Mobile Game Design
Essentials

A useful and detailed resource for designing games for
mobile devices

PACKT

Mobile Game Design Essentials

Table of Contents

Mobile Game Design Essentials
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Support files, eBooks, discount offers and more
Why Subscribe?
Free Access for Packt account holders
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback

Customer support
Downloading the color images of this book
Errata
Piracy
Questions
1. Operating Systems — Mobile and Otherwise
Operating systems
Mobile operating systems
Android

Google Play and Amazon Appstore
App development
Games for Android
Eclipse versus Intellij
i0S
The App Store
Development on iOS
Xcode
Using Xcode
Windows Phone
Windows Phone Store
Developing apps with Windows Phone

Developing a game for Windows Phone with XNA
Java ME

Developing games with Java ME
NetBeans
BlackBerry
The BlackBerry App World
Developing games for BlackBerry
Summary
2. The Maobile Indie Team
A matter of size
Key roles in a successful team
What it takes
Commitment
Cohesion
Software development methodologies
Discipline
Professional training
Passion for games
The roles in an indie mobile team
The game designer
Designer at work
Designer tools
The practices of game design

Academic formation and personality
No game is ever done!

The game artist
Brushes and canvas
Forms of art

2D graphic assets

3D graphic assets

Art schools and creative types
The programmer

The programmer's kit

Coding departments

Learning to be a programmer
The game tester

The tools of deconstruction

Aspects of game testing
Skills of a professional player

University of Gamestop

The game producer

Keeping things organized
Key questions of a producer

Skills for all!
Who is the producer?
The sound designer
Creating music and sound fx
Audio skills and tasks
Schools of sound production

Audio personality

Summary
3. Graphics for Mobile

Pixels and vectors
Pixels
Vectors

The graphic file formats
Raster graphics

Vector graphics
Videos in videogames

Software to create game graphics
Resolution issues with mobile games

2D graphic assets
Sprites

Backgrounds
Tiles

The parallax motion

Masking
3D graphic assets
3D models

Texturing
Materials

UV Mapping
More on textures

Baking
Animations

Designing a character for mobile
The character design process
Silhouettes

Colors for mobile
The user interface and HUD

Summary
. Audio for Mobile

Digital sound technology
Analog versus digital
Recording and playback

Recording
The sample rate

The word length

Compression
Uncompressed
Lossless compression
Lossy compression
Playback
Types of game sounds

Dynamic audio
Adaptive audio

Interactive audio

Non-Dynamic linear sounds and music
Diegetic sounds

Adaptive

Interactive

Non-Dynamic
Non-Diegetic sounds

Adaptive
Interactive

Kinetic gestural interaction
The audio editing software
Avid Pro Tools
Sound Forge/Sonic Foundry
Audacity
Ableton Live
Designing audio for mobile games
Planning the audio in advance
Hardware limitations for mobile games audio
The role of audio in mobile games
Listening conditions for mobile games
Best practices for mobile games audio design

Scripting skills for a mobile audio designer
File compression

Looping background music
To learn more

Final advice

Summary

5. Coding Games
Main features of programming languages
Libraries
Abstraction

Implementation
Usage

Game programming
C++

Memory management
Objects
Complaints about C++
Java
Memory management
Syntax
Java for mobile — Java ME
Objective-C
Cocoa
Cocoa Touch
Xcode
Working with objects
Extending classes with categories
Protocols define messaging contracts
Values and collections
Blocks
Objective-C conventions
Getting started
HTMLS
Canvas
HTML.5 and Flash
Issues with HTML.5

HTML5 games
Conclusions

Scripting languages

Structure of a game program

Initialization
The game loop
Termination
Conclusion

Summary
6. Mobile Game Controls

Input technology
Touchscreens

Keypads
Touchscreen gestures
Single—tap
Double—tap
Long press
Scroll
Spread and pinch
Pan
Flick

Multifinger tap

Multifinger scroll
Rotate

Input interfaces for mobile games
Built-in devices
GPS
Accelerometer
Camera
Microphone
External controllers
Gamepads
Analog sticks
Touch-enabled cases

Grip
Cabinets
Headphones
Future technologies
Eye tracking
Brainwave readers

Summary
7. Interface Design for Mobile Games

The role of the user interface
Approaching user interface design

Ul in videogames

Designing the Ul
Aesthetics

More on vectors and rasters
Designing icons
Best practices in UI design

Search for references

The screen flow

Functionality

Wireframes

The button size

The main screen

Test and iterate

Evergreen options
Multiple save slots
Screen rotation
Calibrations and reconfigurations

Challenges
Experiment

Summary
8. Mobile Game Engines

What engines can do
What engines can't do

Game engines
2D game engines

Torque 2D
Cocos2D

Corona SDK
3D game engines

Shiva 3D

Unity 3D

Top-quality engines
Unreal/UDK

Educational engines
GameMaker
GameSalad

Unity3D Tutorial — part 1

Tutorial part 1A — importing 3D models
Tutorial part 1B — setting up the scene

Summary
S. Prototyping
Steps in the prototyping process
Defining the prototype
Building the prototype
Testing the prototype
Fixing the prototype
Prototyping styles
Horizontal prototype
Vertical prototype
Types of prototyping
Disposable code
Your imagination
Pencil and paper
Visual prototypes
Interactive prototypes
Reusable code
Why prototype?
What to avoid
Tools

Tools for rapid prototyping
Unity3D tutorial — part 2

The player's ship
The aliens
Firing
Summary
10. Balancing, Tuning, and Polishing Mobile Games
Balancing

Symmetry
Randomization

Feedback loops

Game director

Statistics
Tuning

Tuning strategies
Difficulty settings

Global difficulty

Unity 3D tutorial — part 3
The barriers

The player's ship reprise
Refining the details

Adding a GUI
Adding audio effects

Particle system effects

Unity 3D tutorial summary
Summary
11. Mobile Game Design
The basic game design process
The dos and don'ts of game design
Dos
Don'ts
Designing mobile games
Hardware limitations
Screen size
Game controls
Audio output
File size

Processing power
Mobile design constraints
Play time
Game depth
Mobile environment
Smartphones
Single player versus multiplayer
The mobile market
Mobile gamers
Business models
Premium
Freemium

Ad supported
Hybrid
Choosing the right business model

What makes games fun
The four keys to fun — the game mechanics that drive play
Hard fun — emotions from meaningful challenges, strategies, and
puzzles

Easy fun — grab attention with ambiguity, incompleteness, and detail

The people factor — create opportunities for player competition,
cooperation, performance, and spectacle
Raph Koster and Roger Caillois
Summary
12. Pitching a Mobile Game
The pitch document

Importance of pitching
Game concept
References
Prototypes
Stuck?
Genre
Target audience
Key features
Target platform and competitors
Game mechanics
Control scheme and interface
Scoring system and achievements
A gameplay example
Screen flow and screens relationship
Game flow
Tech
Screenshot
Team/Designer resume

Lilypads pitch document

Concept
Genre

References

Target
Platform

Competitors

Key features
Character design
Game mechanics

Score

Virtual currency

IAP (In-App Purchase)

Achievements and leaderboards

Additional game elements
Screen flow

Game flow
Tech
Game features
Platform
The iPhone 4
Game screen study
A list of assets
Graphics
Audio
Software
Schedule and budget

Summary
Index

Mobile Game Design Essentials

Mobile Game Design Essentials

Copyright © 2013 Packt Publishing All rights reserved. No part of this book
may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, without the prior written permission of the publisher, except in the
case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of
the companies and products mentioned in this book by the appropriate use of
capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

First published: November 2013
Production Reference: 1141113
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84969-298-4

www.packtpub.com

Cover Image by Jarek Blaminsky (<milak6@wp.pl>)

http://www.packtpub.com
mailto:milak6@wp.pl

Credits

Authors

Dr. Claudio Scolastici
David Nolte

Reviewers

Diane Harding

Kahl Sada

Mehul Shukla

Francis Styck

Sergio Viudes Carbonell
Acquisition Editor
Rubal Kaur

Lead Technical Editor
Neeshma Ramakrishnan
Technical Editors
Shashank Desai

Iram Malik

Manal Pednekar

Project Coordinator

Shiksha Chaturvedi

Proofreader

Lucy Rowland

Indexer

Mariammal Chettiyar
Graphics

Yuvraj Mannari
Production Coordinator
Adonia Jones

Cover Work

Adonia Jones

About the Authors

Dr. Claudio Scolastici is a former researcher at the Department of Cognitive
Sciences of the National Research Council of Rome.

In 2002, he started working in the video game industry as a tester for Electronic
Arts. After he graduated in General and Experimental Psychology with a
specialization in Artificial Intelligence, he worked as a consultant game designer
for Italian game developers such as SpinVector and Palzoun Game First.

In 2012, he joined the No.One indie team to develop XX La Breccia, the first
quality first person shooter ever made in Italy using the Unreal Engine.

Today he authors tutorials on game development for Digital Tutors and Game
Programming Italia, and acts as a game design consultant for indie developers
and start-ups in Rome, where he currently resides.

David Nolte graduated with a Bachelor of Fine Arts degree from the University
of Hawaii, Manoa.

He spent 15 years in the advertising industry in Honolulu, working his way from
paste-up artist to print production manager. He then worked 23 years in the
video game industry as a game designer and production manager. Most of that
was time spent working on Tetris and its variants for a variety of platforms.

He was the producer of Faceball 2000, the only real-time first person shooter
released on the original Gameboy. It won best Gameboy Game of the Year
award at the Consumer Electronics Show, 1991. He has over 20 published games
to his credit on a variety of platforms.

About the Reviewers

Diane Harding has been a software developer for over 35 years, and has
extensive expertise in the design and development of large-scale software
packages that integrate data from a wide variety of sources, for interactive screen
editing and display, as well as database archival. She has developed web-based
applications with access via web browser (portal) or graphical user interface, and
has been a fluent programmer in Fortran, C, C++, SQL, Perl, XML, Java, and
JSP. Her background also includes extensive technical and numerical analysis
experience in Ocean Sciences including side-scan sonar, bathymetry, and multi-
static acoustics. She was born and raised in Hawaii and went on to attend the
Massachusetts Institute of Technology, where she received a degree in Applied
Mathematics. She currently resides in Kailua, Hawaii.

Over her career, Diane Harding has been a senior software engineer for the
Smithsonian Astrophysical Observatory, Cambridge Massachusetts, for the
University of Hawaii Institute of Geophysics, Honolulu, for Fugro Seafloor
Surveys, Inc. based in Seattle, Washington, and for Applied Marine Solutions, a
DOD contractor based in Hawaii.

Diane Harding has co-authored and contributed to articles and abstracts
published in EOS, Transactions of the American Geophysical Union and other
journals, as well as worked as a technical editor and a contributor on numerous
work-related proposals submitted to various government funding agencies. She
has also generated user and technical manuals for the software packages
developed, for distribution to the end users and installation of the applications.

Kahl Sada fell in love with video games thanks to Alley Cat, but only with
Metal Gear Solid did he realize that being a game designer was his lifetime
dream. He started creating games with RPG Maker then moved to Unity 3D to
create more interesting and deep gameplay. Specializing in Guerrilla Prototyping
and in Gameplay Balancing, he is now a full-time employee of Lunar Walkers
LTD.

Mehul Shukla is one of the PlayStation® Mobile specialists in the SCEE R&D
Developer Services Team. The Developer Services Team provides front-line
engineering support for all game developers, large or small, on all PlayStation
platforms. He provides technical support and performance advice to developers

all over the globe on the PSM community forums on a daily basis.

He has also given technical talks about PlayStation® Mobile development at a
number of games industry conferences and academic events.

Mehul joined SCEE R&D right after his University education. He has a Master's
degree in Games Programming and a Bachelor's degree in Computer Systems
Engineering.

He has also worked as a technical reviewer for PlayStation ® Mobile
Development Cookbook, Packt Publishing.

