	of	the	most	popular	game	engines	which	we
recommend	to	develop	3D	games	for	mobile.

Shiva	3D

Shiva	3D	is	a	3D	game	engine	developed	by	StoneTrip
(http://www.stonetrip.com/),	which	can	be	used	to	develop	games	for	any	target
platform	you	may	choose,	such	as	Windows	and	Windows	Phone,	OSX	and	iOS,
Linux,	Android,	Blackberry,	PSP,	and	Wii.	With	the	release	of	the	Android	SDK
in	2010,	Shiva	3D	was	the	first	engine	to	support	the	development	of	3D	games
for	the	Android	platform.

Shiva's	advantages	are	as	follows:

Shiva	3D	supports	native	C++	compilation,	which	means	you	can	import
your	own	libraries	to	add	functionality	to	your	games
It	uses	Lua	as	its	scripting	language
Though	it	is	claimed	to	work	with	Mac	OS	X	through	parallels,	Shiva	3D
editor	is	Windows-only,	which	means	that	you	don't	need	to	own	a	Mac	to
develop	iOS	titles
Unlike	other	engines,	what	is	displayed	in	the	editor	windows	of	Shiva	3D
is	almost	equal	to	the	final	rendering	you	get	after	building	your	app
The	lightmapping	is	generally	of	high	quality,	performs	pretty	well	on
mobile	devices,	and	dynamic	shadows	are	fully	supported
It	includes	libraries	to	manage	basic	pathfinding	and	allows	control	of	it
through	scripting,	which	saves	development	time
The	same	project	file	can	be	compiled	for	any	target	platform
Finally,	when	compared	to	its	competitors,	Shiva	3D	is	quite	cheap,	as	the
editor	is	free	to	use	and	a	license	is	required	just	to	publish	games

The	flexibility	Shiva	3D	offers	with	regard	to	the	target	platforms	it	can	address,
comes	at	a	price,	though:

http://www.stonetrip.com/

Shiva	3D	doesn't	support	popular	3D	file	formats	such	as	*.fbx	or	*.obj,
as	other	engines	do,	and	it	only	imports	*.DAE	files.	Several	users	also
claim	that	the	only	way	they	could	import	3D	models	and	their	mapped
textures	in	the	editor	was	thanks	to	a	third-party	software,	namely	Ultimate
Unwrap	Pro	(http://www.unwrap3d.com/u3d/index.aspx).
The	learning	curve	to	get	proficient	with	the	interface	is	quite	steep,	and	the
editor	doesn't	allow	reconfiguring	the	layout	of	the	different	windows	of	the
editor,	which	can	only	be	set	according	to	a	list	of	predefined	layouts.
The	physics	engine	is	claimed	to	be	very	limited.
The	error	messages,	which	may	occur	when	building	your	app	are	vague
and	not	very	helpful	(a	trait	unfortunately	shared	by	its	main	competitor
Unity	3D).
The	documentation	is	sparse	and	poor.
The	most	frustrating	feature	of	Shiva	3D	in	the	opinion	of	users	is	the
terrain	editor.	Differently	from	its	competitor,	the	terrain	editor	in	Shiva	3D
is	implemented	through	chunks,	which	are	a	bit	tricky	to	select	and	keep
selected	as	you	sculpt	the	terrain,	with	the	result	that	creates	terrains	with
Shiva	3D	requires	a	lot	of	time	and	effort.

In	conclusion,	Shiva	3D	is	a	very	good	tool	that	offers	a	perfect	balance	between
costs	and	capabilities,	which	make	it	especially	fit	for	teams	with	a	low	budget.
There	are	better	tools	available	on	the	market,	but	they	all	cost	much	more	than
Shiva	3D.

Unity	3D

Unity	3D	is	a	cross-platform	engine	developed	by	Unity	Technologies,	which
can	be	used	to	create	games	for	desktop	PCs,	the	Web,	consoles,	and	mobile
devices.	It	is	the	most	popular	game	engine	used	by	game	developers	today
(especially	indie	teams)	and	the	one	that	first	offered	to	small,	indie	developers
the	opportunity	to	develop	their	projects	with	a	professional,	almost	full-featured
tool	coming	with	a	low	cost,	and	thus	affordable	license.	It	can	be	said	that	if
we've	got	so	many	almost-free	engines	available	today,	a	big	chunk	of	the	credit
goes	to	the	success	of	Unity.

The	engine	is	written	in	C/C++	(thus	allowing	extension	of	its	capabilities	with
external	libraries)	and	supports	scripting	through	JavaScript,	C#,	and	Boo.	The
Version	4.0	is	the	latest	update	to	the	tool	and	it	comes	in	two	main	licenses	as
we	write;	the	free	license	with	limited	capabilities	and	the	Pro	license,	which

http://www.unwrap3d.com/u3d/index.aspx

costs	$1500	and	offers	all	the	features	supported	by	the	engine.	Still,	with	the
Pro	version	of	Unity	3D,	separate	licenses	are	required	to	create	builds	for
Android,	iOS,	and	Adobe	Flash	Player.	You	can	refer	to	the	following	link	for	a
detailed	description	of	the	different	license	available	and	their	costs:
https://store.unity3d.com/.	With	a	cost	of	$1500	for	the	Pro	version,	the	Unity
3D	full-featured	license,	which	allows	creating	game	builds	for	the	mobile
market	is	not	cheap,	when	compared	to	its	competitors!

On	the	other	hand,	there	are	several	features	supported	by	Unity	such	as	post-
processing,	physics,	bump	and	reflection	mapping,	ambient	occlusion,	dynamic
shadows,	and	render	to	texture	functions,	among	the	others.

The	interface	is	very	intuitive	and	the	actions	required	to	create	assets	and	so-
called	Prefabs	(game	assets	that	can	be	instantiated	at	will	into	the	game)	are
handled	with	extreme	simplicity;	you	perform	most	of	the	actions	through	a
drag-and-drop	interface,	which	for	example	allows	adding	a	script	to	control	the
behavior	of	a	game	object	by	simply	dragging	the	script	on	the	game	object	itself
in	the	editor	window.

There	are	many	reasons	that	help	make	Unity	3D	the	perfect	tool	for	a	mobile
indie	team.	Its	interface	is	intuitive	and	very	easy	to	grasp.	The	editor	is	quite
powerful	and	allows	to	quickly	prototype	game	mechanics	with	few	mouse
clicks.	Unity	3D	supports	all	major	3D	file	formats,	*.fbx	in	particular,	so	that
you	can	easily	work	with	professional	software	such	as	3D	Studio	Max	or	Maya,
and	then	import	the	result	in	Unity	without	compatibility	problems.	Support	is
really	strong,	both	by	the	community	of	users,	which	is	always	ready	to	provide
the	answers	to	any	problem	you	may	face	in	the	dedicated	forums,	and	by	the
developers,	as	Unity	comes	with	very	detailed	and	extensive	documentation.

Unfortunately,	there	are	also	reasons	why	not	all	developers,	especially	the	true
professionals,	are	so	fond	of	Unity	3D.	As	it	often	happens	with	many	engines,
once	the	initial	enthusiasm	for	its	intuitive	interface	goes	down,	problems	start
arising.	First	of	all	the	quality	of	lights	and	rendered	graphics	in	Unity	is	not	as
good	as	other	tools,	unless	you	know	how	to	code	your	own	shaders.	Shadows
tend	to	look	low	resolution,	and	as	we	already	mentioned,	dynamic	shadows	are
only	available	with	the	Pro	version.	The	terrain	editor	looks	dated,	as	for
example,	it	doesn't	allow	creating	destructible	terrains.	The	physics	engine	is
blamed	for	creating	performance	issues	and	there's	no	native	pathfinding,	nav-
mesh,	or	AI	support,	unless	you	turn	to	the	latest	pro	version	of	the	engine	or
third-party	middleware.	Finally,	as	we	stated	previously,	Unity	is	not	cheap	for

https://store.unity3d.com/

third-party	middleware.	Finally,	as	we	stated	previously,	Unity	is	not	cheap	for
the	average	indie	developer,	to	create	games	for	the	mobile	market	you	are
required	to	invest	not	less	than	$3000	in	licenses.

Before	ending	this	section	on	Unity	3D,	we	would	like	to	mention	the	Asset
Store.	It	is	a	collection	of	asset	packages	which	contain	3D	models,	textures,
materials,	sound	effects,	particle	systems,	scripts,	and	networking	resources
which	can	be	bought	and	then	implemented	in	your	game.	The	Asset	Store
allows	the	community	around	Unity	3D	to	share	contents	and	has	turned	this
engine	into	a	perfect	tool	to	begin	the	game	developing	business.

In	the	following	screenshot	you	can	appreciate	a	popular	game	developed	with
Unity	3D:	CSR	Racing	by	Natural	Motion	for	the	iPhone.

	

Top-quality	engines

Among	so	many	engines	available	to	create	games,	there	are	some	which	simply
are	capable	of	reaching	higher	standards	with	regard	to	quality,	visual	quality	in
particular.

The	Unreal	Engine	is	one	such	tool,	credited	by	most	users	as	the	only	really
good	engine	to	develop	games	which	meets	the	actual	industry	standards.

In	the	next	section,	we	will	provide	a	description	of	the	characteristics	of	the
Unreal	Engine	and	its	development	kit.

Unreal/UDK

The	Unreal	Engine	is	the	3D	game	engine	developed	by	Epic	for	its	popular
Unreal	saga,	available	today	in	its	3rd	generation	and	which	powered	games
such	as	Gears	of	War,	Batman:	Arkham	Asylum,	or	the	Mass	Effect	franchise,
just	to	mention	a	few.	In	2009,	Epic	released	to	the	general	public	a	free	version
of	the	UE3	SDK,	called	Unreal	Development	Kit,	thus	offering	the	community
of	indie	game	developers	a	tool	like	they	never	had	before.

Though	the	engine	was	designed	with	shooters	in	mind	(the	Unreal	games	were
first	person	shooters),	it	has	been	successfully	adapted	over	time	to	several	other
game	genre	and	applications,	ranging	from	3rd	person	games	(shooters,	action
games,	and	RPGs),	stealth	games,	melee	fighting	games	(we	suggest	you	to	have
a	look	at	the	very	interesting	Chivalry	Medieval	Warfare	shown	in	the	following
picture.	The	link	to	the	game	is	http://www.chivalrythegame.com/),	and	MMOs,
but	also	to	create	detailed	3D	simulations,	serious	games	and	training	software:

http://www.chivalrythegame.com/

	

The	rendering	capabilities	of	the	Unreal	Engine	are	what	makes	it	better	than
most	of	its	direct	competitors,	as	it	supports	many	advanced	features	such	as
HDRR,	pixel	per	lighting,	dynamic	shadows,	and	global	illumination,	as	well	as
advanced	physics,	destructible	environments,	and	crowd	simulations.

The	Unreal	Engine	also	offers	a	complete	set	of	tools	to	create	beautiful	assets
for	your	games,	featuring	a	very	advanced	material	editor,	the	AnimEditor	to
manage	3D	characters	animations,	and	the	possibility	to	create	terrains	and	level
geometries,	this	one	in	particular	being	a	feature	which	other	engines	lack.

The	Unreal	Engine	is	written	in	C++	and	offers	both	a	visual	scripting	tool	called
Kismet,	and	a	scripting	language	called	UnrealScript	to	extend	classes	and	code
behaviors	for	the	actors	of	your	games.

The	editor	is	offered	with	a	free	license,	though	a	fee	of	$99	is	required	to	sell
games	and	25	percent	royalties	must	be	paid	to	Epic,	if	your	games	earn	money
above	the	threshold	of	$50,000.

In	2010,	Epic	released	its	first	iOS	game	called	Infinity	Blade,	a	sort	of	tech-
demo	to	show	the	potential	of	the	engine	with	regard	to	mobile	development,
which	reached	the	top	of	the	iTunes	App	Store	charts,	was	named	by	IGN	as	the
Best	iPhone	Game	of	the	Year	and	won	several	other	awards	in	Best	Action	and
Best	Graphics	categories.	With	Infinity	Blade,	Epic	declared	to	the	world	that
yes,	mobile	games	could	definitely	be	developed	with	UDK!

You	can	have	a	look	at	the	breathtaking	graphics	of	the	Infinity	Blade	in	the
following	screenshot:

	

On	the	negative	side,	there's	complexity.	Though	the	editor	interface	is	clear	and
well-structured,	still	you	need	a	lot	of	practice	to	grasp	its	full	potential.	Every
tool	included	in	the	development	kit	is	a	software	of	its	own	which	requires	time
and	practice	to	be	mastered,	given	that	mastering	each	one	of	them	is	even
possible.

The	Unreal	Engine	allows	the	best	graphic	quality	standards	to	be	reached,	but	it
doesn't	do	it	by	itself.	It	will	take	a	lot	of	time	to	learn	its	intricacies	and	many
attempts	resulting,	inevitably,	in	failures,	before	you	get	the	graphic	quality	you
ever	dreamed	of	for	your	games.

UDK	doesn't	offer	any	access	to	its	source	C++	code,	which	means	that
whenever	you	need	to	implement	some	specific	functionality,	you	first	need	to
understand	how	things	are	done	according	to	its	internal	logic	and	to	class
mutual	dependencies,	and	then	adapt.	Delving	through	the	classes	of	UDK	can
be	a	painful	process	(as	we	showed	in	a	former	chapter),	which	requires	unreal
patience	and	which	you	cannot	expect	to	accomplish	before	stepping	into	many
failures.

Finally,	there	is	the	license	cost;	giving	25	percent	of	the	revenues	to	Epic	in

Finally,	there	is	the	license	cost;	giving	25	percent	of	the	revenues	to	Epic	in
case	your	sales	go	well	means	that	compared	to	other	available	engines,	UDK
costs	a	lot	more.

That	said,	if	you	are	ready	to	put	time	and	effort	in	the	learning	process,	UDK
grants	the	possibility	of	creating	high-end	games,	which	clearly	stand	out	from
the	mass	of	titles	available	for	any	platform.	Many	teams,	even	small	indie	ones,
succeeded	in	developing	well-crafted	games	and	made	a	name	for	themselves,
thanks	to	this	wonderful	tool.	Whatever	the	engine	you	put	your	hands	on	when
you	begin	your	adventure	in	the	industry	of	game	development,	UDK	is	the
point	you	should	arrive	at,	sooner	or	later.

Educational	engines

In	the	last	section	dedicated	to	game	engines,	we	will	describe	two	engines	that
are	particularly	fit	for	educational	purposes,	due	to	a	very	friendly	visual
interface.	Despite	the	fact	that	some	nice	games	have	been	created	with	such
tools,	no	true	professional	would	recommend	them,	these	are	software	for
beginners	who	can	use	them	to	understand	what	a	game	engine	is	and	how	to
create	a	complete	game	from	scratch.

GameMaker

GameMaker	is	a	very	interesting	game	engine	developed	by	Mark	Overmars	and
published	by	YoYoGames.	Its	main	feature	is	that	it	allows	to	quickly	create	2D
games	without	any	need	to	write	anything.	The	interface	offers	the	possibility	to
define	the	behavior	of	game	objects	(as	the	actors	of	your	game	are	called)	by	a
simple	procedure	based	on	events	(such	as	creation	of	the	game	object,	collisions
occurring	with	other	objects,	or	mouse-and	keyboard-related	actions)	and	then
choosing	the	actions	that	must	take	place	when	those	events	occur.	The	action
list	provides	all	the	basic	things	you	can	expect	to	happen	in	a	game,	such	as
moving	actions,	modification	to	gravity	or	vertical	speed	of	game	objects,
destruction	or	creation	of	game	objects,	or	drawing	score,	available	lives,	or
health	bars	on	the	screen.	It	also	allows	users	to	perform	basic	logic	and
mathematics	checks,	such	as	whether	a	collision	occurs,	if	a	position	in	the
world	is	free,	or	whether	a	certain	expression	is	true	or	false.

Once	you	learned	these	basics,	you	will	very	likely	feel	the	need	for	something
more	flexible	and	complex	to	happen	in	your	game,	at	which	point	you	can	turn
to	its	built-in,	and	quite	easy	to	learn	scripting	language,	called	Game	Maker
Language,	to	begin	coding	stuff	your	own	way.	GameMaker	even	allows
proficient	programmers	to	extend	the	capabilities	of	the	engine	by	programming
their	own	DLL	to	perform	specific	tasks	they	may	need.

GameMaker	has	been	used	to	develop	hundreds	of	2D	games	according	to	many
genre,	such	as	platformers,	maze	and	puzzle	games,	arcade	shooters,	and
strategy	games.	Even	more,	YoYoGames	offers	the	opportunity	to	registered
users	to	upload	games	made	with	GameMaker	on	their	site	to	show	and	share
them	with	the	community.	A	very	popular	game	called	DeathWorm,	made	with
GameMaker,	after	being	largely	claimed	by	the	community	of	users,	was
eventually	converted	for	the	iOS	and	downloaded	from	the	App	Store	by	almost
5	million	people!	You	can	check	it	in	the	following	screenshot:

5	million	people!	You	can	check	it	in	the	following	screenshot:

	

The	latest	update	of	GameMaker	offers	support	for	Mac	and	Windows,	and
separate	licenses	can	be	bought	to	export	for	the	iOS,	Android,	and	HTML5.

With	its	friendly	interface,	its	very	intuitive	workflow,	the	abundant
documentation,	several	easy-to-follow	tutorials,	a	large	community	ready	to	help
behind	it	and	its	cheap	price,	GameMaker	is	definitely	the	best	tool	to	learn	how
to	develop	a	game	for	anyone	interested	in	approaching	this	line	of	work.

GameSalad

GameSalad	is	another	user-friendly	engine	developed	by	GameSalad	Inc.	which
is	perfect	for	beginners,	as	it	doesn't	require	any	coding	thanks	to	a	fully
implemented	drag-and-drop	interface	that	allows	users	to	create	games	for	all
mobile	platforms	such	as	iOS,	Android,	HTML5,	and	Windows	Phone.	Similar
to	GameMaker,	GameSalad	is	usually	used	for	educational	purposes	or	by	artists
and	designers	to	quickly	prototype	their	gameplay	ideas.

The	implementation	of	gameplay	is	based	on	the	creation	of	behaviors	for	game
actors	based	on	sets	of	rules,	which	define	how	the	actor	reacts	to	various	events

happening	in	the	game.	Everything	is	managed	through	a	clean	and	clear	visual
interface,	and	tutorials,	help	boards,	and	forums	are	abundant,	as	well	as	the
extensive	and	easily	available	documentation.

The	GameSalad	editor,	called	Creator,	can	be	downloaded	for	free,	as	the
$299\year	license	is	only	required	to	publish	your	games	for	Android	or
Windows	8,	or	to	implement	features	such	as	In-App	Purchase,	iAds,	or
GameCenter.	For	the	full	feature	list	of	the	engine	you	can	check	the	GameSalad
Inc.	site	at	http://gamesalad.com/creator/pricing.

Though	it	has	been	used	for	thousands	of	games,	some	of	which	made	a	score	on
the	App	Store,	GameSalad	is	considered	a	tool	for	starters	to	get	a	grip	on	how
things	interact	with	each	other	in	a	game	environment	and	for	designers	and
artists	without	any	coding	knowledge	to	quickly	prototype	gameplay	ideas.
Again,	it	is	very	likely	that	at	some	point,	as	you	get	more	proficient	with	the
subject,	you	will	turn	towards	something	more	professional	and	evolved	than
GameSalad.

For	a	full	list	of	tutorials	to	begin	creating	games	with	GameSalad,	you	can	refer
to	http://mac.appstorm.net/reviews/games-reviews/become-a-game-developer-
with-gamesalad/.

http://gamesalad.com/creator/pricing
http://mac.appstorm.net/reviews/games-reviews/become-a-game-developer-with-gamesalad/

Unity3D	Tutorial	–	part	1
Now	that	we	have	described	several	game	engines,	it	is	time	to	pick	one	and	start
assembling	a	game	with	it.	As	our	reference	title	to	develop	the	tutorial	we	chose
a	classic	game	named	Space	Invaders	by	Activision.

In	this	first	part	of	the	tutorial,	we	will	create	the	setup	for	our	game
environment.	In	the	next	chapter,	we	will	add	the	main	actors	for	our	game:	the
player's	ship	and	the	enemies,	and	define	their	behaviors.	In	the	last	part	of	the
tutorial	in	Chapter	10,	Balancing,	Tuning,	and	Polishing	Mobile	Games,	we	will
add	the	final	touches	required	by	the	game.	As	the	engine	to	be	used	to	develop
the	game,	our	choice	is	Unity,	for	several	reasons.	First	of	all	it	is	a	professional
tool,	so	whatever	you	learn	about	it	can	be	useful	for	your	career	as	a	game
developer.	It	is	a	both	an	excellent	2D	and	3D	engine,	which	means	you	can
develop	any	game	you	like	with	it.	Unity	is	also	very	user-friendly,	which	will
help	grasp	the	basics	with	a	short	tutorial.	Finally,	the	basic	user	license	of	Unity
is	free,	which	means	you	can	download	it	and	follow	the	tutorial	at	no	cost!

In	case	you	haven't	done	it	yet,	go	to	http://unity3d.com/	and	download	Unity,
we	suggest	Version	4	or	3.5.7.	The	first	is	the	latest,	the	second	is	the	more
stable.

You	may	also	need	a	3D-modeling	software	to	create	the	assets	that	will	be	used
for	the	game.	We	mentioned	several	such	tools	in	Chapter	3,	Graphics	for
Mobile,	of	this	book,	we	suggest	you	to	pick	one	of	them	to	work	with,	as	this
will	help	you	to	get	familiar	with	software	that	are	considered	as	Industry
standards.

In	case	you	can't	or	don't	want	to	to	model	your	own	assets,	we	will	provide
them	anyway	as	part	of	the	contents	of	this	book.

http://unity3d.com/

Space	Invaders

Though	Space	Invaders	is	a	2D	title,	we	will	assemble	it	with	3D	assets.	Even	if
we	are	not	going	to	exploit	true	3D	features	for	our	prototype,	by	adopting	a	3D
perspective,	we	will	have	the	opportunity	to	show	a	broader	set	of	features	of
Unity	3D.

Anyway,	as	we	have	a	limited	number	of	pages	to	show	a	lot	of	information,	we
will	assume	you	are	familiar	with	the	basics	of	the	Unity	interface.

Let's	get	to	work	now!

Tutorial	part	1A	–	importing	3D	models

From	the	reference	image,	we	can	define	a	list	of	assets	we	will	need	for	our
game:

Four	different	models	of	aliens,	one	for	each	line
One	model	for	the	player's	ship
One	bullet	for	the	player's	ship	and	one	for	the	aliens
One	asset	for	the	barriers	that	protect	the	player's	ship
A	basic	GUI	with	scores	and	available	lives

We	can	import	3D	models	using	the	following	steps:

1.	 Let's	begin	with	the	3D	models.	Open	up	3D-modeling	software	of	your
choice	and	create	some	simple	models	inspired	by	Space	Invaders	like	the
ones	represented	in	the	following	pictures.	We	need	four	models	for	the
aliens	and	one	for	the	player's	ship,	or	if	you	prefer	there	are	several
websites	that	have	graphics	and	sounds	from	the	original	game.

2.	 Since	we	are	only	going	to	make	a	prototype,	you	can	use	any	primitive	you
like.	Our	main	interest	is	to	show	you	how	to	import	3D	models	in	Unity.
The	following	screenshot	represents	the	assets	we	made	for	this	tutorial,
using	3D	Studio	Max.	It	is	very	important	that	you	create	all	the	assets	for
the	aliens	models	with	the	same	size.

3.	 Export	each	model	separately	as	*.fbx	or	*.obj,	and	save	it	with	a
meaningful	name!

4.	 Now	open	Unity	3D	and	start	a	new	project.	A	window	similar	to	the
following	will	open	where	you	can	set	a	folder	and	its	path	to	store	our
game.	The	window	also	allows	a	list	of	basic	Unity	packages	to	be	included
in	your	newly	created	project.	As	we	don't	need	them,	don't	flag	any
packages	from	the	list:	

New	Project

With	your	new	project	opened,	go	to	the	Project	panel	and	create	a	new	folder
to	store	our	3D	models.	Name	the	folder	3DModels	as	well:	

New	Folder

Now	we	can	import	our	models.	With	the	3DModels	folder	selected	in	the
Project	panel,	navigate	to	Menu	Bar	|	Assets	|	Import	New	Asset,	and	from	the
displayed	window,	select	the	3D	models	for	the	aliens	and	the	player's	ship.
Unfortunately,	you	cannot	import	all	of	them	with	a	single	operation,	you	will
have	to	import	them	one	at	a	time.
A	very	useful	feature	with	Unity	is	that	you	can	create	so	called	Prefabs,	assets

that	can	be	created	and	instantiated	multiple	times	in	the	game	scene.	The
advantage	of	Prefabs	is	that	all	its	instances	are	linked	to	the	Prefab	they	come
from,	so	that	you	can	modify	multiple	instances	of	game	objects	cloned	from	the
Prefab	by	working	on	the	original	Prefab	itself.
Let's	show	this	feature.
Select	one	of	the	alien's	models	and	drag	it	into	the	scene.	Now	go	back	to	the

Project	panel	and	create	a	new	folder.	Name	it	Prefabs.	If	you	are	wondering
why	create	a	separate	folder	for	every	type	of	asset	we	are	working	with,	the
reason	is	to	keep	projects	well	organized.	This	is	going	to	be	a	simple	game	with
few	assets,	but	a	real	game	will	require	many.	So	we	better	not	get	overwhelmed
by	lack	of	order!
With	the	Prefabs	folder	selected	in	the	Project	panel,	click	again	on	the

Create	button	and	now	make	a	new	empty	prefab.	Assuming	you	selected	the

model	for	the	first	type	of	alien,	name	this	prefab	Alien1.	To	complete	the
Alien1	prefab,	drag	the	model	in	the	Unity	Hierarchy	panel	into	the	newly
created	prefab.	Now	the	empty	prefab	is	filled	with	the	3D	model	for	our	first
alien	asset.
You	can	now	delete	the	alien	model	from	the	scene	and	then	drag	the	alien

prefab	into	the	scene	instead.
Finally,	we	can	show	you	the	power	of	Prefabs.	Create	multiple	instances	of

the	Alien1	prefab	by	pressing	Ctrl+D	to	get	something	like	this,	where	we	have
created	four	instances	of	Alien	1:	

Now	create	a	new	folder	for	our	materials	in	the	Project	panel	and	name	it
Materials.	With	the	Materials	folder	selected,	create	a	new	asset,	a	material
this	time.	Name	it	red	(or	whatever	the	color	you	like)	and	then,	with	the
material	selected,	click	on	the	white	rectangle	in	the	upper-right	corner	of	the
Inspector	panel	in	Unity.	Refer	to	the	following	screenshot	for	clues:	

Pick	the	color	you	like	and	then,	in	the	Project	panel,	select	the	Alien1
prefab.	In	the	Inspector	panel	you	should	see	a	Mesh	Renderer	component
with	a	material	item	in	it.	Click	on	the	arrow	to	make	the	Element	0	slot	appear,
then	drag	the	newly	created	material	into	that	slot,	as	shown	in	the	following
screenshot:	

This	is	how	you	can	quickly	edit	multiple	game	assets	with	a	single	action
through	Prefabs.	All	your	aliens	should	now	have	turned	red,	all	at	once!

However,	for	the	necessities	of	our	project,	we	want	the	aliens	to	be	white.	So
create	a	new	white	material	and	use	it	instead	of	red	on	the	aliens.	In	the	next
part	of	the	tutorial	in	Chapter	9,	Prototyping,	we	will	reference	these	objects.
Repeat	the	previous	steps	to	create	more	Prefabs:	the	remaining	three	aliens

and	the	player's	ship.	For	the	player	ship	you	also	need	a	green	material.
Let's	do	a	couple	more	assets	before	moving	to	the	next	section.	We	actually

need	the	bullets	to	be	fired	by	both	the	player's	ship	and	the	aliens.	We	will	use	a
simple	sphere	for	the	player	and	a	capsule	for	the	aliens.
The	sphere	and	the	capsule	can	be	created	from	the	main	menu	bar,	navigating

to	GameObject	|	Create	Other,	as	shown	in	the	following	screenshot:	

Size	the	two	objects	in	the	scene	view	as	needed,	then	create	two	new	Prefabs,
name	one	PLBullet	and	the	other	AlienBullet,	then	drag	the	sphere	and	the
capsule	from	the	scene	into	the	empty	Prefabs	accordingly.	Remember	also	to
make	PLBullet	green	and	AlienBullet	Prefabs	white.

This	ends	the	first	part	of	this	tutorial,	where	we	showed	you	how	to	import	3D
models	in	Unity,	how	to	use	them	to	create	Prefabs	and	the	importance	of	using
Prefabs	to	easily	manage	multiple	game	objects.	We	also	showed	how	to	create
materials	and	how	to	apply	them	to	your	imported	models.	We	finally	showed
how	to	create	basic	primitives	which	are	available	in	the	Unity	main	menu.

Tutorial	part	1B	–	setting	up	the	scene

The	next	step	is	to	begin	setting	up	the	scene	for	our	game	prototype.	To	do	that
we	suggest	you	to	begin	by	using	a	screenshot	of	the	original	game	as	a
reference	layout:

1.	 We	will	use	the	same	screenshot	from	Space	Invaders	displayed	at	the
beginning	of	the	tutorial,	you	can	find	one	anywhere	on	the	Internet.

2.	 Download	a	screenshot	and	then	import	it	as	a	texture.	Any	*.jpeg	or
*.png	image	will	do.

3.	 Create	a	Textures	folder	in	the	Project	panel	and	then	import	the	image	as
a	new	asset	inside	the	folder	(you	can	name	it	InvadersTexture).

4.	 Then	use	the	image	to	create	a	new	material	in	the	Materials	folder.
5.	 Create	a	new	material,	name	it	InvadersMaterial	and	then	drag	the	texture

into	the	texture	slot	of	the	material.	Refer	to	the	following	screenshot	for
reference:	

Now	create	a	Plane	in	the	scene,	selecting	GameObject	|	Create	Other	|
Plane	in	the	main	menu.

Set	the	correct	position	for	the	plane,	and	then	drag	the	Invaders	material	onto
the	plane	to	add	it.	It	could	happen	that,	once	dragged	onto	the	plane,	the	texture
will	not	be	displayed	with	the	correct	orientation.	In	such	case,	double-click	on
the	texture	in	the	Project	panel	to	open	it	with	the	default	image	editor	and
rotate	it	as	required.	Then	save	it	to	have	it	correctly	displayed	in	the	Scene
view.
To	setup	our	scene,	let's	begin	by	setting	the	right	position	for	our	reference

plane.	Select	the	plane	with	InvadersMaterial	and	set	its	position	coordinates
in	its	Transform	component	(Inspector	panel)	to	0	for	x,	y	and	z,	as	shown	in
the	following	screenshot:	

Now	for	the	main	camera;	as	you	may	notice,	with	each	new	scene,	Unity
automatically	adds	a	default	camera,	named	Main	Camera.	Select	it	in	the
Hierarchy	and	set	its	position	in	the	scene	view;	you	can	refer	to	the	game
window	to	check	the	final	result	you	will	get.
To	make	things	easier,	these	are	the	values	we	set	the	camera	with:
Position	x	=	0

Position	y	=	-0,05
Position	z	=	-5
Field	Of	View	=	81
Game	Aspect	=	Standalone	(1024x768)

To	display	things	using	3D	we	also	will	leave	the	camera	projection	mode	to
Perspective,	though	our	prototype	will	only	implement	2D	gameplay.
We	also	suggest	adding	a	directional	light	to	the	scene	to	see	things	better

(GameObject	|	Create	Other	|	Directional	Light).
Check	the	following	screenshot	to	confirm	what	you	should	see	on	the	screen:	

Setting	up	the	scene	is	over.	In	this	section,	we	showed	how	to	use	a	texture	to
define	a	material	for	a	game	object,	how	to	set	the	position	and	rotation	of	a
game	object	in	the	scene	view	by	editing	the	values	in	its	Transform	component
in	the	Inspector	panel	and	how	to	control	what	is	displayed	by	the	main	camera
of	your	game,	working	on	camera	position,	rotation	(if	needed),	field	of	view,
and	projection	mode.

Summary
In	this	chapter,	we	discussed	what	a	game	engine	is	and	how	it	can	speed	up
game	development	time.	We	listed	several	popular	game	engines	that	can	handle
2D	and	3D	game	environments.

In	the	next	chapter,	we	will	discuss	the	prototyping	process	and	provide	the
second	part	of	the	tutorial,	where	we	will	define	the	basic	game	mechanics	and
the	interface	for	the	Space	Invaders	demo.

Chapter	9.	Prototyping
Prototyping	is	the	process	of	testing	various	aspects	of	an	app,	usually	in	a	quick
and	incomplete	manner.	The	purpose	is	to	find	out	if	a	good	idea	works	as
imagined.	In	this	chapter	we	will	cover:

The	steps	in	the	prototyping	process
The	types	of	prototypes
Methods	for	rapid	prototype	development
Prototyping	tools
A	continuation	of	the	prototyping	demo

Steps	in	the	prototyping	process
The	process	of	prototyping	involves	the	following	steps:

1.	 Defining	it:	What	is	your	good	idea	supposed	to	do?
2.	 Building	it:	Pick	a	prototype	type	and	get	it	done.
3.	 Testing	it:	Is	it	doing	what	it's	supposed	to	do?
4.	 Fixing	it:	How	can	it	better	match	the	intended	design?