I would like to thank the authors, David Nolte and Claudio Scolastici, for the
hard work they have put in and for sharing their invaluable experience of the
games industry. There is a lot I have learned during the reviewing of this book
and I hope others too can benefit from it. I wish the authors all the best for the
future.

Francis Styck has been developing games since his college days at UNLV,
while pursuing an Engineering degree in the 1980s, when games were written in
Assembly language on the Atari 800 and Commodore 64. He continued with his
education at UNLV and graduated with an MBA in 2001. Today, he is still
writing games but now uses the power of C++, Marmalade, and Cocos2d-x to
support many platforms and devices. You can stay in touch with Francis using

LinkedIn at http://www.linkedin.com/in/styck.

Sergio Viudes Carbonell is a 31-year-old software developer from Elche,
Spain. He works developing apps and video games for the Web and Android.

He has played video games since his childhood. He started playing with his
brother's Spectrum when he was just 5 years old. When he bought his first PC
(well, his parents did), he was 14 years old, and started learning computer
programming, computer drawing, and music composition (using the famous Fast
Tracker 2). When he finished high school, he studied Computer Science at the
University of Alicante.

His interest in mobile devices started with his first smart phone, eleven years ago
in 2002, when he bought the first Symbian device from Nokia, the Nokia 7650.
He reallv liked the idea that he could develon software that conld run

http://www.linkedin.com/in/styck

i e it e e e e me e et e — s — e e - e

everywhere. So, along w1th his studies and his]ob Sergio started creating simple
mobile apps for his phone. About three years ago he decided to create his first
video game for mobile devices. He really enjoys developing for mobile devices,
he likes to compose music, to draw, and of course, he likes to play video games.

So, he decided to put all his hobbies together and develop his first video game
for his favorite mobile platform—Android.

So far Sergio has released three games, several apps, and he continues
developing apps and games for Android.

He has worked as the technical reviewer of the book, AndEngine for Android
Game Development Cookbook, Packt Publishing.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www.PacktPub.com for support files and downloads
related to your book.

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at
www.PacktPub.com and as a print book customer, you are entitled to a discount
on the eBook copy. Get in touch with us at <service@packtpub.com> for more
details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[lﬂ PACKT! i 1°

http://Packtl.ib.PacktPub.com

Do you need instant solutions to your I'T questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why Subscribe?

¢ Fully searchable across every book published by Packt
e Copy and paste, print and bookmark content
¢ On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to
access PacktLib today and view nine entirely free books. Simply use your login
credentials for immediate access.

http://www.PacktPub.com

Preface

The mobile segment of the video game industry has quickly become the best
opportunity for a development team wishing to enter the video game market.
Since the appearance of the Snake game for the Nokia cell phones in 1997, the
number and quality of video games developed for mobile has constantly
increased, while mobile phone hardware has improved dramatically.

The main factor that makes the mobile video game segment a very interesting
opportunity these days is that, although not everybody has a console or a PC at
home, in most parts of the world everybody has a cell phone.

Another factor is that the hardware capabilities of mobile phones have improved
quickly. In about ten years, we have moved from devices with monochromatic
small screens with limited input opportunities that could only run the simplest
games, to devices with true color displays and gyroscopes with almost the same
potential of consoles such as the PS2, if not better.

Also, for a team of people who want to jump into this industry, it is a good
opportunity because, generally, it takes less resources to develop a game for
mobile than for console or PC games.

In fact, the scope of a mobile game tends to be narrower than a traditional game,
which means that to make a mobile game it requires fewer people for
development, less time to get to shipping, lower investments to buy the tools,
and in the end, less money in general.

Should the game go well and sell, the potential revenue can be very high!

On the other hand, the mobile segment is not necessarily a gold mine where
everybody can easily find nuggets. The design of a mobile game requires several
factors to be taken into consideration, as we will show you throughout this
manual.

First, the device itself puts some limitations on what can be achieved. Though
screens are getting larger and allow better resolutions, still they are not TV
screens and monitors. The audio capabilities of mobile phones are several steps
below their console or PC counterparts.

~_ __ _ __ . Y_ 1 _ . Y _ . .- _ .. 1 _ ____ 0 __ T _11_

Lame CONTrois nave 10 rely ON tne TOUCNSCreen Or make Use OT Sensors avallanle
on smartphones, which is an opportunity but also a constraint if we consider the
flexibility of a common gamepad, or the combination of mouse and keyboard in
PC games.

The experience of playing a mobile game on the bus is totally different from that
of a console game played on the couch in the living room.

If we exclude the iPhone platform, there are literally thousands of different
handset types on the market. Developing for a market this diverse can be
daunting. Compared to this variety, the traditional segmentation of the video
game market among the three consoles made by Sony, Microsoft, and Nintendo,
is almost nothing.

Finally, and this is a consequence of all that we stated before, there have never
been so many games available at the same time as there are now for mobile
phones. This means that any new game for mobile phones has to face a hard
struggle against other games which compete for a share of players.

The aim of this book is to offer a guide to those who are willing to test their
skills in this potentially very profitable segment. It will provide useful
information about the tools you need to develop, well-done games for mobile,
how to take advantage of the limits of a mobile phone to design perfect
gameplay, and which are the best business models to adopt in order to make
money out of your games.

Examples of mobile games such as Doodle Jump, Fruit Ninja, and Angry Birds
show us that the right decisions and the proper tools make success possible.
We'll help you with that by offering you hands-on examples, extensive
background information, useful insights, and a wealth of knowledge on the
subject!

What this book covers

Chapter 1, Operating Systems — Mobile and Otherwise, describes the differences
between the most important mobile platforms (iOS, Android, and Windows
Phone) and the most popular software which are used to develop games and apps
for each one of them.

Chapter 2, The Mobile Indie Team, offers a description of the main roles to be
covered in an indie team of mobile game developers, the suggested formation
background, and the tasks each one of them is accountable for.

Chapter 3, Graphics for Mobile, offers an explanation of the relevant 2D and 3D
graphic formats used for mobile games, the techniques used to create such
assets, and the most popular software to create 2D and 3D graphics for mobile
games.

Chapter 4, Audio for Mobile, discusses the creation of audio for mobile games,
the different audio types used in games, and the most popular software the
professionals make use of to create audio for games.

Chapter 5, Coding Games, offers a description of the most popular coding and
scripting languages used in game development, their strengths and weaknesses,
and the description of the basic structure of a game program.

Chapter 6, Mobile Game Controls, focuses on the characteristics of the touch
interface of today's smartphones and the use of built-in sensors and other
external devices as input devices to control mobile games.

Chapter 7, Interface Design for Mobile Games, delves into the theory of user
interface design and offers a description of popular models and techniques to
create user interfaces for games in general and mobile games in particular.

Chapter 8, Mobile Game Engines, is about the most popular game engines used
to develop games for mobile, detailing the strengths and weaknesses of each one
of them. With this chapter we also begin our tutorial to create a game with Unity
3D from scratch.

Chapter 9, Prototyping, is focused on the techniques and tools used to prototype
games, providing a list of useful software to achieve the task. The chapter also

contains the second part of the Unity 3D tutorial.

Chapter 10, Balancing, Tuning, and Polishing Mobile Games, offers a
description of the actions required to smooth the angles of a game's gameplay
and the techniques used to achieve a perfectly balanced gameplay. In this
chapter, we also get to the conclusion of the tutorial with Unity 3D.

Chapter 11, Mobile Game Design, explains the design process of a mobile game
and delves into the specific difficulties related to designing games for today's
smartphones, based on their hardware, the specific fruition models of mobile
games, and the characteristics of the mobile market.

Chapter 12, Pitching a Mobile Game, is a practical guide to the creation of the
presentation document of an actual mobile game. The document, which contains
a description of the most relevant aspects of a mobile game, is essential to
explain your projects to potential investors.

What you need for this book

As the book will provide you with all the basic knowledge you need to develop
mobile games, there is no prior knowledge or skills that are required to
understand its contents.

On the other hand, we tried our best to make this book a practical guide to
mobile game development and therefore a basic knowledge of any 2D and 3D
modeling software, as well as some familiarity with the interface of Unity 3D is
welcome.

As they are industry standard, we mainly used Photoshop for 2D assets, 3D
Studio Max for modeling, and Unity 3D as the game engine to create the
practical contents of this book. What follows here are the links to download the
trial version of each one of them:

e https://creative.adobe.com/products/photoshop
e http://www.autodesk.com/products/autodesk-3ds-max/free-trial
e http://unity3d.com/unity/download

https://creative.adobe.com/products/photoshop
http://www.autodesk.com/products/autodesk-3ds-max/free-trial
http://unity3d.com/unity/download

Who this book is for

This book is for anyone who ever happened to have an idea for a mobile game
but didn't know how to approach its actual development.

If you ever thought about creating an indie team of mobile game developers, this
book will help you build it. We will also guide you in choosing the software
required for mobile game development. We will help you understand the
strengths and weaknesses of each mobile platform, defining optimal gameplay
based on the specific characteristics of today's smartphones. Finally, we will
assist you in choosing the right business model for your games and finally
helping you to create pitch documents to present your mobile game ideas to
potential investors.

If mobile games development is your passion, this book is the right starting point
to trigger your career in the gaming industry!

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are shown
as follows: All noncode files are held in a directory called Supporting Files,
where you'll want to put images, text files, and other stuff.

A block of code is set as follows:

while(!gameEnded)
{

HandleInput(); //Reads keyboard, mouse or any other
//kind of input used by the player

Update(); //Updates game logic and, based on info
//gathered with the previous step

Draw(); //Draws graphics on screen,
//a process called Render.

}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once
Windows Phone Game (4.0) is selected, type a name for the project in the text
box and click on OK."

Note
Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think
about this book—what you liked or may have disliked. Reader feedback is
important for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to
<feedback@packtpub.com>, and mention the book title via the subject of your
message.

If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide on
www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the color images of this
book

We also provide you with a PDF file that has color images of the screenshots
used in this book. You can download this file from

https://www.packtpub.com/sites/default/files/downloads/29840T_Images.pdf.

https://www.packtpub.com/sites/default/files/downloads/2984OT_Images.pdf

Errata

Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in the text or the code—we would be grateful if you would report this to us. By
doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/submit-errata, selecting your book, clicking
on the errata submission form link, and entering the details of your errata.
Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your
title from http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works, in any form, on the
Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

mailto:copyright@packtpub.com

Questions

You can contact us at <questions@packtpub.com> if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:questions@packtpub.com

Chapter 1. Operating Systems — Mobile
and Otherwise

Developing games for mobile requires many decisions to be taken. Two very
important ones concern the platform to develop your game for and the tools you
are going to use.

Will your game be developed for a single platform or many? Which are the most
popular operating systems of today's mobile phones? Which are the best tools to
work with each of them?

In this chapter, we will describe what an operating system is and we will provide
an introduction to the most important mobile operating systems (OS).

We will also introduce the reference tools and software to develop games for
each mobile platform mentioned.

In this chapter, we will cover the following topics:

A general discussion on operating systems
Mobile operating systems

Android development

iOS development

Windows Phone development

Java ME development

BlackBerry development

Operating systems

An operating system (OS) is a collection of software that manages device
hardware and provides common services, which allow programs to run on a
device, be it a mobile phone or a personal computer.

The operating system acts as an intermediary between programs and the
computer hardware, and thus, operating systems can be found on almost any
device that contains a computer—from cellular phones and video game consoles
to supercomputers and web servers.

USER ((— APP (=) 0s | HARDWARE

The revolution of personal computers (PC) began with the introduction of
BASIC and DOS Operating Systems. These operating systems ran on terminals
composed of a case containing the main hardware, a monochromatic screen, and
a keyboard. All these fit on a common desk, allowing computers to enter
people's houses.

At that time, software used to run on magnetic tapes or on a number of 5'1/4"
disks. The following image shows an old school PC of the early '80s:

Bundesar\chi. B 145 Bild-FO77BE0-0042
Foto: Reineke, Engelbert | 8. April 1888

The PC became an object of common use with the introduction of visual
environments made of icons that could be processed with the use of a device
called mouse. This solution turned operations into metaphors of real world
actions: select and drag an icon to move a file, single-clicks to select contents,
and double-clicks to open them.

The main advantage of this new approach to computing was that it didn't need an
expert to use a computer for basic operations. Anyone could use a PC!

The evolution of visual interfaces led to touch interfaces, made possible with the
introduction of screens that could process touch actions directly on the screens of
the devices. This system allows users to use their fingers instead of the mouse of
desktop PCs, thus triggering a revolution in user interfaces and user experience,
as well as offering the possibility of developing devices, such as tablets and
smartphones, that could handle the same basic operations available on a desktop
PC on a smaller mobile device.

At present, the computing environment is dominated by a few operating systems.
For mobile devices, there are iOS, Android, Windows Phone, Java ME, and
BlackBerry. BREW and Bada, which used to be quite popular, are now out of
the race.

Each OS has distinctive characteristics and a development story of its own. So
before we start talking about mobile development, we will provide you with an
overview on each one of them.

Mobile operating systems

Android: Android is the open source mobile OS (developed by Google and
Open Handset Alliance and released in 2007) that powers smartphones of
the last generation. The main manufacturers of such phones are Samsung,
HTC, Sony, LG, and Motorola. Android-equipped devices were developed
to be the competitors of the Apple iPhone; they share a similar touch
interface and the same orientation towards the development of applications
made by third party developers to meet any user's need. Apps can be
downloaded from an online store called Google Play.

iOS: i0S is Apple's mobile OS used on the iPhone, iPod Touch, iPad, and
AppleTV. Released in 2007, iOS is based on OSX, the operating system
running on Mac PCs. Like OSX, it is closed source and proprietary to
Apple devices. It uses the Cocoa Touch interface for use solely with touch
screen technology. It shares the benefits of OSX's stability and rapid
development, as well as the capability of easy porting between iOS and
OSX.

Windows Phone: This is a proprietary OS developed by Microsoft. It
replaced its predecessor Windows Mobile in 2010. The latest version
(Windows Phone 8) has many common features and components with
Windows 8 which facilitates moving apps between the two. It is possible to
port Windows Phone games to iOS and Android using tools, libraries, and
resources made available by Microsoft.

Java ME: Java ME is an open source, free-to-use OS, developed by Sun
Microsystems. It is a trimmed-down version of Java so it can run on any
Java-enabled device. It is very popular among developers due to its ease of
use and that its games don't need porting to run on various devices. There is
a vast community that supports Java with tools, code libraries, and
instruction. Though not as popular in the US as it once was, it is still in use
in Eurasia and South America.

BlackBerry: This is a proprietary OS developed by RIM for its line of
smartphones that mainly aim at the enterprise market. Thanks to its peculiar
instant messaging and push e-mail features, and to high level security
protocols as well, BlackBerry smartphones are the devices of choice for
people who need a reliable handset to support their business needs.

Android

Android is a Linux-based operating system designed to run on touch-screen
mobile devices, mainly smartphones and tablets.

Released around 2007, Android was initially developed by the Android
Corporation. It was then acquired by Google, who founded a consortium of
hardware, software, and telecommunication companies, named the Open
Handset, to further support and develop this open source project.

Today, Android powers hundreds of millions of mobile devices all over the
world. Numbers say that new Android phones are activated at the rate of one
million per day!

The main factor that made Android a favorite for consumers is its open source
approach. It can count on an enthusiastic community of passionate developers
and hundreds of hardware, software, and carrier partners whose support make
Android the fastest growing mobile operating system to date.

With such partners, Android is capable of continuously pushing the boundaries
of mobile hardware and software forward, allowing developers to build any kind
of applications that can take advantage of the latest mobile technologies, and to
support users with many differentiated and powerful applications to expand the
capabilities of their mobile devices.

The main drawback with Android is that, due to the high variety in the hardware
it runs on, updates tend to be quite slow in reaching devices when compared to
iOS. Porting Android to specific hardware is a time and resource consuming
activity for manufacturers, with the result that newest devices are prioritized,
leaving older ones behind.

On the other hand, the large community of Android enthusiasts can balance this
bias, building and distributing their own modified versions of the OS with new
features and updates, faster than the official manufacturers.

Android gives its developers a wide range of tools to take full advantage of the
hardware capabilities of each device, both smartphones and tablets. For example,
it allows having a user interface that automatically adapts to look its best on each
device regardless of the screen size, by defining a common set of instructions for
all shared form factors and a senarate set which contains ontimizations for each

R i e e e i e

specific device.

Android Ul is based on direct manipulation through touch inputs that resemble
real world actions, such as swiping, tapping, and pinching. It also takes full
advantage of internal hardware, such as accelerometers, gyroscopes, and
proximity sensors, to further improve the experience.

Google Play and Amazon Appstore

Google Play is the premier marketplace to sell and distribute Android apps, and
has been used to download more than 25 billion apps at the rate of 1.5 billion per
month.

It gives complete freedom to its users to define when and what to publish, letting
developers maintain full control with regard to the devices to develop for, the
technology to use, and the target audience to address.

Users also have complete freedom to adopt any business model for their apps:
priced, free, with in-app products or subscriptions, as well as defining pricing
and supported currencies for transactions.

Google Play also helps its users to get visibility for their products, with weekly
sales charts and rankings, thus allowing even more visibility.

The premier language to develop Android apps is Java, using the Android
software development kit. Other tools are available as well, such as the Native
Development Kit that allows applications to be built in C and C++. Cross
platform mobile frameworks are available too, such as Phonegap, Titanium, or
Rhomobile.

App development

When developing apps for Android, especially if you are new to Android
development, it is recommended that you use the Eclipse Integrated
Development Environment (IDE). It is the fastest way to get started and it offers
several guide projects as well as tools integration to make the the developer's life
as easy as possible.

The Eclipse IDE is an open source project that basically consists of a collection
of plugins that integrate with the platform, to provide a wide range of features.

Most of these plugins are written in Java.

Android Development Tools (ADT) is a plugin for the Eclipse IDE that is
designed to provide a powerful, integrated environment in which to build
Android applications.

The ADT plugin for Eclipse is provided with the Android SDK. The SDK is a
collection of tools that allow developing, testing, and debugging applications
developed for Android.

Though the premier code language for Eclipse is Java, Eclipse is a multi-
language environment that allows other languages to be used as well.

If you are an eager C\C++ programmer and prefer to develop your games in
native code language, then the NDK is a very helpful tool set that allows, for
example, reusing already existing code libraries and possibly increasing
performance. But such options have their costs. Generally speaking, native code
on Android doesn't always produce a performance improvement, while it
increases the app complexity. So, the decision whether to use the NDK or not
should never be dictated by the assumption that "I simply prefer programming
with C\C++".

Games for Android

When pondering the decision whether to develop a mobile game on Android,
there are two types of device to take into consideration as reference models,
based on their processor (CPU) and Graphic Processing Unit (GPU), the piece of
hardware that specifically takes care of graphics on the display. As we write,
there is the HTC Dream (or G1), the first Android powered phone, which is
equipped with Half Video Graphics Array (HVGA) screens and average 500
MHz CPUs (low-end). The other model is the Nexus One, which is equipped
with a Wide Video Graphics Array (WVGA) screen, a faster CPU, and a GPU
that support OpenGL ES 2.0 hardware acceleration (high-end).

Since performance changes very much between the two groups, it is very
important to carefully choose the target device for your game, because games
that can scale between high and low end devices get, obviously, a broader
audience.

What follows is a description about how a new Android project is started with

| AP I,

LCLpse:
1. First you need to create an Android Virtual Device (AVD).
2. Navigate to Window | Android SDK | AVD Manger | New.

3. You can leave all parameters with the current default settings, but if you
plan to use multi-touch features, you need to work with Version 2.2 or

higher.
[« BT Create new AVD

Name: MyDevice

Target: Android 2.2 - APl Level 8)

SD Card: v
*) Size: | 128 MiB -
) File:

Skin:
@ Built-in: | Default (HVGA) =
,,_, Resolution: x

Hardware.
Property Value Mo

Abstracted LCD density 160

Cancel f " Create AVD -']

4. Click on Create AVD to create your virtual Android Virtual Device to
work with.

Then you need to create a project.

1. From the menu, navigate to New | Project and choose Android Project.

2. The name of your game is set in the Application name: space, while
classes are grouped in the Package name:.

3. Again, set Android 2.2 as Build Target.

It is then very important to flag the Create Activity: check. The activity is
the class that is instantiated when starting application. It handles input
(actions on touch screen), creates the window that displays the game, and

other necessary activities.
o D New Android Project
MNew Androld Project

Creates 2 new Android Project resource

Progect name: erygame . androdid
Contents
E'!"? Create few PAOjEct In workipace
() Creaze project from existing source

L e default location

Location: /users/PackeSProjects [

L) Creats projet from existing sample

Samples

Bl Target
Target Mame Vendor Plathorm AM L
L] Coogle AP Gocgle b 2.1 T
ki Android 2.2 Arsfrobd Open Source Pro 1.2 []
Coogle APy Coogle Ing 2.2 B
= = == == == T = Hale

Standard Androdd platform 2.2

Peosperisg s

Applicalion name: Sy(ame

Pachage name net, Packy . mypane
B Create Actvity. myGameactivity

Min SDK Version

'’ .« Back L Mo) Camoel r Pk

.

4. Click on Finish to create your application. Now you can run your newly

created application.

Right-click on the project and navigate to Run As | Android Application.

6. Choose the Virtual Device you configured before and remember that you
don't need to close its window once it has started—Eclipse launches the
application you are working on inside the current running device, so it will
save you some time having the Virtual Device already running!

v

These are the basic steps to create a new project and launch an application on a
Virtual Device with Eclipse. The creation of a working app is beyond the scope

of this preparatory chapter on the Android platform, but we will come back with
more details in the later chapters of the book.

Eclipse versus Intellij

Eclipse is not the only possible choice to develop games for Android. Among the
others, Intellij can be considered the main competitor of Eclipse, which mainly
works with Java.

Eclipse offers a larger number of plugins and supports multiple coding
languages, because it is easier to extend, compared to Intellij. When working on
specific new technologies, it is very likely that if a plugin exists, it will be an
Eclipse plugin.

On the other hand, when dealing with completion of code and assistance, Intellij
is definitely better (and faster) than Eclipse. Especially for rookie developers,
Intellij can give you a hand improving your code and offers a friendlier user
interface. The learning curve is smoother and developing with Intellij generally
feels easier and more natural.

From a performance point of view, Eclipse works better than Intellij. Projects
open faster and they are handled more efficiently, especially very large ones.

To make a general statement, Intellij is easier to use, thanks to a more user
friendly user interface, while Eclipse is more versatile, thanks to a larger number
of available plugins and a stronger community behind it.

A last thing to consider: Intellij provides a full functional 30 day trial version,
and then a license is required for commercial purposes, while Eclipse is an open
source project and thus, its license is totally cost free.

i0S

iOS is a mobile operating system developed by Apple. It was released in 2007
for the iPhone and the iPod Touch, and then was extended to support the iPad. It
is Apple's specific policy that the iOS cannot be installed on non-Apple devices.

With around 25 million devices sold in the last quarter of 2012 (falling from 35
million in Q2) and more than 250 million of total units sold, the iOS that powers
the iPhone (the iPad and iPod as well) is, together with Android, the best target
platform for those who intend to develop mobile games.

The Apple Store, the distribution platform where iPhone apps can be
downloaded, hosts more than 700,000 applications and downloads have been
counted in the order of more than 30 billion.

The direct manipulation of icons using multi-touch gestures is the basic concept
behind the iOS user interface and a trademark of mobile devices developed by
Apple. Regardless of many attempts to imitate its distinctive user experience by
other manufacturers, the iPhone must be acknowledged as the device that offers
the best UI\UX in the entire smartphone market.

The interface elements are sliders, switches, and buttons. The interaction is via
actions, such as swiping, tapping, and pinching, with each of these actions
having a meaning in the Apple iOS environment.