Now	let's	look	at	each	step	in	more	detail.

Defining	the	prototype

This	is	the	first	step	in	designing	the	game.	Usually	a	game	concept	starts	with	a
good	idea.	Often	at	times	it	will	be	an	activity	the	player	will	do;	in	general	it	is
best	to	start	with	something	the	player	is	going	to	do	most	often.

The	designer	should	write	down,	in	detail,	a	description	of	the	activity	that	the
programmer	will	use	to	build	the	prototype.	Let	the	team	review	the	description
to	make	sure	everyone	understands	what	is	required.

Building	the	prototype

There	are	a	number	of	ways	to	build	a	prototype,	but	the	goal	is	to	have	an	app
that	accurately	reflects	the	design	idea	and	that	is	built	quickly.	Leave	any
extraneous	work	such	as	fancy	graphics	and	sound	until	later	in	the	development
process.

Testing	the	prototype

Now	your	play	testers	get	to	see	how	accurate	the	prototype	is	and	whether	it	is
fun.	If	at	all	possible,	having	new	testers	waiting	for	builds	is	an	excellent	idea.
Unfamiliarity	with	previous	builds	will	optimize	the	chances	of	finding
overlooked	bugs	and/or	design	flaws.

Fixing	the	prototype

Once	you	have	the	play	testing	evaluations,	it	is	time	to	decide	what	to	keep	in
and	what	to	cut.	This	can	be	a	painful	process	when	the	team	has	grown	attached
to	a	project.	It	is	imperative	that	the	prototype	is	judged	objectively.	This	can	be
the	point	at	which	a	design	dead	end	can	be	discarded	to	avoid	a	waste	of	time
and	resources.

Prototyping	styles
There	are	two	basic	styles	of	prototypes,	each	of	which	is	used	at	different	times
in	the	development	process.	These	are	described	as	horizontal	(big-picture)	and
vertical	(drill-down).

Horizontal	prototype

A	horizontal	prototype	is	targeting	a	high-level	feature	list	for	the	app;	for
example,	a	mockup	of	the	game	interface	and	its	screens	(a	wireframe)	is
considered	a	horizontal	prototype.	It	has	little	or	no	functionality;	it	is	much	like
a	feature	laundry	list	that	identifies	necessary	elements	for	a	particular	aspect	of
the	app.	Context	over	content!

The	following	diagram	represents	a	simple	wireframe	mockup	of	a	game	flow:

	

Vertical	prototype

A	vertical	prototype	is	focused	on	a	single	aspect	or	set	of	aspects	of	the	app.
The	goal	is	to	explore	and/or	flesh	out	those	elements	to	the	point	where	it	is
clear	whether	they	work	or	not.	The	emphasis	is	on	functionality	rather	than
presentation.	Content	over	context!

Types	of	prototyping
There	are	two	basic	types	of	coding	used	in	prototyping:	disposable	and
reusable.	With	the	first	type,	the	goal	is	to	get	a	proof-of-concept	out	as	quickly
as	possible	with	no	concern	for	reusability.	With	the	second	type	the	plan	is	code
created	for	the	prototype	will	to	some	degree	be	used	in	the	final	app.

Disposable	code

Disposable	code	is	just	what	it	sounds	like;	it	is	meant	to	be	tossed	out	after	the
prototyping	process	is	complete.	This	type	of	prototyping	is	also	called
throwaway	or	rapid	prototyping.

Disposable	coding	is	an	effective	way	to	test	out	untried	concepts	early	in	the
design	process.	Some	good	ideas	just	don't	work	out	as	planned	and	finding	this
out	quickly	is	an	important	use	of	the	prototyping	process.

Mobile	game	development	is	heavily	reliant	on	an	efficient	and	robust
development	cycle.	Keeping	costs	to	a	minimum	can	mean	the	difference
between	success	and	failure	of	a	project.	The	ability	to	determine	from	the	start
of	the	project	that	a	core	game	mechanic	will	be	engaging	and	entertaining	is	the
number	one	use	for	disposable	code.

There	are	a	number	of	rapid	prototyping	methods	that	range	from	the	very
simple	to	more	complex.

Your	imagination

The	best	place	to	start	prototyping	is	at	the	very	beginning	of	the	design	process.
Take	that	good	idea	and	imagine	how	the	player	will	interact	with	it.	Try	to
figure	out	what	will	keep	the	player	interested	with	a	specific	activity.	Are	there
enough	options	to	keep	the	gameplay	engaging?	Are	there	other	actions	or
gameplay	aspects	that	will	broaden	the	gameplay	experience	without
unnecessarily	complicating	things?

Pencil	and	paper

Once	you	have	a	mental	image	of	a	game	mechanic,	work	it	out	on	paper.	Do	the
math	on	a	spreadsheet	if	possible.	If	appropriate,	play	out	scenarios	with	other
team	members.	The	designer	acts	as	the	game	master	(GM)	and	another	team
member	or	members	try	different	actions.	The	GM	figures	out	what	the	result	of
the	player	actions	are.	This	is	a	good	way	to	spot	weak	spots	in	a	mechanic,
since	the	designer	may	not	have	thought	of	every	aspect	of	the	gameplay.

Use	of	game	accessories:	dice,	playing	cards,	dominoes,	and	checkers	(board	and
pieces)	are	some	examples	of	potentially	useful	items.	To	get	the	creative	juices
flowing,	try	taking	two	or	three	of	the	accessories	and	coming	up	with	a

completely	genre	style	game.	For	example,	one	of	the	authors	used	a	standard
card	deck	and	a	set	of	dominoes	to	prototype	a	simple	dungeon	crawl	game
similar	to	the	classic	"Dungeon!"	(http://en.wikipedia.org/wiki/Dungeon).

	

Visual	prototypes

These	are	usually	mockups	of	the	game	screens,	sometimes	with	limited
interactivity.	Also	called	wireframes,	they	contain	basic	information	on	what
data	is	on	a	screen	and	what	screens	can	be	accessed	from	the	target	screen.
Many	graphics	programs,	such	as	Visio	and	PowerPoint	allow	hyperlinks
between	pages.	Placing	a	link	on	a	button	mockup	and	then	connecting	it	to
another	screen	mockup	is	an	effective	tool	for	spotting	screen	navigation
problems.

Interactive	prototypes

The	goal	of	an	interactive	prototype	is	to	simulate	the	game	mechanics	as
quickly	as	possible	while	being	faithful	to	the	designer's	vision	(in	case	you
missed	what	a	game	mechanic	is,	you	can	refer	to
http://en.wikipedia.org/wiki/Game_mechanics).

http://en.wikipedia.org/wiki/Dungeon
http://en.wikipedia.org/wiki/Game_mechanics

This	is	the	phase	where	rubber	meets	the	pavement;	stuff	gets	done.	There	may
be	a	fair	number	of	throwaway	prototypes	in	this	phase,	possibly	with	multiple
features	in	a	single	app.

Generally	a	good	way	to	power	through	this	stage	is	to	define	the	action	the
player	will	do	most	during	the	gameplay	and	test	it	first.	Once	it	is	fun,	test	the
second	most	common	activity	alongside	the	first.	Continue	this	process	of
adding	new	actions	until	the	gameplay	feels	robust;	a	good	rule	of	thumb	is	from
three	to	five	elements	and	no	more	than	seven.

Once	you	have	a	good	idea	of	how	the	gameplay	works,	then	it's	time	to	go	to
the	next	type	of	prototype:	reusable	code.

Reusable	code

Also	called	Evolutionary	or	Bread	board	prototyping,	the	goal	here	is	to	produce
code	that	is	used	in	the	final	app.	The	prototyping	process	continues,	even
though	the	goal	is	producing	final	code.	Remember	that	in	the	Throwaway	phase
we	were	looking	for	high-level	(horizontal)	solutions	for	design	problems.	Now
we	are	digging	deeper,	looking	for	low-level	(vertical)	solutions	to	the
underlying,	possibly	unanswered	gameplay	details.

At	this	phase,	it	is	useful	to	review	the	basic	stages	of	the	prototyping	process:
defining,	building,	testing,	and	fixing.	These	phases	are	critical	throughout	the
development	process,	especially	when	the	code	is	intended	for	use	in	the	final
product.	Every	time	a	feature	is	added,	it	needs	to	be	fully	evaluated	in
relationship	to	the	existing	features.	Otherwise	there	is	the	risk	of	introducing	a
hidden,	deal-breaking	bug,	or	exploit.

The	philosophy	behind	Evolutionary	prototyping	is	that	an	app	is	never	finished;
it	can	always	be	refined,	polished,	and	expanded.	Often,	a	product	is	good
enough	for	the	current	iteration	and	the	constraints	of	resources.	In	mobile	game
development,	this	may	manifest	as	version	releases,	future	products	or
downloadable	content	packages	(DLCs).	If	some	cool	new	ideas	emerge
during	the	development	cycle,	but	it's	not	possible	to	implement	them	with	the
available	resources	(time	and	money),	write	them	down.	Plan	them	for	the	next
iteration	of	your	game.

Why	prototype?
Just	in	case	the	reasons	aren't	obvious	yet,	let's	list	them	again.

It	saves	time	and	money:	This	is	pretty	important,	since	changes	cost	less
early	on	than	later	in	development.
It	promotes	better	overall	quality	of	gameplay:	By	giving	players	a
chance	to	try	out	your	good	ideas	before	they	are	set	in	stone,	there	are
more	opportunities	to	improve	the	player	experience,	resulting	in	a	more
fun	game.	The	more	fun	the	game	is,	the	better	chance	of	more	sales.	And
more	sales	are	good	sales!

What	to	avoid
These	are	some	common	mistakes	that	can	be	counterproductive.

Losing	the	big	picture:	While	working	on	individual	elements	of	a	project,
don't	lose	sight	of	what	the	final	goal	is.	It	is	fun,	exciting,	and	very
rewarding	to	get	one	thing	or	another	up	and	running,	which	is	why	a
secondary	feature	may	work	its	way	up	the	priority	list.	If	this	happens	and
it	works	with	the	overall	design,	great!	Just	remember	to	check	that	it
doesn't	unseat	something	critical	to	the	design's	original	intent.
Feature	creep:	Sometimes	good	ideas	come	along	at	the	right	time,
sometimes	not.	Be	careful	not	to	add	in	something	that	breaks	the	existing
app.	Also	the	process	of	continually	adding	features	means	the	project's
milestones	are	constantly	shifting,	which	makes	it	very	difficult	to	hit	them.
Feature	attachment:	Just	like	in	romance,	it	is	easy	to	fall	in	love	with	the
concept	of	a	game	feature.	Once	this	happens	it	is	difficult	to	see	the	reality
that	the	feature	(or	relationship)	just	doesn't	work	as	hoped.	When	this
happens	you	just	have	to	bite	the	bullet	and	toss	it	out,	otherwise	you	can
wind	up	burning	yourself	out	trying	to	fix	the	unfixable.
Too	much	time	and	money:	The	whole	point	of	prototyping	is	to	save	you
time	and	money.	If	you	find	that	the	prototype	is	costing	more	than	you
budgeted,	consider	paring	back	the	features	or	possibly	pulling	the	plug	on
the	project.

Tools
Here	is	a	partial	list	of	tools	that	will	assist	with	the	prototyping	process,	broken
down	by	the	phase	they	are	best	suited	for	all	phases	The	following	list	contains
the	software	that	you	are	going	to	use	throughout	the	entire	prototyping	process,
as	they	are	the	basic	tools	for	writing	documents,	make	draws	and	sketches,	and
create	diagrams	and	presentations.

Microsoft	Office/Open	Office:	This	is	essential	for	documentation
throughout	the	project.	MS	Office	is	available	for	a	price	from	the
Microsoft	website.	Open	Office	is	free	and	open	source	and	includes	many
of	the	features	in	MS	Office.
PowerPoint:	This	is	useful	for	wire	frame	mock	ups	and	quick	proof	of
concepts.	It	is	included	in	MS	Office	and	Open	Office	has	an	equivalent
application	in	its	bundle.
Visio:	This	is	an	excellent	tool	for	creating	flow	charts,	placeholder
graphics,	screen	mock	ups,	and	wireframes.	It	is	available	for	a	price	from
the	Microsoft	website.	Open	Office	contains	a	similar	application	for	free
tools	for	wireframes.

As	mentioned	in	Chapter	7,	Interface	Design	for	Mobile	Games,	the	creation	of
wire	frames	has	a	fundamental	role	in	the	process	of	designing	the	game	flow
and	User	Interface	for	a	game.	In	the	following	list	you	will	find	popular	tools
for	such	tasks:

Pencil	project:	This	is	designed	for	creating	Graphical	User	Interface
(GUI)	wireframes;	it's	a	free,	open	source	application	to	mock	up	screen
layouts.	This	is	available	at	http://pencil.evolus.vn/.
Flairbuilder:	This	is	used	to	create	interactive	Web	and	mobile	prototypes
and	wireframes.	The	cost	is	99	dollars	and	up,	depending	on	the	number	of
licenses	purchased.	This	is	available	at	http://www.flairbuilder.com/.
Axure:	This	is	considered	a	top	of	the	line	prototyping	tool,	Axure	is
targeted	at	Web	and	mobile	prototyping.	There	are	trial,	standard,	and
professional	versions	available	at	http://www.axure.com/.

http://pencil.evolus.vn/
http://www.flairbuilder.com/
http://www.axure.com/

Tools	for	rapid	prototyping

There	are	many	game	software	development	kit	(SDKs)	available,	including
powerful	integrated	development	environment	(IDEs)	that	are	free	to	use.	We
list	some	here	for	your	reference.

Game	Maker:	This	is	an	SDK	designed	for	2D	game	development.	It	has	a
free	version	with	reduced	functionality	and	functional	versions	from	50
dollars	and	up.	This	can	be	found	at
http://www.yoyogames.com/gamemaker/studio.
Unity	3D:	This	is	one	of	the	most	powerful	free	game	SDKs	available.	It
has	a	very	complete	library	as	well	as	a	robust	online	user	community.	This
is	why	we	picked	Unity	to	build	our	prototype	tutorial.	You	can	check
anything	you	may	wish	to	know	about	Unity	3D	at	http://unity3d.com/.
Havoc	Project	Anarchy:	This	is	a	recent	initiative	(as	we	write)	that	aims
to	provide	users	with	a	full	featured	game	engine,	created	by	the	popular
company	Havoc.	The	basic	license	is	free	to	use,	you	can	check	this	project
at	http://www.projectanarchy.com/.

http://www.yoyogames.com/gamemaker/studio
http://unity3d.com/
http://www.projectanarchy.com/

Unity3D	tutorial	–	part	2
In	the	first	part	of	our	tutorial	in	Chapter	8,	Mobile	Game	Engines,	we	prepared
the	game	scene.	In	this	second	part	we	will	show	how	to	make	things	behave
properly.

Let's	begin	thinking	about	the	game	logic	we	are	going	to	implement	in	our
game.

In	Space	Invaders	the	player	controls	a	ship	located	at	the	bottom	of	the	screen,
which	moves	left	and	right	and	shoots	bullets.

The	goal	is	to	destroy	wave	after	wave	of	aliens	approaching	towards	the
player's	ship	from	the	top	half	of	the	screen,	before	they	reach	the	bottom	of	the
screen,	while	avoiding	the	bullets	they	fire.

Aliens	move	according	to	a	snake-like	pattern;	they	begin	moving	right	and	as
they	reach	the	right	boundary	of	the	screen,	they	invert	direction	and	move	a
little	bit	closer	to	the	bottom	of	the	screen,	then	repeat	the	cycle	as	they	move
left	and	reach	the	left	boundary	of	the	screen.

Once	in	a	while,	aliens	shoot	bullet	towards	the	player's	ship.

Player's	bullets	move	bottom-up,	while	aliens'	move	top-down.

The	player's	ship

As	the	player's	ship	is	easier	to	implement,	we'll	begin	with	it.

1.	 Drag	the	PLShip	prefab	into	the	Scene	View	and	set	its	position	at
coordinates	X=0,	Y=-15,	Z=15	(these	are	arbitrary	values,	but	they	are
consistent	with	camera	settings	we	defined	earlier).	You	can	edit	the	scale
of	the	PLShip	prefab	in	case	it	is	not	the	right	size	by	changing	its	scale
values	in	the	Transform	panel	in	the	Inspector	panel.

2.	 We	want	the	ship	to	move	left	and	right	and	fire	a	bullet,	to	do	that	we
create	a	JavaScript	file	and	add	it	to	the	PLShip	prefab.

3.	 In	the	Project	panel	create	a	new	folder,	name	it	Scripts	and	then	create	a
JavaScript	file	in	the	folder.	Name	it	ControlShip	and	double-click	it	to
open	in	the	default	script	editor	provided	with	Unity,	called	MonoDevelop.

4.	 As	you	can	see,	any	newly	created	JavaScript	file	is	already	provided	with
two	main	function	declarations:	the	Start()	function	and	Update()
function.

5.	 The	Start()	function	is	useful	to	set	default	values	for	variables	when	the
game	starts,	while	the	Update()	function	is	a	very	important	one,	which	is
called	by	Unity	engine	(almost)	once	per	frame.	Basically,	when	you	need
some	operation	to	be	performed	continuously,	put	your	code	inside	the
Update()	function.

6.	 To	take	control	of	the	player	ship	we	need	the	following	code	to	be	added
to	the	script.	We	put	comments	to	make	the	operations	performed	clearer,
as	we	cannot	make	a	full	explanation	on	game	programming	here.

#pragma	strict

	

//this	var	is	needed	to	fire	bullets	from	the	ship

var	myBullet:Rigidbody;

	

//this	is	a	true\false	var	to	control	player's	ship	fire

		//rate

static	var	canShoot:boolean;

	

function	Start	()	{

				//we	want	the	player	to	be	able	to	shoot	as	the	game

						//starts

			canShoot=true;

}

	

function	Update	()	{

	

	

			//is	the	player	pressing	right	button?

			if(Input.GetKey("right"))

			{

								//ship	moves	right

									transform.Translate(Vector3(2,0,0));

			}

			//is	the	player	pressing	left	button?

			if(Input.GetKey("left"))

			{

								//ship	moves	left

									transform.Translate(Vector3(-2,0,0));

			}

			//is	player	pressing	the	fire	button	(spacebar)

			if(Input.GetKeyDown("space")&&canShoot)

			{

									//create	the	bullet

			Instantiate(myBullet,transform.position,transform.rotation);

									//player	can't	fire	for	a	while

									canShoot=false;

			}

}

7.	 Save	the	file	and	go	back	to	Unity,	then,	in	the	Project	panel,	drag	the
script	onto	the	PLShip	prefab	to	add	it.

8.	 You	can	check	in	the	Inspector	panel	that	the	script	has	been	added	to	the
prefab.	You	will	also	notice	that	the	script	requires	a	Rigidbody	variable	to
be	instantiated	for	the	script	to	work,	as	defined	by	this	line	of	the
ControlShip	script:

//this	var	is	needed	to	fire	bullets	from	the	ship

var	myBullet:Rigidbody;

To	instantiate	the	variable,	we	first	need	to	add	the	Rigidbody	component	to
the	bullet.	To	do	that,	select	the	PLBullet	prefab	in	the	Project	panel,	then	go	to
the	main	menu	and	select	Component	|	Physics	|	Rigidbody,	as	shown	in	the
following	screenshot:	

	

Select	the	PLBullet	prefab	and	drag	it	into	the	empty	slot	on	the	script
component	of	the	Inspector	panel.
Now	that	the	Rigidbody	component	has	been	added	to	the	PLBullet	prefab,

we	need	to	edit	a	couple	properties	in	the	Inspector	panel.	Uncheck	the	Use
Gravity	option	and	check	the	Is	Kinematic	option.	This	way	the	bullet	won't	be
affected	by	gravity	and	it	will	trigger	collisions	with	other	game	objects.	If	you
want	to	know	more	about	Rigidbody	and	Collision	Detection,	we	suggest	you
to	refer	to	the	Unity	manual.
Check	the	following	screenshot	to	see	you	did	things	right:	

	

Now	we	can	finally	drag	the	PLBullet	prefab	into	the	My	Bullet	slot	of	the
Control	Ship	(Script),	as	shown	in	the	following	screenshot:	

	
Next	we	need	to	take	care	of	the	PLBullet	behavior	with	another	script.	Create

one	in	the	Scripts	folder,	name	it	ControlPLBullet	and	double-click	on	it	to
open.
With	this	script	we	are	going	to	tell	the	bullet	to	move	up	once	created	and	to

check	for	collisions	with	enemy	aliens	and	other	objects	such	as	barriers
(discussed	in	the	last	part	of	this	tutorial	in	Chapter	10,	Balancing,	Tuning,	and
Polishing	Mobile	Games).
The	following	code	is	to	be	put	in	the	ControlPLBullet	script:

#pragma	strict

	

function	Start	()	{

	

}

	

function	Update	()	{

				

				//move	bullet	up	once	created

				//move	bullet	up	once	created

			transform.Translate(Vector3(0,2,0));

	

			//Y=100	defines	upper	screen	limit

			if(transform.position.y>100)

			{

								//destroy	bullet	as	it	goes	outside	the	upper

										//screen	limit

									Destroy(gameObject);

									//once	the	bullet	is	destroyed,	allow	the	player

											//to	shoot	again

									moveShip.canShoot=true;

			}

}

	

//this	function	checks	for	collisions

function	OnTriggerEnter(other:Collider)

{

				//if	bullets	collides	with	aliens,	destroy	both

			if(other.gameObject.tag=="Enemies"){

	

									Destroy(gameObject);

									Destroy(other.gameObject);

									//once	the	bullet	is	destroyed,	allow	the	player

											//to	shoot	again

									ControlShip.canShoot=true;

			}

			//if	bullet	collides	with	barriers,	destroy	it	and	a

					//piece	of	the	barrier

			if(other.gameObject.tag=="BarrierBrick"){

	

									Destroy(gameObject);

									Destroy(other.gameObject);

									//once	the	bullet	is	destroyed,	allow	the	player

											//to	shoot	again

											ControlShip.canShoot=true;

			}

}

The	script	basically	controls	that	the	bullet	moves	up	once	fired.	In	the
Update()	function	we	also	check	if	a	collision	occurs	and	perform	the	desired
action	when	this	happens.
You	will	also	notice	that	we	are	using	Tag	to	check	what	the	bullet	collides

with.
Tags	are	another	very	useful	feature	offered	by	Unity	that	allows	us	to	give	an

identification	name	to	game	objects	to	be	used	to	check	collisions	and	other

events.	We	will	explain	how	to	use	tags	as	we	go	on	with	this	tutorial.
It	may	be	necessary	to	adjust	the	bullet	speed,	which	can	be	done	by

modifying	the	following	line	in	the	Update()	function:

//move	bullet	up	once	created

			transform.Translate(Vector3(0,2,0));

The	Y	threshold	to	destroy	the	bullet	once	it	goes	beyond	the	upper	screen
limit	could	require	to	be	changed	too,	by	editing	the	following	line	in	the
Update()	function:

//Y=100	defines	upper	screen	limit

			if(transform.position.y>100)

Now,	everything	should	be	ready	to	test	the	ship	controls.	Launch	the
application	and	check	that	the	ship	actually	moves	left	and	right	with	the	arrow
keys	and	fires	when	you	press	the	spacebar.

Feel	free	to	tweak	its	movement	speed	values	according	to	your	tastes.

The	aliens

Now	that	the	player's	ship	is	over	with,	we	can	take	care	of	the	alien	invaders.

As	we	want	them	to	move	as	a	single	group,	the	best	thing	to	do	is	to	have	a
GameObject,	which	is	not	actually	part	of	the	group	yet,	control	them.

1.	 Create	an	empty	GameObject	in	the	scene,	name	it	SwarmManager	and	put
it	at	the	coordinates	X=-18,	Y=12,	Z=15.

2.	 Our	next	step	is	to	add	a	script	to	SwarmManager.	We	will	use	this	script	to
have	the	SwarmManager	game	object	create	the	alien	swarm	and	move	it	in
the	scene.

3.	 Let's	begin	by	creating	the	alien	swarm	in	order	to	check	that	the	position
we	set	for	SwarmManager	is	correct	for	the	setup	we	defined.

4.	 Create	a	new	JavaScript	file	in	the	Scripts	folder	and	name	it
ControlSwarm,	then	double-click	on	it	to	open	it	in	MonoDevelop.

5.	 The	first	part	of	the	script	takes	care	of	creating	the	alien	swarm.	To	do	that
we	just	need	to	declare	four	GameObject	variables	to	store	the	alien	prefabs
and	a	for	{}	cycle	to	create	four	rows	of	aliens.

//we	need	a	GameObject	variable	for	each	alien	type	in	the

		//swarm

var	Alien1:GameObject;

var	Alien2:GameObject;

var	Alien3:GameObject;

var	Alien4:GameObject;

	

function	Start	()

{

			//we	want	11	aliens	per	row

			for(var	i=0;i<11;i++)

			{

									//first	row	is	created	at	same	Y	position	as

											//SwarmManager

Instantiate(Alien1,Vector3(-15+(3*i),

		transform.position.y,transform.position.z),

				transform.rotation);

	

Instantiate(Alien2,Vector3(-15+(3*i),

		transform.position.y-3,transform.position.z),

				transform.rotation);

	

Instantiate(Alien3,Vector3(-15+(3*i),

		transform.position.y-6,transform.position.z),

				transform.rotation);

				transform.rotation);

	

Instantiate(Alien4,Vector3(-15+(3*i),

		transform.position.y-9,transform.position.z),

				transform.rotation);

			}

}

6.	 Add	the	script	to	the	SwarmManager	game	object	in	the	scene	and	then	drag
the	four	aliens	prefabs	in	the	exposed	GameObject	variables,	as	shown	in
the	following	screenshot:	

	

Now	launch	your	project	to	check	that	the	aliens	are	correctly	spawned	and	their
position	is	centered	with	respect	to	the	player's	ship	and	the	camera.	If	needed,
tweak	the	SwarmManager	position	and	the	numerical	values	inside	the	for	{}
cycle	until	you	get	a	setup	you	are	satisfied	with.

Next	we	take	care	that	the	swarm	moves	according	to	the	snake-like	moving
pattern	we	described	at	the	beginning	of	this	tutorial.	Things	could	become	a
little	more	complex	here,	so	stick	with	us.	We	would	also	like	to	state	here	that
there	is	no	single	way	to	code	things	while	working	with	videogames,	though
some	ways	are	better	than	other.	What	we	suggest	here	is	the	way	we	consider
good	enough	for	the	goal	of	this	tutorial,	and	those	of	you	who	are	proficient
with	programming	could	find	better	ways	to	achieve	the	same	result.	We
strongly	recommend	you	to	always	try	and	find	other	ways	that	work	better	for
you	whenever	it's	possible.

To	have	the	aliens	change	direction	as	they	get	close	to	the	screen	bounds,	we
will	use	two	game	objects	positioned	at	the	right	and	left	sides	of	the	swarm.	The
first	alien	that	collides	with	any	of	the	bounds	will	make	the	entire	swarm
change	its	direction	and	also	lower	their	height	with	regards	to	the	player's	ship.

1.	 Create	a	Cube	GameObject	and	name	it	LeftBound.	Put	it	at	coordinates
X=-20,	Y=5,	Z=15	and	set	its	scale	to	X=1,	Y=100,	Z=8.	Also	check	the	Is
Trigger	option	in	its	Box	Collider	component	in	the	Inspector	panel	as
shown	in	the	following	screenshot:	

	

We	also	need	to	use	a	tag	to	check	the	collisions	of	the	aliens	with	the	bounds,
so	it	is	time	to	provide	a	brief	explanation	about	what	tags	are.	As	usual,	we
suggest	you	to	refer	to	the	Unity	documentation	to	delve	deeper	into	this	topic.
As	the	name	suggests,	tags	are	labels	that	can	be	attached	to	game	objects	to

identify	them	when	specific	events	occur.	In	our	case,	we	know	that	the	aliens
will	be	subjected	to	at	least	two	types	of	collisions:	collisions	with	the	player's
bullets	and	collisions	with	the	level	bounds.	Unity	allows	the	use	of	tags	to
distinguish	between	these	two	different	events.
To	create	a	Tag	click	on	the	Untagged	button	in	the	top	section	of	the

Inspector	panel	as	shown	in	the	following	screenshot	and	from	the	drop-down
menu,	select	Add	Tag.

	
Find	the	first	empty	entry	in	the	Tag	Manager	panel	that	opens	up	and	name

it	levelBound.
Well	done,	you've	created	a	tag	to	be	used	in	our	script	files	to	check

collisions	between	the	aliens	and	the	level	bounds	we	put	in	the	scene.

	
To	add	the	tag	to	the	LeftBound	game	object,	select	it	and	in	the	Tag	drop-

down	menu,	you	should	now	be	able	to	select	the	newly	created	levelBound	tag.
To	complete	this	part	of	the	tutorial,	we	need	a	second	bound	to	be	added	to

the	Scene.	With	the	LeftBound	game	object	selected,	press	Ctrl	+	D	to	duplicate
it.	Name	the	newly-created	game	object	RightBound	and	set	its	X	coordinate	to
20,	then	add	the	levelBound	tag	to	RightBound	too.

The	following	screenshot	shows	a	reference	of	what	you	should	have	in	your
scene	by	now:	

	

It's	now	time	to	make	the	swarm	move.	Open	the	ControlSwarm	script.

1.	 In	the	upper	section	of	the	script,	where	we	declared	the	alien	GameObjects,
add	the	following	lines	to	create	new	variables:

//this	is	an	array	to	store	the	instances	of	the	aliens

		//that	are	part	of	the	swarm

static	var	enemyList=new	Array();

	

//we	use	this	boolean	to	check	the	actual	direction	of	the

		//swarm

var	goRight:boolean;

	

//with	this	int	value	we	define	the	horizontal	speed	of	the

		//swarm

var	vel:int;

	

//we	use	this	boolean	to	control	the	collision	of	the

		//aliens	with	the	Bounds

static	var	bCollide:boolean;

Now	enter	the	Start()	function	and	add	the	missing	lines:

function	Start	()

{

{

			//we	want	11	aliens	per	row

			for(var	i=0;i<11;i++)

			{

									//first	row	is	created	at	same	Y	position	as

											//SwarmManager

										Instantiate(Alien1,Vector3(-15+(3*i),

												transform.position.y,transform.position.z),

														transform.rotation);

	

Instantiate(Alien2,Vector3(-15+(3*i),

		transform.position.y-3,transform.position.z),

				transform.rotation);

	

Instantiate(Alien3,Vector3(-15+(3*i),

		transform.position.y-6,transform.position.z),

				transform.rotation);

	

Instantiate(Alien4,Vector3(-15+(3*i),

		transform.position.y-9,transform.position.z),

				transform.rotation);

			}

	

			//this	line	fills	the	array	enemyList	with	aliens	tagged

					//"Enemies"

			enemyList=GameObject.FindGameObjectsWithTag("Enemies");

	

			//the	swarm	starts	moving	right

			goRight=true;

	

			//tweak	the	swarm	speed	according	to	your	tastes

			vel=4;

	

			//no	collision	when	the	game	starts

			bCollide=false;

}

Now	we	take	care	of	having	the	swarm	move.	Movement	is	defined	by	a
function	called	moveEnemies(),	which	is	called	the	first	time	in	0.5	seconds	after
the	game	starts	and	then	every	0.25	seconds	by	another	instruction	called
InvokeRepeating().	You	can	tweak	these	values	if	you	like.

//this	instruction	calls	the	moveEnemies	functions	at	a

		//given	pace

InvokeRepeating("moveEnemies",0.5,0.25);

	

//we	move	the	swarm	left	or	right	at	speed	defined	by	vel

function	moveEnemies()

function	moveEnemies()

{

			if(goRight)

			{

									for(var	myEnemy:GameObject	in	enemyList)

									{

																if(myEnemy)

																{

			myEnemy.transform.Translate(Vector3(vel,0,0));

																}

									}

			}

	

			if(!goRight)

			{

									for(var	myEnemy:GameObject	in	enemyList)

									{

																if(myEnemy)

																{

																						myEnemy.transform.Translate(Vector3

																								(-vel,0,0));

																}

									}

			}

}

Finally,	in	the	Update()	function	we	check	if	a	collision	with	the	levelBound
tag	occurred	to	change	the	movement	direction	of	the	swarm	and	lower	their
height	with	regards	to	the	player's	ship.

function	Update	()	{

	

			if(bCollide)

			{

									goRight=!goRight;

	

									for(var	myEnemy:GameObject	in	enemyList)

									{

																if(myEnemy)

																{

			myEnemy.transform.Translate(Vector3	(0,-4,0));

																}

									}

	

									bCollide=false;

			}

}

To	have	the	script	work,	we	need	to	perform	some	operations.

1.	 First	of	all	we	need	to	tag	the	Aliens	prefab	as	enemies.	Add	a	tag	named
Enemies	to	the	Tag	Manager	panel	as	we	did	for	levelBound	and	set	it	for
the	four	Alien	prefabs.

2.	 Then	we	need	to	program	the	alien	instances	so	that	they	alert	the
SwarmManager	game	object	whenever	they	collide	with	levelBound.	As	you
may	remember,	we	created	the	SwarmManager	game	object	as	an	external
component	of	the	swarm	itself;	therefore	we	now	need	to	add	another	script
to	our	Script	folder.