Applications also make use of the sensors and other features, such as the
accelerometer, to obtain effects, such as shaking the device to undo the last
action or rotating it to switch between portrait and landscape modes.

iOS is Apple's mobile version of the OS X operating system used on Apple
computers, but not many people know that the OS X operating system is Unix
based.

Apple tends to be a company with a strong bottom-up control policy on their
devices. A positive consequence is that updates of the iOS platform are released
methodically and developers are informed when updates will be coming, in order
to plan accordingly and be sure that their newly developed apps will keep
working and will be stable on the new platform.

Together with the fact that all iOS devices are built by the same manufacturer,

there is no need for multiple tests on many different devices for newly developed
apps, as can be the case for example, when developing software for Android or
Java ME.

The App Store

When a new application is developed for the iOS, it can be distributed through
the Apple Store. Developers are free to set any price above a minimum for their
apps or games, of which, Apple takes 30 percent of the revenue, while the
developers take 70 percent. In case the app is distributed for free, the only cost to
the developer is the necessary membership fee needed to install newly created
apps on physical devices.

To submit your game to the Apple Store, you first set its selling price, then you
need a descriptive text for the game that will be found in the App Store, three
icons (29x29, 57x57, and 512x512), a launch image that appears while the game
is loading, one-four screenshots of your game, and the contract information. If
the game is not rejected for some reason by Apple's full time reviewers, in
around 10 to 15 days it will be available in the store (depending on the shipping
date you provided for your game). Reasons that games are rejected can be,
among others, that it contains pornography, it is considered malicious software,
or it is not stable.

Development on i0S

Most consumers agree that iOS devices offer a better UI experience and its
development tools are generally considered more user friendly.

This is a result of the importance Apple always gives to design and its distinctive
focus on innovation and user experience. The down side of this approach is that
Apple wields quite lot of control on what people can or cannot do with its
devices.

The iOS is not an open environment in the first place. It puts excellent tools in
the hands of developers, tools that generally allow making hard things as easy as
possible, but the cost is that when working with iOS it can be frustrating being
limited to Apple's features. When compared to Android or Java ME platforms,
which are open source and thus, put total control in the hands of the developer,
working with iOS may seem limited in some ways, as its approach is based on
the assumption that "the platform developer knows better than you". In other

JRESSA: [Y s VI) SR T I I g [P) SRR S

WwOordas, 11 you lieed o dlileve solletdinnng uldt wds 110L proviuaeu vy uie
manufacturer, you need to struggle to bypass several constraints.

The iOS SDK is the software development kit used to make native applications
for the iPhone and iPod touch, released in 2008 by Apple.

Though developers can make use of the SDK to build their own applications for
the iPhone, loading an application onto the devices is only possible after paying
an iPhone Developer Program fee, which costs $99 per year.

The no-cost alternative is to run apps in the iPhone simulator, which is provided
with the SDK and runs your application in pretty much the same way as an
actual iOS device. The simulator is quick to launch and debug, and is a very
efficient tool to test both logic and interface of your apps or games. Touch
gestures and sensor events can be simulated as well with the mouse. For testing
multi-touch interactions well, you need to pay the fee.

All the necessary tools for the SDK are contained in a single installer package
that is easy to download, though not very light (it is a single 4.5 GB file).
Moreover, if a new update is available, you need to download and reinstall
everything. It seems like the iOS SDK team doesn't believe in patches!

There are other barriers which may come into play when developing for the iOS.
Unless you use specific cross platform tools, iOS apps require a Mac to be
developed, which means that if you don't already have one, you may be forced to
buy a Mac to develop with iOS. This can be a high entry cost since Macs
generally are much more expensive than their PC equivalents. Naturally, a
developer needs a computer to develop apps anyway, but for example, Android
apps can be developed on Mac, PC, and Linux machines equally and without
much effort.

Another crucial element when deciding whether to develop apps and games for
the i0S, is the lack of a feature called garbage collection. Garbage collection
means that the developer is not asked to learn the rules to manually manage the
memory of the device when developing apps. With such a feature, a programmer
is not required to specify which objects to de-allocate in order to free memory
resources for other computing.

Garbage collection is a way to enhance the performance of an application and to
drastically accelerate the development process. For this reason alone, most

programmers would agree that the absence of such a feature in the iOS
environment makes it preferable for beginners to develop apps for Android.

Xcode

The development environment for iOS SDK is called Xcode (now distributed in
its Version 4) and like iOS and OS X, it is written in objective-C.

Xcode contains all the necessary development tools made by Apple to build
applications for OS X and iOS: a source code editor and a user interface editor.

Together with the Cocoa framework, it provides a very productive and easy-to-
use development environment, powerful enough to develop the same kind of
tools used by Apple to produce iOS.

For example, as you write code, Xcode finds mistakes in syntax and logic,
highlights them, and also suggests fixes.

Workflow in the IDE is performed in a single window, so that all relevant info is
available at once.

The UI editor, called the Interface Builder, permits specifying the details of the
user interface and its connections to the logic and data of the app in a very
intuitive graphical environment, and to work very closely with the source code
editor to get from design to implementation as quickly as possible.

Using Xcode

To create a new project with Xcode, follow the given steps:

1. Navigate to File | New Project. A dialog will appear, as shown in the
following screenshot:

Choose a template for your new project:

l iPhone OS

Application
Library

' User Templates

Nibless Cocoa Application

Cocoa Application

&
v -

Cocoa- Quartz Composer Command Line
AppleScript Application Tool
Application

‘; Mac OS X
Framework & Library

Application Plug-in
System Plug-in

Other
Web "] Create document-based application
[} Use Core Data for storage

[~ Include Spotlight Importer

Options

A Cocoa Application

This project builds a Cocoa-based application written in Objective-C.

B ==

(Cancel) (Choose...)

2. Once a new project has been started, you need to name it and choose the
device type for it to be built (generally iPhone).

3. In the Company Identifier field, use a unique string. It will be used to
generate a Bundle Identifier for your game.

Product Kame | HelloWeorld

Company Identifier | com PacktMobile
Bundle Identifier com.PackiMobile.HelloWorid

o |

Device Family | iPhone | v

["] Use Core Data

! Include Unit Tests

Now a quick glimpse at the structure of the app, which, as we said, is written in
Objective-C language.

There will be a main.m file that instantiates the App Controller, while objects are
declared in header files (*.h).

All non-code files are held in a directory called Supporting Files, where you'll
want to put images, text files, and other stuff.

The directory structure of your newly created project could look like this:

AelioWworia.xcod

" . HelloWorld
¥ = 3 targets, i0S SDK 4.3
v [] HelloWorld
|E| HelloWorldAppDelegate.h
E| HelloWorldAppDelegate.m
v []iPhone d
|E| HelloWorldAppDelegate_iPhone.h
E] HelloWorldAppDelegate_iPhone.m
¢ MainWindow_iPhone.xib
¥ (] iPad
|E] HelloWorldAppDelegate_iFad.h
@ HelloWorldAppDelegate_iFad.m
4 MainWindow_iPad.xib
[[::| Supporting Files
[] HelloWorldTests
[] Frameworks
» || Products

More on game developing for iOS will be seen in the later chapters about mobile
engines. For now, this ends our trip in the iOS world.

Windows Phone

Windows Phone is the operating system developed by Microsoft for mobile
devices and is the successor to its former Windows Mobile platform.

While Windows Mobile OS was mainly aimed at enterprises, with Windows
Phone, Microsoft turned its attention to the consumer market, allowing easier
access to third party services and development, and thus to indie mobile games
development as well.

To further improve the usability of Windows Phone, Microsoft developed a new
design language, called Modern Style UI, to create a new user interface and set
minimum requirements for the hardware the new services run on.

To get to the widest audience and target the emerging Asian markets (China in
primis), in 2012, Microsoft released an update to its OS, known as Tango, which
lowered the requirements for devices to run Windows Phone, allowing the new
OS to effectively run on lower-end hardware.

On February 2011, at a press event in London, Microsoft and Nokia CEOs
announced a partnership between the two colossi for Windows Phone to become
the primary operating system for Nokia smartphones, thus declaring Windows
Phone as the third competitor in the smartphones OS market against Android and
iOS.

The first Nokia phone models to run Windows Phone are the Lumia 800 and the
Lumia 710.

By the end of 2012, Microsoft released the latest edition of its mobile platform,
Windows Phone 8, that replaces the previous CE-based architecture with one
based on the Windows NT kernel and several shared components with the new
Windows 8 (developed for PCs and tablets), allowing applications to be easily
ported between these two platforms.

As we said, Windows Phone features a new user interface named Modern Style
UL The main innovation of the new UI consists in Live Tiles that are displayed
on the so-called Start Screen. Tiles are links to apps (contacts, web pages, and
media items) that dynamically update their icons in real time, for example,
showing the number of unread messages for an e-mail account or live updates
for a weather ann.

B i nf et

Another innovation is the organization of features into Hubs that allow content
integration with popular social networks, such as Facebook, Windows Live, and
Twitter, so that, for example, the Pictures hub shows photos made with the
camera equipped on the phone. From the Hub, users can directly comment and
like updates on their favorite social networks.

The main Hub for the interests of this book is, obviously, the Widows Phone
Store!

Windows Phone Store

The Windows Phone Store (formerly, Windows Phone Marketplace) is the
service provided by Microsoft to allow users to browse and download
applications developed by third parties for their Windows Phone powered
phones. The Modern Style UI presents a panoramic view, where users can
browse items by categories, see featured items, and get details, such as ratings,
reviews, screenshots, and pricing information.

The Windows Phone Store was launched in 2010 along with Windows Phone 7
and by 2012, it already offered more than 100,000 available apps.

To submit apps to the Windows Phone Store, an annual subscription fee of $99
is required, which offers an unlimited number of submissions on the
Apps+Games section of the store.

Apps must be approved by Microsoft: a strict control is wielded on the contents
in order to forbid pornography, promotion of violence, discrimination, hate,
usage of drugs, and the like to be included in the applications available on the
Windows Phone Store.

For apps that are sold on the store, Microsoft takes 30 percent of the revenue (70
percent goes to the developer). Developers are paid only if they reach a set sales
figure, but above a revenue of $25k, the shares become 20 percent to Microsoft
and 80 percent to the developer.

Developing apps with Windows Phone

Apps and games for Windows Phone can be designed with Visual Studio 2010,
Standard and Express editions.

Windows Phone 8 offers full support for native C\C++ libraries, thus allowing
easy porting of Windows programs to Windows Phone 8. This also allows

developers to port iOS and Android applications, since much of their code can
be maintained, thus widening the range of available apps for Windows Phone.

Desktop games designed for Windows 8 can also be easily ported, thanks to the
full support Windows Phone offers to Direct X architectures, and HTML 5 can
be used to develop apps as well, depending on the features needed by games and

apps.

To specifically develop high performance games, XNA is the optimal IDE
Microsoft offers to developers to include the best graphics and audio for your
mobile games for Windows Phone.

There is also the Windows Phone SDK 8.0, which offers all the tools needed to
develop games for Windows Phone: editors, software templates, and the
Windows Phone Emulator 8 for testing your apps. The Windows Phone SDK
provides a stand alone Visual Studio Express 2012 edition for Windows Phone
or works as an add-on to Visual Studio 2012 Professional, Premium, or Ultimate
editions.

Testing apps on Windows phone devices requires a developer's account and a
registered testing device.

Remember that the development of Windows Phone 8 apps is supported only on
64-bit Windows 8 Pro or higher: Windows Phone apps cannot be developed on
Windows 7, Windows Server 2008, and 2012.

Developing a game for Windows Phone with XNA

To create a new Windows Phone project, follow the steps shown:

1. Navigate to File | New Project.

A dialog window that lists several project templates appears as shown in the
following screenshot:

S 00000000 0 e

Recent Templates l.NET Framework 4 - |Sor[: by: [Default | Search Installed Templates P |
Installed Templates

Type: Visual C#

e
5‘ Windows Phone Game (4.0) Visual C#

| 4 Visual G2
Windows
Web

Office
Cloud 1 i | Visual C#

A project for creating an XNA Framework

F— 4.0 Windows Phone game
Mg Windows Phone Game Library (4.0) Visual C#

Reporting

SharePoint l. i i | Visual C#
Sitverlight 2

Silverlight for Windows Phone E Xbox 360 Game (4.0) Visual C#
Test e

WCF E,@ Xbax 360 Game Library (4.0) Visual C#
Workflow hH

XNA Game Studio 4.0 ’;Q; Content Pipeline Extension Library (4.0) Visual C#
Other Languages =

Other Project Types o7 . . .
Databaze '%; \| Empty Content Project (4.0) Visual (3

Modeling Projects
Test Projects

Online Templates

Mame:

Location: - Browse...

Solution name: [] Create directory for solution

|| Add to source contral

The dialog window contains the following project templates:

o Windows Phone Game (4.0): This is a project for creating an XNA
Framework 4.0 game application for Windows Phone.

o Windows Phone Game Library (4.0): A project for creating an XNA
Framework 4.0 game library for Windows Phone.

o Windows Phone Silverlight and XNA Application: A project for
creating a Windows Phone Silverlight Application capable of
rendering graphics using the XINA Framework.

o Content Pipeline Extension Library (4.0): A project for creating an
XNA Framework 4.0 Content Pipeline Extension Library.

2. Once Windows Phone Game (4.0) is selected, type a name for the project
in the text box and click on OK.

A new dialog appears which requires us to select the version of Windows
Phone to target, as shown in the following screenshot:

Mew Project Options | =5

Select the Windows Phone Flatform you want to tanget for this game.

Target Windows Phone Version:

Windows Phone 7.1 v

3. Select the Windows Phone OS version and click on OK.

The following screenshot shows the features contained in the new Windows
Phone project:

Solution Explorer » 1 X

2| 2 [E| R
g Solution 'WindowsPhoneGamel' (2 projects)
s - WindowsPhoneGame1l
> [=dl Properties
4 | 7 References
43 Microsoft.Xna.Framework
43 Microsoft.Xna.Framework.Game
43 Microsoft.Xna.Framework.Gamerservices
A3 Microsoft.Xna.Framework.Graphics
43 Microsoft.Xna.FrameworkInput.Touch
43 mscorlib
A3 System
A3 System.Core
A3 Systern.Met
A3 System.Xml
A3 System.Xml.Ling
i Content References
|&] Background.png
i Game.ico
#] Gamel.cs
|| GameThumbnail.png
#] Program.cs
4 :uWiﬂdDWSF'hDHEGEmﬂCDHtEHtI:':DﬂtEﬂt:l
» [+ References

The properties control several aspects of your current project. They include
general application settings, debug settings, and additional project resources. The
Project Designer can be used to modify the values of these properties.

Many tutorials on how to develop apps for Windows Phone can be found on the
Internet. You can start your searches from http://dev.windowsphone.com/en-us.

http://dev.windowsphone.com/en-us

Java ME

Java ME is a platform designed for mobile devices and PDAs by Sun
Microsystems.

Although it is not used on today's newest mobile platforms, such as iPhones and
Android-powered smartphones, it is still very popular on low-end devices, such
as the Nokia's Series 40, and in general, on several million devices worldwide
that are Java enabled.

For the first decade of the 21st century, Java has been the most popular choice
for game development, as it was identified as the most convenient and versatile
platform to develop mobile games. It has been considered as a standard and was
backed by all major mobile phones makers, and still most of the present day
mobile phones are Java-enabled.

The reason why Java ME is so popular is that it is a free and open platform that
keeps the development costs low and provides all the necessary flexibility, while
support for developers is freely available.

Its highly portable nature, expressed by the sentence "write once, run anywhere",
ensures that a game written having a specific handset in mind will work with all
other handsets which are Java enabled as well.

Applications and games written with Java ME are stable and robust, allowing
developers to create the best performing mobile apps.

Its programming environment is especially suitable for developing games,
considering that Java ME apps can run both online and offline. And, in any case,
Java ME is supported by most of today's smartphones.

The usual problems with mobile games development, that relate to screen size,
memory availability, and app download size, can be effectively approached with
Java ME, thanks to specific development frameworks that detect the device
characteristics and provide enough flexibility so that the app itself can adjust.

Java ME is an industry-wide technology, with most manufacturers offering a
range of devices that support it. Your Java ME game will not only have the
opportunity to run on over one billion Nokia cell phones in use today, but it can
also reach over three billion devices which are still in use all over the world!

Though Java ME is losing a significant share of the mobile phone market due to
the proliferation of the iPhone, Android, and BlackBerry platforms, there are still
several reasons to consider this technology, the most important being that
development with Java ME is cheaper and easier, compared to the other
platforms.

Even if it can be said that it is a dying platform for mobile apps, and games in
particular, Java ME is still the prevalent supported platform in many parts of the
world, especially India, Middle East, and Southeast Asia, which are, as we
know, emerging and promising markets, as well as North Africa and South
America, the latter being a very profitable market for mobile games, too.

Developing games with Java ME

Mobile devices powered by the Java ME platform implement a profile called
Mobile Information Device Profile (MIPD). Profiles contain a configuration of
a restricted number of Java libraries, a minimum amount of classes needed for
the Java virtual machine to work.

The profile which is implemented on Java ME powered mobile phones is called
Connected Limited Device Configuration (CLDC), and it provides the most
basic libraries and virtual machine features to run a Java ME environment.

The CLDC, coupled with the MIPD, allows us to develop downloadable apps
and games that run on a very large number of cell phones and PDAs.

The MIPD basically contains a GUI, a data storage API, and a basic gaming API
that allow developers to build their own applications, called MIDlets.

The latest available MIPD version, the 3.0 specification approved on December
2009, includes several new features that enable Java ME developers to create
sophisticated and compelling mobile applications.

The MIPD 3.0 extends the capabilities of Version 2.1 with the following
features:

¢ Enables multiple concurrent MIDlets

e Enables MIDIets to run in background

e Enables auto-launched MIDlets and screensavers
e Enables inter MIDlet communication

Tightens specs to improve cross device interoperability
Improves the Ul for applications

Better support for devices with larger displays

Enables richer and higher performance games

There are several different ways and tools to create MIDP applications: code can
be written in a plain text editor, or one can use a more advanced IDE, such as
NetBeans, IntelliJ (with bundled Java ME plugin), or Eclipse (with plugins, such
as Eclipse ME).

NetBeans

NetBeans is an open source IDE to develop apps and games for Java ME-
powered devices. Applications can be developed from a set of modular software
components called modules and can be extended by third party developers.
Among its features, it includes the Update Center module that allows users to
download upgrades and new features into the running application, so that
reinstalling an upgrade or a new release does not force the users to download the
entire application again.

The latest released version of NetBeans is 7.2.

To create a new project with NetBeans, follow the given steps:

1. Start the NetBeans IDE.
2. Navigate to File | New Project.

The New Project Wizard will open. Expand the Java category and select
Java Application as shown in the following screenshot:

(I P

Steps Choose Project

1. Choose Project

Projacts:
F5

Categories:

- | & Java Apphcation

] Javafx =5 Java Class Library

(] JavaWieb % Java Project with Existing Sources

) JavaEE A% Java Free-Form Project

] Javacard

[JavaME

1 Maven

] PHP

21 Groovy

Ci cic++

1 MNetBeans Modules
2] samples

Description:

Creates a new Java SE application in a standard IDE project. You can
also generate a main dass in the project. Standard projects use an
IDE-generated Ant build script to buld, run, and debug your project.

|[mext> | oo Cancel Help

3. Click on Next.

In the Name and Location page do the following (refer to the following
screenshot):

1. Name your project in the Project Name: field, such as HelloworldApp.

2. Leave the Use Dedicated Folder for Storing Libraries unchecked.

3. In the Create Main Class field, type something like
helloworldapp.HelloWorldApp.

W New Java Application B EI

Steps Hame and Location

1. ChooseProject ProjectName: [HelloWorldApp
2. Mame and Location

Project Location: |C:\NetBeansProjects
Project Folder: |C:\NetBeansProjects\HeloWorkdApp

[Use Dedcated Folder for Storing Libraries

Diferent users and projects can share
the same compdation lbrares (see Help

far details)

[# Create Main Class [heloworidapp. HellowordApp

< Back Mt Fnish Cancel Help

4. Click on Finish.

Your project is now ready to go.

The Project window contains a tree view of the components of the actual project,
in particular, the source files and the libraries.

The Source Editor window contains a file called HelloworldApp with code.

Use the Navigator window to navigate between elements related to the selected
class.

O HelloWorldApp - NetBeans IDE 6.5

Eile Edit View MNavigate Source Refactor Run Debug Profile Versioning Tools Window Help

PEES DE [Emee T E DB B <
Pro. 4 x|:Flles |iServices || StartPage x| (61 HeloworldApp java x| [[(E) nelloworidapp.java - ¢ » x|
= & HeloworldApp -3 - = o © = Properties |
g BB QA%5E Pe Aulen & | |
= [helowsridapp 1 /* A i Faes (]
) 5 rieboWorldApp. java 2 * To change this template, choose Tools | Templ: File Size :
&G Test Packages T
f£ I_::m 5 * and open the template in the editorx. ;Mummi i |
-] 10K 1.6 (Default) a - =f Cormpide Classpath =
® IG@ Tast Libraries 5 Runtime Classpath CriDocuments and Se QE
| |Bost Classpath CFrogram Files\ava
(5] // TODO Explain what a package stmt does Ti ’ o gl
T package hallmrldapp;i
8
] fa*
10 * -
1Bk * Bauthor jollymor
12 *f
\pp.java - ax| 13 public class HelloWorldApp {
[Members view 14
= iy Heloworldapp - S
@ main(sringl] args) a0 /
18 * gparam args the command line arguments @
HelloWorldApp.java
17| - *f
18? public static veid main(String[] args) | 1
v
an Conminmcs manls smad el Yo A e B A8 2]
[&] Gl
723 NS |
| Output | Tasks = =]
D Description File Line Location |
[T] | #811T000 Explan what 3 package st does FeloWarldAge. ... |6 |-+ Hetaworldap/srefheloworld:
. .|
s (0 &8)[5:] = Ti |y
Save Al finished. é

No need to delve into further details here. The Web is full of good tutorials, if
you are interested in improving your knowledge of the Java ME platform,

starting with:

https://netbeans.org/kb/docs/javame/gamebuilder-screencast.html

https://netbeans.org/kb/docs/javame/gamebuilder-screencast.html

BlackBerry

For the sake of completeness, we mention here the characteristics of the
BlackBerry operating system. Though it doesn't offer the same commercial
opportunities as iOS or Android-based phones, with about eight million devices
worldwide, BlackBerry can be an interesting market niche, less competitive but
not necessarily less remunerative than the iOS or Android markets. Studies state
that the average revenue for a BlackBerry app is about $4000 per month, much
higher than average revenues for the apps developed for iOS and Android.

Moreover, Reasearch In Motion (RIM) (the company behind BlackBerry
devices) offers a guarantee that if a quality certified app doesn't make $10,000 in
the first year, they will pay up the difference to the developers. No other
platform owner company offers such a guarantee!

BlackBerry is a brand of smartphones and handheld devices developed by RIM.
The main features of these devices are the ability to send and receive push e-
mails and instant messages, while maintaining a high level security. That's what
made BlackBerry an optimal choice for companies that provide their employees
with smartphones for business use. They also share many features of other
smartphones, including media players, Internet browsers, cameras, and
obviously, gaming capabilities.

The OS used by BlackBerry devices is a proprietary environment developed by
RIM and designed to take advantage of their distinctive input devices: the track
wheel, the track ball, the track pad, and the QWERTY keyboard. The
BlackBerry OS also provides support for Java MIPD 1.0 and 2.0 (refer to the
Java ME section), thus allowing third party developers to create apps for this
platform.

A developer must have an account with RIM and be digitally signed in order to
guarantee his/her authorship.