3.	 Create	a	new	JavaScript	file,	name	it	BoundCollision	and	open	it	in
MonoDevelop.	Add	the	following	lines	to	the	script;	a	variable	declaration
and	the	OnTriggerEnter()	function	to	actually	check	the	collisions
between	the	Aliens	and	the	Bounds:

//this	variable	is	used	to	access	the	bCollide	variable	in

		//the	ControlSwarm	script

var	mySwarm:GameObject;

	

function	Start	()	{

}

	

function	Update	()	{

}

	

function	OnTriggerEnter(other:Collider)

{

			if(other.gameObject.tag=="levelBound")

			{

									//we	access	the	bCollide	variable	in	the

											//ControlSwarm	script

									var	scriptFile:	ControlSwarm	=

											mySwarm.GetComponent("ControlSwarm");

									scriptFile.bCollide=true;

			}

}

Add	this	script	to	all	four	Alien	prefabs	in	the	Project	panel.
To	have	this	script	work	we	need	to	Perform	a	last	operation,	though.	We	need

to	make	another	Prefab	out	of	the	SwarmManager	game	object.
Create	a	new	Prefab	in	the	Project	panel,	name	it	SwarmManager	and	then

drag	the	SwarmManager	game	object	from	the	Hierarchy	panel	into	the

SwarmManager	Prefab	in	the	Project	panel.	Use	the	following	screenshot	as	a
reference:	

	
The	last	operation	is	to	drag	the	SwarmManager	prefab	we	just	created	into	the

My	Swarm	variable	of	the	Bound	Collision	(Script)	we	added	to	each	Alien
prefab,	as	shown	in	the	following	screenshot:	

	
Remember	to	repeat	this	last	operation	for	all	Alien	prefabs	we	have	in	the

Project	panel.

Everything	is	ready	now	to	test	the	behavior	of	the	alien	swarm.	Launch	the
project	and	check	that	the	swarm	actually	starts	moving	right	and	upon	colliding
with	the	bounds,	invert	its	direction	and	lowers	its	height.

Very	well	done!	The	fundamentals	of	our	prototype	are	set	now.	In	the	next
section	we	will	take	care	of	the	firing	stuff.

Firing

First	of	all	we	want	to	make	the	player's	ship	fire	against	the	aliens	of	the	swarm.

We	already	have	a	prefab	representing	the	bullets	fired	by	the	player's	ship,	so
we	actually	just	need	to	have	them	spawned	from	the	ship	as	the	player	presses
the	spacebar.	Obviously,	this	action	can	be	bound	to	any	other	key	of	choice.

1.	 Create	a	new	JavaScript	in	the	Scripts	folder,	name	it	ControlPLBullet
and	open	it	in	MonoDevelop.

2.	 This	script	contains	instructions	for	the	Update()	function	and	the
OnTriggerEnter()	function	to	check	for	collisions	between	the	bullet	and
the	aliens,	their	bullets	and	the	barriers	positioned	between	the	player's	ship
and	the	swarm.

3.	 The	Update()	function	takes	care	of	making	the	bullet	move	up	and
eventually	destroys	it	in	case	nothing	is	hit,	so	that	the	player	can	shoot
again.	The	following	code	is	to	be	typed	into	the	Update()	function:

function	Update	()	{

	

			//move	bullet	up	once	created	2	pixels\frame

			transform.Translate(Vector3(0,2,0));

	

			//Y=100	defines	upper	screen	limit

			if(transform.position.y>100)

			{

								//destroy	bullet	as	it	goes	outside	the	upper

										//screen	limit

									Destroy(gameObject);

									//once	the	bullet	is	destroyed,	allow	the	player

											//to	shoot	again

													ControlShip.canShoot=true;

			}

}

In	the	OnTriggerEnter()	function	we	check	what	the	bullet	collides	with	and
then	destroy	both:

function	OnTriggerEnter(other:Collider)

{

				//the	bullet	collides	with	aliens

			if(other.gameObject.tag=="Enemies"){

	

									Destroy(gameObject);

									Destroy(other.gameObject);

									Destroy(other.gameObject);

	

									//once	the	bullet	is	destroyed,	allow	the	player

											//to	shoot	again

											ControlShip.canShoot=true;

			}

	

			//the	bullet	collides	with	barriers:	destroy	bullet	and

					//a	piece	of	the	barrier

			if(other.gameObject.tag=="BarrierBrick"){

									Destroy(gameObject);

									Destroy(other.gameObject);

	

									//once	the	bullet	is	destroyed,	allow	the	player

											//to	shoot	again

										ControlShip.canShoot=true;

			}

}

Save	the	script	and	drag	it	onto	the	PLBullet	Prefab.

If	you	test	the	project	now,	you	should	have	the	player's	ship	firing	and	the	bullet
move	up,	until	it	collides	with	an	alien	or	gets	out	of	the	top	boundary	of	the
screen.	You	should	also	notice	that	you	won't	be	able	to	shoot	again	until	the	last
bullet	is	destroyed.	In	the	Update()	function	you	can	also	tweak	the	speed	of	the
bullet	as	it	goes	up	and	the	height	it	gets	destroyed	at,	if	it	doesn't	collide	with
anything.

Having	the	aliens	shoot	at	the	player's	ship	can	be	achieved	in	many	different
ways.	For	the	sake	of	this	tutorial	we	will	show	a	very	straightforward	method,
simply	based	on	probabilities.	We	basically	call	a	function	every	five	seconds
and	with	each	call,	we	set	a	probability	that	each	alien	in	the	swarm	fires	a	bullet
against	the	player's	ship.

The	actions	of	the	aliens'	bullets,	movements,	and	collision	detection	are
basically	handled	the	same	way	we	did	for	the	player's	bullets,	with	a	script
attached	to	the	bullet	itself.

1.	 So	create	a	new	JavaScript	in	the	Scripts	folder,	name	it	AlienShoot	and
add	the	following	code.	You	should	now	be	used	to	the	kind	of	actions
expressed	by	the	instructions	of	the	script.

#pragma	strict

	

//this	var	instantiates	the	bullet	prefab

//this	var	instantiates	the	bullet	prefab

var	itsBullet:Rigidbody;

	

function	Start	()	{

	

}

	

function	Update	()	{

	

}

//repeat	firing	check	every	5	secs

InvokeRepeating("shouldFire",3,5);

	

function	shouldFire()

{

									//assign	a	random	value	between	0	and	1	to	p

			var	p:float=Random.value;

	

			//change	p	that	alien	fires

			if(p>0.85)

			{

									doFire();

			}

}

	

//this	function	instantiates	an	alien	bullet

function	doFire()

{

			Instantiate(itsBullet,transform.position,

transform.rotation);

}

2.	 To	have	the	AlienBullet	prefab	work	properly,	we	first	need	to	modify	it
by	adding	a	Rigidbody	component,	so	that	it	can	detect	collisions	with	the
barriers	and	the	player's	ship.	In	fact	we	declared	the	bullet	variable	as
Rigidbody	in	the	script.	Select	it	in	the	Project	panel	and	add	the
Rigidbody	component	as	shown	in	the	following	screenshot:	

	

Then	attach	the	script	to	each	Alien	prefab	in	the	Prefabs	folder	of	the
Project	panel	and	drag,	for	each	Alien	prefab,	the	AlienBullet	prefab	into	the
exposed	variable	of	the	script.	Refer	to	the	following	screenshot	to	be	sure
you've	done	things	right	and	check	that	the	Is	Kinematic	option	of	the
Rigidbody	component	is	flagged,	while	the	Use	Gravity	is	not,	as	usual.

	

The	next	step	is	to	provide	the	bullets	fired	by	aliens	with	a	behavior,	since,	as	it
is,	the	AlienBullet	prefab	doesn't	do	very	much.	In	the	next	step	we	need	to
program	the	behavior	of	the	bullets	fired	by	aliens.

1.	 Create	another	script	with	name	ControlAlienBullet.	The	script	is	mostly
like	the	one	controlling	the	PLBullet	prefab,	with	the	difference	that	it
moves	in	the	opposite	way,	from	top	to	bottom	of	the	screen.	This	time	we
also	check	collisions	with	the	player's	ship	rather	than	aliens	and	with	the
barriers,	which	we	will	discuss	in	more	detail	in	the	next	chapter.

2.	 Finally,	we	need	to	manage	the	consequence	of	the	bullet	hitting	the
player's	ship.	We	will	take	care	of	this	in	another	section	of	this	tutorial,
when	we	discuss	the	final	touches	to	be	added	to	the	prototype.	For	now,
we	are	fine	with	a	simple	log	message	telling	that	the	game	is	over!

3.	 The	following	code	is	to	be	put	in	the	ControlAlienBullet	script:

function	Start	()	{

	

}

	

function	Update	()	{

			//this	bullet	move	down

			//this	bullet	move	down

			transform.Translate(Vector3(0,-2,0));

	

			//destroy	bullet	below	this	height

			if(transform.position.y<-30)

			{

									Destroy(gameObject);

			}

	

}

	

function	OnTriggerEnter(other:Collider)

{

			//check	collision	with	player's	ship

			if(other.gameObject.tag=="PlayerShip")

			{

									Destroy(gameObject);

									Destroy(other.gameObject);

	

									//we	will	improve	this	later

									Debug.Log("Game	Over");

			}

	

			//check	collisions	with	barriers

			if(other.gameObject.tag=="BarrierBrick"){

	

									Destroy(gameObject);

									Destroy(other.gameObject);

			}

}

You	may	notice	that	the	collision	between	the	alien	bullet	and	the	player's	ship
is	dependent	on	the	player's	ship	being	tagged	as	"PlayerShip".	We	thus	need	to
add	this	tag	into	the	Tag	Manager	panel	and	then	add	the	tag	to	the	PLShip
prefab.	You	shouldn't	have	problems	doing	this	by	now.
We	also	need	the	PLShip	Prefab	to	be	added	with	a	BoxCollider	component

with	the	Is	Trigger	flag	checked	in	order	to	have	the	collisions	with	the	bullet
being	detected.	The	following	screenshot	should	help	you	do	that:	

	
Add	the	ControlAlienBullet	script	to	the	AlienBullet	Prefab	and	if	you	test

the	project	now,	you	should	have	the	aliens	randomly	fire	at	the	player.	Check
that	the	player's	ship	is	destroyed	and	the	Game	Over	log	is	correctly	displayed
upon	collision	between	the	alien	bullet	and	the	player's	ship.
Also	remember	that	you	can	tweak	the	firing	rate	of	the	aliens	by	modifying

the	InvokeRepeating	instruction	or	the	probability	that	the	doFire()	function	is
called	in	the	AlienShoot	script.

This	ends	the	second	part	of	the	tutorial,	where	we	added	the	basic	functionality
to	our	Space	Invaders	prototype.	Right	now,	in	the	Scripts	folder	of	the	Project
panel	you	should	have	the	following	scripts:

AlienShoot

BoundCollision

ControlAlienBullet

ControlPLBullet

ControlShip

ControlSwarm

The	Prefabs	folder	should	contain	the	following	prefabs:

Alien1

Alien2

Alien3

Alien4

AlienBullet

PLBullet

PLShip

SwarmManager

Finally,	the	Tag	Manager	panel	should	handle	the	following	tags:

Enemies

levelBound

PlayerShip

Well	done!	In	the	next	and	final	part	of	the	tutorial	we	will	add	the	final	touches:
GUI,	the	barriers,	a	Game	Over	event,	and	some	audio.

Summary
In	this	chapter	we	covered	the	prototyping	process,	the	types	of	prototypes,	the
tools	for	prototyping,	and	the	dos	and	don'ts	of	prototyping.	We	also	provided
part	2	of	our	prototyping	tutorial	with	Unity	3D.

In	the	next	chapter,	we	discuss	how	to	fine	tune	and	polish	up	a	prototype	to
achieve	a	final	product,	ready	for	publication.

Chapter	10.	Balancing,	Tuning,	and
Polishing	Mobile	Games
When	a	game	comes	to	the	final	steps	of	its	development,	all	efforts	should	be
directed	towards	adjusting	the	small	details,	which	make	a	difference	between	a
good	game	and	a	great	one.	The	competition	is	high	in	this	industry	and	no	game
can	make	its	way	against	its	competitors	if	it	is	less	than	perfect.

Making	a	game	perfect	can	have	several,	and	often	subjective,	meanings.	As
games	are	interactive	media	they	can	only	be	perfect	inside	the	space	defined	by
their	interactions	with	the	players.	This	means	that	a	game	can	never	be	great	by
itself,	but	it	can	only	be	great	in	the	perception	that	gamers	have	of	it.

Basically	games	should	meet	the	players'	expectations	at	several	levels;	they
should	run	smoothly,	be	fun	to	play,	provide	a	reasonable	amount	of	gameplay,
and	make	players	feel	at	ease	with	the	game	controls/interface,	among	others.

Each	of	these	topics	falls	into	a	different	category	of	actions,	or	set	of	actions
that	you	as	game	developers,	should	perform	to	achieve	an	optimal	result	with
your	game.	In	this	chapter	we	will	talk	about	balancing,	tuning,	and	polishing
(mainly),	explaining	the	aim	of	each	and	the	best	practices	to	perform	them
efficiently.

We	also	in	this	chapter	finally	top	off	the	Unity	tutorial,	by	adding	the	final
touches	to	improve	the	gameplay	provide	an	interface	and	offer	better	aesthetics.
This	will	lead	us	to	a	better	polished	game,	which	is	the	aim	of	this	chapter.

Balancing
Balancing	has	mainly	to	do	with	the	longevity	(longevity	represents	how	long	a
game	is	played	by	a	player	in	his	life)	of	a	title,	as	it	affects	the	quality	of	the
interaction	between	the	player	and	the	game	he	is	playing.

Let's	think	of	games	as	dynamic	systems.	As	with	any	system,	games	must	have
some	kind	of	equilibrium	state	that	allows	the	system	itself	to	perpetuate.	In	our
metaphor,	the	longer	the	equilibrium	is	kept,	the	better	the	longevity	of	a	game.

Now	let's	consider	the	players'	actions	as	disturbances	to	the	state	of	equilibrium
the	system	is	in	at	any	given	time.	If	the	system	of	our	game	doesn't	react
properly	to	the	players'	actions,	for	example,	it	over	or	under	reacts,	the
equilibrium	state	of	the	game	collapses,	thus	ruining	the	gameplay	experience.

In	a	First	Person	Shooter	(FPS)	the	player	usually	controls	a	character	that	can
sustain	much	more	damage	than	the	average	enemy	he	faces,	which	is	an
example	of	an	unbalanced	condition.	To	balance	the	improved	resistance	of	the
player's	character,	FPSs	are	provided	with	tons	of	enemies	for	the	player	to	kill.
If	a	FPS	had	just	one	single	weak	enemy,	it	wouldn't	be	so	much	fun	to	play.

On	the	other	hand,	if	the	enemies	were	as	tough	as	the	player's	character,	it
wouldn't	be	very	fair	for	the	player	to	have	so	many	against	him.

In	a	sports	game	where	two	teams	compete,	each	team	has	the	same	number	of
players	so	it	is	not	by	chance	that	sending	off	a	team	member	is	considered	a
strong	penalization	for	the	team	sustaining	it.

In	the	following	section	we	provide	an	explanation	for	all	the	most	important
techniques	used	in	game	development	to	balance	games.

Symmetry

The	competition	between	two	teams	of	players	in	sports	can	help	us	describe	the
most	basic	technique	to	balance	games,	which	is	called	symmetry.	Symmetry
means	that	each	side	(or	team)	starts	with	the	exact	same	amount	of	resources.
Competitive	games	always	require	some	kind	of	symmetry,	though	there	can	be
cases	where	total	symmetry	cannot	be	achieved,	as	happens	with	turn-based
games,	such	as	Chess	and	Tic-Tac-Toe,	as	one	player	will	always	have	the
advantage	of	the	first	move.

Randomization

This	is	another	very	basic	technique	commonly	used	in	board	and	card	games
that	consist	of	letting	a	random	process	be	in	charge	of	determining	the	initial
gaming	conditions.	Since	a	random	process	can	only	lead	to	fairness	in	the	long
run,	through	several	repetitions	of	the	experience,	it	is	good	practice	to	use
methods	to	overcome	the	initial	frustration	this	technique	can	lead	to.	One	is	to
make	each	game	session	short	enough	so	that	multiple	attempts	can	be	made	in	a
single	play	session.	Another	is	to	give	the	player	the	possibility	to	set	the	range
of	random	results	through	optimization,	as	is	the	case	with	building	up	your	deck
in	the	game	Magic:	The	Gathering.

Feedback	loops

A	more	advanced	technique	to	balance	a	game	is	by	making	it	more	demanding
for	the	successful	player.	Real-time	Strategy	(RTS)	games	achieve	that	by
asking	players	to	pay	an	upkeep	cost	for	the	units	they	control	so	that	the	largest
armies	require	the	higher	cost	to	be	paid.	In	Mario	Kart	the	leading	player
always	gets	the	worst	power-ups	and	his	top	speed	is	diminished,	while	his
opponents	become	a	bit	faster,	a	feature	commonly	known	as	"the	rubber	band
effect".

In	other	words,	feedback	loops	allow	automatic	balancing	by	weakening	the
leading	player	and	providing	small	advantages	to	those	who	are	losing.

Game	director

An	even	more	advanced	technique	is	to	have	the	game's	Artificial	Intelligence
(AI)	take	control	of	adjusting	the	game	difficulty	based	on	the	players'
performance.	The	game	Left4Dead	by	Valve	offers	an	excellent	example	of	such
a	technique,	as	the	players	advance	in	the	game,	the	so	called	AI	director	gathers
statistics	with	regards	to	their	performance	and	sets	enemy	spawn	points,	enemy
population,	and	items	accordingly	to	keep	the	game	optimally	balanced	for	each
player.	It	even	controls	the	music	scores,	creating	interesting,	distinctive	mixes
for	each	player	in	the	party.

Statistics

Further	advice	we	would	like	to	offer	on	the	matter	of	game	balancing	is	to	use
statistics	whenever	you	can.	The	mathematical	analysis	of	data	gathered	from
game	sessions	could	really	help	you	understand	what	happened	and	identify
unbalanced	areas	of	your	game,	if	any,	to	make	the	appropriate	corrections.

As	you	can	understand	by	now,	game	balancing	is	both	a	crucial	and	thorny
activity,	which	requires	several	aspects	to	be	considered	at	the	same	time.	Do	it
wrong	and	your	game	system	will	be	easily	broken	by	players,	as	they	are	very
smart	at	finding	dominant	strategies	and	dark	areas	that	destroy	the	playability	of
your	title.

Play	testing	is	the	key	for	optimal	game	balancing.	While	scheduling	your
project,	allocate	a	proper	amount	of	time	with	your	testers	to	check	that	no
element	of	your	game	is	ineffective	or	undesirable	and	undermines	the	game	rule
set.

Tuning
Tuning	a	game	involves	a	series	of	activities,	which	are	related	to	balancing,	but
with	a	distinctive	aim.	Tuning	has	to	do	with	making	a	game	fun	to	play	from
beginning	to	its	end,	possibly	for	players	at	the	most	different	skill	levels
(though	it	is	true	that	few	games	specially	aim	towards	very	skilled	players,
sometimes).

With	this	last	subject	we	enter	a	very	dark	area	of	games	design	in	general	and
videogame	design	in	particular	because	we	get	to	the	point	of	defining	what	is
fun.	Unfortunately,	a	definition	of	fun	would	require	an	entire	book	for	itself,	so
we	suggest	you	to	refer	to	this	very	interesting	Gamasutra	article	to	begin	your
research	into	the	topic	of	fun	in	Videogames	found	at
http://www.gamasutra.com/view/feature/173545/fun_is_boring.php.

Sid	Meyer,	the	founder	of	MicroProse	and	designer	of	several	popular	strategy
games	like	the	Civilization	series	(http://en.wikipedia.org/wiki/Sid_Meyer)	once
said	that	games	can	be	described	as	a	series	of	interesting	choices.	From	such	a
perspective,	tuning	a	game	means	that	a	game	designer	should	keep	the	choices
available	to	his	players	interesting	throughout	the	entire	game.

Let's	now	switch	to	another	industry	veteran,	Raph	Koster,	designer	of	Ultima
Online	and	author	of	a	book	A	Theory	of	Fun	for	Game	Design,	by	Paraglyph
Press,	we	suggest	you	to	read.	In	Raph	Koster's	opinion,	play	has	to	do	with
learning,	which	means	that	games	keep	being	interesting	to	players	as	long	as
they	keep	learning	while	playing.

Having	this	in	mind,	we	can	now	begin	defining	what	tuning	a	game	means.	A
well-tuned	game	is	the	one	that	is	fun	to	play	from	beginning	to	end,	and	a	game
that	engages	players	according	to	the	improvement	of	their	gaming	skills	as	they
play.	A	game	that	perpetuates	on	the	delicate	equilibrium	between	punishment
and	reward,	if	success	is	too	easy,	your	players	will	get	bored	soon	and	quit
playing.	On	the	other	hand,	if	the	game	is	too	hard	they	will	curse	the	designer
and	quit	playing.

http://www.gamasutra.com/view/feature/173545/fun_is_boring.php
http://en.wikipedia.org/wiki/Sid_Meyer

Tuning	strategies

Which	are	the	key	strategies	we	can	make	use	of	to	effectively	tune	games?

Generalization	is	one.	Design	your	games	so	that	the	core	mechanics	are
controlled	by	general	rules	that	don't	change	with	regard	to	specific	game	entities
or	situations.	Tuning	each	game	mechanic	separately	will	very	likely	lead	you	to
balancing	issues,	while	if	the	same	game	rules	are	consistent	throughout	the
entire	game	it	will	be	easier	to	make	the	fine	adjustments	required,	offering	the
players	that	optimal	level	of	engagement.

Keeping	code	separated	from	data	is	another	strategy	to	help	you	efficiently	tune
a	game.	By	putting	the	statistics	regarding	the	game	entities	parameter	in	a
separate	file,	designers	and	testers	are	able	to	make	changes	to	those	values
during	play	testing	without	affecting	the	game	itself	or	creating	new	bugs,	thus
saving	coding	time	and	coders'	patience.

Now	that	we	have	described	the	main	fine	tuning	strategies,	we	can	offer	some
of	the	best	practices	to	do	it	efficiently,	since	tuning	can	be	a	very	time-
consuming	activity	if	you	don't	use	a	structured	approach.

The	following	is	the	approach	to	user	interface	design:

One	value	at	a	time:	While	editing	parameters	values,	always	change	one
at	a	time,	so	that	you	can	test	the	effect	of	that	specific	modification	and
nothing	else.	By	modifying	several	parameters	at	once	you	can	easily	lose
track	of	what	caused	what,	with	the	result	that	you	cannot	identify	the	very
reason	of	the	issue	you	desire	to	solve.
Try	extreme	values	first:	Go	for	big	adjustments,	not	small	ones.	By
doubling	or	halving	values	you	can	easily	verify	the	effects	of	a	specific
parameter,	while	subtle	modifications	may	produce	changes	that	are	hard	to
notice.	Begin	with	big	adjustments	and	then	progressively	reduce	their
entity	as	you	make	reiterated	tests,	until	you	get	to	the	ideal	value	you	are
searching	for.
Record	your	actions:	Keep	records	of	the	adjustments	you	make.	As	you
delve	deeper	into	the	tuning	process,	you	can	easily	forget	what	you	did	in
the	previous	step.	Keeping	track	of	your	actions	will	help	you	understand
what	you	are	doing	and	allow	you	to	get	back	to	former	values,	if	you	find
out	that	those	values	produced	better	results.	This	is	a	significant	benefit	of

using	a	source	code	tracking	app	to	manage	your	changes;	they	are
automatically	entered	into	the	change	log.	A	list	of	revision	control	apps
can	be	found	at
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software.

http://en.wikipedia.org/wiki/Comparison_of_revision_control_software

Difficulty	settings
Another	aspect	to	mention	regarding	game	balancing	and	tuning	concerns	the
difficulty	settings	of	your	game.	Most	games	offer	the	opportunity	to	choose	the
degree	of	difficulty	at	which	to	play	the	game.	This	is	a	key	element	of	any	game
because	it	has	to	do	with	the	degree	of	gratification	that	your	players	will	get
from	playing,	and	hopefully	beating,	your	game.	As	personal	satisfaction	is	a
highly	subjective	matter,	it	can	be	pretty	hard	to	decide	which	settings	better	fit
the	needs	of	a	specific	player.

It	is	also	very	important	to	consider	that	different	game	genres	and	platforms
target	different	audiences.	First	Person	Shooters	mainly	target	hardcore	gamers,
who	expect	to	be	highly	challenged	by	games.	On	the	other	hand,	the	average
mobile	audience	is	usually	a	casual	one,	so	they	expect	the	game	to	be	pretty
forgiving	and	rarely	punishing	at	all.

While	setting	the	difficulty	curve	of	a	game,	always	keep	in	mind	the	audience
you	are	targeting	and	the	time	you	want	them	to	invest	in	your	game.	Have
different	categories	of	testers	play	it	at	different	difficulty	settings.	If	you
succeed	in	adjusting	your	game	variables	to	different	audiences,	you	can	exploit
the	advantage	of	addressing	a	broader	audience	for	your	game,	increasing	its
potential	revenues.

The	following	general	list	displays	the	most	common	parameters	which	affect
the	difficulty	of	a	title:

Enemy	number
Enemy	accuracy
Enemy	rate	of	fire
Enemy	toughness
Enemy	speed
Player's	health
Player's	speed
Weapons	range
Weapon	reload	time
Frequency	of	power-ups
Time	limits	to	complete	levels
In-game	hints
Navigation	directions

Consequence	of	player's	death
Restart	level	from	beginning
Restart	from	last	checkpoint
Power-ups	are	lost/are	kept

Global	difficulty

Finally,	once	you	feel	you	have	a	decent	balance	of	the	preceding	list,	add	a
master	adjustment	factor	that	allows	dialing	the	universal	difficulty	up	or	down.
This	is	separate	from	and	affects	the	difficulty	settings	the	player	has	control
over.

It	will	also	allow	you	as	the	game	designer	to	fine	tune	the	entire	gameplay
experience.	Is	the	game	too	short?	Crank	up	the	difficulty	a	notch	or	two,	then
test	again.	Is	it	too	long	for	a	mobile	game?	Reduce	the	global	difficulty	and	try
again.

We	used	this	method	while	play	testing	Faceball	2000	for	the	original	Game
Boy.	At	one	point	we	had	play	testers	falling	out	of	their	chairs,	trying	to	get
around	a	corner	to	avoid	a	shot.	Another	time	one	of	our	coders	got	so	angry,	he
threw	the	Game	Boy	into	a	mirror.	We	then	knew	we	had	the	perfect	balance.

Unity	3D	tutorial	–	part	3
For	the	final	part	of	our	tutorial,	we	are	going	to	set	the	final	touches	to	the
Space	Invaders	prototype.	The	barriers	which	protect	the	player's	ship,	a	game
won/game	lost	event,	the	GUI,	the	audio,	and	some	particle	effects	to	improve
the	overall	appeal	of	the	game.

The	barriers

We	will	create	destructible	barriers	by	assembling	a	number	of	small	cubes	in
the	shape	of	the	barriers	of	the	original	Space	Invaders.

1.	 Add	a	Cube	to	the	game	scene	and	size	it	as	you	see	fit	(we	suggest	you	not
to	scale	it	too	small	or	you	may	face	problems	with	collision	detection).
Now	create	a	new	prefab	in	the	Prefab	folder	and	drag	the	cube	from	the
scene	into	the	newly	created	prefab.	Name	it	Brick	and	make	it	green	like
the	player's	ship.

2.	 Now	we	need	to	create	several	instances	of	this	prefab	to	shape	the	barrier.
You	can	do	that	by	selecting	the	Brick	in	the	Hierarchy	panel	and	pressing
Ctrl	+	D	to	duplicate	it.	Then	position	each	duplicated	Brick	to	create	a
shape	like	the	one	shown	in	the	following	screenshot:	

The	next	step	is	to	create	a	prefab	for	the	complete	barrier	too.	First	add	an
empty	GameObject	to	the	scene	by	selecting	GameObject	|	Create	Empty
from	the	main	menu	bar	as	shown	in	the	following	screenshot.	The	newly
created	empty	GameObject	will	be	added	to	the	Hierarchy	panel.

Select	all	the	Brick	instances	in	the	Hierarchy	panel	and	drag	them	into	the
GameObject	from	the	Hierarchy	panel.	Refer	to	the	following	screenshot	to	be
sure	you	are	doing	the	right	thing:	

Now	create	a	new	prefab	in	the	Prefab	folder	of	the	Project	panel	and	name	it
Barrier,	then	drag	the	GameObject	containing	the	Brick	instances	into	it.
You	can	now	delete	the	GameObject	with	the	Brick	instances	from	the	scene

and	put	the	Barrier	prefab	in	its	place.	You	actually	need	four	barriers	on	top	of
the	player's	ship,	as	shown	in	the	following	screenshot.	Please	ensure	that	the
barriers	are	positioned	at	the	same	Z	value	of	both	the	player's	ship	and	the
aliens	in	the	swarm.

The	last	step	is	to	tag	the	Brick	instances	as	BarrierBrick	and	to	flag	the	Is
Trigger	option	on	their	Box	Collider	component	so	that	they	can	be	affected	by
the	collisions	with	both	the	player's	and	aliens'	bullets.	You	should	remember
how	to	create	a	new	tag	and	how	to	assign	it	to	a	prefab,	but	in	case	you	don't
remember,	please	refer	the	following	screenshot:	

Now	test	your	game.	Both	the	player's	and	aliens'	bullets	should	destroy	a	piece
of	the	barriers	upon	collision.

The	player's	ship	reprise

We	need	to	go	back	to	the	player's	ship	to	prevent	it	from	moving	outside	of	the
game	area	boundaries.	This	is	easy	to	achieve.	We	simply	add	an	X	coordinate
position	check	of	the	ship	itself	before	allowing	the	player	to	move	left	or	right.

Modify	the	Update()	function	in	the	ControlShip	script	as	shown	in	the
following	code:

function	Update	()	{

	

			//is	the	player	pressing	right	button	and	the	ship	can	move

					//right

			//tweak	the	x	reference	value	as	needed

			if(Input.GetKey("right")	&&	transform.position.x<25)

			{

								//ship	move	right

									transform.Translate(Vector3(1,0,0));

			}

	

			//is	the	player	pressing	left	button	and	the	ship	can	move	left

			//tweak	the	x	reference	value	as	needed

			if(Input.GetKey("left")	&&	transform.position.x>-25)

			{

								//ship	move	left

									transform.Translate(Vector3(-1,0,0));

			}

	

			//is	player	pressing	the	fire	button	(spacebar)

			if(Input.GetKeyDown("space")	&&	canShoot)

			{

									//create	the	bullet

			Instantiate(myBullet,transform.position,transform.rotation);

									//player	can't	fire	for	a	while

									canShoot=false;

			}

}

Refining	the	details

In	this	section	we	are	going	to	add	some	fine	details	to	the	prototype	to	make	it
more	appealing.	We	just	cover	here	a	few	examples	of	things	that	can	be	done	to
improve	our	project	and	many	more	you	can	think	of	yourself.	We	strongly
encourage	you	to	do	so!	You	may	prefer	the	level	boundaries	not	to	be	displayed
in	the	game	area	while	the	game	plays.	This	can	be	done	by	adding	a
NotToRender	layer	in	the	Layer	Manager	panel,	putting	the	left	and	right
game	boundaries	on	such	layer	and	forcing	the	Main	Camera	not	to	render	that
layer.

1.	 First	we	add	the	new	Layer.	With	any	of	the	bounds	selected	in	the
Hierarchy,	click	on	the	Layer	button	and	select	Add	Layer,	as	shown	in
the	following	screenshot,	where	we	have	selected	LeftBound:	

To	begin	with,	name	the	first	free	User	Layer	slot	available	in	the	list,	which
opens	as	NotToRender	as	shown	in	the	following	screenshot:	

Next	put	both	LeftBound	and	RightBound	on	the	newly	created	layer,	as
shown	in	the	following	screenshot:	

The	last	step	is	to	select	the	Main	Camera	in	the	Hierarchy	panel,	access	its
Camera	properties	in	the	Inspector	panel,	click	on	the	Culling	Mask	menu	and
de-flag	the	NotToRender	layer,	which	appears	in	the	window	that	opens.	Use
the	following	screenshot	for	reference:	

This	way	we	told	the	game	camera	not	to	render	anything	we	put	on	the
NotToRender	layer.	Since	we	put	the	left	and	right	bounds	on	this	layer,	they
won't	be	displayed	on	screen.	Launch	your	game	now	and	check	that	these	last
modifications	we	made	work	as	expected.

Our	prototype	also	needs	a	better	deep-space	background.	We	will	make	it	with
a	plane	and	a	particle	effect.

1.	 Add	a	Plane	to	the	Scene,	name	it	Background,	paint	it	black	with	a
material	(create	one	if	you	haven't	already),	scale	it	as	needed	and	put	it
right	behind	the	game	scene,	as	shown	in	the	following	screenshot:	

Now	add	a	Particle	System	to	the	scene	by	navigating	to	GameObject	|
Create	Other	|	Particle	System	from	the	main	menu	bar.

We	begin	by	naming	the	Particle	System	as	BackStars.	Then	we	need	to	set
its	properties	according	to	our	needs.	Though	we	cannot	provide	a	thorough
tutorial	about	particle	system	here,	we	will	only	tell	you	how	to	edit	it	with
regard	to	our	Space	Invaders	prototype	needs.	Take	the	following	suggestions
for	what	they	are;	you	can	obviously	use	different	values	if	you	like	so.
For	this	prototype	we	will	put	the	particle	system	at	the	bottom	of	the	game

scene,	as	we	want	particles	to	move	bottom	up.	In	our	reference	setup	the
particle	system	is	located	at	coordinates	X=0,	Y=-50,	Z=15.
Then	we	need	to	change	the	shape	of	the	particle	system	from	a	Cone	to	a	Box

by	accessing	its	Shape	properties	in	the	Inspector	panel.	Refer	to	the	following
screenshot:	

We	also	need	to	set	the	Box	dimension	according	to	the	game	scene.	The
following	screenshot	shows	the	dimensions	we	set	for	the	particle	system	in	our
game	scene:	

Now	access	the	Emission	panel	in	the	Inspector	panel	to	increase	the	number
of	particles	created	to	20,	as	shown	in	the	following	screenshot:	

Next	we	want	to	change	the	direction	in	which	the	particles	move,	let's	say,	a
little	bit	to	the	left.	You	can	achieve	this	by	accessing	the	Velocity	over
Lifetime	property	and	editing	its	X	value	to	-2,	as	shown	in	the	following
screenshot:	

Finally	we	edit	the	main	Particle	System	panel	and	set	the	following	values:

Duration=10.0
Start	Lifetime=10
Start	Speed=3
Start	Size=0.5
Max	Particles=1500

Remember	that	you	can	tweak	these	values	as	you	prefer	according	to	your
tastes,	we	strongly	encourage	you	to	do	so,	to	understand	how	to	manage	particle
systems	in	Unity	by	experimenting	with	the	values.

Refer	to	the	following	screenshot	to	check	what	we	did:	

We	now	have	a	nice	animated	background	for	our	prototype	representing	deep
space	and	stars.	Test	your	game	and	check	if	you	like	it!

Adding	a	GUI

No	game	can	be	considered	polished	without	some	kind	of	Graphical	User
Interface	(GUI).	For	our	Space	Invaders	prototype	we	just	need	few	things	like
the	actual	score,	the	hiscore,	and	messages	to	be	displayed	for	game	over/game
won	events.

1.	 First	we	need	a	font	to	be	used	to	display	information	on	screen	that	will	be
put	into	a	GUI	Skin,	which	is	the	entity	that	defines	how	a	GUI	looks	and
behaves.	We	also	need	a	single	script	file.

2.	 Create	a	Fonts	folder	in	the	Project	panel	and	import	a	font	of	choice	from
your	standard	fonts	folder	(for	Windows	users	it	is	located	in	the	directory
C:\Windows\Fonts);	for	our	prototype	we	used	the	consola	font.

3.	 To	add	the	font	you	can	right-click	on	the	Fonts	folder	in	the	Project	panel,
select	Import	New	Asset…	and	then	browse	in	your	directories	to	pick	the
font	you	chose,	as	shown	in	the	following	screenshot:	

Now	create	another	folder	in	the	Project	panel	and	name	it	GUI.	Select	the
folder	and	create	a	new	GUI	Skin	inside	it,	as	shown	in	the	following

screenshot:	

Name	the	newly	created	GUI	Skin	as	myGUI	and	select	it	in	the	Project	panel.
In	the	Inspector	panel	you	should	see	a	Font	entry	set	to	the	default	Arial

value.	Click	on	the	small	button	on	the	right	to	open	a	window	that	displays	the
available	fonts	for	your	project.	Here	you	should	find	the	font	we	added	before,
consola	in	our	case.	Select	it.	You	can	refer	to	the	following	screenshot	to	check
if	you	are	doing	it	right:	

Now	create	a	new	JavaScript	file	in	the	Script	folder	and	name	it
DisplayGUI.
Inside	the	script	we	need	to	define	a	GUISkin	variable	for	the	project;	add	the

following	lines	to	the	top	of	the	newly	created	script:

var	myGUISkin	:	GUISkin;

Save	this	script	for	now,	we	will	add	more	lines	later.
The	next	step	is	to	add	a	GameObject	to	the	scene	to	attach	the	GUI	script	to.

Create	an	empty	GameObject	into	the	scene,	name	it	GameMaster	and	add	the
DisplayGUI	script	to	it.
Now	drag	the	myGUI	asset	from	the	Project	panel	into	the	myGUI	variable

inside	the	script,	as	shown	in	the	following	screenshot:	

Go	back	to	the	DisplayGUI	script	in	MonoDevelop	script	editor.	We	need	to
define	the	OnGUI	function	to	put	the	code	for	our	game	interface.	Add	the
following	lines	to	the	script:

function	OnGUI	()	{

	

			GUI.skin=myGUISkin;

	

			GUI.color	=	Color.white;

	

			//pl1	score

			GUI.Label	(Rect	(0,	5,	200,	40),	"SCORE	<1>");

									GUI.Label	(Rect	(0,	20,	200,	40),

											DisplayScore.Score.ToString());

	

									//pl2	score,	not	implemented

									GUI.Label	(Rect	(Screen.width-200,	5,	200,	40),

											"SCORE	<2>");

									GUI.Label	(Rect	(Screen.width-200,	20,	200,	40),

											"0");

											"0");

	

									//hiscore

									GUI.Label	(Rect	((Screen.width/2)-100,	5,	200,

											40),	"HISCORE");

									GUI.Label	(Rect	((Screen.width/2)-100,	20,	200,

											40),		DisplayScore.HiScore.ToString());

}

The	numerical	values	to	define	the	coordinates	for	the	text	to	be	displayed	may
vary	according	to	the	setup	of	your	project	and	your	game	window	dimensions,
so	tweak	them	as	needed.

Now	that	we	have	correctly	positioned	our	text	on	the	screen	it	is	time	to	have
the	score	updated	during	the	gameplay;	we	will	do	that	with	a	dedicated	script.

1.	 Create	a	new	JavaScript	file	and	name	it	ManageScore.	Open	it	with
MonoDevelop	and	create	two	static	variables:	one	for	the	actual	PL1	score
and	one	for	the	HiScore.	The	reason	we	declare	these	variables	as	static	is
to	allow	the	DisplayGUI	script	to	access	their	values.

2.	 In	the	Start()	function,	add	the	following	lines	to	set	the	initial	values	of
Score	and	HiScore	variables:

#pragma	strict

	

static	var	Score:int;

static	var	HiScore:int;

	

function	Start	()	{

	

			Score=0;

			HiScore=1000;

}

	

function	Update	()	{

	

}

Attach	this	file	to	the	GameMaster	game	object	to	have	the	Score	and
HiScore	variables	displayed	on	screen.	Since	we	don't	have	a	two	player	feature,
we	will	keep	the	PL2	score	as	a	mere	string	placeholder.	You	can	add	such
feature	as	an	exercise,	if	you	want	to.
The	next	step	is	to	have	the	score	increase	as	the	player	destroys	enemy	aliens.

We	can	do	that	inside	the	ControlPLBullet	script.

Open	it	in	MonoDevelop,	get	to	the	OnTriggerEnter()	function	and	add	the
following	line:

//add	50	points	to	score	for	each	alien	destroyed

DisplayScore.Score+=50;

For	the	sake	of	clarity	here	is	the	updated	OnTriggerEnter()	function	of	the
ControlPLBullet	script:

//this	function	checks	for	collisions

function	OnTriggerEnter(other:Collider)

{

				//if	bullets	collides	with	aliens,	destroy	both

			if(other.gameObject.tag=="Enemies"){

	

									Destroy(gameObject);

									Destroy(other.gameObject);

	

									//add	50	points	to	score	for	each	alien	destroyed

									DisplayScore.Score+=50;

	

									//once	the	bullet	is	destroyed,	allow	the	player

											//to	shoot	again

									ControlShip.canShoot=true;

			}

	

			//if	bullet	collides	with	barriers,	destroy	it	and	a

					//piece	of	the	barrier

			if(other.gameObject.tag=="BarrierBrick"){

	

									Destroy(gameObject);

									Destroy(other.gameObject);

									//once	the	bullet	is	destroyed,	allow	the	player

											//to	shoot	again

									ControlShip.canShoot=true;

			}

}

If	you	want	to,	you	can	improve	the	prototype	by	defining	different	amounts	of
points	for	different	enemy	types,	as	it	is	with	the	original	Space	Invaders;	you
can	achieve	that	by	adding	more	tags	and	assigning	them	to	different	enemy
types.

1.	 The	last	thing	we	want	to	do	with	the	score	is	to	update	the	HiScore
variable	when	the	match	ends,	whether	the	player	or	the	aliens	win.	We	can

achieve	it	with	the	following	simple	line	of	code:

//update	the	Hiscore

if(DisplayScore.Score>DisplayScore.HiScore){

	

			DisplayScore.HiScore=DisplayScore.Score;

}

We	need	to	add	this	line	into	two	scripts.	First	in	the	OnTriggerEnter()
function	of	the	ControlAlienBullet	script,	which	handles	the	event	of	an
enemy	bullet	hitting	the	player	and	second	in	the	Update()	function	of	the
ControlSwarm	script,	which	handles	the	case	of	the	entire	swarm	destroyed.
This	is	the	updated	OnTriggerEnter()	function	of	the	ControlAlienBullet

script:

function	OnTriggerEnter(other:Collider)

{

			//check	collision	with	player's	ship

			if(other.gameObject.tag=="PlayerShip")

			{

									Destroy(gameObject);

									Destroy(other.gameObject);

	

									//player's	ship	destroyed,	pause	the	game

									Time.timeScale	=	0;

									Debug.Log("Game	Over");

	

									//update	the	hiscore

									if(DisplayScore.Score>DisplayScore.HiScore){

																DisplayScore.HiScore=DisplayScore.Score;

									}

			}

	

			//check	collisions	with	barriers

			if(other.gameObject.tag=="BarrierBrick"){

	

									Destroy(gameObject);

									Destroy(other.gameObject);

			}

}

This	is	the	updated	Update()	function	of	the	ControlSwarm	script:

function	Update	()	{

	

			if(bCollide)

			{

									goRight=!goRight;

									goRight=!goRight;

	

									for(var	myEnemy:GameObject	in	enemyList)

									{

																if(myEnemy!=null)

																{

			myEnemy.transform.Translate(Vector3(0,-3,0));

																}

									}

	

									bCollide=false;

			}

	

			//update	the	enemyList	count

			enemyList=GameObject.FindGameObjectsWithTag("Enemies");

	

			//check	when	the	count	of	aliens	gets	to	0

			if(enemyList.length==0)

			{

									//all	aliens	destroyed,	pause	the	game	and	display

											//a	message

									Time.timeScale	=	0;

									Debug.Log("You	Won!");

	

									//update	the	hiscore

									if(DisplayScore.Score>DisplayScore.HiScore){

																DisplayScore.HiScore=DisplayScore.Score;

									}

			}

}

We	also	want	to	display	a	message	when	the	player	destroys	the	alien	swarm	or
the	player's	ship	is	destroyed.

1.	 To	do	that	we	need	to	create	a	new	GUISkin	in	the	GUI	folder	and	name	it
something	like	GameEndGUI.

2.	 Then	we	define	a	font	for	this	GUI;	we	suggest	to	choose	something	which
fits	a	large	text	size,	like	48	points,	for	we	want	to	display	a	message	almost
screen-sized.

3.	 Now	access	the	DisplayGUI	script	and	add	two	variable	declarations:	a
GUISkin	variable	and	String.	This	is	the	code	we	added	at	the	top	of	the
script:

//new	GUI	Skin

var	gameEndGUI:	GUISkin;

var	gameEndGUI:	GUISkin;

//a	static	variable	string	to	be	accessed	from	another

		//script

static	var	GameEnd:String="";

We	also	need	to	add	the	following	lines	at	the	bottom	of	the	OnGUI()	function
in	the	DisplayGUI	script:

//set	the	second	GUI	and	make	it	yellow

GUI.skin=gameEndGUI;

GUI.color=Color.yellow;

				

//game	end	message

GUI.Label	(Rect	((Screen.width/2)-400,	200,	800,	100),

		GameEnd);

Now	access	the	ControlSwarm	script	and	add	the	following	line	inside	the
Update()	function:

//Display	a	"you	won"	message

DisplayGUI.GameEnd="YOU	DESTROYED	THE	ALIENS!";

This	is	the	updated	Update()	function	of	the	ControlSwarm	script:

function	Update	()	{

	

			if(bCollide)

			{

									goRight=!goRight;

	

									for(var	myEnemy:GameObject	in	enemyList)

									{

															if(myEnemy!=null)

															{

			myEnemy.transform.Translate(Vector3(0,-3,0));

															}

									}

	

									bCollide=false;

			}

	

			//update	the	enemyList	count

			enemyList=GameObject.FindGameObjectsWithTag("Enemies");

	

			//check	when	the	count	of	aliens	gets	to	0

			if(enemyList.length==0)

			{

									//all	aliens	destroyed,	pause	the	game	and	display

											//a	message

									Time.timeScale	=	0;

									Time.timeScale	=	0;

	

								//we	also	want	the	ship	to	stop	and	prevent	it

										//shooting

									ControlShip.canShoot=false;

									ControlShip.shipSpeed=0;

	

									//Display	a	"you	won"	message

									DisplayGUI.GameEnd="YOU	DESTROYED	THE	ALIENS!";

	

									//update	the	hiscore

									if(DisplayScore.Score>DisplayScore.HiScore){

																DisplayScore.HiScore=DisplayScore.Score;

									}

			}

}

To	display	a	message	for	the	player's	ship	being	destroyed	we	put	the	same
command	line	into	the	OnTriggerEnter()	function	of	the	ControlAlienBullet
script,	with	a	different	message.	This	is	the	updated	OnTriggerEnter()	function
of	the	ControlAlienBullet	script:

function	OnTriggerEnter(other:Collider)

{

			//check	collision	with	player's	ship

			if(other.gameObject.tag=="PlayerShip")

			{

									Destroy(gameObject);

									Destroy(other.gameObject);

	

									//player's	ship	destroyed,	pause	the	game

									Time.timeScale	=	0;

	

									//display	a	"You	lose"	message

									DisplayGUI.GameEnd="THE	ALIENS	DESTROYED	YOU!";

	

									//update	the	hiscore

									if(DisplayScore.Score>DisplayScore.HiScore){

																DisplayScore.HiScore=DisplayScore.Score;

									}

			}

	

			//check	collisions	with	barriers

			if(other.gameObject.tag=="BarrierBrick"){

	

									Destroy(gameObject);

									Destroy(other.gameObject);

			}

			}

}

The	player	also	loses	if	the	aliens	reach	the	bottom	of	the	game	area	and	touch
his	ship.	To	keep	things	nice	and	clean,	we	create	a	new	script	to	be	attached	to
the	four	alien	prefabs,	which	we	also	use	to	destroy	the	barriers,	should	they	be
touched	by	the	aliens.
Create	a	new	script	in	the	Script	folder,	name	it	CheckAliensTouch	and	add

the	following	command	lines:

#pragma	strict

	

function	Start	()	{

	

}

	

function	Update	()	{

	

}

	

function	OnTriggerEnter(other:Collider)

{

			if(other.gameObject.tag=="PlayerShip")

			{

									//player's	ship	touched	by	aliens,	pause	the	game

											//and	display	a	message

									Time.timeScale	=	0;

									//display	a	"You	lose"	message

									DisplayGUI.GameEnd="THE	ALIENS	DESTROYED	YOU!";

	

									//update	the	hiscore

									if(DisplayScore.Score>DisplayScore.HiScore){

																DisplayScore.HiScore=DisplayScore.Score;

									}

			}

	

			if(other.gameObject.tag=="BarrierBrick")

			{

									Destroy(other.gameObject);

			}

}

This	ends	our	section	about	the	basics	on	developing	GUIs	using	Unity.	The	next
step	is	to	add	some	audio	effects	to	our	prototype.

Adding	audio	effects

For	our	prototype	we	will	use	only	four	audio	effects	(fx):

One	for	the	player's	ship	firing
One	for	the	aliens	moving
One	for	the	when	the	aliens	are	destroyed,	one	for	when	the	player's	ship	is
destroyed

Let's	begin	with	the	player's	ship	firing.

1.	 The	first	thing	to	do	is	to	import	our	audio	files	into	the	project.	Create	a
new	Audio	folder	in	the	Project	panel	and	import	your	audio	files	of	choice
as	New	Assets.	For	this	prototype,	we	used	audio	clips	taken	from	the	site
http://www.classicgaming.cc/classics/spaceinvaders/sounds.php.

2.	 Next	we	need	to	add	an	AudioSource	component	to	the	PLShip	prefab.
Select	it	from	the	Project	panel	and	from	the	main	menu,	select
Component	|	Audio	|	Audio	Source.	The	Audio	Source	component	will
be	added	to	the	PLShip	prefab.

3.	 Now	drag	the	desired	audio	file	into	the	Audio	Clip	slot	of	the	Audio
Source	component	you	added,	in	the	Inspector	panel.	Refer	to	the
following	screenshot	for	clues:	

http://www.classicgaming.cc/classics/spaceinvaders/sounds.php

Since	we	want	this	clip	to	be	played	when	the	player's	ship	shoots,	we	will	add
the	requested	code	to	play	this	audio	file	in	the	ControlShip	script.
Add	the	following	line	into	the	Update()	function,	inside	the	press	spacebar

event:

//play	shooting	audio	fx

audio.Play();

This	is	the	updated	Update()	function	of	the	ControlShip	script:

function	Update	()	{

			//is	the	player	pressing	right	button?

			if(Input.GetKey("right")	&&	transform.position.x<25)

			{

								//ship	move	right

										transform.Translate(Vector3(shipSpeed,0,0));

			}

			//is	the	player	pressing	left	button?

			if(Input.GetKey("left")	&&	transform.position.x>-25)

			{

								//ship	move	left

									transform.Translate(Vector3(-shipSpeed,0,0));

									transform.Translate(Vector3(-shipSpeed,0,0));

			}

			//is	player	pressing	the	fire	button	(spacebar)

			if(Input.GetKeyDown("space")&&canShoot)

			{

									//create	the	bullet

			Instantiate(myBullet,transform.position,	transform.rotation);

									//player	can't	fire	for	a	while

									canShoot=false;

									//play	shooting	audio	fx

									audio.Play();

			}

}

The	same	process	applies	to	the	other	three	audio	clips	we	chose	for	this
project.	Add	an	Audio	Source	component	to	a	prefab	and	drag	the	desired	audio
file	into	its	Audio	Source	slot.
For	the	aliens	moving	fx,	we	added	the	Audio	Source	component	to	the

SwarmManager	prefab.	Since	all	aliens	move	as	a	whole,	we	can	simply	play	the
audio	once	for	each	step	from	the	SwarmManager	prefab.
Add	audio.Play()	line	into	the	MoveEnemies()	function	of	the	ControlSwarm

script.	What	follows	is	the	updated	MoveEnemies()	function:

//we	move	the	swarm	left	or	right	at	speed	defined	by	vel

function	moveEnemies()

{

	

			if(goRight)

			{

										for(var	myEnemy:GameObject	in	enemyList)

										{

																if(myEnemy)

																{

				myEnemy.transform.Translate(Vector3(vel,0,0));

																}

									}

			}

	

			if(!goRight)

			{

									for(var	myEnemy:GameObject	in	enemyList)

									{

																if(myEnemy!=null)

																{

																			myEnemy.transform.Translate(Vector3(-vel,0,0));

																}

									}

									}

			}

	

			//play	the	aliens	moving	audio

			audio.Play();

}

Adding	sound	fx	to	be	played	when	the	aliens	and	the	player's	ship	are	destroyed
poses	a	problem,	which	is	interesting	to	discuss.	The	idea	is	to	attach	the	audio
clip	to	the	player's	bullet	so	that	we	can	play	the	clip	when	the	bullet	hits	an
alien.

The	problem	is	that	since	we	destroy	both	the	bullet	and	the	alien	upon	collision,
we	need	to	delay	the	destruction	of	the	bullet	until	the	audio	clip	is	played;
otherwise	no	sound	will	be	played	because	the	bullets	gets	destroyed	before	the
audio	clip	is	actually	played.

There	are	many	ways	to	avoid	this	problem,	here	is	our	solution.

1.	 Once	you	have	attached	the	Audio	Source	component	to	the	PLBullet
prefab	and	dragged	the	audio	clip	into	the	Audio	Source	slot,	we	can	then
make	some	modifications	to	the	ControlPLBullet	script.	This	is	the	logic
we	implemented.

2.	 When	the	bullet	collides	with	an	alien,	we	play	the	enemy	destroyed	audio
clip	and	destroy	the	alien	enemy.	We	also	disable	the	Collider	component
attached	to	the	bullet	and	put	the	bullet	itself	on	the	layer	of	assets	not	to	be
rendered	by	the	camera,	so	that	the	bullet	disappears	from	the	scene.

3.	 Finally,	we	set	a	Boolean	variable	to	true,	so	that	in	the	Update()	function
we	can	check	at	every	frame	the	value	of	the	Boolean	variable.	If	the
Boolean	variable	is	set	to	true	and	the	audio	component	attached	to	the
bullet	is	not	playing,	it	means	we	can	finally	destroy	the	bullet.

4.	 This	is	the	updated	code	lines	of	the	ControlPLBullet	script:

#pragma	strict

	

//var	used	if	the	bullet	must	be	destroyed	in	the	Update()

		//function

var	bMustDestroy:boolean;

	

function	Start	()	{

	

			//set	the	initial	boolean	value	to	false

			bMustDestroy=false;

}

}

	

function	Update	()	{

	

			//move	bullet	up	once	created	2	pixels\frame

			transform.Translate(Vector3(0,2,0));

	

			//Y=140	defines	upper	screen	limit

			if(transform.position.y>100)

			{

								//destroy	bullet	as	it	goes	outside	the	upper

										//screen	limit

									Destroy(gameObject);

									//once	the	bullet	is	destroyed,	allow	the	player

											//to	shoot	again

									ControlShip.canShoot=true;

			}

	

			//destroy	bullet	after	audio	is	played

			if(bMustDestroy	&&	!audio.isPlaying)

			{

									Destroy(gameObject);

			}

}

	

//this	function	checks	for	collisions

function	OnTriggerEnter(other:Collider)

{

				//if	bullets	collides	with	aliens,	destroy	both

			if(other.gameObject.tag=="Enemies"){

	

									//play	the	fx

									audio.Play();

	

									//destroy	the	alien

									Destroy(other.gameObject);

	

									//add	50	points	to	score	for	each	alien	destroyed

									DisplayScore.Score+=50;

	

									//once	the	bullet	is	destroyed,	allow	the	player

											//to	shoot	again

									ControlShip.canShoot=true;

	

									//disable	collider	and	put	the	bullet	on

											//NotToRender	layer

										collider.enabled=false;

										gameObject.layer=8;

										gameObject.layer=8;

	

									//we	destroy	it	once	the	fx	is	over	in	Update()

									bMustDestroy=true;

			}

	

			//if	bullet	collides	with	barriers,	destroy	it	and	a

					//piece	of	the	barrier

			if(other.gameObject.tag=="BarrierBrick"){

	

									Destroy(gameObject);

									Destroy(other.gameObject);

									//once	the	bullet	is	destroyed,	allow	the	player

											//to	shoot	again

									ControlShip.canShoot=true;

			}

}

You	can	apply	a	similar	solution	to	the	audio	clip	to	be	played	when	the	player's
ship	is	destroyed,	attaching	the	audio	source	to	the	AlienBullet	prefab.	Also,
remember	to	address	the	aliens	themselves	hitting	the	player's	ship.	Try	to	find	a
solution	yourself!

Particle	system	effects

The	last	touch	is	to	add	some	particle	system	effects	to	be	played	when	the	aliens
and	the	player's	ship	get	destroyed.

As	we	already	showed	how	to	create	a	particle	system	to	our	scene,	we	will	just
provide	here	the	values	to	be	set	within	and	the	coding	required	for	the	particle
effect	to	be	played.

1.	 Add	a	Particle	System	to	the	scene	and	edit	it	with	the	following	reference
values:

General:
Duration:	0.5
Start	Lifetime:	0.5
Start	Speed:	3
Start	Size:	1
Looping:	unflagged
Play	on	Awake:	flagged
Emission:
Rate:15
Shape:
Shape:	Sphere
Radius:	0.5
Emit	from	Shell:	flagged

We	don't	need	much	more	than	that	for	a	prototype.	Now	create	a	new	prefab
in	the	Prefab	folder,	name	it	AlienPS	and	drag	the	particle	system	from	the
scene	into	this	prefab,	then	delete	the	particle	system	from	the	scene.
In	the	ControlPLBullet	script	we	need	to	declare	a	new	variable	to	hold	our

AlienPS	prefab.	Add	the	following	line	at	the	top	of	the	script:

//var	used	to	store	the	alien	destroyed	PS

var	AlienPS:Transform;

Then	in	the	OnTriggerEnter()	function	add	the	following	line	beneath	the
audio.Play()	instruction:

//create	ps	here

Instantiat(AlienPS,

other.transform.position,other.transform.rotation);

To	complete	the	process,	we	add	a	very	simple	script	to	the	AlienPS	prefab	so

that	after	the	particle	effects	have	been	played,	we	can	destroy	it.
Create	a	new	JavaScript	file	in	the	Script	folder,	name	it	DestroyPS	and	add

the	following	lines	into	it:

#pragma	strict

	

var	myPS:ParticleSystem;

	

function	Start	()	{

	

}

	

function	Update	()	{

	

			if(!myPS.isPlaying)

			{

									//wait	for	the	PS	to	finishing	playing	before

											//destroying	the	PS

									Destroy(gameObject);

			}

}

The	last	step	is	to	add	the	script	to	the	AlienPS	prefab	and	drag	the	AlienPS
prefab	into	the	myPS	variable	of	the	script.

The	same	approach	applies	to	the	particle	effect	to	be	added	to	the	player's	ship,
in	case	it	is	destroyed.	Now,	you	should	be	able	to	figure	it	out	by	yourself.

Unity	3D	tutorial	summary

This	ends	our	tutorial	about	using	Unity	to	develop	games.	In	the	first	part	of
Chapter	8,	Mobile	Game	Engines,	we	set	up	a	scene,	in	the	second	part	of
Chapter	9,	Prototyping,	we	defined	the	basic	behaviors	and	put	some	coding	into
the	pot,	while	in	this	last	part	we	added	some	details	to	make	the	game	more
appealing	to	play.

Still,	there	is	much	you	can	add	to	turn	this	prototype	into	a	complete	game.
Here	is	a	list	of	things	you	could	implement	as	an	exercise:

A	main	screen	to	open	the	game	with
Add	a	number	of	player's	lives;	the	original	Space	Invaders	had	three
Add	a	two-player	option
Add	a	boss	ship	to	appear	once	in	a	while	for	extra	score
Have	the	aliens	get	faster	as	time	passes
Make	extra	levels	for	the	game

Summary
In	this	chapter	we	covered	balancing	techniques	including	symmetry,
randomization,	feedback	loops,	a	game	director,	and	statistical	analysis.	We	also
covered	tuning	strategies	and	difficulty	settings.	We	then	finished	up	the	Unity
tutorial;	adding	audio,	visual	effects,	win/lose	conditions,	enemy	and	player
shots,	destructible	enemies,	and	other	features.	Next	we	will	review	four	existing
games	and	give	our	analysis	of	them.

Chapter	11.	Mobile	Game	Design
As	we	get	to	the	end	of	our	journey,	it	is	time	to	channel	all	the	info	we	have
given	you	so	far	into	what	the	main	goal	of	this	book	is—to	provide	you,	the
readers,	with	the	knowledge	it	takes	to	approach	the	practice	of	game	design	for
today's	mobile	phones.

Game	design	can	be	daunting	for	a	first	timer	but	there	is	a	methodology	that
breaks	this	scary	process	into	palatable	pieces.	Remember,	the	best	way	to	eat	an
elephant	is	one	bite	at	a	time!

We	begin	with	a	brief	summary	of	the	general	game	design	process	and	then	we
will	delve	into	the	details	of	mobile	game	design,	with	its	good	practices	and
lists	of	dos	and	don'ts.

The	last	part	of	the	chapter	is	dedicated	to	the	theory	of	fun	in	games	by	Nicole
Lazzaro,	a	popular	researcher	who	studied	how	fun	can	help	us	designers	to
create	better	and	more	compelling	games.

In	this	chapter	we	will	cover:

The	basic	game	design	process
The	dos	and	don'ts	of	game	design
The	distinctive	aspects	of	mobile	game	design
Hardware	limitations
Mobile	design	constraints
The	mobile	market

The	basic	game	design	process
The	game	design	process	shares	many	stages	with	any	type	of	software	design;
identify	what	you	want	the	game	to	do,	define	how	it	does	it,	find	someone	to
program	it,	then	test/fix	the	hell	out	of	it	until	it	does	what	you	expect	it	to	do.
Let's	discuss	these	stages	in	a	bit	more	detail.	Find	an	idea.

Unless	you	are	one	of	the	lucky	few	who	start	with	an	idea,	sitting	there	staring
at	a	blank	piece	of	paper	trying	to	force	an	idea	out	of	your	blank	slate	of	a	brain,
may	feel	like	trying	to	give	birth	when	you're	not	pregnant:	lots	of	effort	with	no
payoff.

Getting	the	right	idea	can	be	the	hardest	part	of	the	entire	design	process	and	it
usually	takes	several	brainstorming	sessions	to	achieve	a	good	gameplay	idea.	In
case	you	get	stuck	and	feel	like	you're	pondering	too	much,	we	suggest	you	to
stop	trying	to	be	creative;	go	for	a	walk,	watch	a	movie,	read	a	book,	or	play	a
(gasp!)	video	game!	Give	the	subconscious	mind	some	space	to	percolate
something	cool	up	to	the	surface.

Rough	concept	document:	Once	you	have	an	idea	for	a	game	firmly
embedded	in	your	consciousness,	it's	time	to	write	it	down.	This	sounds
simple	and	at	this	stage	it	should	be.	Write	down	the	highlights	of	your
idea;	what	is/are	the	fun	parts,	how	does	one	win,	what	gets	in	the	way	of
winning,	how	the	player	overcomes	their	obstacles	to	winning,	and	who
you	imagine	would	like	to	play	this	game.
Storyboarding:	The	best	way	to	test	an	idea	is,	well,	to	test	it!	Use	pen	and
paper	to	create	storyboards	of	your	game	and	try	to	play	it	out	on	paper.
These	can	save	a	lot	of	(expensive)	programming	time	by	eliminating
unsuccessful	ideas	early	and	by	working	through	interface	organization	on
the	cheap.

The	goal	of	storyboarding	is	to	get	something	on	paper	that	at	least	somewhat
resembles	the	game	you	imagine	in	your	head	and	it	can	go	from	very	basic
sketches,	also	called	wire-frames,	to	detail	schematics	in	Azure.	Either	way	you
should	try	to	capture	as	many	elements	in	the	sketch	as	possible.	The	following
figure	represents	the	sketch	of	the	double	jump	mechanic	for	a	mobile	platform
made	by	one	of	the	authors:

	

We	discussed	this	process	in	depth	in	Chapter	9,	Prototyping.	Once	you	have
concrete	proof	that	your	idea	is	good,	invest	some	time	and	resources	to	create	a
playable	demo	that	focuses	on	the	action(s)	the	player	will	do	most	during	the
gameplay.	It	should	have	nothing	extra	such	as	fancy	graphics	and	sound	effects.
It	should	include	any	pertinent	actions	that	rely	on	the	action	in	question	and
vice	versa,	for	example	if	a	previous	action	contributes	to	the	action	being	tested,
include	it	in	the	prototype.	The	question	the	prototype	should	answer	is:	do	I	still
like	my	initial	idea?

While	prototyping,	it	is	acceptable	to	use	existing	assets	scavenged	from	the	net,
other	projects,	and	so	on.	Just	be	aware	of	the	subtle	risks	of	having	the	project
become	inadvertently	associated	with	those	assets,	especially	if	they	are	high
quality.

For	example,	one	of	the	authors	was	working	on	a	simple	(but	clever!)	real-time
strategy	game	for	Game	Boy	Advance.	It	was	decided	to	add	on	a	storyline	to
support	the	gameplay,	which	included	a	cast	of	characters.	Instead	of
immediately	creating	original	art	for	these	characters,	the	team	used	the	art	from
a	defunct	epic	RPG	project.	The	problem	was	that	the	quality	of	this	placeholder
art	was	so	high	(done	by	a	world	class	fantasy/sci-fi	artist)	that	when	it	was	time
to	do	final	art	for	the	game,	the	art	the	in-house	artist	did	just	wasn't	up	to	the
team's	expectations.	And	the	project	didn't	have	enough	money	in	the	budget	to
hire	the	world-renowned	artist	to	do	the	art	for	it.	So	both	the	team	and	the	client
(Nintendo)	felt	like	the	art	was	second	rate,	even	though	it	was	appropriate	for
the	game	being	made.	The	project	was	later	cancelled,	but	not	necessarily	due	to
the	art.

The	following	screenshot	shows	an	adventure	title	prototype	made	by	one	of	the
authors	with	GameMaker	studio	by	using	assets	taken	from	the	Zelda	saga:

	

Test	it	once	you	have	a	working	prototype,	it	is	time	to	submit	your	idea	to	the
public.	Get	a	variety	of	people	in	to	test	your	game	like	crazy.	Include	team
members,	former	testers	(if	any),	and	fresh	testers.	Have	people	play	often	and
get	initial	reactions	as	well	as	studied	responses	and	collect	all	the	data	you	can.