There are several tools that can be used to develop games for BlackBerry, such
as the open source project GamePlay, that don't require developers to learn
entirely new skills to build apps for the platform.

With the BlackBerry 10 platform released in 2013, one can find many reasons to
consider this option, having the BlackBerry Play Book tablets in mind!

The BlackBerry App World

The BlackBerry App World is the service provided by RIM to BlackBerry
owners to browse and download apps for their devices. Launched in April 2009
and with fewer apps than the Apple Store or Google Play, the BlackBerry App
World offers all fundamental services provided by its direct competitors:
intuitive user interface to browse applications by category, the possibility of
reinstalling already purchased apps, several flexible payment options, and a
rating and review system for apps available for shopping.

Apps submitted to the App World must be approved by RIM and a fee of $200 is
involved in the submission process, which covers 10 submissions. Note that the
fee is refunded if the developer's account is not approved.

Developing games for BlackBerry

When getting to the game development for BlackBerry, there are two options
available.

The first is to build native apps using the BlackBerry SDK and its C++
framework. The BlackBerry SDK is aimed at the newest devices equipped with
OS 10 and to the BlackBerry tablet, known as the PlayBook. Being a framework
for native apps, it guarantees better performances, thanks to the full integration
with the specific APIs of the BlackBerry platform.

The other possibility is to use the Java SDK, or even better, the Java Plugin for
Eclipse which extends the Eclipse development framework. The main
advantage, for a developer, of using Java to create games for BlackBerry is that
MIDlets (Java applications) can equally run on any device powered by OS 7 and
on, thus widening the potential audience for their games.

Everyone interested in delving into the game development for BlackBerry can
research on the Internet, starting from:
e For native apps:

https://developer.blackberry.com/develop/platform_choice/ndk.html
e For Java MIDlets with Eclipse

https://developer.blackberry.com/java/documentation/overview 2006571 1

https://developer.blackberry.com/develop/platform_choice/ndk.html
https://developer.blackberry.com/java/documentation/overview_2006571_11.html

Summary

We have discussed what an operating system is and how it acts as the interface
between the hardware and software of a computer or a handheld device.

We mentioned the general characteristics and evolution of the operating systems
running on Personal Computers and examined in detail today's most popular
mobile OS (Android, iOS, Windows Phone, Java ME, and BlackBerry).

We also provided the basic references to approach the development and
distribution of apps and games for mobile platforms and gave a general
description of the best tools to develop for each of them.

In the next chapter, we will discuss the working pipeline of a typical indie
mobile team and provide a description of the main roles. We will also describe
the tasks each role is accountable for, the most popular tools to accomplish these
tasks, and provide information on the academic background expected for each
role.

Chapter 2. The Mobile Indie Team

Assembling a good team with the right people is the first step towards the
production of a well-done title. The process of videogame development is a
pretty tough one and it requires talent, skill, patience, and an iron will.

This is especially true for an indie team, because as a team of people who
usually don't work under the constraints of a solid company, they can easily
break up during the development process for the most unexpected reasons!

When choosing the members of your mobile team, you'd better look for people
who have both talent and the ability to effectively cooperate with other people to
create the perfect title, in order to trigger your career in the gaming industry.

The following chapter provides a detailed description of the key roles to cover in
a mobile indie team, the tasks they are responsible for, the skills they need, and
the academic courses that can help them get those skills.

In this chapter, we will cover:

A presentation of the mobile team and the key roles to cover
What it takes to develop mobile games

The game designer

The game artist

The programmer

The game tester

The game producer

The sound designer

A matter of size

One of the most interesting aspects of mobile game development is that it offers
opportunities to small teams to effectively get into the competition. From a
certain perspective, mobile game development recalls the age of early computer
games, when a team of few members shipped games that could gain worldwide
popularity. Electronic Arts got their start by publishing indie developers'
products.

Generally speaking, mobile games tend to have a limited scope when compared
to common high budget/high quality (AAA) console or PC titles. Mobile games
are designed to be played in small chunks and rely on simple game mechanics
that require fewer assets, less programming, and shorter testing and debug time.
This means that mobile games require less people for development and can be
developed by teams of one or few individuals for every key role.

A good reason to keep the mobile dev team small has very much to do with the
progress. Working progress can slow down either if the team is too small or too
big. With a limited amount of work and too many people on each role, the
responsibility is shared among too many members and the progress slows down
because nobody feels really responsible for what needs to be done. The more
people on the team, the greater the chance of miscommunication and wasted
effort.

Another important reason to keep the team small is that the larger the group, the
higher it costs! Though mobile gaming can become a very profitable niche, the
low price of such products means that you usually don't make millions out of a
single mobile game and it is imperative to keep the development costs as low as
possible.

Key roles in a successful team

Though it is very important that each member has a well-defined role, when
dealing with small teams it is likely that one member will have multiple roles
and that those roles are shared between more than one member.

This is one reason why small teams usually offer better career opportunities to
those who can cover several roles. Working in a small team, where people are
required to work on different aspects of the game at the same time, they have the
opportunity to show their different talents and thus to advance their careers. It is
also a good opportunity to learn new skills and expand their overall expertise.

Generally speaking, the key roles that need to be covered in a mobile dev team

are: Design, Art\Modeling, Programming, Sound, QA\Testing, and Production.

These are all key aspects of a game development and each of these roles will be
explored in the following sections of this chapter.

The following figure represents the average subdivision of total cost for the
production of a game among the different departments (source:

gamecareerguide.com/).

CONTRACTORS BY JOB FUNCTION

Art 26%

Audio 9%

Design 11%
Production 8%
Programming 15%
QA 17%
Writing/Scenario 6%
Other 8%

http://gamecareerguide.com/

What it takes

Game development is a lot of work! There is a huge amount of things to do even
to make simple games. Before we delve into the details of each role in a team, it
is worth saying something about the cross competencies that each individual
should have for that team to be effective and reach its goals.

Commitment

In videogame development, (almost) any element of the game needs to be
created from scratch. Every pixel requires someone to draw it, any action
performed by a character needs someone to animate it, any event needs to be
coded, any sound effect must be composed, and the list is long. It is not by
chance that the inclusion of digital contents in movies led to a large increase in
cost.

Cohesion

Any activity that is shared among different people requires the group to hold
together on the common goal, especially in a small group where each person is
responsible for a key element of the project.

To develop a game requires weeks, or months, more reasonably. During this
period, any sort of problem that arises can hinder the course of the project: the
code doesn't work as expected, graphics mess up when imported in the engine,
design questions with no clear answers, for example.

If all the team members don't support each other and cooperate in such tight
spots, the project can easily turn into a failure, with the consequent loss of time,
money, and more important, team morale. When things go bad, you simply need
the right people around you, who can provide constructive criticism and help
team mates to make the best use of their talents.

The first experience of one of the authors with an indie team risked to turn into a
complete failure, with the consequent loss of time and money, when the
professional we were supposed to work with decided to quit. When that
happened, we all felt very bad and our morale was as low as it could be. If it
wasn't for our friendship as a group, we couldn't have reached the goal to make
that game anyway!

Software development methodologies

Videogames are software, of course, and software has proven processes and
methodologies that increase the chance of reaching one's goal while minimizing
waste.

There are several methodologies to develop a software, each one with its own
pros and cons. Agile software development is a very popular software
development methodology among today's game developers, based on an iterative
and incremental approach, where teams periodically examine the short term
progresses of their work and set new short term milestones according to their
results. You can find resources on Agile development at

http://agilemanifesto.org/.

http://agilemanifesto.org/

Discipline

When developing a game, there is never enough time. The iterative nature of the
creative process implies that it is very likely that the project's initial schedule
suffers delays and missed milestones.

It is thus very important that each team member is well organized with his work
and is able to advance his work day by day. This is especially important when
dev teams work remotely, which is often the case with indie projects.

People who have freedom to work on their projects as they please tend to
postpone work for other activities, with the consequence that project deadlines
may be delayed leading into a disaster.

Be sure that the people in the team are reliable and will take their responsibilities
seriously.

Professional training

Whenever possible, look for people who have degrees in their field. There are
many skilled people who are self-taught, and experience is what counts more in
the end. Still, a good formal training helps people learn fast and overcome their
limits due to lack of experience.

A general rule is that, when building up the team, people covering the key roles
should have previous experience working on a project in the same or a similar
position. They should at least have already worked on a true project, working in
a team. The reason for having experienced people in key roles is that they can
provide reliable previsions when drafting the schedule of the project. They know
what they can do and the time it takes to do it. Inexperienced people, on the
other hand, could underestimate their assigned task, with the result that the
project deadlines fail and a new schedule needs to be made.

It is also true, however, that once the key roles are assigned to experienced
people, hiring talents, even with few or none experience, can provide an
invaluable resource for the team on the long run.

Passion for games

Well, it is very easy to understand that to develop games for a living, it is
important that those who are part of the team love videogames. We have spoken
about the high level of commitment required to achieve important goals and the
need to make a lot of personal sacrifices. Out of our personal experience, it is
very likely that a brand new dev team interested in developing videogames will
be asked to do other things in order to be able to develop games, such as
working on web sites or other kinds of non-gaming apps to support their
business.

If these people are passionate about developing games, it will be easier to
commit themselves to things which they don't really like doing, having their
main goal in mind. Otherwise, they could simply give up, for working takes
away the most important resource from people: their time. Indie game
development is an opportunity to turn a passion into a profession, but only if you
can give the time it takes!

The roles in an indie mobile team

What follows here is a review of the main roles required for an ideal mobile
indie team. For each role, we provide a description of duties, skills, personal
traits, and the academic formation.

We don't mean that this list of roles is a requirement for any team; it is possible
for people getting into the game industry to have different backgrounds.

Also, we don't mean that each role represents a person. There can be people
covering more than one role, as it is likely that more people will share one role.

The game designer

The game designer defines what happens in a game and what the player does to
progress through it. He is responsible for turning a game play idea into a detailed
design document, which is constantly updated and used by all other team
members as a reference guide to develop their part of the project.

During the pre-production phase of a game, the designer is responsible for
defining what the game is about, its story and the game world, what the game
mechanics are, which features the game will implement, what its Unique Selling
Points are, and its main competitors.

This information flows into the pitch document of the game, a sort of
presentation document of a game-to-come, usually presented to potential
investors to get the approval on the project, as for example, with the videos on
Kickstarter. We will address the pitch document again by the end of the book,
when we will create one for a mobile game.

During the production phase, the work of a game designer consists of checking
that all the team members work towards the realization of the vision he has in
mind. With the producer, the game designer acts as the coordinator of the project
and a living wiki. Whenever a team member has a question on how a specific
piece of game should work or look like, he will look to the game designer to
provide the answer. Be ready for that and know your game!

Designer at work

Game design starts with a good idea. It can be a nice game mechanic, the idea of
a cool character or a piece of a story: anything can provide the inspiration for a
good game. A popular indie game called Braid finds its premises in the
consequences of a bad love delusion.

The next step is to convey this idea to the rest of the team in a way that ensures
everyone understands what the idea is. This sounds simple, but is far from it. A
game designer needs a wide variety of skills as well as good ideas. Good ideas
are plentiful, everyone has a few. The trick is getting something built that
somewhat resembles that good idea. The main tool the designer uses to convey
his/her idea to the other members of the team is, as we have already said, the
design document.

The designer should have a working knowledge of the team's skills, such as art,
sound, programming as well as a background in playing games. A designer
needs the ability to analyze game play and to articulate what works and what
doesn't work in a game.

Since mobile game development is involved here, the designer should also have
a thorough knowledge, from both commercial and technical perspectives, of the
mobile platform: trends, technical advancements and solutions, successful genre
and control schemes, profitable business models, strengths, and weaknesses. We
expect to provide you with such fundamentals within this book!

Designer tools

There are several tools the designer is expected to be able to use to accomplish
his/her tasks.