Fix	the	issues	that	emerge	from	those	testing	sessions	and	be	ready	to	discard
anything	that	doesn't	really	fit	the	gameplay	experience	you	had	in	mind.	This
can	be	a	tough	decision,	especially	for	an	element	that	the	designer/design	team
have	grown	attached	to.	A	good	rule	of	thumb	is	if	this	element	is	on	its	third	go
around	on	being	fixed;	cut	it	if	it	doesn't	pass.	By	then	it	is	taking	up	too	much	of
the	project's	resources.

Refine	the	design	document	as	implemented	features	pass	the	tests	and	the	test,
fix,	or	discard	cycle	is	repeated	on	all	the	main	features	of	your	games,	take	the
changes	that	were	implemented	during	prototyping	and	update	the	design
document	to	reflect	them.

By	the	end	of	this	process,	you	will	have	a	design	document,	a	document	that
will	be	what	you	built	for	your	final	product.	You	can	read	an	interesting	article

on	Gamasutra	about	the	layout	of	one	such	document,	intended	for	a	mobile
team	of	developers	at
http://www.gamasutra.com/blogs/JasonBakker/20090604/84211/A_GDD_Template_for_the_Indie_Developer.php

Please	note	that	this	does	not	mean	there	won't	be	more	changes!	Hopefully	it
means	there	won't	be	any	major	changes,	but	be	prepared	for	plenty	of	minor
ones.

End	the	preproduction	once	you	have	a	clear	idea	of	what	your	gameplay	will	be
and	a	detailed	document	about	what	needs	to	be	done,	it	is	time	to	approach
game	production	by	creating	the	programming,	graphics,	audio,	and	interface	of
your	game.	As	one	works	towards	realization	of	the	final	product,	continue	using
the	evaluation	procedures	implemented	during	the	prototyping	process.
Continually	ask	"is	this	fun	for	my	target	audience?"	and	don't	fall	into	the	trap
of	"well	that's	how	I've	always	done	that".	Constantly	question	the	design,	and/or
its	implementation.	If	it's	fun,	leave	it	alone.	If	not,	change	it,	no	matter	how	late
it	is	in	the	development	process.	Remember,	you	only	have	one	chance	to	make
a	good	first	impression.

When	is	the	design	really	done?	By	now	you	have	reached	the	realization	that	a
project	is	never	complete,	you're	simply	done	with	it.	No	doubt	you	have	many
things	you'd	like	to	change,	remove,	or	add	but	you've	run	out	of	time,	money,	or
both.	Make	sure	all	those	good	ideas	are	recorded	somewhere.	It	is	a	good	idea
to	gather	the	team	after	release,	and	over	snacks	and	refreshments	capture	what
the	team	members	would	change.	This	is	good	for	team	morale	as	well	as	a	good
practice	to	follow.

http://www.gamasutra.com/blogs/JasonBakker/20090604/84211/A_GDD_Template_for_the_Indie_Developer.php

The	dos	and	don'ts	of	game	design
We	would	like	to	end	this	section	about	game	design	with	a	list	of	good	practices
and	things	to	avoid	while	designing	games,	regardless	of	the	genre	or	the
platform	you	are	designing	for.	They	will	provide	a	solid	background	to
approach	the	opportunities	and	constraints	inherent	to	designing	games	for
today's	smartphones.

Dos

The	following	are	the	dos	of	game	design:

The	designer's	role	is	to	lose	gracefully.	If	the	player	wins	having	been
challenged,	the	designer	wins.
Provide	enough	hints	to	guide	the	player	to	a	solution	of	a	puzzle.
Reward	the	player's	efforts	appropriately;	the	higher	the	challenge,	the
higher	the	payoff,	and	vice	versa.
Make	creative	use	of	the	features	the	game	has;	avoid	the	underuse	of	the
game's	unique/cool	elements.
If	a	situation	can	have	only	one	outcome,	make	it	a	cutscene.	Don't	give	the
player	the	illusion	of	control	when	they	don't	have	it;	this	breaks	the
player/designer	trust.

Don'ts

The	following	are	the	don'ts	of	game	design:

Don't	allow	the	player	to	miss	essential	content.
Don't	cheat;	play	by	the	same	rules	the	player	has	to	follow.
Avoid	mindless	repetition;	it's	not	fun	in	real	life	so	skip	it	in	your	game
too.
Don't	allow	the	player	to	be	lost;	if	they	need	a	map,	provide	one.	Same
goes	for	clues.
Don't	break	the	game's	illusion	by	introducing	story-inappropriate	elements.
Avoid	randomness	for	the	sake	of	same.	Being	weird	for	weird's	sake	is	not
fun;	it's	lazy	design.
Avoid	obscure	solutions	to	obstacles;	if	it	doesn't	make	sense	in	the	real
world,	it	won't	make	sense	in	the	game.
Put	players	in	the	conditions	to	understand	what	is	expected	from	them	and
provide	clues	to	overcome	obstacles.	There	is	nothing	worse	than	quitting
playing	because	you	don't	understand	how	to	proceed	in	a	game.
Unless	it	is	a	trivia	game,	you	don't	require	knowledge	from	outside	the
game	to	proceed	(unless	you	provide	the	answer	within	the	game,	before
the	player	needs	it).

Designing	mobile	games
So	far	we	have	discussed	game	design	in	general.	In	this	section	we	will	cover
design	specifically	aimed	to	the	mobile	platforms.	Designing	for	the	mobile
platform	has	its	own	unique	drawbacks	and	advantages	and	only	by	overcoming
its	traps	and	exploiting	its	features	will	you	be	able	to	create	a	product	that	can
emerge	from	the	competition	and	make	money.

The	differences	between	mobile	and	other	platforms	such	as	Personal
Computer	(PC)	and	console	are	significant,	ranging	from	hardware	capabilities
to	control	schemes,	to	fruition,	business	models,	and	pricing	policies.	Let's	delve
into	each	of	such	categories.

Hardware	limitations

Though	the	advancement	of	mobile	technology	allows	high-end	devices	to	have
the	same	capabilities	of	the	former	generations	of	consoles,	an	average	mobile
user	possesses	an	average	mobile	device	with	limited	capabilities,	especially
with	regards	to	memory	and	processing	power.	As	the	mobile	market	is	a	mass
market,	it	is	a	good	practice	to	target	the	broadest	audience	possible,	which
means	it	is	mandatory	to	design	games	that	run	smoothly	on	less	than	edgy
smartphones	and	are	fun	to	play	on	small	screens.

Hardware	variability	also	matters	here.	The	one	thing	you	can	be	sure	of	when
you	plan	to	design	a	mobile	game,	especially	if	you	target	the	Android	market,	is
that	the	game	will	have	to	run	on	several	different	device	configurations.	Screen
size	and	resolution,	CPU	speed,	touch	screen	responsiveness	may	vary,	and	so
on.

Let's	see	how	these	factors	pose	a	completely	new	set	of	challenges	for	the	game
designer.

Screen	size

Let's	face	it,	except	for	the	pad	style	devices;	the	screen	on	most	of	the	mobile
platforms	is	tiny.	This	presents	two	problems:	how	to	show	enough	information
for	the	gameplay	to	be	meaningful	and	how	to	make	that	information
identifiable.

In	Chapter	3,	Graphics	for	Mobile,	we	described	the	most	common	techniques	to
design	nice	graphics	for	mobile	games;	we	will	reiterate	them	here.

First	of	all,	pick	two/three	reference	mobile	phone	models	to	design	your	game
graphics	and	interface	around	and	make	separate	assets	for	each	main	screen
resolution.	We	know	now	that	simply	shrinking	icons	up	and	down	won't	work.
The	following	figure	displays	a	comparison	between	different	smartphone
screens:

	

Use	smart	color	schemes	to	make	the	main	character,	its	enemies/obstacles,	and
the	background	environment	well	recognizable.	Also	spend	some	time	on
character	design	to	be	sure	that	game	characters	are	appealing	and	meaningful.

It	may	seem	trivial,	but	if	your	game	relies	on	large	gameplay	areas,	display	less
of	the	play	field	at	a	time	and	allow	the	window	of	the	visible	gameplay	to	scroll
over	the	total	play	field.

Game	controls

While	designing	the	user	interface,	be	aware	of	the	fact	that	virtual	buttons
encumber	the	gameplay	area,	so	try	to	find	a	good	balance	between	game
mechanics	and	the	number	of	controls	required	to	manage	them.

The	following	screenshot	represents	a	mobile	platform	game	with	virtual	buttons
made	by	one	of	the	authors:

	

The	touch	screen	scheme	seems	really	cool	at	a	glance.	But	as	a	game	designer,
one	quickly	realizes	that	we	are	now	sharing	screen	real	estate	with	the	game
graphics	and	the	game	controls.	In	general,	you	don't	want	to	use	up	the	screen
space	with	virtual	buttons.	The	controllers	need	to	be	integrated	with	the	game
graphics	and	mobile	phones	have	sensors	(accelerometer	above	all).	They	can
help	in	implementing	controls	that	don't	affect	the	gameplay	area.

Most	of	all,	remember	that	mobile	games	shouldn't	require	complex	controls,
anyway.

On	the	other	hand,	touch	screens	offer	distinct	ways	to	interact	with	games	and
perform	game	actions,	such	as	tapping	and	dragging.	As	a	smart	mobile	game
designer,	you	will	exploit	them	to	make	the	most	out	of	your	mobile	user
experience	and	user	interface!

Audio	output

We	know	that	most	mobile	devices	can't	feature	stereo	sound,	as	they	are
provided	with	a	single	speaker.	No	need	then	to	say	that	audio	for	mobile	games
should	be	treated	as	a	"secondary	feature"	and	that	it's	better	not	to	design	games
that	strongly	rely	on	audio	for	the	gameplay	or	for	involving	the	player	in	the
action.

Moreover,	as	mobile	games	are	frequently	played	outdoors,	if	game	audio	is
noisy	or	annoying,	it	is	quite	likely	to	be	rejected	by	the	player	himself,	because
he	might	not	want	to	bother	others	around	him	or	let	them	know	he's	playing.
We	strongly	recommend	you	to	design	game	sounds	that	are	appealing	but	can
also	be	excluded	without	affecting	the	general	gameplay	experience.

File	size

Since	mobile	games	are	downloaded	from	sites,	it	is	mandatory	that	all	game
contents	are	included	in	a	small	sized	file,	for	example,	though	the	max	size	for
an	iOS	application	is	2	GB,	the	limit	for	over	the	air	downloads	is	only	50	MB!
As	you	create	assets	and	contents	for	your	game,	you	will	find	out	how	easily
that	threshold	can	be	overrun.

Optimization	is	the	key	word	to	deal	with	that.	Have	your	programmers	engineer
your	project	so	that	memory	requirements	are	kept	at	minimum.	Invest	some
time	and	resources	to	find	solutions	to	the	technical	issues	posed	by	mobile
devices	memory	limits.	The	internet	is	full	of	sites,	offering	technical	support	to
those	facing	problems	with	mobile	devices	limitations.	Android	developers	can,
for	example,	refer	to	http://developer.android.com/index.html.

Processing	power

We	mentioned	it	several	times,	we	restate	it	here:	don't	expect	the	majority	of
users	to	possess	phones	equipped	with	the	latest	Qualcomm	Snapdragon	CPU.
Half	Bricks'	Jetpack	Joyride	slows	down	on	800	MHz	CPU	speed	devices.
Unless	you	aim	to	make	a	tech	demo	to	show	the	capabilities	of	a	specific	high-
end	hardware,	keep	your	system	requirements	as	low	as	possible	to	have	the
opportunity	to	target	the	broader	audience.	At	99	cents	per	download,	it	takes
thousands	of	downloads	to	make	a	game	to	recoup	its	development	costs	and
eventually	make	a	profit!

http://developer.android.com/index.html

Mobile	design	constraints

There	are	a	few	less	obvious	design	considerations,	based	on	the	player's	play
behavior	with	a	mobile	device.	What	are	the	circumstances	that	players	use
mobile	devices	to	play	games?	Usually	they	are	waiting	for	something	else	to
happen:	waiting	to	board	the	bus,	waiting	to	get	off	the	bus,	waiting	in	line,
waiting	in	the	waiting	room,	and	so	on.	This	affects	several	aspects	of	game
design,	as	we	will	show	in	the	following	sections.

Play	time

The	most	obvious	design	limitation	is	play	time.	The	player	should	have	a
satisfying	play	experience	in	three	minutes	or	less.	A	satisfying	play	experience
usually	means	accomplishing	a	goal	within	the	context	of	the	game.	A	good
point	of	reference	is	reaching	a	save	game	point.	If	save	game	points	are	placed
about	two	and	a	half	minutes	of	an	average	game	player's	ability	apart,	the
average	game	player	will	never	lose	more	than	a	couple	of	minutes	of	progress.

For	example,	let's	say	an	average	player	is	waiting	for	a	bus.	She	plays	for	three
minutes	and	hits	a	save	game	point.	The	bus	comes	one	minute	later	so	the
player	stops	playing	and	loses	one	minute	of	game	progress	(assuming	there	is
no	pause	feature).

Game	depth

Generally	speaking,	mobile	games	tend	not	to	have	much	longevity,	when
compared	to	titles,	such	as	Dragon	Age	or	Fallout	3.	There	are	several	reasons
for	this,	the	most	obvious	one	being	the	(usually)	simple	mechanics	mobile
games	are	built	around.

We	don't	mean	that	players	cannot	play	Fruit	Ninja	or	Angry	Birds	for	a	total	of
60	hours	or	so,	but	it's	not	very	likely	that	the	average	casual	player	will	spend
even	10	hours	to	unfold	the	story	that	may	be	told	in	a	mobile	game.	At	five
hours	of	total	gameplay,	the	player	must	in	fact	complete	120	two	and	a	half
minute	save	games.	At	50	hours	of	the	total	gameplay,	the	player	must	complete
1200	two	and	a	half	minute	save	games.	Are	you	sure	your	gameplay	is
sustainable	over	1200	save	game	points?

Mobile	environment

Mobile	games	are	frequently	played	outdoors,	in	crowded,	noisy,	and	even
"shifting"	or	"scuffling"	environments.	Such	factors	must	be	considered	while
designing	a	mobile	game.

Does	direct	sunlight	prevent	players	from	understanding	what's	happening	on	the
screen?	Does	a	barking	dog	prevent	the	players	from	listening	to	important	game
instructions?	Does	the	gameplay	require	control	finesse	and	pixel	precision	to
perform	actions?

If	the	answer	to	any	of	these	questions	is	yes,	you	should	iterate	a	little	more
around	your	design	because	these	are	all	factors	which	could	sink	the	success	of
your	product.

Smartphones

Smartphones	are	still	phones,	after	all.	It	is	thus	necessary	that	mobile	games	can
handle	unexpected	events,	which	may	occur	while	playing	on	your	phone:
incoming	calls	and	messages,	automatic	updates,	automatic	power	management
utilities	that	activate	alarms.

You	surely	don't	want	your	players	to	lose	their	progress	due	to	an	incoming
call.	Pause	and	auto-save	features	are	thus	mandatory	design	requirements	of	any
successful	mobile	game.

Single	player	versus	multiplayer

Multiplayer	is	generally	much	more	fun	than	single	player,	no	question.	But	how
can	you	set	up	a	multiplayer	game	in	a	two	and	half	minute	window?	For
popular	multiplayer	titles	it	is	possible.	Thanks	to	a	turn-based,	asynchronous
play	model	where	one	player	submits	a	move	in	the	two	and	half	minute	window
and	then	responds	to	the	player's	move.	Very	popular	titles	like	Ruzzle,	Hero
Academy,	or	Skulls	of	the	Shogun	game	system	do	that,	but	keep	in	mind	that	to
support	asynchronous	gameplay	it	requires	servers,	which	cost	money	and
complex	networking	routines	to	be	programmed.	Are	these	extra	difficulties
worth	their	costs?

The	mobile	market
The	success	of	any	commercial	project	cannot	arise	with	disregard	to	its
reference	market,	and	mobile	games	don't	make	exception.

We	the	authors,	believe	that	if	you	are	reading	this	book,	you	are	aware	that	the
mobile	market	is	evolving	rapidly.	The	Newzoo	market	research	for	the	games
industry	trends	report	for	2012	states	that	there	are	more	than	500	million	mobile
gamers	in	the	world	and	around	175	million	gamers	pay	for	games	and	that	the
mobile	market	was	worth	9	billion	dollars	in	2012	(source:
http://www.newzoo.com/insights/placing-mobile-gamesin-perspective-of-the-
total-games-market-free-mobile-trend-report/).

The	following	screenshot	represents	the	numbers	of	the	mobile	gaming	market
2012	reported	by	Newzoo:

	

As	Juniper	Research,	a	market	intelligence	firm,	states,	"smartphones	and	tablets
are	going	to	be	primary	devices	for	gamers	to	make	in-app	purchases	in	the
future.	Juniper	projects	64.1	billion	downloads	of	game	apps	to	mobile	devices

http://www.newzoo.com/insights/placing-mobile-games-in-perspective-of-the-total-games-market-free-mobile-trend-report/

in	2017,	compared	to	the	21	billion	downloaded	in	2012."	(source:
http://www.gamesindustry.biz/articles/2013-04-30-mobile-to-be-primary-
hardware-for-gaming-by-2016).	Even	handheld	consoles,	such	as	the	3DS	by
Nintendo	or	the	PSVita	by	PlayStation	are	suffering	from	the	competition	of
mobile	phones	and	tablets,	thanks	to	the	improvements	on	mobile	hardware	and
the	quality	of	games.

With	regard	to	market	share,	a	study	by	Strategy	Analytics	(source:
http://www.strategyanalytics.com/default.aspx?
mod=reportabstractviewer&a0=8437)	shows	that	Android	is	the	leading
platform	in	Q1	2013,	with	64	percent	of	all	handheld	sales.	Japan	being	the	only
market	where	iOS	is	on	the	lead;	though,	as	Apple	is	fond	of	pointing	out,	iOS
users	generally	spend	more	money,	when	compared	to	Android	estimators.

All	the	data	tell	us	that	the	positive	trend	in	mobile	devices	growth	will	continue
for	several	years	and	that	with	almost	one	billion	mobile	devices	in	the	world,
the	mobile	market	cannot	be	ignored	by	game	developers.	Android	is	growing
faster	than	Apple,	but	Apple	is	still	the	most	lucrative	market	for	mobile	apps
and	games.	Microsoft	phones	and	tablets,	on	the	other	hand,	didn't	show	positive
trends	as	to	be	compared	with	iOS	and	Android	growth.

So	the	question	is	how	can	an	indie	team	enter	this	market	and	have	a	chance	of
success?

http://www.gamesindustry.biz/articles/2013-04-30-mobile-to-be-primary-hardware-for-gaming-by-2016
http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=8437

Mobile	gamers
A	crucial	aspect	while	planning	to	make	a	mobile	game	is	to	think	about	your
target	audience.	We	know	that	mobile	games	generally	aim	towards	a	casual
audience.	Statistics	tell	us	that	there	is	a	relation	between	gender,	age,	and	game
genre,	with	women	preferring	Solitaire,	social	turn-based	and	management
games,	while	men	are	more	oriented	towards	action,	strategy	and	betting	games
(source:	http://blog.flurry.com/bid/92377/The-Gamification-of-Mobile-Games).

The	same	study	tells	us,	with	regard	to	monetization,	that	Solitaire,	Endless,	and
social	turn-based	games	have	a	high	retention	value	upon	gamers,	while	Strategy
games	is	the	most	often	accessed	game	category.

We	also	know	that,	though	in	some	western	countries	there	is	a	50/50	split
between	male	and	female	mobile	gamers,	men	still	tend	to	spend	more,	as	we
know	that	in	the	US,	61	percent	of	paying	gamers	are	men.

But	there	is	more	information	that	we	know	about	mobile	gamers.	We	know	that
as	a	casual	audience	(mainly),	they	prefer	polished	games	with	well-tested
mechanics,	clear	goals,	and	cute	graphics.	We	know	that	they	don't	like	being
frustrated	while	playing	and	expect	forgiving	difficulty	levels.	We	know	that
they	prefer	to	play	the	titles	their	friends	play	and	that	"word	of	mouth"	is	a
powerful	medium	for	popularity	in	the	mobile	market.	Finally,	we	know	that	as
they	are	not	used	to	paying	much,	if	at	all	for	games,	and	we	cannot	expect	too
much	investment	from	them	in	learning	and	mastering	your	game's	mechanics.
The	first	impression	for	a	mobile	game	is	very	important,	as	it	is	far	too	easy	to
download	another	title	if	you	don't	immediately	like	the	one	you	are	playing.
This	doesn't	usually	happen	if	you	spent	60	dollars	on	a	traditional	console	or	PC
game!

http://blog.flurry.com/bid/92377/The-Gamification-of-Mobile-Games

Business	models
So	you	have	an	idea,	you	know	the	platform	to	develop	it	for,	and	you	know	the
genre	and	target	audience	of	your	mobile	game.	The	next	step	is	to	decide	how
you	will	make	money	out	of	it!

When	releasing	a	game	on	the	mobile	market,	there	are	several	options	available
to	make	it	profitable.	Deciding	which	business	model	to	use	is	an	important,	and
is	a	tough	decision	that	will	affect	the	commercial	success	of	your	product.	Let's
invest	time	in	describing	each	of	them	and	their	pros	and	cons.

Premium

Premium	was	the	predominant	business	model	in	the	beginning	years	after
Apple	launched	its	App	Store.	It	means	that	users	are	charged	an	amount	of
money,	usually	99	cents,	to	download	a	game.	It	is	used	by	some	of	the	most
popular	mobile	games,	such	as	Angry	Birds,	Doodle	Jump,	or	Cut	the	Rope.

Today,	premium	games	tend	to	perform	worse	in	terms	of	sales	than	games	that
are	offered	for	free	or	with	in-game	advertising.	On	February	2013,	Minecraft
was	the	only	paid	app	among	the	most	downloaded	20	apps	on	the	App	Store.
We	suggest	you	refer	to	such	a	business	model	only	if	you	can	provide	some
kind	of	unique,	differentiated	contents,	such	as	a	game	based	on	a	popular
license	of	some	sort,	for	example,	a	sports	game	or	if	your	average	gameplay
session	is	generally	so	short	that	you	can't	get	advertising	to	work.

Freemium

Freemium	means	that	you	give	away	your	game	for	free,	planning	to	make
money	through	In-App	Purchases	(IAP)	of	virtual	goods.	It	is	the	dominant
business	model	today,	if	you	consider	that	of	those	20	most	profitable	apps	on
the	App	Store,	15	are	Freemium	games,	including	Clash	of	Clans,	Zynga's
Poker,	and	Bejeweled	Blitz.

Freemium	works	best	when	your	game	delivers	value	over	time	or	has	the
characteristics	of	a	viral	product,	which	encourages	free	users	to	attract	paid
customers.

In-App	Purchases	consist	of	stocks	of	consumable	items	that	allow	players	to
obtain	currencies	to	be	spent	in	the	game	to	perform	actions.	It	can	be	time	to
quickly	build	structures,	currency	to	spend	in	gambling	in	a	game,	or	mana	to
cast	spells	in	a	RPG	title.

While	using	IAP	it	is	very	important	to	gather	as	many	statistics	as	possible
about	your	daily	and	monthly	users,	such	as	how	many	they	are,	how	much	time
they	spend	playing,	how	many	times	they	play	each	day/each	month,	how	much
virtual	and	real	currency	they	spend	every	day/every	month,	and	how	much	are
they	willing	to	spend	on	a	single	purchase.	You	will	use	this	data	to	constantly
adjust	prizes	and	craft	targeted	offers	to	maximize	revenue	and	players'
engagement.

If	you'd	like	to	have	your	jaw	drop	as	you	read	the	revenues,	Freemium	games
can	make	it	happen.	We	suggest	you	to	read	the	following	Forbes'	article	about
Supercell's	Clash	of	Clans	at
http://www.forbes.com/sites/karstenstrauss/2013/04/18/the-2-4-million-per-day-
company-supercell/.

http://www.forbes.com/sites/karstenstrauss/2013/04/18/the-2-4-million-per-day-company-supercell/

Ad	supported

Ad	supported	games	include	several	kinds	of	in-game	advertising	to	be
displayed	in	the	game.	They	range	from	banners	constantly	displayed	on	screen,
right	outside	of	the	gameplay	area	to	interstitial	videos	of	15	to	30	seconds	in
length	displayed	during	breaks	of	the	game	(careful	with	these,	they	can	have	a
strong	detrimental	effect	on	users'	retention!),	to	offer	walls,	which	provide	users
with	free	contents	in	exchange	of	taking	actions,	such	as	signing	for	a	free	trial
of	a	different	app	or	linking	the	game	to	Facebook	or	Twitter.

Imangi	Studios'	Temple	Run	is	an	Ad	supported	game	of	success,	though	this
business	model	is	generally	used	by	utilities	that	are	so	essential	that	people	need
to	open	them	every	day	or	which	promote	long	session	times.

Ad	Supported	business	models	work	as	they	offer	a	way	to	monetize	the
majority	of	users	who	usually	don't	pay,	giving	the	opportunity	to	non-paying
users	to	earn	free	game	contents	and	allow	to	cross-promote	third	parties'	apps.

It's	not	uncommon	that	games	feature	advertising	as	part	of	a	hybrid	business
model,	such	as	Freemium	plus	in-game	Ads.

Hybrid

As	each	title	has	a	story	of	its	own,	and	for	the	sake	of	completeness,	we	also
mention	the	most	popular	hybrid	forms	of	mobile	business	models:	the
Freemium	plus	Ads	supported	which	we	already	mentioned	and	the	Premium
plus	in-app	purchase.

The	possibility	to	download	a	game	for	free	(Freemium),	which	display	banners
(Ads	supported)	but	offers	the	option	to	pay	to	remove	those	banners	(IAP)	is	an
example	of	a	very	smart,	very	hybrid,	mobile	business	model!

Choosing	the	right	business	model

We	would	like	to	close	this	section	about	the	mobile	market	and	its	business
models	with	useful	hints	to	help	you	choose	the	correct	business	model	for	your
next	mobile	game.

To	begin	with,	we	are	happy	to	tell	you	that	after	so	many	cold	numbers	and
analysis,	we	finally	go	back	to	the	pulsing	heart	of	what	we	love	to	do.	In	fact
our	first	piece	of	advice	is	that	although	we	make	games	for	money	(and
obviously	because	we	love	them!)	never	put	the	monetization	policy	interests
ahead	of	your	game	interests!	If	the	business	model	you	choose	doesn't	fit	the
characteristics	of	your	game,	take	a	step	back	and	change	it.	The	fact	that	the
Freemium	model	is	the	most	popular	and	(sometimes)	profitable	one	today
doesn't	mean	that	you	must	implement	it	at	all	costs.	Sometimes	the	old	way
(read:	premium)	is	still	the	best	way.	Consider	that	the	industry	giants,	such	as
EA,	Popcap,	Zynga,	and	Gameloft	invest	a	lot	of	money	on	the	games	they	make
and	part	of	that	money	is	spent	to	support	their	business	models.	You	are	not
likely	to	be	able	to	compete	with	them	on	their	field!	Our	second	bit	of	advice	is
to	consider	the	decision	about	the	business	model	to	adopt	as	part	of	the	game
design	process	itself.	The	earlier	you	think	of	your	game	in	terms	of	its
monetization	policy,	the	better	you	can	embody	the	business	model	into	the
game	mechanics.

A	game	well-designed	around	its	business	model	offers	more	chances	for	players
to	spend	money	on	it,	as	you	can	read	in	an	article	about	Supercell's	Clash	of
Clans	monetization	policy	at
http://www.salon.com/2013/04/17/this_is_how_you_win_the_internet_economy/singleton/

The	following	screenshot	shows	Clash	of	Clans,	courtesy	of	Supercell:

http://www.salon.com/2013/04/17/this_is_how_you_win_the_internet_economy/singleton/

	

If	the	game	cannot	make	money	directly	through	IAP,	still	it	can	produce
indirect	income	for	you	through	viral	activities.	Exploit	the	potential	of	your
game	to	create	viral	loops	by	allowing	to	easily	post	scores	on	Facebook,
Twitter,	and	other	social	networks.	Let	your	free	users	do	the	marketing	for	you!

Since	it	is	known	that	some	users	will	never	pay	to	download	a	game,	no	matter
what	its	cost,	a	viable	option	is	to	make	two	versions	of	the	game:	one	for	free
and	one	paid.	The	paid	version	of	the	game	could	offer	extra	(meaningful!)
contents,	such	as	extra	game	levels,	customizable	characters,	customizable	UI,	or
you	can	have	a	free	version	of	the	game	with	in-game	Ads	and	a	paid	version
without	banners.

If	you	decide	to	have	IAP	in	your	game,	consider	that	they	require	a	lot	of
balancing,	analysis	and	corrections	to	costs	over	time	to	produce	income.	Such
results	cannot	be	achieved	if	you	don't	have	a	clear	understanding	of	the	criteria
why	a	given	item	is	available	at	a	given	cost	at	a	given	time.	Metrics	are
important	for	understanding	your	audience.	Several	services	provide	data	mining
and	game	analytics	about	mobile	players;	use	them	or	you	will	miss	the	revenue
opportunities	your	game	may	offer.

Finally,	be	prepared	to	spend	money	to	acquire	users.	Less	than	five	percent	of
Freemium	players	pay	for	game	contents	and	the	average	cost	to	acquire	users	is
around	1.50	dollars	per	user.	It	means	that	you	need	thousands	of	free	users	to
have	dozens	of	paying	players,	and	the	more	they	get,	the	more	it	will	cost	to
acquire	them.

What	makes	games	fun
We	desire	to	end	this	chapter	with	a	section	about	a	very	popular	theory	of	what
fun	is,	and	what	makes	games	fun,	by	XeoDesign:	a	research	firm	founded	by
Nicole	Lazzaro	that	helps	organizations	increase	player	engagement	in	their
products	by	eliminating	barriers	to	having	fun.

Ms.	Lazzaro	is	a	world-renowned	researcher	in	Player	Experience	(PX)	who
has	been	acknowledged	as	one	of	the	top	women	working	in	high	tech	and	one
of	the	top	20	women	in	video	games.

The	following	description	is	a	breakdown	of	Xeo/Nicole's	examination	of	what
is	fun	in	games.	These	are	purely	emotional	responses	that	arise	from	specific
game	situations	rather	than	from	storyline.

This	section	is	meant	as	a	starting	point	for	your	research	on	the	many	theories
on	the	subject.

The	four	keys	to	fun	–	the	game	mechanics	that	drive
play

Lazzaro's	theory	is	based	around	four	types	of	fun,	as	different	people	play
games	for	different	reasons.	Some	people	search	for	a	challenge	to	test	their
skills,	some	people	search	for	progression	for	the	sake	of	having	something
growing	in	their	hands,	while	others	play	games	to	spend	time	with	friends.

In	the	following	sections	we	will	examine	each	category	of	fun	described	by
Lazzaro's	theory.

Hard	fun	–	emotions	from	meaningful	challenges,	strategies,	and
puzzles

For	many	players	overcoming	obstacles	is	the	reason	why	they	play.	Hard	fun
creates	emotion	by	structuring	experience	towards	the	pursuit	of	a	goal.	The
challenge	focuses	attention	and	rewards	progress	to	create	emotions,	such	as
frustration	and	Fiero	(an	Italian	word	for	personal	triumph).	It	inspires	creativity
in	the	development	and	application	of	strategies.	It	rewards	the	player	with
feedback	on	progress	and	success.	Players	use	this	key	play	to	test	their	skills
and	feel	accomplished.	In	their	study	players	who	enjoy	the	hard	fun	of
challenge	say	they	like:

Playing	to	see	how	good	I	really	am
Playing	to	beat	the	game
Having	multiple	objectives
Requiring	strategy	rather	than	luck

Games	with	this	key	offer	compelling	challenges	with	a	choice	of	strategies.
They	balance	the	game	difficulty	with	player	skill	through	levels,	player
progress,	or	player	controls.	In	Mario	Kart,	the	difficulty	of	the	challenge
matches	the	skill	of	novice	and	advanced	players	(if	you	can't	drive,	you	can	at
least	throw	stuff);	plus	it	offers	emotional	opportunities	from	cooperative	and
competitive	gameplay.	Games	with	this	key	include	Civilization,	Halo,	Top	Spin
Tennis,	Crosswords,	Hearts,	Tetris,	and	Collapse.	Some	games	offer	a	choice	of
winning	conditions	such	as	EverQuest	and	The	Sims.