¢ Pencils and paper: Any game mechanic description should begin with a
sketch of some sort to explain how it works. If you can't sketch the idea for
a game mechanic, it probably isn't a good mechanic.

e Text editors and software: To create mind maps and schemes, text editors
and software are a strongly recommended requirement, as they are
necessary to create documents and presentations that can be shown and
shared with the other team members to better communicate the ideas behind
a game and throughout all its development process. Spreadsheets with data
and formulas are included.

e Image editors: These are necessary as well to create schemes, fake
screenshots, basic level sketches, and any other reference image that can be
helpful to convey the idea the designer has in mind. A design document
with no images is not a good one.

It is also very likely that the game designer is required to create the so-called
white boxes for the game levels, at least the main ones. In such cases, the ability
to use 3D modeling software to create geometries becomes very important, as
well as an advanced knowledge of the most popular game engines to create basic
terrains and the relevant geometry of a game level.

The practices of game design

In a small team, the designer can be accounted for practically implementing the
specific aspects of a game. Depending on his/her background, he can help the
programmer with additional coding and scripting, he can be in charge of level

design or help the artists with graphic assets, he can take care of updating a
developer's blog for the project for communication purposes, and he is
responsible for designing and managing testing sessions of the game during its
development.

Being in charge of so many different tasks, a game designer needs many other
skills to accomplish all of them. Some of these skills are acquired during high
school studies, while others require academic studies or experience coming from
confronting specific working situations, so it takes time to develop them.

Communication: The number one most important skill for a game designer
is communication. Being able to talk to a programmer, artist, writer, tester,
sound designer, producer, marketer, and financier in a way they each
understand is crucial to the success of your project.

Technical writing: Formal technical writing skills are also very important
for the game designer. Grammar, punctuation, and spelling are essential for
creating a clear design document. The design document is the source your
team will go to when they have questions. Keeping it easy to read and up to
date is crucial for the success of your project.

Drawing: A designer should be able to draw at least a bit. Mocking up
screens is essential for the design document. Knowing how to use
Photoshop and/or Visio will aid the designer greatly. A picture is worth a
thousand words, especially in game design.

Programming\Scripting: A designer should have an understanding of the
principles of programming. You don't need to be able to actually write
code, but it wouldn't hurt. Knowing the basics of programming will allow
you to format the information in your design document to best serve the
programmer.

Scripting languages: Familiarity with scripting languages, such as Java or
LUA, will allow you to directly interact with the game engine your
programmer has built, saving time and money. You can also test your own
ideas without using up the programmer's work cycles.

Math: A designer should know math, at least to algebra level. When boiled
down to the basics, games are a set of math problems. This sounds boring,
but go back and look at the paper and pencil version of Dungeons &
Dragons. It's all statistics!

Finance: The game designer must understand the costs of the decisions
they make. Changing direction mid-project can cost a lot of money/time.
Prototype early and often to make sure the design works.

e Psychology: Yes, games punch some very basic human feedback buttons,
such as reward behavior, aversion feedback loops, and the like.
Understanding what these are will allow you to build a truly addictive
experience. Yeah, that sounds bad, but it's what we do!

Academic formation and personality

How does one learn how to design games? A good place to start is by using
pencil and paper, a deck of cards, a chess board, poker chips, whatever is at
hand. Take an existing game and modify it. ForAC example, tick tack toe is an
interesting game to start with. Fundamentally, it's a broken game, since the
player who moves first will always win unless they make a mistake. Try to think
of ways to fix that: a bigger board, different types of moves or pieces, add dice
and/or cards, and so on. A game designer is a person who asks himself how
things work and how their behavior can be described by rules.

As Raph Koster (a brilliant game designer) once wrote:
"Games are not their graphics or their frame rate, they are their rules.”

A good rule of design is to take the action the player will do most often and
prototype it. If your testers enjoy it, perfect it and set it aside. Then define the
second most frequent action the player will do, find how it will complement
action #1, implement and test it. Continue on to action #3, repeat the process.
For a first time project, it's probably best to lock down the design at action 3-5.
Every action added will significantly increase the complexity of testing and
debugging.

A designer must be open to criticism coming from other team members and
testers. Ideas come and go and it is very important for a designer to never feel
too attached to any of them.

Finally, if you want to be a designer, you need to have a life. Go out and get a
liberal arts degree, take up a sport, make lots of friends, and have adventures. All
of these things will enrich your life and give you the material to make great
games.

Most videogame designers have a Bachelor's Degree in Computer Science, Arts,
Computer Engineering, or Experimental Psychology.

Though not strictlv reauired. a strong Universitv background can help vou

develop those skills that can get your first step into the gaming industry.
More important, a University background can help you develop that specific
forma mentis that makes you willing to keep learning as you progress in your
career. That is really important when your line of work has to do with

technologies and habits that change so fast, as in the world of game
development.

In the last few years, several universities and private schools worldwide have
started offering various courses in game design that teach the basics of this
extraordinary discipline.

No game is ever done!

You will always find things you want to change. It is the nature of the beast.
Usually you just run out of resources and say, "it's good enough". If you have
ideas on how to improve the game, file them away and save them for the sequel.

More about the role of game designer and his/her tasks can be found at the
following links:

http://www.raphkoster.com/2012/09/26/mailbag-i-want-to-become-a-
designer/#more-4280

http://penny-arcade.com/patv/episode/so-you-want-to-be-a-game-designer
http://www.raphkoster.com/2012/09/26/mailbag-i-want-to-become-a-designer/#more-4280

The game artist

The game artist is responsible for creating in-game art: characters, animations,
game objects, backgrounds, environments, and game interface.

No need to say, artwork is very important in a videogame! Graphics are the most
prominent characteristic of a videogame and they are also important from a
marketing point of view. Most of the time, customers are attracted to a title by its
visual characteristics. When judging a game from its preview, if gameplay is
unavailable, the game is judged solely on its visual appeal.

In the early days of computer videogames, a single artist could cover all the
graphic needs of a game. As time passed, it required more people to be involved
in the creation of the graphics for a title, and this lead to the creation of groups of
artists as part of the development team.

In a mobile team it is very likely that graphics will be made by two to three
people with a separation of duties, such as one artist on 2D graphics (concept,
sprites, game interface, and textures) and one or two on the production of 3D
assets (models, animations, 3D environments, and lighting).

Brushes and canvas

Game artists need several tools. First and foremost, an artist must be able to
draw and sketch, using pencil and paper. Once the sketches are approved, there
comes the time to create real assets for the game using dedicated software. The
most important tools for a game artist are image editors, such as Photoshop,
Paintshop, Illustrator and modeling software, such as 3D Studio Max, Maya,
Blender, and Zbrush. We will talk about them in the chapter on game graphics.

Forms of art

The production of graphic assets for games involves many different activities.
We will delve into the details of the operations related to the production of
graphic assets for mobile games in the next chapter of the book. For now, let's
just have a look at the main duties of the game artist.

2D graphic assets

The 2D graphics are the foundation of any game. Videogames were born 2D and
2D graphics are always required, even for 3D games. The following list
describes the main fields of 2D graphics for games:

Concept art: This consists of sketches, storyboards, and free hand
drawings that reproduce key aspects of a game, such as the main character,
the villain, relevant game environments, and crucial game mechanics.
Concept art is mainly used to convey the look and feel of a game: the
ability to convey maximum content with minimal complexity is a key factor
for creating optimal concept art.

Sprites: These are 2D representations of any game object of a title. The
ability to draw convincing characters and objects using few pixels is a talent
that is fundamental to those who want to be proficient with 2D assets
creation.

Backgrounds, terrains, and tilesets: These are the construction blocks for
any bidimensional game. Tilesets, in particular, are very important, because
they save system memory for your game.

Interface: Any game, whether it is 2D or 3D, needs an interface to provide
the player with relevant information during gameplay (score, lives and
energy, ammo), as well as menus and presentation screens for the game.
The artist takes care of creating the assets for the game interface.

Textures and materials: 3D objects and characters need to be improved
with 2D graphic assets that add details to a model and make its surface
interact with the lighting environment of the game engine. The artist is
accounted for creating these assets.

The following figure represents a concept design sketch for a space ship, taken
from the material for a space shooter made by one of the authors:

Concept ships

3D graphic assets

The advent of 3D and the improvement of mobile devices hardware offer the
opportunity to mobile developers to create beautiful 3D titles for the mobile
market.

The following list describes the main fields of 3D graphics in games.

Models: 3D characters and game objects must be modeled with dedicated
software. Actual games and mobile games too tend to make extensive use
of 3D graphics, so it is very important for a game artist to be proficient with
3D modeling and for a team who wants to develop mobile games to have at
least one guy good at that.

Animations: Animations for game characters are usually made with the
same software used to model them. Characters' animation is crucial for a
game's appeal, because everyone is good at evaluating if an animation is
good, especially for humanoid characters, thanks to their experience of the
real world. An inferior animated character immediately stands out from the
rest of the game to ruin the player's experience.

3D environments: These are crucial elements of a polished game; it is very
important for a game artist to be capable of depicting believable worlds that
make the player feel immersed in the game action.

Lighting: Though mobile games don't usually rely very much on player's
immersion, the use of light and colors is very important to produce nice
game levels. It is thus important for a game artist to have at least some basic
understanding on how to use light to convey emotions.

A typical mobile game development team can rely on just two or three artists.
Consider the previous list as a reference to evaluate candidates for the position
of an artist, based on their proven skills.

Art schools and creative types

The artists should study the basics of fine art: art theory and history,
composition, color and form, and space and light.

Art schools and academies are the institutions of choice for those interested in
becoming artists. These are schools that provide their students with the necessary
courses on life drawing, graphic design, color theory, photography, animation
and technical drawing, anatomy and the dynamics of movement, among others.

Naturally, a good art school is only the first step. Then it is necessary for these
people to practice as much as they can and get proficient with their tools to
develop real assets for games.

As for the artist's character, there is no need to explain that an artist has a
creative nature and as such, creative types may not be comfortable with
discipline. On the other hand, artists who want to work in the videogame
industry need to balance this aspect of their personality to complete their daily
tasks.

They must be analytical as much as they are creative, and fight their innate
tendency to chaos to allow the other team members to work effectively with
them and keep up with the project schedule.

Finally, artists must be capable of putting their creativity at the game's target
audience service, sacrificing their personal taste, and possess a thick skin to deal
with the daily criticism that their creativity will undergo during the development
of the game.

More about the game artist and the creation of graphics for games can be found
at
http://www.gamecareerguide.com/features/413/game_art_and_animation_an_intr

http://%20http://www.gamecareerguide.com/features/413/game_art_and_animation_an_introduction.php

The programmer

Programming, and videogame programming in particular, can be pretty similar
to performing magic, in some ways.

It has to do with crafting formulas learned from books, a knowledge hard to
grasp and to understand, that allows those who are initiated to make anything
they wish happen on a computer or other device screen!

Out of the fantasy metaphor, the programmer is the guy who takes care of
coding things that happen in a videogame, the one who turns the math and logic
behind it into commands and functions and he is probably the most important
professional in a videogame team. You can have the most appealing design in
the world, the best graphics and sounds, but without someone coding this stuff,
your game simply won't exist!

In the early days of videogames, when games were nothing more than geometry
performing on the screen, the programmer was the team, as he took care of
design and artwork too.

As the complexity of games increased, programmers began to focus on just
coding. Over time, different kinds of programmers became necessary and now
we have specialized roles, such as lead programmers, engine\physics
programmers, Al programmers, and gameplay programmers.

A mobile team, on the other hand, will hardly have more than two people taking
care of coding. The team's game designer is more likely to help the programmer,
if not with hard coding stuff, at least with scripting game events.

The programmer's kit

The basic tools of a programmer falls into three main categories: coding
languages, Integrated Development software, and Version Control Systems.

Coding languages are a topic that could cover entire books by itself. Packt
already offers several books on the different coding languages and their
characteristics; we suggest referring to these books for an in-depth analysis on
the subject.

Generally speaking, C++ is the language of choice for game developers. Any
ideal candidate for the programmer position in a mobile game dev team must be
at ease with such a language and have developed some kind of project with it,
even as an indie game or some school project. He must be proficient with
concepts like destructors, classes, inheritance, constructors, and constants.