Easy	fun	–	grab	attention	with	ambiguity,	incompleteness,	and
detail

Other	players	focus	on	the	sheer	enjoyment	of	experiencing	the	game	activities.
Easy	fun	maintains	focus	with	player	attention	rather	than	a	winning	condition.
The	immersion	key	awakens	a	sense	of	curiosity	in	the	player.	It	entices	the
player	to	consider	options	and	find	out	more.	Ambiguity,	incompleteness,	and
detail	combine	to	create	a	living	world.	The	sensations	of	awe,	wonder,	and
mystery	can	be	very	intense.	Players	use	this	key	play	to	fill	attention	with
something	new.	In	their	study	players	who	enjoy	the	easy	fun	of	immersion	say
they	like:

Exploring	new	worlds	with	intriguing	people
Excitement	and	adventure
Wanting	to	figure	it	out
Seeing	what	happens	in	the	story,	even	if	I	have	to	use	a	walk	through
Feeling	like	me	and	my	character	are	one
Liking	the	sound	of	cards	shuffling
Growing	dragons

Games	with	this	key	entice	the	player	to	linger,	not	necessarily	in	a	3D	world	but
to	become	immersed	in	the	experience.	Rich	stimuli	and	ambiguity	as	well	as
detail	cause	the	player	to	pause	with	wonder	and	curiosity.	Repetition	and
rhythm	can	be	hypnotic.	In	Mario	Kart	the	visual	display,	cart	technology,	and
zany	game	obstacles	inspire	curiosity	and	immersion.	Other	games	with	easy	fun
mentioned	by	players	include	Myst,	Splinter	Cell,	EverQuest,	GTA	III,	Max
Payne,	Halo,	Civilization,	Collapse,	Tetris,	Dark	Age	of	Camelot,	and	Hearts.

Altered	states	–	generate	emotion	with	perception,	thought,	behavior,	and	other
people

Players	report	that	how	a	game	makes	them	feel	inside	is	one	of	the	major
reasons	why	they	play	or	consider	games	as	therapy.	They	describe	enjoying
changes	in	their	internal	state	during	and	after	play.	The	internal	experience	key
focuses	on	how	aspects	of	the	game	external	to	the	player	create	emotions	inside
the	player.	This	aspect	of	the	player's	experience	is	the	way	in	which	perception,
thought,	and	behavior	combine	in	a	social	context	to	produce	emotions	and	other
internal	sensations	most	frequently	those	of	excitement	and	relief.	Players	using
this	key	play	to	move	from	one	mental	state	to	another	or	to	think	or	feel
something	different.	In	our	study	the	players	whose	enjoyment	focuses	on	their
internal	state	say	they	like:

Clearing	my	mind	by	clearing	a	level

Feeling	better	about	myself
Avoiding	boredom
Being	better	at	something	that	matters

Games	with	this	key	stimulate	the	player's	senses	and	starts	with	emotion	from
compelling	interaction,	for	example,	Mario	Kart	combines	rich	visceral	graphic
and	audio	stimuli,	intriguing	concepts,	and	behaviors	to	create	wildly	fun
emotions	in	the	player.	Games	listed	in	this	key	include:	Collapse,	Crosswords,
Halo,	GTA,	Civilization,	Tetris,	and	EverQuest.

The	people	factor	–	create	opportunities	for	player	competition,
cooperation,	performance,	and	spectacle

Many	player	comments	center	on	the	enjoyment	from	playing	with	others	inside
or	outside	the	game.	In	addition	to	buying	multiplayer	games,	players	structure
game	experiences	to	enhance	player	to	player	interaction.	Participants	play	the
games	they	don't	like	so	they	can	spend	time	with	their	friends.	Wisecracks	and
rivalries	run	hot	as	players	compete.	Teamwork	and	camaraderie	flourish	when
they	pursue	shared	goals.	Dominant	emotions	include	amusement,
schadenfreude	(the	joy	at	others'	misfortune),	and	naches	(Yiddish	word	for
pleasure).	Players	using	this	key	see	games	as	mechanisms	for	social	interaction.
In	their	study	XeoDesign	found	that	players	whose	enjoyment	came	from
interaction	with	other	people	say	that:

It's	the	people	that	are	addictive	not	the	game
I	want	an	excuse	to	invite	my	friends	over
I	don't	like	playing	games,	but	it's	a	fun	way	to	spend	time	with	my	friends
I	don't	play,	but	it's	fun	to	watch

Multiplayer	games	are	best	at	using	this	key,	although	many	games	support
some	social	interactions	through	chat	and	online	boards.	Games	that	offer	both
cooperative	and	competitive	modes	offer	a	wider	variety	of	emotional
experiences.	For	example	Mario	Kart's	multiplayer	mode	allows	two	to	four
players	to	sit	and	play	together	providing	performance	opportunities	and	plenty
of	spectacle	for	anyone	watching.	Other	games	with	this	key	include	EverQuest,
Dark	Age	of	Camelot,	Soul	Calibur	II,	Halo,	and	GTA	(it	is	fun	to	watch).	You
can	refer	the	article	at	http://xeodesign.com/xeodesign_whyweplaygames.pdf.

http://xeodesign.com/xeodesign_whyweplaygames.pdf

Source:	http://xeodesign.com/whyweplaygames.html

	

http://xeodesign.com/whyweplaygames.html

Raph	Koster	and	Roger	Caillois

There	are	two	other	very	popular	theories	about	fun	that	are	commonly
mentioned	as	reference	theories	of	fun	in	videogame	community,	which	we
would	like	you	to	have	a	look	at.

One	theory	of	fun	is	nicely	described	in	the	book	A	Theory	of	Fun	for	Game
Design,	by	Raph	Koster,	designer	of	Ultima	Online,	Paraglyph	Press	available
at	http://www.amazon.com/A-Theory-Fun-Game-Design/dp/1932111972.

The	other	theory	is	expressed	in	the	book	Man,	Play	and	Games,	by	Roger
Caillois,	a	French	sociologist,	University	of	Illinois	Press	available	at
http://www.amazon.com/Man-Play-Games-Roger-Caillois/dp/025207033X.	It	is
based	on	the	contents	of	the	popular	book	Homo	Ludens,	by	Johan	Huizinga,
Beacon	Press	available	at	http://www.amazon.com/Homo-Ludens-Study-Play-
Element-Culture/dp/0807046817.

We	strongly	suggest	you	review	the	material	presented	here	and	then	start	your
own	explorations	on	the	field	of	research.

http://www.amazon.com/A-Theory-Fun-Game-Design/dp/1932111972
http://www.amazon.com/Man-Play-Games-Roger-Caillois/dp/025207033X
http://www.amazon.com/Homo-Ludens-Study-Play-Element-Culture/dp/0807046817

Summary
In	this	chapter	we	discussed	the	best	practices	for	designing	mobile	games	that
can	have	chances	to	emerge	in	the	highly	competitive	mobile	market.	We
reviewed	the	agreed	upon	dos	and	don'ts	of	game	design	and	discussed	the
factors	that	come	into	play	while	designing	games	for	the	mobile	platform,	with
regards	to	hardware	and	design	limitations	to	the	mobile	market	characteristics
and	the	most	successful	mobile	business	models.

Finally,	we	looked	at	what	some	authorities	in	the	field	think	in	making	games
fun,	and	how	to	create	compelling	game	mechanics.

In	the	next	chapter	we	will	create	a	game	document	based	on	popular	concepts
of	successful,	classic	games.

Chapter	12.	Pitching	a	Mobile	Game
As	the	aim	of	this	book	has	been	to	provide	a	practical	guide	to	mobile	game
development,	we	the	authors,	desire	to	end	this	work	with	a	pitch	document
example	that	may	serve	as	a	reference	template	to	approach	the	design	of	your
own	mobile	games.	A	pitch	is	targeted	at	potential	investors	and/or	publishers
who	will	fund	your	project	to	publication.

A	pitch	document	should	provide	the	information	required	to	understand	what
kind	of	game	you	have	in	mind,	how	it	will	look	and	play	like,	what	is	its
intended	audience,	target	platform,	and	business	model,	and	some	technical
aspects	such	as	the	number	of	graphics	and	audio	assets	required,	the
development	schedule,	and	the	cost.	In	other	words,	anything	in	the	decision-
making	process	that	affects	how	and	whether	to	invest	time	and	money	into
developing	the	game.

You	are	now	ready	to	confront	the	task	of	thinking	about	games	from	the
perspective	of	how	you	are	going	to	actually	develop	them!

In	this	chapter,	we	will	cover	the	following	topics:

The	characteristics	of	a	pitch	document
Lilypads	pitch
The	game	concept
Game	mechanics
Interface	and	graphics
Business	plan

The	pitch	document
Though	there	is	no	universal	standard	in	the	video	game	industry,	the	pitch
document	is	the	tool	used	to	present	a	game	idea	to	a	potential	publisher	or	to	a
team,	with	the	purpose	of	getting	the	go-ahead	for	its	development.

It	is	both	an	advertising	tool	and	a	brief	manual	of	the	game,	as	it	is	usually
made	up	of	different	sections	that	address	different	aspects	of	game
development.

The	pitch	document	must	capture	the	attention	of	its	audience	with	catchy
phrases,	nice	images,	and	clear	concepts.	It	must	provide	detailed	information
about	the	gameplay	of	the	title	and	explain	why	the	game	is	fun	to	play.	It	must
declare	what	the	target	audience	of	the	title	is,	its	competitors	and	references,
and	what	puts	this	game	above	them.

Finally,	the	pitch	document	estimates	the	number	of	assets	required	to	develop
the	game	and	the	people	required	to	make	them,	it	provides	the	expected	cost	for
the	production,	and	explains	its	marketing	strategy.

Based	on	our	personal	experience,	we	the	authors	consider	that	a	pitch	document
should	contain	at	least	three	main	sections.	As	for	the	content	of	each	section,	we
provide	some	references	here,	and	then	we	suggest	you	to	be	wise	and	try	to
describe	your	game	in	the	way	it	flows	most	naturally!

The	first	section	is	what	we	call	The	concept	and	answers	the	questions	such	as
what	is	this	game?	Where	does	its	idea	come	from?

The	second	section	we	call	Game	mechanics	and	should	answer	the	questions
such	as	how	does	this	game	work?	How	is	it	played?

The	third	and	the	last	section	is	called	Tech	and	answers	the	questions	such	as
what	do	you	need	to	make	this	game?	How	much	will	it	cost?

Importance	of	pitching

Pitching	a	game	does	not	only	have	to	do	with	convincing	a	potential	investor
that	you	can	make	the	game	and	that	the	game	is	worth	making.

The	practice	of	pitching	is	also	a	fundamental	step	for	any	game	designer	to
learn	to	think	about	games	from	a	true	development	perspective.	By	answering
the	questions	posed	by	the	pitch	document,	a	designer	leaves	the	field	of	"I	have
a	nice	idea	for	a	game"	and	enters	that	of	"I	will	spend	the	coming	months
developing	a	game	like	this,	and	with	the	collaboration	of	my	team,	we	will
produce	a	product	that	will	meet	or	beat	our	expectations".

Game	concept
The	first	section	of	the	pitch	generally	addresses	the	concept	of	the	game	and	the
idea	behind	it.	The	concept	should	be	described	in	a	few	sentences	that	allow
anyone	to	quickly	grasp	the	basic	mechanics	of	the	game	and	communicate	its
look	and	feel,	using	little,	if	any,	technical	jargon.

When	describing	the	concept,	include	anything	that	is	necessary	to	explain	the
basic	gameplay	of	your	title	but	leave	out	what	relates	to	special	cases,
additional	contents,	and	information	that	may	confuse	the	reader.

If	your	concept	is	not	brief	or	very	clear	and	it	cannot	be	grasped	with	a	single
reading,	it	means	that	you	still	haven't	got	a	good	concept	to	begin	with.

Work	on	it	until	you	can	provide	a	single,	short	sentence,	usually	called	high
concept,	which	communicates	what	the	game	is	all	about.	It	should	be	a	catchy
phrase,	put	in	the	heading	of	the	document	to	catch	the	reader's	attention	and
make	him	willing	to	continue	reading.

In	game	design	courses,	students	are	asked	to	provide	high	concepts	of	three	to
five	words	in	total,	things	such	as	Pac	Man	–	eat	'em	all.

This	is	an	excellent	exercise	to	learn	to	think	of	games	from	the	perspective	of
the	central	gameplay	element	they	are	built	around.

There	is	this	interesting	article	by	James	Mardsen	of	FutureLab	about	the
development	of	Velocity	that	we	suggest	you	to	read.	It	offers	great	insight	on
the	process	of	developing	a	gameplay	idea	(what	James	Mardsen	calls	"the	toys"
of	gameplay)	with	a	commercial	purpose	in	mind:

	

This	is	the	opening	screenshot	for	the	pitch	document	of	the	game	Velocity.	You
can	find	the	entire	document	online	at
http://www.gamasutra.com/blogs/JamesMarsden/20130629/195334/Designing_An_Awesome_Videogame.php?
utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+GamasutraNews+%28Gamasutra+News%29

http://www.gamasutra.com/blogs/JamesMarsden/20130629/195334/Designing_An_Awesome_Videogame.php?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+GamasutraNews+%28Gamasutra+News%29

References

When	thinking	about	a	concept	for	a	game,	look	for	references.	Are	there	any
games	which	make	use	of	the	same	or	similar	mechanics?	How	do	they	work?
What	would	you	change	in	those	games?	Such	questions	will	help	you	find	a
clear	direction	for	your	game.	By	examining	what	worked	and	didn't	work	for
other	titles	is	the	best	way	to	avoid	common	errors	and	to	save	the	time	and
money	needed	to	reinvent	the	wheel.

Be	aware	that	your	references	need	not	to	be	video	games	at	all.	Any	kind	of
game	or	human	activity	in	general	can	be	a	reference	for	a	video	game
mechanics.	Always	try	to	keep	your	mind	and	eyes	as	open	as	possible.

You	don't	need	a	large	number	of	references,	two	or	three	should	be	enough	to
give	your	reader	the	feeling	of	how	your	game	will	work.	Remember	that
popular	games	are	usually	those	that	take	a	well-known	game	mechanics	and
change	just	what	it	takes	to	make	it	feel	fresh	again!	If	you	take	too	many
references	into	consideration,	it	will	be	harder	to	focus	around	that	one	central
element	which	adds	fun	to	your	title.

Prototypes

As	you	try	to	focus	around	an	idea	and	search	for	references,	it	is	very	important
that	you	begin	to	test	that	idea	immediately	with	pen	and	paper	prototypes.	Does
your	idea	work	in	practice?	Testing	is	the	only	way	to	quickly	understand	if	an
idea	actually	works	and	it	also	can	help	you	spot	special	cases	which	could	lead
to	minor	(or	even	major,	sometimes!)	changes	to	the	mechanics	you	are
sketching.

Stuck?

Should	you	find	yourself	stuck	on	a	dead	end,	we	suggest	you	to	get	some
distractions	and	move	away	from	your	desk	for	a	while.	It	is	very	likely	that
once	you	go	back	to	work,	you	will	be	able	to	come	out	from	the	impasse	you
found	yourself	stuck	in	and	move	on	with	your	design.

Genre

Once	you	decide	that	your	idea	is	actually	a	good	one,	it	is	time	to	ask	yourself	if
the	game	is	worth	making	from	a	commercial	perspective.

Defining	the	genre	of	your	game	is	a	good	starting	point	because	having	a	clear
idea	of	the	genre	allows	you	to	identify	the	market	in	which	it	will	compete.

Target	audience

No	game	can	become	popular	if	you	don't	design	it	with	a	specific	target
audience	in	mind.	Any	attempt	to	create	a	game	that	is	enjoyed	by	everyone	is	a
chimera	that	usually	leads	to	failure.

The	clearer	your	idea	of	who's	going	to	play	your	game	and	why,	the	easier	to
focus	on	those	features	that	are	really	important	for	your	target	players.

We	know	now	from	analysts	that	different	populations	of	gamers	play	different
genres	of	games	with	distinctive	features.	You	must	take	advantage	of	this
knowledge!

Key	features

Describing	key	game	features	is	a	very	important	section	of	your	pitch
document,	especially	if	you	plan	to	submit	your	idea	to	a	potential	investor.	By
declaring	a	list	of	interesting	and	innovative	key	features	you	can	get	the
investors'	attention	and	persuade	them	to	give	you	the	money	to	develop	your
title.

If	your	game	lacks	the	elements	which	give	it	the	chance	to	emerge	from	the
competition,	well,	easily	put,	you	won't	likely	make	it!

Remember	that	commercial	successes,	which	just	changed	one	or	few	aspects	of
other	successful	games,	succeeded	because	they	targeted	a	specific	audience,
offering	what	they	expected	and	encouraging	them	to	play	and	spend	money	on
the	game.

Unfortunately,	there	is	no	universal	recipe	for	this.	Market	analysis	and
extensive	examination	of	other	games'	gameplay	is	required	to	spot	which	are
the	key	features	that	can	predict	the	commercial	success	of	your	game.

Target	platform	and	competitors

Along	with	the	audience,	the	decision	about	which	platform	to	target	is
important	for	the	commercial	success	of	any	title.

The	best	scenario	would	be	to	have	your	mobile	game	available	and	running
smooth	on	all	three	main	mobile	platforms:	iOS,	Android,	and	Windows	Phone,
especially	if	you	plan	to	make	a	Freemium	game.

On	the	other	hand,	to	develop	a	game	version	for	each	individual	platform
requires	time	and	money.

If	you	plan	to	make	a	Premium	game,	which	is	downloaded	for	a	cost,	we
suggest	that	you	target	the	iOS	platform,	as	Android	is	known	for	being
considered	an	open	source	platform	preferred	by	those	who	aren't	likely	to	pay
for	contents	in	general,	and	Windows	Phone	is	not	yet	popular	enough	to	propel
exclusive	development	for	this	platform	alone.

Also	look	for	competitors	when	deciding	the	platform	for	a	game.	Are	there
other	games	similar	to	yours	already	available,	or	will	there	be	at	the	time	you
plan	to	ship?	Which	are	the	key	features	of	such	titles?

The	idea	is	to	find	a	niche	for	your	title	where	it	can	profit!

Game	mechanics
Now	that	you	have	a	description	of	the	game	concept	and	its	market,	it	is	time	to
explain	how	your	game	works	and	how	it	is	actually	played.

Any	game	mechanics	should	be	described	with	clear	text	and	nice	images.	The
goal	is	to	make	the	reader	feel	like	he	played	the	game,	even	if	he	actually	didn't.

Work	on	this	section	until	you	have	proof	that	anyone	can	read	it	and	understand
it	without	you	providing	any	extra	explanation.	Avoid	technical	words	and	use
examples.	Examples	taken	from	other	popular,	successful	titles	can	do	a	fine	job,
as	they	are	references	that	can	be	immediately	grasped	by	your	readers.

An	image	is	worth	a	thousand	words.	Use	all	the	pictures	you	need	when
describing	the	mechanics	of	your	game,	to	be	sure	they	are	super	clear.

But	also	remember	this	is	just	a	pitch	document,	so	you	don't	need	to	explain
absolutely	everything	about	your	game.	There	is	the	Detailed	Design	Document
for	that!	Only	include	the	most	important	mechanics,	those	that	are	required	to
understand	the	gameplay	and	the	potential	of	the	game,	and	those	that	are
distinctive,	key	features	that	can	make	it	successful.

Once	you	have	described	the	main	mechanics,	you	can	mention	how	you	will
improve	the	gameplay	as	the	game	progresses	by	unlocking	new	game	elements
such	as	additional	character	abilities,	new	types	of	enemies,	obstacles	and	game
surfaces,	bonuses,	and	so	on.	Include	one	or	two	unlocks	in	detail	and	two	or
three	additional	unlocks	in	general	terms.

Control	scheme	and	interface

Obviously,	to	explain	how	a	game	works	requires	that	you	describe	in	detail	its
control	scheme	and	explain	how	the	player	performs	the	main	game	actions.

This	is	mobile	gaming,	remember	to	keep	controls	simple,	try	to	avoid	virtual
buttons	(since	they	take	up	precious	screen	space),	and	make	use	of	sensors,	if
they	suit	your	gameplay	idea!

Also	explain	here	how	the	player	interacts	with	the	game	and	how	he	moves
between	game	screens.

Scoring	system	and	achievements

Take	some	time	at	this	point	to	describe	how	the	player	earns	points	and	credits,
and	how	they	are	used	to	provide	incentives	to	the	player	to	keep	playing.	If	you
have	an	In-App	Purchase	system	in	your	game,	explain	here	how	it	is	integrated
into	gameplay	and	how	the	player	can	take	advantage	of	the	purchased	items	to
progress	in	the	game.

A	gameplay	example

Now	that	you	have	showed	how	the	game	is	played	and	what	it	should	look	like,
this	is	a	perfect	moment	to	offer	your	readers	a	gameplay	example	of	the	game.

Describe	an	in-game	situation	or	a	problem	and	explain	how	and	by	which
operations	the	player	gets	to	the	solution	step-by-step.	A	picture	is	worth	a
thousand	words,	especially	if	you	cannot	be	present	when	others	read	your
document.

If	you	have	a	game	with	levels,	provide	a	small	number	of	them	as	examples.

Designing	levels	for	your	games	early	on	is	another	activity	which	brings	the
collateral	benefit	of	forcing	you,	the	designer,	to	deal	with	potential	problems
that	could	arise	from	your	game	mechanics,	before	true	development	begins.

Screen	flow	and	screens	relationship

At	this	point	you've	said	enough	about	the	gameplay	of	your	title	and	it	is	time	to
look	at	the	game	from	an	app	perspective.	This	part	of	the	pitch	document
should	describe	how	the	player	experiences	your	application;	which	screens	are
available	and	how	does	he	move	between	them,	how	he	can	access	one	screen
from	another,	and	which	options	are	available	(at	least	the	most	important)	in
each	screen.

This	task	is	usually	done	through	one	or	more	diagrams.	The	screen	flow	shows
the	layout	of	the	screens	available	in	the	game	and	their	connections.	Individual
diagrams	can	be	provided	as	required	for	any	main	game	operation,	such	as
starting	a	new	game,	resume	a	previously	saved	game,	create	a	player	profile,
access	or	modify	the	game	options,	and	so	on.

Microsoft	Visio	is	the	industry	standard	for	such	tasks,	but	there	are	several
freeware	software	packages	that	can	do	the	job	as	well.	For	example,	one	of	the
authors	found	that	Freemind	by	Joerg	Mueller	is	a	good	tool	to	make	diagrams
and	it	is	a	freeware	software.	You	can	download	it	from
http://freemind.sourceforge.net/wiki/index.php/Download.

http://freemind.sourceforge.net/wiki/index.php/Download

Game	flow

The	game	flow	is	a	different	diagram	which	describes	how	a	typical	match
unfolds	to	the	player.

The	diagram	should	display	the	number	and	sequence	of	operations	required	by
the	player	to	start	a	match,	the	basic	actions	performed	by	the	player	during	a
match,	and	what	happens	when	the	match	ends.

Tech
Now	that	we	have	covered	everything	that	is	important	to	explain	how	your
game	works,	the	last	step	is	to	provide	numbers	and	evaluations	about	what	is
needed	to	make	this	game	(resources,	time,	and	money)	and	how	this	game	will
make	a	profit,	once	shipped.

In	this	section	are	enlisted	the	technical	aspects	related	to	the	development	of	the
game.

You	put	here	the	information	regarding	the	resolution	of	the	application,	the
estimated	parameters	for	graphics	and	audio	assets,	the	number	of	assets	for
graphics	(2D	and	3D)	and	audio,	animations,	and	so	on.

It	is	here	that	you	declare	the	resources	required	for	development	(people	and
software),	the	estimated	time	required	for	development,	and	its	cost.

You	also	explain	here	how	you	plan	to	make	money	out	of	your	game,	by
detailing	its	business	model	and	the	marketing	strategy.

Expect	to	fill	this	section	with	charts	and	diagrams,	as	it	is	the	clearer	way	to
make	people	quickly	grasp	numbers	and	trends.

Parts	of	this	section	are	the	budget	and	schedule.	In	order	to	create	reasonably
accurate	predictions	of	cost	(budget)	and	the	project's	timetable	(schedule),	you
must	have	a	relatively	complete	list	of	assets	(art,	sound,	screens)	and	tasks
(programming	modules,	play	testing,	project	management,	and	other	things
people	get	paid	to	do).	One	of	the	author's	favorite	programs	to	handle	budget
and	scheduling	is	Microsoft	Project.	It	is	very	robust	and	covers	almost	all	of	the
features	for	project	management.	It	is	also	expensive,	especially	if	you	use	the
full-featured	server	version.	That	said,	there	are	also	a	large	number	of	open
source	project	management	applications;	Wikipedia	has	an	extensive	list	of	them
and	their	capabilities,	for	more	information	visit
http://en.wikipedia.org/wiki/Comparison_of_project_management_software.

http://en.wikipedia.org/wiki/Comparison_of_project_management_software

Screenshot

Provide	a	screenshot	of	your	game.	What	do	you	imagine	your	game	to	look
like?

Approach	this	task	from	a	conceptual	point	of	view.	You	don't	need	to	put	actual
graphics	into	this	screenshot	if	you	cannot	afford	an	artist.	Loot	the	Internet	and
use	image	editing	tools	to	assemble	something	that	resembles	and	conveys	the
idea	of	the	look	you	want	for	your	game.

On	the	other	hand,	the	nicer	the	graphics	of	your	designs	and	screenshots,	the
more	appealing	your	pitch	document	will	be	for	your	readers.	If	you	are	pitching
for	a	potential	investor,	find	the	best	artist	you	can	afford.	Having	a	document
with	professional	layout	and	top	quality	graphics	says	a	lot	about	your	team's
abilities.	Remember,	there	is	no	second	chance	to	make	a	first	impression!

Team/Designer	resume

At	the	end	of	the	document	it	is	a	nice	touch	to	attach	the	resume	of	the	team	or
the	designer	who	made	the	document.

Especially,	if	your	team	has	shipped	or	otherwise	released	other	products,	it	is
the	best	proof	that	the	team	is	professional	and	reliable.

Otherwise,	it	is	still	a	good	way	for	the	readers	to	get	an	idea	of	who	the	person
behind	the	game	idea	and	the	pitch	document	is.

We	are	done	with	this	discussion	on	the	pitch	document	and	can	now	begin
working	with	the	design	of	Lilypads!

Lilypads	pitch	document
The	following	is	a	sample	pitch	document	for	the	fictional	game	Lilypads.	It
contains	all	the	sections	necessary	to	produce	an	effective	pitch	document.

Concept

Lilypads	is	a	puzzle	game	for	the	iPhone,	inspired	by	the	games	such	as	Peg
Solitaire	and	Draughts.	The	player	is	asked	to	help	a	small	frog	named	Grof,	to
get	back	to	his	home.	Unfortunately,	Grof	got	lost	in	the	swamp	of	the	endless
ponds	and	now	he	must	go	through	all	of	them	to	exit	the	swamp	and	hug	his
worried	parents!

High	Concept:	Jump,	eat,	and	get	out	of	the	pond!

Lilypad	is	2D	game	played	from	a	top-down	view.	The	display	shows	the	game
level,	represented	by	the	pond	Grof	must	escape	from.

Each	pond	hosts	a	number	of	lilypads,	scattered	according	to	a	given
configuration:

	

To	get	out	of	each	pond,	Grof	must	clear	all	lilypads	by	jumping	on	them.

To	get	out	of	each	pond,	Grof	must	clear	all	lilypads	by	jumping	on	them.

Once	all	the	lilypads	in	the	pond	have	been	removed,	the	player	moves	to	the
next	pond	(game	level).

Game	levels	unlock	as	the	player	progresses	in	the	game.

As	the	game	progresses,	the	schemes	presented	with	each	pond	get	more
complex	and	harder	to	solve.

The	player	has	an	unlimited	number	of	tries	and	any	unlocked	game	level	can	be
replayed	at	will	to	aim	for	the	highest	score.

Score	is	obtained	depending	on	the	time	taken	to	clear	each	game	level
according	to	the	criteria	that	the	lower	the	time,	the	better	the	score.

The	player	can	also	earn	and/or	buy	(IAP)	virtual	currency	to	be	used	to	get
additional	game	levels	and	scenarios,	customizable	character	skins,	and	other
special	features.

Genre

Lilypads	is	a	single	player	puzzle	game,	which	can	be	played	in	small	chunks.	It
is	divided	into	levels	and	the	player	is	asked	to	find	the	solution	to	each	game
level.

The	game	will	be	made	in	two	versions:

Freemium:	It	is	downloadable	for	free,	it	displays	advertising	banners,	has
reduced	number	of	game	levels,	and	only	allows	a	single	redo	for	the	last
move	in	a	level.
Gold:	It	is	a	Freemium	version	that	can	be	upgraded	for	a	price.	It	removes
the	advertising	banners,	unlocks	extra	contents	such	as	skins	and	sound
effects,	provides	additional	game	levels	and	unlocks	the	advanced	redo
feature,	which	allows	the	player	to	go	back	any	number	of	moves	in	a	level.

References

What	follows	is	a	list	of	games	that	we	took	inspiration	from	when	designing	the
mechanics	for	Lilypads:

Peg	Solitaire/Draughts:	These	board	games	need	no	presentation,	as
popular	as	they	are.	One	is	a	classic	solo	game	where	the	player	is	asked	to
remove	all	elements	from	a	grid	according	to	one	single	moving	rule.	The
Wikipedia	page	which	you	may	want	to	check	is	available	at
http://en.wikipedia.org/wiki/Peg_solitaire.
The	other	is	a	two	player	game	on	a	checkerboard.	We	readapted	its
mechanics	to	fit	into	the	concept	of	Lilypad.	You	can	learn	about	it	at
http://en.wikipedia.org/wiki/Draughts.
Frog	Bog	(Intellivision):	It	is	a	classic	game	from	the	early	'80s	where	up
to	two	players	eat	the	highest	number	of	flying	insects.	The	frogs	controlled
by	players	could	only	jump	back	and	forth	between	two	pads	and	players
were	only	required	to	make	their	frog	jump	with	correct	timing	(at	simple
difficulty	settings).

	
Diamond	Dash	(Wooga):	It	is	one	of	the	most	popular	Facebook	games
where	the	player	is	required	to	simplify	sequences	of	game	elements	by

http://en.wikipedia.org/wiki/Peg_solitaire
http://en.wikipedia.org/wiki/Draughts

quickly	clicking	on	them.	This	game	was	the	inspiration	for	the	scoring
system	based	on	time	taken	to	tap	on	an	element	to	simplify	it.

	

Target

Casual	players	who	enjoy	puzzle	games	with	cute	graphics	and	touch	controls:

Kids	4-13
Women	above	30

The	theme,	graphics,	and	game	characteristics	aim	for	the	goal	of	having	kids
play	the	game	with	their	mothers	and	friends.

Platform

Lilypads	is	designed	for	the	iPhone	(reference	model,	the	iPhone	4),	but	can	be
easily	converted	for	any	touch	device	running	iOS,	Android,	or	Windows	Phone,
depending	on	its	commercial	success.	The	developing	environment	is	Unity	4.

Competitors

We	leave	you	with	the	task	of	filling	in	this	section.	The	scenario	of	competitors
as	we	write	these	words	could	change	by	the	time	you	read	them.

Get	on	the	Internet	and	search	yourself	for	which	games,	if	any,	can	be
considered	competitors	of	Lilypads.	This	is	the	kind	of	exercise	you	should	get
used	to	doing	often!

Key	features

What	follows	here	is	a	sample	list	of	key	features	for	Lilypads.

We	strongly	encourage	you	to	think	accurately	about	this	potential	game	and
come	out	with	a	reasonable	and	effective	list	of	key	features	to	improve	this
document:

Easy	to	grasp	gameplay,	based	on	the	mechanics	of	popular	board	games
Crisp	graphics	that	shine	on	the	iPhone	display
Game	theme	is	family-friendly	and	ideal	for	the	targeted	audience	of	young
children
IAP	system	to	buy	extra	game	levels,	skins	for	the	character	and
customizable	audio
Players	can	upload	their	score	on	public	leaderboards	and	on	most	popular
social	networks

Character	design
We	add	here	a	few	considerations	about	the	character	design	for	Lilypads.	For
this	game	we	need	a	cute	character,	which	immediately	attracts	kids	and	women
with	its	likeness,	and	we	the	authors	agreed	that	the	eyes	could	be	the	most
expressive	characteristic	in	Grof's	appearance.

We	tried	several	options	and	finally	came	up	with	the	following	reference	of	a
nice	frog	with	large	and	expressive	eyes:

	

By	working	on	the	eyes	of	such	a	model,	a	good	artist	can	provide	Grof	with	a
full	set	of	facial	expressions	to	be	called	according	to	in-game	situations	and
thus	improve	the	appeal	of	the	main	character	of	the	game	for	its	target	audience.

If	you	are	an	artist	yourself	or	have	an	artist	in	your	team,	we	suggest	you	to
create	a	sketch	based	on	this	reference	model	and	exercise	by	working	on	a	set
of	facial	expressions	for	it.

We	also	encourage	you	to	make	a	study	of	the	other	game	characters	too,
starting	from	the	insects.

Game	mechanics
To	explain	the	mechanics	of	Lilypads,	let's	begin	by	showing	a	concept	image
with	the	main	game	objects.

Each	game	level	in	Lilypad	is	represented	by	a	pond	from	a	top	view	where	a
number	of	lilypads	lie.	Grof	can	jump	from	one	lilypad	to	an	adjacent	one.

Insects	may	be	scattered	between	lilypads,	so	that	Grof	can	eat	them	as	he	jumps
from	one	lilypad	to	the	other:

	

Lilypad	is	played	by	tapping	on	the	lilypad	the	player	wants	Grof	to	jump	to.
The	following	screenshot	represents	the	player	tapping	on	a	lilypad	to	have	Grof
jump	on	it:	

	

Each	pond	is	a	game	level	that	challenges	the	player	with	a	given	configuration
of	a	given	number	of	lilypads.

Grof	can	jump	to	any	adjacent	lilypad	in	the	eight	cardinal	directions,	as	shown
in	the	following	figure:	

	

Lilypads	sink	after	Grof	has	jumped	on	them,	so	that	the	player	must	resolve
each	scheme	by	jumping	on	each	lilypad	only	once.

To	clear	a	level	the	player	must	find	the	solution	that	fits	the	scheme	given	by
the	configuration	of	lilypads,	removing	all	lilypads	from	the	pond.

Note

The	last	lilypad	of	the	level	is	assumed	to	be	cleared	as	it	is	reached	by	Grof,
while	the	others	sink	when	Grof	jumps	away	from	them.

	

New	game	levels	unlock	as	the	player	progresses	in	the	game,	as	shown	by	the
following	figure,	which	represents	a	collection	of	the	first	game	levels:	

	

Score

The	score	is	given	to	the	player	based	on	the	time	criteria	in	the	following	way.

As	long	as	the	player	doesn't	tap	on	the	first	lilypad	of	a	level,	time	is	not
considered.

From	the	moment	the	player	taps	the	first	lilypad	to	make	Grof	jump,	the	counter
starts	and	it	stops	when	the	player	taps	the	last	lilypad	of	the	sequence.

This	way	the	time	clock	actually	records	the	time	it	took	by	the	player	to
produce	the	correct	sequence,	but	not	the	time	required	to	come	out	with	the
sequence	itself.

Each	game	level	has	a	par	parameter	(for	example,	the	game	of	golf),	which
defines	the	optimal	time	interval	suggested	for	that	level.	The	closer	to	(or	even
better	than)	the	time	par	the	player	gets,	the	better	his	score	in	that	level.

This	is	the	criteria	in	the	opinion	of	the	authors	that	fits	the	characteristics	of	a
mobile	puzzle	game	because	it	leaves	the	player	all	the	time	he	wants	to	think
about	the	solution	of	each	level,	without	forcing	him,	and	only	requires	some
skill	when	the	correct	sequence	must	be	performed.

We	encourage	you	to	push	this	analysis	further	and	provide	Lilypad	with
alternative	options	for	the	scoring	system.

Virtual	currency

Ponds	don't	only	host	lilypads.	In	each	pond	a	number	of	insects	are	scattered
according	to	a	predefined	configuration	between	two	adjacent	lilypads.

When	Grof	jumps	through	an	insect,	he	automatically	eats	it.

	

By	eating	insects	the	player	gets	stars	(up	to	three	per	level),	which	can	be
converted	into	virtual	currency	to	buy	game	extras.

Stars	are	earned	according	to	the	percentage	of	insects	eaten,	where	three	stars
are	granted	after	eating	100	percent	of	total	number	of	insects	available	in	the
level.

IAP	(In-App	Purchase)

Additional	levels	and	scenarios	can	be	bought	by	spending	virtual	currency
earned	by	eating	insects.

This	mechanics	is	meant	to	push	players	towards	replaying	levels	to	collect	the
maximum	number	of	insects.

Virtual	currency	can	also	be	bought	by	spending	real	money,	so	that	lazy	players
can	still	get	additional	contents	by	paying	a	small	price.

Other	contents	that	could	be	considered	are	as	follows:

Additional	skins	for	Grof
Additional	sound	fx	to	customize	Grof
Advanced	redo	feature	to	go	back	any	number	of	moves	in	a	level

We	ask	you	to	invent	more	as	an	exercise	on	this	section.	Think	in	particular
about	contents	that	allow	players	to	quickly	progress	in	the	game.	Any	ideas?

Achievements	and	leaderboards

Through	the	connection	to	social	networks	such	as	Facebook	and	Twitter,	it	is
possible	to	send	a	message	to	the	users'	networks	of	friends	whenever	an
achievement	is	reached.

It	could	be	a	particular	high	score	in	a	game	level,	having	completed	a	game
world	by	beating	all	its	levels	or	having	purchased	something	with	the	IAP
system.	Spreading	messages	via	social	networks	is	a	proven,	powerful	way	to
achieve	viral	popularity.

As	an	exercise	we	suggest	you	to	develop	the	flow	of	this	game	feature.

Additional	game	elements

A	main	character	(Grof),	one	surface	type	(the	lilypads	that	sink),	and	one
collectible	(the	insects)	don't	make	a	game,	yet.	More	elements	are	needed	to
make	the	gameplay	more	interesting	and	articulate.

For	example,	there	could	be	lilypads	that	don't	sink.	Or	there	could	be	swarms	of
insects	which	require	more	than	one	jump	through	to	be	eaten,	or	insects	which
move	according	to	a	pattern	that	the	player	must	take	into	consideration	when
searching	for	the	solution	to	a	game	level.

How	do	such	elements	integrate,	improve,	or	ruin	the	basic	set	of	mechanics?

We	leave	you,	the	readers,	to	answer	these	questions;	find	more	game	elements
to	improve	the	basic	set	we	suggested	here	and	add	more	mechanics	to	this	title.

Also	think	about	the	possibility	of	offering	virtual	gadgets	to	progress	in	the
game	and	their	effect	on	keeping	players'	involvement	with	the	game	high.

Screen	flow

The	following	figure	represents	a	basic	screen	flow	for	Lilypads.	From	the	main
screen	the	player	can	access	any	other	screen,	and	from	there,	again	get	back	to
the	main	screen.

	

The	next	figure	shows	the	main	actions	available	for	the	player	in	each	screen:

	

Game	flow

The	following	figure	represents	the	game	flow	for	Lilypads,	with	particular
regard	to	its	gameplay,	and	the	connection	between	the	score	in	a	match	and	the
Achievement	screen:	

	

It	is	useful	for	your	artists	and	programmers	to	have	one	such	diagram	for	each
game	screen,	to	better	address	development.	We	encourage	you	to	make	the
others	as	an	exercise	to	get	used	to	such	practice.

Tech
And	now	the	last	part	of	the	pitch	document;	let's	provide	our	potential	investor
with	numbers	to	help	him	understand	whether	this	game	idea	is	profitable.	What
and	how	much	is	needed	to	make	this	game?	How	long	will	it	take	before	it	can
make	money?

Game	features

Let's	begin	by	stating	the	main	characteristics	of	the	game,	starting	from	the
assumption	that,	given	the	genre	(puzzle	game)	and	basic	mechanics	(tapping	on
screen),	we	believe	that	2D	is	the	right	choice	for	Lilypads.	Since	there	is	no
gameplay-related	reason	to	go	3D	for	this	concept,	by	choosing	2D	graphics	the
development	time,	costs,	and	difficulties	can	be	kept	low,	in	favor	of	level
design	and	additional	game	elements	to	add	depth	to	the	gameplay.

Graphics
2D	backgrounds
2D	sprites
Reference	sprite	size	for	game	objects:	64	px

Camera
Fixed
Top-down

Control	interface
Touch

Platform

Next,	we	list	the	tech-specs	of	the	platform	we	are	addressing.	This	is	a
necessary	step	to	provide	guidelines	for	designing	the	game	graphics	and
interface.

The	following	tech	data	are	related	to	developing	the	game	for	iPhone	4,	which
we	picked	as	our	target	device.	We	encourage	you,	as	an	exercise,	to	adapt
graphic	template	we	suggest	here	to	the	iPad	(res:	2048	x	1536	px)	and	iPad
mini	(res:	1024	x	768).

The	iPhone	4
Screen	resolution:	960*640	pixels	at	326	pixel	per	inch
Display	size:	3,	5	inches
Audio	output:	Mono

Game	screen	study

The	following	figure	represents	the	suggested	subdivision	of	the	total	display
area	among	the	main	functions	that	it	is	supposed	to	host	(with	regard	to	the
Freemium	version	of	the	game,	which	hosts	advertising	banners):	the	gameplay
area,	the	higher	screen	portion	for	displaying	info	related	to	gameplay,	and	the
lower	section,	left	for	banners	and	advertising:

	

We	ask	you	to	detail	this	basic	design	and	provide	another	one	to	be	used	for	the
Premium	version	of	the	game,	which	doesn't	display	advertising	banners	and
thus	frees	the	lower	portion	of	the	screen.

With	a	basic	plan	for	the	game	interface,	the	next	step	is	to	declare	the
dimensions	for	the	graphic	assets:	how	large	will	Grof	be?	And	which	are	the
required	dimensions	for	lilypads	and	insects?

The	following	figure	represents	the	study	for	dimensions	of	the	main	game
objects	and	text:

	

We	also	provide	in	the	next	figure	a	reference	for	dimensions	of	the	ponds	with
regard	to	the	game	area	size.	This	is	an	aspect	that	must	be	taken	into
consideration,	especially	for	the	design	of	the	advanced	levels,	because	the	pond
size	affects	the	maximum	number	of	lilypads	that	can	be	hosted	to	create	each
game	level.

	

With	that	reference	you	can	start	planning	the	maximum	number	of	lilypads	that
can	be	used	to	design	the	advanced	levels	of	Lilypads	and	think	of	solutions	to
manage	the	limited	resource	of	the	pond	size.

At	this	point	you	have	gathered	enough	references	to	make	a	screenshot(s)	of
your	game,	which	we	strongly	recommend	you	to	provide,	with	any	pitch
document	you	create.

The	next	screenshot	represent	the	main	screen	for	Lilypads:

	

The	next	figure	represents	a	screenshot	from	the	game:

	

A	list	of	assets

What	follows	here	is	a	set	of	charts	listing	the	number	and	type	of	the	main
graphic	and	audio	assets	required	by	what	we	designed	for	Lilypads	so	far.	As
this	game	requires	more	refinement	and	additional	contents,	we	leave	you	the
task	of	filling	out	this	list	with	more	items.

Graphics

This	is	the	list	of	basic	graphic	assets	needed	for	Lilypads:

	

Audio

This	is	the	list	of	basic	audio	assets	required	for	Lilypads:

	

Software

In	case	you	ask	for	support	for	buying	the	software	licenses	you	need	to	develop
a	game,	you	can	list	at	this	point	the	number	and	costs	of	the	licenses	you	need.

As	an	example,	we	represent	here	the	cost	for	developing	this	game	with	Unity
4.

Unity	and	iOS	license:

Unity	4	Pro	=	$	1500
iOS	Pro	development	plug-in	=	$	1500
iOS	developer	program	fee	=	$	99

We	don't	consider	here	the	costs	for	other	software	such	as	image	editors,	as	we
have	found	out	that	you	can	save	money	on	that	field	by	using	freeware	tools!

Schedule	and	budget

We	close	this	pitch	document	with	two	charts.	The	first	chart	represents	the
estimated	development	time	for	the	list	of	assets	provided:

	

The	second	chart	details	the	costs	for	the	development	team,	based	on	the
estimated	working	hours:

	

We	conclude	that	with	a	team	of	seven	people	each	working	for	$25	per	hour	the
project	will	take	three	months	and	cost	about	$42,000.	These	are	very	rough
numbers	using	a	quick	mockup	in	MS	Project.	Your	numbers	may	vary	greatly!
It	is	a	good	idea	to	have	a	project	manager	who	is	proficient	with	a	project
management	program	before	constructing	your	own	budget	and	schedule.

Summary
In	this	chapter,	we	discussed	the	characteristics	and	the	importance	of	creating
good	pitch	documents	for	mobile	games.

We	explained	what	a	pitch	document	is,	which	sections	it	consists	of	and	what
content	you	are	expected	to	put	in	each	section.

Then	we	came	up	with	a	simple	game	mechanics	idea	for	a	puzzle	game	for	the
iPhone,	and	used	that	game	to	detail	the	actual	pitch	template	for	any	mobile
game.

Now	that	you	have	gotten	to	the	end	of	this	book,	you	possess	the	basics	to	start
developing	your	first	mobile	game.

Still,	there	is	much	work	to	do	ahead.

You	need	to	build	up	the	right	team	of	people,	who	know	the	software	and	can
productively	work	together.

You	need	to	provide	the	money	to	fund	your	project	throughout	its	development
and	carefully	plan	the	development	schedule,	adopting	an	efficient	working
pipeline.

You	need	to	come	up	with	a	nice	gameplay	idea,	which	relies	on	smart
mechanics	and	a	smooth	interface	to	capture	the	hearts	of	the	players.

You	need	to	make	the	right	strategic	decisions	with	regard	to	your	target
audience	and	platform,	the	devices	to	be	taken	as	reference	models	and	the
potential	competitors	of	your	game.

You	also	need	to	find	excellent	programmers	who	can	code	the	game	to	run
smoothly	on	the	widest	number	of	devices.

You	need	to	plan	an	optimal	marketing	strategy	and	pick	the	best	business	model
for	your	game,	to	let	it	spread	among	the	community	of	players	and	make
money.

Finally,	you	need	all	your	determination,	your	patience,	your	enthusiasm,	your
rage,	your	hunger,	and	everything	else	you	have	and	throw	it	to	the	winds.

rage,	your	hunger,	and	everything	else	you	have	and	throw	it	to	the	winds.

If	you	complete	these	tasks	and	can	stand	the	harsh,	enthusiastic	times	of	indie
development,	you	eventually	will	make	it.

Good	luck!

Index
A

Ableton	Live
about	/	Ableton	Live
URL	/	Ableton	Live

abstraction	/	Objects
abstraction,	programming	language	/	Abstraction
academic	formation,	game	designer

about	/	Academic	formation	and	personality
accelerometer

about	/	Accelerometer
ActionScript	/	Software	to	create	game	graphics,	HTML5	and	Flash
AD

about	/	App	development
adaptive	audio	/	Adaptive	audio
adaptive	diegetic	audio	/	Adaptive
adaptive	non-diegetic	audio	/	Adaptive
ADC

about	/	Recording
Adobe	Flash

about	/	Software	to	create	game	graphics
Adobe	Flash	Player	/	HTML5	and	Flash
Adobe	Flash	Professional	/	Software	to	create	game	graphics
Ad	supported	/	Ad	supported
aesthetics,	UI	design	/	Aesthetics
Agile	software	development

about	/	Software	development	methodologies
URL	/	Software	development	methodologies

alpha	transparency
about	/	Masking

altered	states	/	Easy	fun	–	grab	attention	with	ambiguity,	incompleteness,
and	detail
Amazon	Appstore

about	/	Google	Play	and	Amazon	Appstore
analog	sound	recording

vs,	digital	sound	recording	/	Analog	versus	digital
analog	sticks

about	/	Analog	sticks
Android

about	/	Mobile	operating	systems,	Android
drawbacks	/	Android
Google	Play	/	Google	Play	and	Amazon	Appstore
Amazon	Appstore	/	Google	Play	and	Amazon	Appstore
apps,	developing	/	App	development
mobile	game	/	Games	for	Android
Intellij	/	Eclipse	versus	Intellij
Eclipse	/	Eclipse	versus	Intellij

Android	developer
URL	/	File	size

Android	SDK
about	/	App	development

Android	UI	/	Android
Android	Virtual	Device	(AVD)	/	Games	for	Android
animations	/	3D	graphic	assets

about	/	Animations
anti-aliasing

about	/	Pixels
URL	/	Pixels

Apple	Developer
URL,	for	documentation	/	Objective-C	conventions

Apple	Store	/	iOS,	The	App	Store
apps

developing,	for	Android	/	App	development
App	Store

about	/	The	App	Store
AR

about	/	Camera
URL	/	Camera

arbitrate
about	/	Skills	for	all!

AR	Defender
about	/	Camera

Aron	Granberg
URL	/	What	engines	can	do

Artificial	Intelligence
about	/	Coding	departments

art	schools,	game	artist
about	/	Art	schools	and	creative	types

assets
software	/	Software

Asset	Store
about	/	Unity	3D

Asus	Transformer	Pad	Infinity	TF700	/	Resolution	issues	with	mobile
games
Audacity	/	Creating	music	and	sound	fx

about	/	Audacity
URL	/	Audacity

audio
designing,	for	mobile	game	/	Designing	audio	for	mobile	games
planning,	for	mobile	game	/	Planning	the	audio	in	advance
roles,	in	mobile	game	/	The	role	of	audio	in	mobile	games
adding,	to	game	/	What	engines	can	do

audio,	mobile	game
hardware	limitation	/	Hardware	limitations	for	mobile	games	audio

audio	assets
about	/	Audio

audio	design
best	practices	/	Best	practices	for	mobile	games	audio	design

audio	file	compression
about	/	File	compression

Audio	Invaders
about	/	Headphones

audio	output	/	Audio	output
audio	personality

about	/	Audio	personality
Augmented	Reality	(AR)

about	/	GPS
automatic	memory	allocation

about	/	Memory	management
Avid	Pro	Tools

about	/	Avid	Pro	Tools
URL	/	Avid	Pro	Tools

Axure
about	/	Tools
URL	/	Tools

Azure	/	The	basic	game	design	process

B
backgrounds	/	2D	graphic	assets
backgrounds,	2D	graphic	assets

about	/	Backgrounds
baking

about	/	Baking
balancing,	mobile	game	/	Balancing

symmetry	/	Symmetry
randomization	/	Randomization
feedback	loops	/	Feedback	loops
game	director	/	Game	director
statistics	/	Statistics

BASIC	Operating	System	/	Operating	systems
beta	testing

about	/	Aspects	of	game	testing
BlackBerry

about	/	Mobile	operating	systems,	BlackBerry
App	World	/	The	BlackBerry	App	World
game,	developing	for	/	Developing	games	for	BlackBerry
URL,	for	developing	game	/	Developing	games	for	BlackBerry

BlackBerry	10	/	BlackBerry
BlackBerry	App	World

about	/	The	BlackBerry	App	World
BlackBerry	SDK	/	Developing	games	for	BlackBerry
Blender

URL	/	Software	to	create	game	graphics
about	/	Software	to	create	game	graphics

blocks,	Objective-C	/	Blocks
BMP

about	/	Raster	graphics
Boehm-Demers-Weiser	garbage	collector

URL	/	Memory	management
Braid

about	/	Designer	at	work
brainwave	readers

about	/	Brainwave	readers
URL	/	Brainwave	readers

brushes	/	Brushes	and	canvas

budgeting
about	/	Skills	for	all!

built-in	devices
about	/	Built-in	devices
GPS	/	GPS
accelerometer	/	Accelerometer
camera	/	Camera
microphone	/	Microphone
external	controllers	/	External	controllers

business	model
about	/	Business	models
premium	/	Premium
Freemium	/	Freemium
Ad	supported	/	Ad	supported
hybrid	/	Hybrid
selecting	/	Choosing	the	right	business	model

button	size,	UI	design	/	The	button	size
bytecode	/	Implementation

C
C++

about	/	C++
memory	management	/	Memory	management
objects	/	Objects
complaints	/	Complaints	about	C++

C++	Visual	Studio	2012	Express
URL	/	C++

cabinets
about	/	Cabinets

camera
about	/	Camera

Canvace
URL	/	Game	programming

Canvas	/	Canvas
canvas	/	Brushes	and	canvas
cat	herding

about	/	Skills	for	all!
CGM

about	/	Vector	graphics
character,	mobile	game

design	process	/	The	character	design	process
silhouette,	creating	/	Silhouettes

character	design
about	/	Character	design

class	extensions
about	/	Extending	classes	with	categories

CLDC
about	/	Developing	games	with	Java	ME

Cocoa	/	Cocoa
Cocoa	Touch	/	Cocoa	Touch
Cocos2D

about	/	Cocos2D
advantages	/	Cocos2D
disadvantages	/	Cocos2D

coding	department
about	/	Coding	departments
game	engine	/	Coding	departments

physics	programming	/	Coding	departments
physics	/	Coding	departments
Artificial	Intelligence	/	Coding	departments
user	interface	/	Coding	departments
network	/	Coding	departments

coding	languages
about	/	The	programmer's	kit

cohesion
about	/	Cohesion

colors
using,	for	mobile	game	/	Colors	for	mobile

commitment
about	/	Commitment

communication	/	The	practices	of	game	design
compatibility	testing

about	/	Aspects	of	game	testing
competitors	/	Target	platform	and	competitors
compliance	testing

about	/	Aspects	of	game	testing
compression

about	/	Compression
compression,	types

uncompressed	/	Uncompressed
lossless	/	Lossless	compression
lossy	/	Lossy	compression

concept	art	/	2D	graphic	assets
conclusion,	game	program	/	Conclusion
control	scheme	/	Control	scheme	and	interface
Corona	SDK

about	/	Corona	SDK
advantages	/	Corona	SDK
disadvantages	/	Corona	SDK

Creator	/	GameSalad
Cubase	/	Creating	music	and	sound	fx

D
2D	game	engine

about	/	2D	game	engines
Torque	2D	/	Torque	2D
Cocos2D	/	Cocos2D
Corona	SDK	/	Corona	SDK

2D	graphic	assets
about	/	2D	graphic	assets,	2D	graphic	assets
sprites	/	Sprites
backgrounds	/	Backgrounds
tiles	/	Tiles
parallax	motion	/	The	parallax	motion
masking	/	Masking

2D	graphic	assets,	fields
concept	art	/	2D	graphic	assets
sprites	/	2D	graphic	assets
backgrounds	/	2D	graphic	assets
terrains	/	2D	graphic	assets
tilesets	/	2D	graphic	assets
interface	/	2D	graphic	assets
textures	/	2D	graphic	assets
materials	/	2D	graphic	assets

3D	environments	/	3D	graphic	assets
3D	game	engine

about	/	3D	game	engines
Shiva	3D	/	Shiva	3D
Unity	3D	/	Unity	3D

3D	graphic	assets
about	/	3D	graphic	assets,	3D	graphic	assets
3D	model	/	3D	models
3D	models	/	3D	models
texturing	/	Texturing,	More	on	textures
materials	/	Materials
UV	Mapping	/	UV	Mapping
baking	/	Baking
animations	/	Animations

3D	graphic	assets,	fields
models	/	3D	graphic	assets

animations	/	3D	graphic	assets
3D	environments	/	3D	graphic	assets
lighting	/	3D	graphic	assets

3D	model
about	/	3D	models
importing	/	Tutorial	part	1A	–	importing	3D	models

3D	Studio	Max	/	Software	to	create	game	graphics
DAC

about	/	Playback
DAE

about	/	The	audio	editing	software
Avid	Pro	Tools	/	Avid	Pro	Tools
Sound	Forge	/	Sound	Forge/Sonic	Foundry
Audacity	/	Audacity
Ableton	Live	/	Ableton	Live

DeBabelizer
about	/	Software	to	create	game	graphics
URL	/	Software	to	create	game	graphics

designer	resume,	pitch	document	/	Team/Designer	resume
designer	tools

about	/	Designer	tools
pencils	/	Designer	tools
paper	/	Designer	tools
text	editors	/	Designer	tools
software	/	Designer	tools
image	editors	/	Designer	tools

desktop	browser	game	/	HTML5	games
Diamond	Dash

about	/	References
diegetic	audio	/	Diegetic	sounds

types	/	Diegetic	sounds
diegetic	audio,	types

adaptive	/	Adaptive
interactive	/	Interactive
non-dynamic	/	Non-Dynamic

diegetic	UI	/	UI	in	videogames
difficulty	settings,	mobile	game	/	Difficulty	settings

global	difficulty	/	Global	difficulty
digital	audio	workstation	(DAW)

about	/	Creating	music	and	sound	fx
digital	sound	recording

vs,	analog	sound	recording	/	Analog	versus	digital
digital	sound	technology

about	/	Digital	sound	technology
sound	recording	/	Analog	versus	digital,	Recording
playback	/	Playback

discipline
about	/	Discipline

disposable	code
about	/	Disposable	code

DOS	Operating	System	/	Operating	systems
double	tap

about	/	Double–tap
downloadable	content	packages	(DLCs)	/	Reusable	code
Draughts

URL	/	References
about	/	References

drawing
about	/	The	practices	of	game	design

dungeon
URL	/	Pencil	and	paper

DXF
about	/	Vector	graphics

dynamic	audio	/	Dynamic	audio
dynamic	memory	allocation

about	/	Memory	management
dynamic	typing	/	Main	features	of	programming	languages

E
easy	fun	/	Easy	fun	–	grab	attention	with	ambiguity,	incompleteness,	and
detail
Eclipse

about	/	Eclipse	versus	Intellij
vs,	Intellij	/	Eclipse	versus	Intellij

Eclipse	IDE
about	/	App	development

educational	engine
about	/	Educational	engines
GameMaker	/	GameMaker
GameSalad	/	GameSalad

encapsulation	/	Objects
enemy	AI

programming	/	What	engines	can	do
executable	file

building	/	What	engines	can	do
external	controllers

about	/	External	controllers
gamepads	/	Gamepads
analog	sticks	/	Analog	sticks
touch-enabled	cases	/	Touch-enabled	cases
grip	/	Grip
cabinets	/	Cabinets
headphones	/	Headphones

eye	tracking
about	/	Eye	tracking

F
Falcon	Gunner

about	/	Camera
feedback	loops	/	Feedback	loops
Filemaker	/	Keeping	things	organized
file	size	/	File	size
finance

about	/	The	practices	of	game	design
First	Person	Shooter	(FPS)

about	/	Camera
/	Balancing
Flairbuilder

about	/	Tools
URL	/	Tools

Flash
vs,	HTML5	/	HTML5	and	Flash

flick
about	/	Flick

Freemind
URL	/	Screen	flow	and	screens	relationship

Freemium	/	Freemium
Frog	Bog

about	/	References
Full	motion	video	(FMV)	/	Videos	in	videogames
full	transparency

about	/	Masking
fun

about	/	What	makes	games	fun
types	/	The	four	keys	to	fun	–	the	game	mechanics	that	drive	play

fun,	types
hard	fun	/	Hard	fun	–	emotions	from	meaningful	challenges,	strategies,
and	puzzles
easy	fun	/	Easy	fun	–	grab	attention	with	ambiguity,	incompleteness,
and	detail
altered	states	/	Easy	fun	–	grab	attention	with	ambiguity,
incompleteness,	and	detail
people	factor	/	The	people	factor	–	create	opportunities	for	player
competition,	cooperation,	performance,	and	spectacle

functionality
defining,	for	UI	design	/	Functionality

functionality	testing
about	/	Aspects	of	game	testing

future	technology
brainwave	readers	/	Brainwave	readers

G
Gaikai	/	Java	for	mobile	–	Java	ME
Gamasutra

URL	/	Audio	personality,	To	learn	more,	UI	in	videogames
game

developing,	XNA	used	/	Developing	a	game	for	Windows	Phone	with
XNA
developing,	HTML5	used	/	HTML5	games
audio,	adding	/	What	engines	can	do
UI,	creating	/	What	engines	can	do
executable	file,	building	/	What	engines	can	do

game	artist
about	/	The	game	artist
brushes,	used	by	/	Brushes	and	canvas
canvas,	used	by	/	Brushes	and	canvas
2D	graphic	assets	/	2D	graphic	assets
3D	graphic	assets	/	3D	graphic	assets
art	schools	/	Art	schools	and	creative	types
creative	types	/	Art	schools	and	creative	types
reference	link	/	Art	schools	and	creative	types

Game	Boy	/	Global	difficulty
game	concept

about	/	Game	concept
references	/	References
prototype	/	Prototypes
genre,	defining	/	Genre
target	audience	/	Target	audience
key	features,	describing	/	Key	features
target	platform	/	Target	platform	and	competitors
competitors	/	Target	platform	and	competitors

game	concept,	Lilypads	pitch	document
genre	/	Genre
references	/	References
target	audience	/	Target
target	platform	/	Platform
competitors	/	Competitors
key	features	/	Key	features
character	design	/	Character	design

game	controls	/	Game	controls
game	depth	/	Game	depth
game	design

dos	/	Dos
donts	/	Don'ts

game	designer
about	/	The	game	designer
skills	/	Designer	at	work,	The	practices	of	game	design
designer	tools,	used	by	/	Designer	tools
academic	formation	/	Academic	formation	and	personality
personality	/	Academic	formation	and	personality
reference	link	/	No	game	is	ever	done!

game	designer,	skills
communication	/	The	practices	of	game	design
technical	writing	/	The	practices	of	game	design
drawing	/	The	practices	of	game	design
programming	/	The	practices	of	game	design
scripting	/	The	practices	of	game	design
scripting	languages	/	The	practices	of	game	design
math	/	The	practices	of	game	design
finance	/	The	practices	of	game	design
psychology	/	The	practices	of	game	design

game	design	process
about	/	The	basic	game	design	process

game	development
transparency	/	Masking

game	director	/	Game	director
game	engine

about	/	Coding	departments,	Game	engines
functions	/	What	engines	can	do
disadvantages	/	What	engines	can't	do
2D	game	engine	/	2D	game	engines
3D	game	engine	/	3D	game	engines
top	quality	engine	/	Top-quality	engines
educational	engine	/	Educational	engines

game	environment
creating	/	What	engines	can	do

game	flow	/	Game	flow
game	graphics

creating,	software	used	/	Software	to	create	game	graphics
game	level

creating	/	What	engines	can	do
game	loop	/	The	game	loop
GameMaker

URL	/	Sprites
about	/	GameMaker

Game	Maker
about	/	Tools	for	rapid	prototyping
URL	/	Tools	for	rapid	prototyping

Game	Maker	Language	/	GameMaker
game	master	(GM)	/	Pencil	and	paper
game	mechanics	/	The	pitch	document

URL	/	Interactive	prototypes
about	/	Game	mechanics
control	scheme	/	Control	scheme	and	interface
scoring	system	/	Scoring	system	and	achievements
achievements	/	Scoring	system	and	achievements
gameplay	example	/	A	gameplay	example
screen	flow	/	Screen	flow	and	screens	relationship
screens	relationship	/	Screen	flow	and	screens	relationship
game	flow	/	Game	flow

game	mechanics,	Lilypads	pitch	document
scoring	system	/	Score
virtual	currency	/	Virtual	currency
In-App	Purchase	(IAP)	/	IAP	(In-App	Purchase)
achievements	/	Achievements	and	leaderboards
leaderboards	/	Achievements	and	leaderboards
additional	game	elements	/	Additional	game	elements
screen	flow	/	Screen	flow
game	flow	/	Game	flow

gamepads
about	/	Gamepads

gameplay	example
about	/	A	gameplay	example

game	producer
about	/	The	game	producer
spread	sheet,	using	/	Keeping	things	organized
key	questions	/	Key	questions	of	a	producer

skills	/	Skills	for	all!
role	and	tasks	/	Who	is	the	producer?

game	producer,	role
reference	link	/	Who	is	the	producer?

game	producer,	skills
cat	herding	/	Skills	for	all!
scheduling	/	Skills	for	all!
budgeting	/	Skills	for	all!
production	management	/	Skills	for	all!
arbitrate	/	Skills	for	all!
negotiating	/	Skills	for	all!
quality	assurance	expert	/	Skills	for	all!

game	program
structure	/	Structure	of	a	game	program
initialization	/	Initialization
game	loop	/	The	game	loop
termination	/	Termination
conclusion	/	Conclusion

game	programming
about	/	Game	programming
Objective-C	/	Objective-C
Xcode	/	Xcode
HTML5	/	HTML5
conclusion	/	Conclusions

GameSalad	/	GameSalad
URL	/	GameSalad

game	screen	study	/	Game	screen	study
game	sound

types	/	Types	of	game	sounds
game	sound,	types

dynamic	audio	/	Dynamic	audio
adaptive	audio	/	Adaptive	audio
interactive	audio	/	Interactive	audio
diegetic	audio	/	Diegetic	sounds
non-diegetic	audio	/	Non-Diegetic	sounds

game	tester
about	/	The	game	tester
tools	/	The	tools	of	deconstruction
game	testing,	aspects	/	Aspects	of	game	testing

skills	/	Skills	of	a	professional	player
educational	requirements	/	University	of	Gamestop
reference	link	/	University	of	Gamestop

game	tester,	tools
mobile	phones	/	The	tools	of	deconstruction
mobile	interfaces	/	The	tools	of	deconstruction

game	testing
aspects	/	Aspects	of	game	testing

game	testing,	aspects
functionality	testing	/	Aspects	of	game	testing
compatibility	testing	/	Aspects	of	game	testing
localization	testing	/	Aspects	of	game	testing
stress	testing	/	Aspects	of	game	testing
compliance	testing	/	Aspects	of	game	testing
beta	testing	/	Aspects	of	game	testing

Garage	Band	/	Creating	music	and	sound	fx
Garage	Games

URL	/	Torque	2D
garbage	collection

about	/	Development	on	iOS,	Memory	management
Garbage	in,	garbage	out	(GIGO)	/	Usage
genre

defining	/	Genre
Gestalt	Principles

URL	/	Best	practices	in	UI	design
GIF

about	/	Raster	graphics
GIMP

about	/	Software	to	create	game	graphics
URL	/	Software	to	create	game	graphics

GIT
about	/	The	programmer's	kit
URL	/	The	programmer's	kit

global	difficulty
about	/	Global	difficulty

Google	Docs	/	Keeping	things	organized
Google	Play

about	/	Google	Play	and	Amazon	Appstore
GPS

about	/	GPS
Graphical	User	Interface	(GUI)	/	Tools
graphic	assets

about	/	Forms	of	art,	Graphics
importing	/	What	engines	can	do

graphic	file	formats
about	/	The	graphic	file	formats
raster	graphics	/	Raster	graphics
URL	/	Raster	graphics
vector	graphics	/	Vector	graphics

Graphic	Processing	Unit	(GPU)	/	Games	for	Android
grip

about	/	Grip
GUI

about	/	Adding	a	GUI
gyroscope

about	/	Accelerometer

H
Half	Video	Graphics	Array	(HVGA)	/	Games	for	Android
hard	fun	/	Hard	fun	–	emotions	from	meaningful	challenges,	strategies,	and
puzzles
hardware	limitation

about	/	Hardware	limitations
screen	size	/	Screen	size
game	controls	/	Game	controls
audio	output	/	Audio	output
file	size	/	File	size
processing	power	/	Processing	power

Havoc	Project	Anarchy
about	/	Tools	for	rapid	prototyping
URL	/	Tools	for	rapid	prototyping

headphones
about	/	Headphones

Heads	up	Display	(HUD)	/	Approaching	user	interface	design
horizontal	prototype	/	Horizontal	prototype
HTML5

about	/	HTML5
Canvas	/	Canvas
vs,	Flash	/	HTML5	and	Flash
issues	/	Issues	with	HTML5
used,	for	developing	game	/	HTML5	games

HUD
about	/	The	user	interface	and	HUD

hybrid	/	Hybrid

I
iBBQ

about	/	Microphone
iCade

about	/	Cabinets
iCade	Jr

about	/	Cabinets
icons

designing	/	Designing	icons
IDE

about	/	App	development
/	Tools	for	rapid	prototyping
image	editors	/	Designer	tools
ImpactJS

URL	/	Game	programming
implementation,	programming	language	/	Implementation
In-App	Purchase	(IAP)	/	IAP	(In-App	Purchase)
In-App	Purchases	(IAP)	/	Freemium
inheritance	/	Objects
initialization,	game	program	/	Initialization
input

about	/	Input	technology
input	interfaces

about	/	Input	interfaces	for	mobile	games
input	technology

about	/	Input	technology
Integrated	Development	Environment

about	/	The	programmer's	kit
Intellij

about	/	Eclipse	versus	Intellij
vs,	Eclipse	/	Eclipse	versus	Intellij

interactive	audio	/	Interactive	audio
interactive	diegetic	audio	/	Interactive
interactive	non-diegetic	audio	/	Interactive
interactive	prototype

about	/	Interactive	prototypes
interface	/	2D	graphic	assets
Interface	Builder	/	Xcode

iOS
about	/	Mobile	operating	systems,	iOS
App	Store	/	The	App	Store
development	/	Development	on	iOS
Xcode	/	Xcode

iOS	SDK	/	Development	on	iOS
iTunes	/	Creating	music	and	sound	fx

J
Java

about	/	Java
memory	management	/	Memory	management
syntax	/	Syntax

Java	Development	Kit	(JDK)	/	Java
Java	ME

about	/	Mobile	operating	systems,	Java	ME
game,	developing	with	/	Developing	games	with	Java	ME
NetBeans	/	NetBeans

/	Java	for	mobile	–	Java	ME
Java	Runtime	Environment	(JRE)	/	Java
JavaScript	Flash	language	(JSFL)

about	/	Software	to	create	game	graphics
Java	Virtual	Machine	(JVM)	/	Java
JPEG

about	/	Raster	graphics
JPEG	File	Interchange	Format	(JFIF)	/	Raster	graphics

K
Key-Value	Coding	(KVC)	/	Objective-C	conventions
Key-Value	Observing	(KVO)	/	Objective-C	conventions
key	features

describing	/	Key	features
keypad

about	/	Input	technology
keypads

about	/	Keypads
keypads,	configuration

numeric	/	Keypads
alphanumeric	/	Keypads
directional	/	Keypads

key	questions
about	/	Key	questions	of	a	producer

Kid	Vector	/	More	on	vectors	and	rasters
kinetic	gestural	interaction

about	/	Kinetic	gestural	interaction
Kismet	/	Unreal/UDK

L
Lazzaros	theory	/	The	four	keys	to	fun	–	the	game	mechanics	that	drive	play
libraries,	programming	language	/	Libraries
lighting	/	3D	graphic	assets
Lilypads

pitch	document	/	Lilypads	pitch	document
Lilypads	Freemium	version	/	Genre
Lilypads	Gold	version	/	Genre
Lilypads	pitch	document

game	concept	/	Concept
game	mechanics	/	Game	mechanics
tech	/	Tech

list	of	assets
graphic	assets	/	Graphics
audio	assets	/	Audio
software	/	Software
schedule	/	Schedule	and	budget
budget	/	Schedule	and	budget

localization	testing
about	/	Aspects	of	game	testing

Logic	Pro	/	Creating	music	and	sound	fx
long	press

about	/	Long	press
looping	background	music

about	/	Looping	background	music
lossless	compression

about	/	Lossless	compression
lossy	compression

about	/	Lossy	compression

M
Magix	/	Creating	music	and	sound	fx
main	screen,	UI	design	/	The	main	screen
masking

about	/	Masking
Massively	Multiplayer	Role	Playing	Games	(MMORPGs)	/	GPS
materials	/	2D	graphic	assets

about	/	Materials
math

about	/	The	practices	of	game	design
Maya

about	/	Software	to	create	game	graphics
memory	management

about	/	Memory	management
memory	management,	Java	/	Memory	management
memory	management,	types

static	memory	allocation	/	Memory	management
automatic	memory	allocation	/	Memory	management
dynamic	memory	allocation	/	Memory	management
garbage	collection	/	Memory	management

meta	UI	/	UI	in	videogames
microphone

about	/	Microphone
Microsoft	Excel	/	Keeping	things	organized
Microsoft	Office	/	Tools
Microsoft	Project	/	Keeping	things	organized
MIDI

about	/	Digital	sound	technology
Milkshape	3D	/	Software	to	create	game	graphics

URL	/	Software	to	create	game	graphics
MIPD

about	/	Developing	games	with	Java	ME
MIPD	3.0	/	Developing	games	with	Java	ME
Mobile9

URL	/	Java	for	mobile	–	Java	ME
mobile	audio	designer

scripting	skills	/	Scripting	skills	for	a	mobile	audio	designer
mobile	decive

screen	resolution	/	Best	practices	in	UI	design
mobile	environment	/	Mobile	environment
mobile	game	/	HTML5	games

resolution	issues	/	Resolution	issues	with	mobile	games
2D	graphic	assets	/	2D	graphic	assets
3D	graphic	assets	/	3D	graphic	assets
character,	designing	/	Designing	a	character	for	mobile
colors,	using	/	Colors	for	mobile
UI	/	The	user	interface	and	HUD
HUD	/	The	user	interface	and	HUD
audio,	designing	/	Designing	audio	for	mobile	games
audio,	planning	/	Planning	the	audio	in	advance
audio,	hardware	limitation	/	Hardware	limitations	for	mobile	games
audio
audio,	roles	/	The	role	of	audio	in	mobile	games
listening	conditions	/	Listening	conditions	for	mobile	games
audio	design,	best	practices	/	Best	practices	for	mobile	games	audio
design
input	interfaces	/	Input	interfaces	for	mobile	games
future	technology	/	Future	technologies
UI	design,	approaching	/	Approaching	user	interface	design
balancing	/	Balancing
tuning	/	Tuning
difficulty	settings	/	Difficulty	settings
designing	/	Designing	mobile	games
fun	/	What	makes	games	fun

mobile	game,	designing
hardware	limitation	/	Hardware	limitations

mobile	game,	future	technology
eye	tracking	/	Eye	tracking
brainwave	readers	/	Brainwave	readers

mobile	game	design
constraints	/	Mobile	design	constraints

mobile	game	design,	constraints
play	time	/	Play	time
game	depth	/	Game	depth
mobile	environment	/	Mobile	environment
smartphones	/	Smartphones
single	player	/	Single	player	versus	multiplayer

multiplayer	/	Single	player	versus	multiplayer
mobile	gamers

about	/	Mobile	gamers
mobile	indie	team

team	size	/	A	matter	of	size
key	roles	/	Key	roles	in	a	successful	team
commitment	/	Commitment
cohesion	/	Cohesion
software	development	methodology	/	Software	development
methodologies
discipline	/	Discipline
professional	training	/	Professional	training
passionate,	for	games	/	Passion	for	games
roles	/	The	roles	in	an	indie	mobile	team
game	designer	/	The	game	designer
game	artist	/	The	game	artist
programmer	/	The	programmer
game	tester	/	The	game	tester
game	producer	/	The	game	producer
sound	designer	/	The	sound	designer

mobile	market
about	/	The	mobile	market

mobile	operating	system
about	/	Mobile	operating	systems
Android	/	Mobile	operating	systems,	Android
iOS	/	Mobile	operating	systems,	iOS
Windows	Phone	/	Mobile	operating	systems,	Windows	Phone
Java	ME	/	Mobile	operating	systems,	Java	ME
BlackBerry	/	Mobile	operating	systems,	BlackBerry

mobile	web	browser	/	HTML5	games
models	/	3D	graphic	assets
Modern	Style	UI	/	Windows	Phone
MPEG-2	/	Videos	in	videogames
MS	Skydrive	/	Keeping	things	organized
Mudbox

about	/	Software	to	create	game	graphics
/	3D	models
multifinger	scroll

about	/	Multifinger	scroll

multifinger	tap
about	/	Multifinger	tap

multiple	save	slots	/	Multiple	save	slots
multitouch	operations

about	/	Touchscreens
music

creating	/	Creating	music	and	sound	fx
mutual	capacitance

about	/	Touchscreens

N
NDK

about	/	App	development
negotiating

about	/	Skills	for	all!
NetBeans

about	/	NetBeans
URL	/	NetBeans

network
about	/	Coding	departments

NeuroSky
about	/	Brainwave	readers
URL	/	Brainwave	readers

non-diegetic	audio	/	Non-Diegetic	sounds
types	/	Non-Diegetic	sounds

non-diegetic	audio,	types
adaptive	/	Adaptive
interactive	/	Interactive

non-diegetic	UI	/	UI	in	videogames
non-dynamic	diegetic	audio	/	Non-Dynamic
non-dynamic	linear	music	/	Non-Dynamic	linear	sounds	and	music
non-dynamic	linear	sounds	/	Non-Dynamic	linear	sounds	and	music
normal	mapping

URL	/	Materials
NSArray	class	/	Values	and	collections
NSDictionary	class	/	Values	and	collections
NSError	class	/	Blocks
NSNumber	class	/	Values	and	collections
NSSet	class	/	Values	and	collections
NSString	class	/	Values	and	collections
NSValue	class	/	Values	and	collections

O
Objective-C

about	/	Objective-C
Cocoa	/	Cocoa
Cocoa	Touch	/	Cocoa	Touch
objects,	working	with	/	Working	with	objects
class	extensions	/	Extending	classes	with	categories
protocol,	using	/	Protocols	define	messaging	contracts
values	/	Values	and	collections
collections	/	Values	and	collections
blocks	/	Blocks
coding	conventions	/	Objective-C	conventions
getting	started	/	Getting	started

objects
about	/	Objects

Ocarina
about	/	Microphone

OpenGL
URL	/	Game	programming

OpenGL	ES	2.0	/	Games	for	Android
Open	Office	/	Tools
operating	system

about	/	Operating	systems
operating	system	(OS)

about	/	Operating	systems
OS	X	operating	system	/	iOS

P
palettization	/	Sprites
pan

about	/	Pan
Papa	Sangre

about	/	Headphones
paper	/	Designer	tools
parallax	motion

about	/	The	parallax	motion
PC

about	/	Operating	systems
Peg	Solitaire

about	/	References
URL	/	References

Pencil	project
about	/	Tools
URL	/	Tools

pencils	/	Designer	tools
people	factor	/	The	people	factor	–	create	opportunities	for	player
competition,	cooperation,	performance,	and	spectacle
personality,	game	designer

about	/	Academic	formation	and	personality
PhoneGap

URL	/	HTML5	games
PhoneGap	Build	service	/	HTML5	games
Photoshop	/	Software	to	create	game	graphics
physics

about	/	Coding	departments
physics	programming

about	/	Coding	departments
pinch

about	/	Spread	and	pinch
pitch	document

about	/	The	pitch	document
game	mechanics	/	The	pitch	document,	Game	mechanics
tech	/	The	pitch	document,	Tech
importance	/	Importance	of	pitching
game	concept	/	Game	concept

designer	resume	/	Team/Designer	resume
team	resume	/	Team/Designer	resume

pitching	/	Importance	of	pitching
pixels

about	/	Pixels	and	vectors
playback

about	/	Playback
PlayBook	/	Developing	games	for	BlackBerry
Player	Experience	(PX)	/	What	makes	games	fun
play	time	/	Play	time
PNG

about	/	Raster	graphics
Polygon	Cruncher	/	3D	models
polymorphism	/	Objects

URL	/	Objects
porting	/	Abstraction
PowerPoint	/	Tools
premium	/	Premium
primitives	/	Main	features	of	programming	languages
processing	power	/	Processing	power
production	management

about	/	Skills	for	all!
professional	training

about	/	Professional	training
programmer

about	/	The	programmer
coding	department	/	Coding	departments
knowledge	/	Learning	to	be	a	programmer
reference	link	/	Learning	to	be	a	programmer

programmer,	basic	tools
coding	languages	/	The	programmer's	kit
Integrated	Development	Environment	/	The	programmer's	kit
Version	Control	Systems	/	The	programmer's	kit

programming
about	/	The	practices	of	game	design

programming	language
features	/	Main	features	of	programming	languages
libraries	/	Libraries
abstraction	/	Abstraction

implementation	/	Implementation
usage	/	Usage
Wiki	URL	/	Usage
C++	/	C++

protocol,	Objective-C
using	/	Protocols	define	messaging	contracts

Pro	Tools	/	Creating	music	and	sound	fx
prototype

defining	/	Defining	the	prototype
building	/	Building	the	prototype
testing	/	Testing	the	prototype
fixing	/	Fixing	the	prototype
about	/	Prototypes

prototyping
styles	/	Prototyping	styles
types	/	Types	of	prototyping
benefits	/	Why	prototype?
dos	and	don’ts	/	What	to	avoid
tools	/	Tools

prototyping,	styles
horizontal	prototype	/	Horizontal	prototype
vertical	prototype	/	Vertical	prototype

prototyping,	types
disposable	code	/	Disposable	code
reusable	code	/	Reusable	code

prototyping	process
steps	/	Steps	in	the	prototyping	process
prototype,	defining	/	Defining	the	prototype
prototype,	building	/	Building	the	prototype
prototype,	testing	/	Testing	the	prototype
prototype,	fixing	/	Fixing	the	prototype

psychology
about	/	The	practices	of	game	design

Q
Qualcomm	Snapdragon	CPU	/	Processing	power
quality	assurance	expert

about	/	Skills	for	all!
QuickTime	/	Videos	in	videogames
QWERTY	keyboard	/	BlackBerry

R
randomization	/	Randomization
rapid	prototyping

methods	/	Disposable	code,	Visual	prototypes,	Interactive	prototypes
tools	/	Tools	for	rapid	prototyping

rapid	prototyping,	methods
imagination	/	Your	imagination
pencil	and	paper	/	Pencil	and	paper
visual	prototype	/	Visual	prototypes
interactive	prototype	/	Interactive	prototypes

raster	graphics
about	/	Raster	graphics,	More	on	vectors	and	rasters
JPEG	/	Raster	graphics
TIFF	/	Raster	graphics
RAW	/	Raster	graphics
GIF	/	Raster	graphics
BMP	/	Raster	graphics
PNG	/	Raster	graphics

RAW
about	/	Raster	graphics

Real-time	Strategy	(RTS)	/	Feedback	loops
Real	Time	Strategy	(RTS)	game	/	Approaching	user	interface	design
Reaper	/	Creating	music	and	sound	fx
references

searching,	for	UI	design	/	Search	for	references
about	/	References

reusable	code	/	Reusable	code
Rolando

about	/	Accelerometer
rotate

about	/	Rotate
rough	concept	document	/	The	basic	game	design	process

S
sample	rate

about	/	The	sample	rate
scheduling

about	/	Skills	for	all!
schools	of	sound	production

about	/	Schools	of	sound	production
scoring	system	/	Scoring	system	and	achievements
screen	flow

about	/	Screen	flow	and	screens	relationship
screen	flow,	UI	design	/	The	screen	flow
screen	rotation	/	Screen	rotation
screenshot

about	/	Screenshot
screen	size	/	Screen	size
screens	relationship

about	/	Screen	flow	and	screens	relationship
script	game	event

programming	/	What	engines	can	do
scripting

about	/	The	practices	of	game	design
scripting	languages

about	/	The	practices	of	game	design
/	Scripting	languages
scroll

about	/	Scroll
self-capacitance

about	/	Touchscreens
Senseye

about	/	Eye	tracking
sensors

about	/	Input	technology
Sensus

about	/	Touch-enabled	cases
Shadow	Cities

URL	/	GPS
Shiva	3D

about	/	Shiva	3D

advantages	/	Shiva	3D
disadvantages	/	Shiva	3D

Sid	Meyer
Wiki	URL	/	Tuning

silhouette
about	/	Silhouettes

single	tap
about	/	Single–tap

smartphone
built-in	devices	/	Built-in	devices

smartphones
touchscreen	gestures	/	Touchscreen	gestures

/	Single	player	versus	multiplayer
software	/	Designer	tools

used,	for	creating	game	graphics	/	Software	to	create	game	graphics
about	/	Software

software	development	kit	(SDK)	/	Tools	for	rapid	prototyping
software	development	methodology

about	/	Software	development	methodologies
Sonic	Lighter

about	/	Microphone
sound	designer

about	/	The	sound	designer
music,	creating	/	Creating	music	and	sound	fx
sound	fx,	creating	/	Creating	music	and	sound	fx
basic	equipment	/	Creating	music	and	sound	fx
audio	skills	/	Audio	skills	and	tasks
tasks	/	Audio	skills	and	tasks
schools	of	sound	production	/	Schools	of	sound	production
audio	personality	/	Audio	personality
reference	link	/	Audio	personality

sound	designer,	basic	equipment
digital	audio	workstation	(DAW)	/	Creating	music	and	sound	fx
two	track	audio	editor	/	Creating	music	and	sound	fx
hard	disk	recorder	/	Creating	music	and	sound	fx
sound	libraries	/	Creating	music	and	sound	fx
software	/	Creating	music	and	sound	fx

Sound	Forge	/	Creating	music	and	sound	fx
about	/	Sound	Forge/Sonic	Foundry

URL	/	Sound	Forge/Sonic	Foundry
sound	fx

creating	/	Creating	music	and	sound	fx
sound	recording

analog	/	Analog	versus	digital
digital	/	Analog	versus	digital
sample	rate	/	The	sample	rate
word	length	/	The	word	length
compression	/	Compression

Space	Invaders
3D	model,	importing	/	Tutorial	part	1A	–	importing	3D	models
scene,	setting	up	/	Tutorial	part	1B	–	setting	up	the	scene
players	ship,	implementing	/	The	player's	ship
aliens,	creating	/	The	aliens
firing,	against	aliens	/	Firing
barriers,	creating	/	The	barriers
players	ship,	reprising	/	The	player's	ship	reprise
details,	refining	/	Refining	the	details
GUI,	adding	/	Adding	a	GUI
audio	effects,	adding	/	Adding	audio	effects
particle	system	effects,	adding	/	Particle	system	effects

spatial	UI	/	UI	in	videogames
spread

about	/	Spread	and	pinch
spread	sheet

using	/	Keeping	things	organized
sprites	/	2D	graphic	assets

about	/	Sprites
spritesheet	/	Sprites
Start()	function	/	The	player's	ship
static	memory	allocation

about	/	Memory	management
static	typing	/	Main	features	of	programming	languages
statistics	/	Statistics
StoneTrip

URL	/	Shiva	3D
storyboarding	/	The	basic	game	design	process
stress	testing

about	/	Aspects	of	game	testing

SVG
about	/	Vector	graphics

Symmetry	/	Symmetry
syntax,	Java	/	Syntax

T
target	audience	/	Target	audience
target	platform	/	Target	platform	and	competitors
team	resume,	pitch	document	/	Team/Designer	resume
tech,	Lilypads	pitch	document

game	features	/	Game	features
platform	/	Platform
iPhone	4	platform	/	The	iPhone	4
game	screen	study	/	Game	screen	study
list	of	assets	/	A	list	of	assets

tech,	pitch	document
about	/	The	pitch	document,	Tech
screenshot	/	Screenshot

technical	writing
about	/	The	practices	of	game	design

termination,	game	program	/	Termination
terrains	/	2D	graphic	assets
text	editors	/	Designer	tools
textures

about	/	More	on	textures
textures	/	2D	graphic	assets
texturing

about	/	Texturing
theory	of	fun

reference	book	/	Raph	Koster	and	Roger	Caillois
TIFF

about	/	Raster	graphics
tiles,	2D	graphic	assets

about	/	Tiles
tileset	/	Tiles
tilesets	/	2D	graphic	assets
tools,	prototyping	/	Tools

Microsoft	Office	/	Tools
Open	Office	/	Tools
PowerPoint	/	Tools
Visio	/	Tools
Pencil	project	/	Tools
Flairbuilder	/	Tools

Axure	/	Tools
tools,	rapid	prototyping

Game	Maker	/	Tools	for	rapid	prototyping
Unity	3D	/	Tools	for	rapid	prototyping
Havoc	Project	Anarchy	/	Tools	for	rapid	prototyping

top	quality	engine
about	/	Top-quality	engines
Unreal	Engine	/	Unreal/UDK
UDK	/	Unreal/UDK

Torque	2D
about	/	Torque	2D
features	/	Torque	2D

touch
detecting,	methods	/	Touchscreens

touch,	detecting
mutual	capacitance	/	Touchscreens
self-capacitance	/	Touchscreens

touch-enabled	cases
about	/	Touch-enabled	cases

touchscreen
about	/	Input	technology,	Touchscreens

touchscreen	gestures
about	/	Touchscreen	gestures
single	tap	/	Single–tap
double	tap	/	Double–tap
long	press	/	Long	press
scroll	/	Scroll
spread	/	Spread	and	pinch
pinch	/	Spread	and	pinch
pan	/	Pan
flick	/	Flick
multifinger	tap	/	Multifinger	tap
multifinger	scroll	/	Multifinger	scroll
rotate	/	Rotate

transparency,	game	development
full	transparency	/	Masking
alpha	transparency	/	Masking

tuning,	mobile	game
strategies	/	Tuning	strategies

tuning,	mobile	game	/	Tuning

U
UDK

about	/	Unreal/UDK
UI

about	/	The	user	interface	and	HUD,	The	role	of	the	user	interface
designing	/	Designing	the	UI
creating,	for	game	/	What	engines	can	do

UI,	videogame
diegetic	/	UI	in	videogames
non-diegetic	/	UI	in	videogames
spatial	/	UI	in	videogames
meta	/	UI	in	videogames

UI	design
approaching	/	Approaching	user	interface	design
aesthetics	/	Aesthetics
vector	graphics	/	More	on	vectors	and	rasters
rasters	graphics	/	More	on	vectors	and	rasters
icons,	designing	/	Designing	icons
best	practices	/	Best	practices	in	UI	design
references,	searching	/	Search	for	references
screen	flow	/	The	screen	flow
functionality,	defining	/	Functionality
wireframe,	creating	/	Wireframes
button	size	/	The	button	size
main	screen	/	The	main	screen
testing	/	Test	and	iterate
options	/	Evergreen	options
approach	/	Tuning	strategies

UI	design,	options
multiple	save	slots	/	Multiple	save	slots
screen	rotation	/	Screen	rotation
calibration	/	Calibrations	and	reconfigurations
reconfiguration	/	Calibrations	and	reconfigurations
challenges	/	Challenges
experiment	/	Experiment

uncompressed
about	/	Uncompressed

Unity	3D

about	/	Unity	3D,	Tools	for	rapid	prototyping
URL	/	Tools	for	rapid	prototyping

Unity	3D	tutorial
Space	Invaders	/	Unity3D	Tutorial	–	part	1,	Unity3D	tutorial	–	part	2,
Unity	3D	tutorial	–	part	3
summary	/	Unity	3D	tutorial	summary

Unreal	Engine
about	/	Top-quality	engines,	Unreal/UDK

Update()	function	/	The	player's	ship
user	interface

about	/	Coding	departments
UV	Mapping

about	/	UV	Mapping
URL	/	UV	Mapping

V
vector	graphics	/	Vectors

about	/	Vector	graphics,	More	on	vectors	and	rasters
CGM	/	Vector	graphics
SVG	/	Vector	graphics
DXF	/	Vector	graphics

vectors
about	/	Pixels	and	vectors,	Vectors

Version	Control	Systems
about	/	The	programmer's	kit

vertical	prototype	/	Vertical	prototype
videogame

UI	/	UI	in	videogames
videogames

videos,	creating	/	Videos	in	videogames
videos

creating,	techniques	/	Videos	in	videogames
Visio	/	Tools
visual	prototype

about	/	Visual	prototypes

W
WesleyFG

URL	/	Tiles
Wide	Video	Graphics	Array	(WVGA)	/	Games	for	Android
Windows	Phone

about	/	Mobile	operating	systems,	Windows	Phone
Store	/	Windows	Phone	Store
apps,	developing	with	/	Developing	apps	with	Windows	Phone
game	developing,	with	XNA	/	Developing	a	game	for	Windows	Phone
with	XNA
URL,	for	developing	apps	/	Developing	a	game	for	Windows	Phone
with	XNA

Windows	Phone	Emulator	8	/	Developing	apps	with	Windows	Phone
Windows	Phone	SDK	/	Developing	apps	with	Windows	Phone
Windows	Phone	SDK	8.0	/	Developing	apps	with	Windows	Phone
Windows	Phone	Store

about	/	Windows	Phone	Store
wireframe

creating,	for	UI	design	/	Wireframes
word	length

about	/	The	word	length

X
Xcode

about	/	Xcode,	Xcode
using	/	Using	Xcode

XNA
about	/	Developing	apps	with	Windows	Phone
used,	for	developing	game	/	Developing	a	game	for	Windows	Phone
with	XNA

Z
ZBrush	/	3D	models
Zbrush

about	/	Software	to	create	game	graphics
Zoom	Zoom

about	/	Microphone

	Mobile Game Design Essentials
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Operating Systems – Mobile and Otherwise
	Operating systems
	Mobile operating systems
	Android
	Google Play and Amazon Appstore
	App development
	Games for Android
	Eclipse versus Intellij
	iOS
	The App Store
	Development on iOS
	Xcode
	Using Xcode
	Windows Phone
	Windows Phone Store
	Developing apps with Windows Phone
	Developing a game for Windows Phone with XNA
	Java ME
	Developing games with Java ME
	NetBeans
	BlackBerry
	The BlackBerry App World
	Developing games for BlackBerry
	Summary
	2. The Mobile Indie Team
	A matter of size
	Key roles in a successful team
	What it takes
	Commitment
	Cohesion
	Software development methodologies
	Discipline
	Professional training
	Passion for games
	The roles in an indie mobile team
	The game designer
	Designer at work
	Designer tools
	The practices of game design
	Academic formation and personality
	No game is ever done!
	The game artist
	Brushes and canvas
	Forms of art
	2D graphic assets
	3D graphic assets
	Art schools and creative types
	The programmer
	The programmer's kit
	Coding departments
	Learning to be a programmer
	The game tester
	The tools of deconstruction
	Aspects of game testing
	Skills of a professional player
	University of Gamestop
	The game producer
	Keeping things organized
	Key questions of a producer
	Skills for all!
	Who is the producer?
	The sound designer
	Creating music and sound fx
	Audio skills and tasks
	Schools of sound production
	Audio personality
	Summary
	3. Graphics for Mobile
	Pixels and vectors
	Pixels
	Vectors
	The graphic file formats
	Raster graphics
	Vector graphics
	Videos in videogames
	Software to create game graphics
	Resolution issues with mobile games
	2D graphic assets
	Sprites
	Backgrounds
	Tiles
	The parallax motion
	Masking
	3D graphic assets
	3D models
	Texturing
	Materials
	UV Mapping
	More on textures
	Baking
	Animations
	Designing a character for mobile
	The character design process
	Silhouettes
	Colors for mobile
	The user interface and HUD
	Summary
	4. Audio for Mobile
	Digital sound technology
	Analog versus digital
	Recording and playback
	Recording
	The sample rate
	The word length
	Compression
	Uncompressed
	Lossless compression
	Lossy compression
	Playback
	Types of game sounds
	Dynamic audio
	Adaptive audio
	Interactive audio
	Non-Dynamic linear sounds and music
	Diegetic sounds
	Adaptive
	Interactive
	Non-Dynamic
	Non-Diegetic sounds
	Adaptive
	Interactive
	Kinetic gestural interaction
	The audio editing software
	Avid Pro Tools
	Sound Forge/Sonic Foundry
	Audacity
	Ableton Live
	Designing audio for mobile games
	Planning the audio in advance
	Hardware limitations for mobile games audio
	The role of audio in mobile games
	Listening conditions for mobile games
	Best practices for mobile games audio design
	Scripting skills for a mobile audio designer
	File compression
	Looping background music
	To learn more
	Final advice
	Summary
	5. Coding Games
	Main features of programming languages
	Libraries
	Abstraction
	Implementation
	Usage
	Game programming
	C++
	Memory management
	Objects
	Complaints about C++
	Java
	Memory management
	Syntax
	Java for mobile – Java ME
	Objective-C
	Cocoa
	Cocoa Touch
	Xcode
	Working with objects
	Extending classes with categories
	Protocols define messaging contracts
	Values and collections
	Blocks
	Objective-C conventions
	Getting started
	HTML5
	Canvas
	HTML5 and Flash
	Issues with HTML5
	HTML5 games
	Conclusions
	Scripting languages
	Structure of a game program
	Initialization
	The game loop
	Termination
	Conclusion
	Summary
	6. Mobile Game Controls
	Input technology
	Touchscreens
	Keypads
	Touchscreen gestures
	Single–tap
	Double–tap
	Long press
	Scroll
	Spread and pinch
	Pan
	Flick
	Multifinger tap
	Multifinger scroll
	Rotate
	Input interfaces for mobile games
	Built-in devices
	GPS
	Accelerometer
	Camera
	Microphone
	External controllers
	Gamepads
	Analog sticks
	Touch-enabled cases
	Grip
	Cabinets
	Headphones
	Future technologies
	Eye tracking
	Brainwave readers
	Summary
	7. Interface Design for Mobile Games
	The role of the user interface
	Approaching user interface design
	UI in videogames
	Designing the UI
	Aesthetics
	More on vectors and rasters
	Designing icons
	Best practices in UI design
	Search for references
	The screen flow
	Functionality
	Wireframes
	The button size
	The main screen
	Test and iterate
	Evergreen options
	Multiple save slots
	Screen rotation
	Calibrations and reconfigurations
	Challenges
	Experiment
	Summary
	8. Mobile Game Engines
	What engines can do
	What engines can't do
	Game engines
	2D game engines
	Torque 2D
	Cocos2D
	Corona SDK
	3D game engines
	Shiva 3D
	Unity 3D
	Top-quality engines
	Unreal/UDK
	Educational engines
	GameMaker
	GameSalad
	Unity3D Tutorial – part 1
	Tutorial part 1A – importing 3D models
	Tutorial part 1B – setting up the scene
	Summary
	9. Prototyping
	Steps in the prototyping process
	Defining the prototype
	Building the prototype
	Testing the prototype
	Fixing the prototype
	Prototyping styles
	Horizontal prototype
	Vertical prototype
	Types of prototyping
	Disposable code
	Your imagination
	Pencil and paper
	Visual prototypes
	Interactive prototypes
	Reusable code
	Why prototype?
	What to avoid
	Tools
	Tools for rapid prototyping
	Unity3D tutorial – part 2
	The player's ship
	The aliens
	Firing
	Summary
	10. Balancing, Tuning, and Polishing Mobile Games
	Balancing
	Symmetry
	Randomization
	Feedback loops
	Game director
	Statistics
	Tuning
	Tuning strategies
	Difficulty settings
	Global difficulty
	Unity 3D tutorial – part 3
	The barriers
	The player's ship reprise
	Refining the details
	Adding a GUI
	Adding audio effects
	Particle system effects
	Unity 3D tutorial summary
	Summary
	11. Mobile Game Design
	The basic game design process
	The dos and don'ts of game design
	Dos
	Don'ts
	Designing mobile games
	Hardware limitations
	Screen size
	Game controls
	Audio output
	File size
	Processing power
	Mobile design constraints
	Play time
	Game depth
	Mobile environment
	Smartphones
	Single player versus multiplayer
	The mobile market
	Mobile gamers
	Business models
	Premium
	Freemium
	Ad supported
	Hybrid
	Choosing the right business model
	What makes games fun
	The four keys to fun – the game mechanics that drive play
	Hard fun – emotions from meaningful challenges, strategies, and puzzles
	Easy fun – grab attention with ambiguity, incompleteness, and detail
	The people factor – create opportunities for player competition, cooperation, performance, and spectacle
	Raph Koster and Roger Caillois
	Summary
	12. Pitching a Mobile Game
	The pitch document
	Importance of pitching
	Game concept
	References
	Prototypes
	Stuck?
	Genre
	Target audience
	Key features
	Target platform and competitors
	Game mechanics
	Control scheme and interface
	Scoring system and achievements
	A gameplay example
	Screen flow and screens relationship
	Game flow
	Tech
	Screenshot
	Team/Designer resume
	Lilypads pitch document
	Concept
	Genre
	References
	Target
	Platform
	Competitors
	Key features
	Character design
	Game mechanics
	Score
	Virtual currency
	IAP (In-App Purchase)
	Achievements and leaderboards
	Additional game elements
	Screen flow
	Game flow
	Tech
	Game features
	Platform
	The iPhone 4
	Game screen study
	A list of assets
	Graphics
	Audio
	Software
	Schedule and budget
	Summary
	Index