Integrated Development Environment is software that allows you to develop
code for projects and games. The development environment of choice for C++ is
Microsoft Visual Studio, a professional tool that offers everything you need to
produce high quality coding, including a code editor, debugger, several
development tools to design GUIs, web apps, classes, data schemes, content
exploring tools, and much more useful stuff.

Game engines may have their own built-in coding IDE, for example, Unity 3D
now comes with a tool named MonoDevelop.

A true IDE is not even always necessary. Many coders, especially when dealing
with scripting languages, such as UScript, are happy enough with text editors,
such as ConText, which offers some basic functions of auto indent and text
aligning according to a given set of available coding languages, recognized by
the software.

Version Control Systems are software used to manage the changes in documents
and computer programs. These software cover a strategic role when more than
one person work on the same part of a project; as it is usually the case for
programmers on a game.

GIT is one of popular, free, and open source Version Control software which
you can use for your projects. You can find it at http://git-scm.com/.

http://git-scm.com/

Coding departments

The mobile team game programmer has several duties to attend to, mainly
because he basically is in charge of everything involving coding. The list
includes, among others:

Game engine\Physics programming: The game engine consists of
developing a framework of some sort that can effectively manage
everything that makes a game what it is: graphics, audio, input and controls
system, data saving, networking, and anything else that is necessary. Since
there are already excellent game engines today, such as Unity 3D, Corona,
or the Unreal Engine, the mobile programmer very rarely needs to create a
game engine from scratch.

Physics: Physics simulation is a very common feature of today's 3D
videogames. Game engines include a plugin to manage physics and so-
called rigid bodies (game objects subjected to physics). A coder is hardly
requested to develop a brand new physic engine, except when he's
requested to develop the game engine itself.

Artificial Intelligence: As a general statement, mobile games generally aim
to be not too challenging , so as not to frustrate the player, thus they rarely
rely on sophisticated Al algorithms. The smaller scope of mobile games
implies that Al programming for such games may be considered less
problematic than that of popular AAA titles, in many ways.

User Interface: The User Interface of your game will strongly affect its
appeal to players. Touch controls must work as expected, they must be
responsive, and the information displayed on screen must be clear and well
displayed. By ensuring this is so, you improve the chances of selling your
game.

Network: With the outbreak of social networks and the demand for sharing,
no mobile game should lack a feature that allows people to upload their
scores on public online leaderboards or share their results with friends.
Moreover, the free-to-play business model that is so popular among today's
developers requires a reliable data exchange dynamic between the game
and the servers accounted for the service. Most of all, the game-server
communication must be hack-proof and trustworthy. Network programming
is so important that it is considered one of the hardest and most challenging
aspects of game programming in general.

Learning to be a programmer

Exceptionally talented people apart, programmers will typically have a degree in
Computer Science or Engineering. They need a very robust knowledge in linear
algebra and mathematics, both in 2D and 3D space. Vectors, rotations, distances,
curves, and matrices must be their daily bread.

They need to know several coding and scripting languages, such as C\C++, Java,
and LUA, because the more experience they have with game engines and their
scripting languages, the easier it will be to get hired by a team. Programmers
also need to know about efficient programming, because efficient code
optimizes performances. Code that provides consistent performances on both
high end and low end devices can be a key factor for the success of your game!

They must excel at problem solving. Whenever a game designer depicts a game
mechanic, he is actually defining a problem for the coder to solve. The best
problems are those which don't have a single solution, so it is very important that
a game programmer is solid with analysis and is able to define a set of potential
solutions before choosing the one which seems better.

As for their personal characteristics, the times of the weird, introvert guy who
codes alone in a dark room are long gone. Efficient software development and
teamwork relies on communication, it is mandatory for a good programmer to be
able to meet with the other team members to correctly address problems and
define an optimal job schedule. As a fact, the most popular game development
practices, such as Agile development, require team members to continuously
interact with each other.

A programmer should also be in constant thirst for knowledge. The coders with
30 years experience will tell you that they are still learning, for game
programming never reaches its end point: new technologies arise, new
methodologies become popular, and new languages become available. Most of
all, when something is new, it is very likely that no one can help you to
understand it. You need to become a disciplined self-learner if you want to be a
cutting edge programmer!

More about videogame programming and the role of game programmer can be
found at the following link:

http://www.gamecareerguide.com/features/412/game_programming an_introduc

http://www.gamecareerguide.com/features/412/game_programming_an_introduction.php

The game tester

The game tester is the member of the team who takes care of checking that the
game works as expected and doesn't crash, that controls are clear, intuitive, and
effective, that game mechanics are consistent, that the game logic works
properly, and that gameplay is fun.

Game testing can be called into play at different moments during the
development. As a general rule, a game should enter its testing phase as soon as
a prototype is available. There is no better way to understand if a game mechanic
is a good one than by asking someone to try it and provide feedback.

It is mandatory that the tester is not a person who's developing the game,
because the objectivity of the tester's opinion is a crucial element in any stage of
its development, and in the early stages in particular. Generally speaking, the
cost of correcting a mechanic is proportional to the time that has passed since its
implementation.

The thing that should be immediately clear, especially to our younger readers, is
that testing a game doesn't mean that people are paid to merely play it! Sure,
they need to play the game to test it, but finding and reporting bugs has little to
do with playing games. A good tester must be able to describe the bug in detail
and explain how it can be reproduced to help the development team to identify
its causes and correct them.

That the testing is a low entry level job in the game industry, is just half the
truth. As we will see during the course of this section, a good tester requires
competency, and exceptional communication skills. But it is also true that if you
cannot prove your talent in art, programming, or business administration with a
strong portfolio or work experience, then starting out as a full time tester for a
big game developer or a team is a very good way to kick-start your career in the
game industry!

The tools of deconstruction

The main tools for a mobile game tester are mobile phones and their interfaces,
mostly touch interfaces and gyroscopes. The tester thus needs to be at ease with
mobile devices and their features to test mobile games.

During the early stages of development, it is very likely that testing will be
accomplished on emulators, software that approximates the functionality of a
mobile device on a PC for testing purposes. There are several reasons to use
emulators in the early stages of development. One is that sometimes application
development involves the use of scripts that can be dangerous to run on actual
devices, because they could destroy some phone functionality or lead to a break
of terms of agreement with an operator. Another is merely that the actual devices
may not be available.

On the other hand, the fact that a game works on the emulator doesn't mean that
it won't have problems when running on the actual phone, due to the fact that, as
we said, the emulator only approximates the functionality of a phone, it's not the
phone itself.

Another problem with emulators is that, since they run on PCs, they don't allow
testing the touch interface of the phone. Most of the times, touch commands are
replicated via the mouse, which means, for example, that multitouch
functionality cannot be tested at all. At some point, a game needs to be tested on
the real devices it is meant to run on! More on the practices of game testing will
be seen in Chapter 9, Prototyping.

The following screenshot represents a screenshot from a standard software
debug report:

Bug Reporting

Related Tasks

Date and Time: Select a value...

* - Denotes Required Field

Description: *

Emai: *

Priority: * 'Select a value... B
Reproduchiity: * Select a value... i-'

Aspects of game testing

There are several aspects of a game that need to be tested and different game
genres require different testing methodologies. A mobile game tester must
accomplish specific tasks that depend on the distinctive characteristics of mobile
phones and handheld devices. Among them are the following:

Functionality testing: This aims to look for general problems with the
game or its User Interface, in order to check for issues regarding stability,
game mechanics, and glitches (game asset failures).

Compatibility testing: This is meant to check that the game works with
different hardware and software configurations. It is a very important
practice for PC games and for mobile titles in particular. It is crucial to test
the game performances on low end and high end devices to check them.
Localization testing: This checks that all in-game text and speech are
correct in titles that are shipped in different languages. There is no need to
say that, to be a localization tester, you need to be native in the language in
which the game must be translated and at least fluent in the original
language of the game.

Stress testing (monkey testing): This is meant to check how the
application responds to chaotic and unpredictable events. Mobile phones
are subjected to several kinds of such events: incoming calls and messages,
updates, undesired button presses, screen locks, automatic standby, and so
on. It takes a lot of time to carry these tests over, especially if they need to
be repeated on different devices.

Compliance testing: This is required to check if a game meets standards,
license agreements, and terms of use that are specific for each developing
platform. To ship a game on the Apple Store, for example, it must have a
unique name, refer to a certain category, must provide a link to the
developer for customer care issues, it must not contradict the Human
Interface Guideline, and so on. All these aspects are the responsibility of the
tester.

Beta testing: This is done during the final stage of development; it refers to
the first publicly available version of a game. Public betas are effective
because thousands of fans may find bugs that the developer's testers did not.
Mobile games don't usually go under beta testing though. It is a very time
consuming process and it needs licenses to be exchanged between
developers and testers in order to allow their devices to run the tests. We
mention this practice here mainly for the sake of completeness to describe

the role of the game tester.

Skills of a professional player

A tester first of all needs exceptional linguistic skills, both written and spoken, to
be able to write clearly and in concise ways. He must be proficient in writing
clear algorithms that exactly explain how a series of gaming actions determine
an in-game bug, and that describe that bug in detail. Getting used to explaining
hard\technical stuff to not-proficient people is a good way to improve these
skills.

There are also several kinds of tests that a potential tester can be asked to fulfill
in order to be considered for a tester position, such as the paper clip and the
building block exercises. You can search on the Internet to find out more about
them.

The game tester needs to be good at any kind of game and must be able to play
them professionally at any difficulty setting. Game content may vary depending
on the difficulty, so the tester needs to be capable of beating games in conditions
most players can't. He also must be very proficient with installment and update
procedures on different devices and operating systems, in order to check the
accuracy of system messages text.

Being proficient in two or more languages, written and spoken, is definitively an
advantage, because many tester positions, especially entry level ones, are
available for localization testers. Showing the right attitude as a localization
tester can give a chance to more desirable functional testing openings within the
same company.

A tester must be a very sharp observer and must demonstrate exceptional
attention to detail. He needs to be like some kind of bulldog that never gets tired
of repeating a game sequence, until he knows for sure what happened in a
specific game situation and why. He must have an iron will to keep playing the
game again and again, examine the same part over and over, trying everything
that can be done in order to trigger any outcome and thus, thoroughly test any
fold of the game logic, even after 18 hours of playing the same game. At the
same time, he must be an excellent lateral thinker, because he needs to force
himself to think out of his own mental schemes in order to exploit all the
opportunities offered by the gameplay of the title he's working on.

Localization testing requires a great attention effort, because with speech and

writing, we have several cognitive mechanisms that tend to automatically correct
errors, such as repetitions and typing errors. You must force yourself to always
put all your attention and resources at maximum levels to such cognitive biases.

One example of tester endurance and patience was during the beta test of
Faceball 2000 for the original Gameboy. It was the only multiplayer first person
shooter for Gameboy. We handed a build over to a colleague's four year old son
who dived right into the game. The boy came back a while later, saying he was
stuck. Indeed he was in a room with no exit. Upon further analysis, the boy had
been running into a corner where two walls met, over and over. Eventually, he
popped through the intersection between the walls, into the interior of a pillar.
None of the other testers had tried this.

University of Gamestop

Differently from the other roles in a mobile dev team, the testers are not
expected to achieve a specific academic formation to accomplish their tasks. For
entry testing positions, a high school diploma is enough.

Instead, we could say that games are the school of choice for a tester. Having
played tons of them, on different platforms, genre, and input devices is a must.
The more games and gaming devices a tester has experience with, the better he
is at playing them and at fully exploring their features, in order to find out what
doesn't work as expected.

It is also important for a tester to have a glossary on essential gameplay and bug
reporting definitions. Terms such as alpha, beta, QA, gold master, and bug
definitions are much appreciated by those who decide if you are worthy of a full
time tester position.

As a professional player, the game tester needs to resist the temptation of playing
for fun to experience games from an objective perspective. For a tester, playing
is not fun; it is a means to accomplish his/her job! He is requested to play games
regardless of whether he likes them or not.

There is a very interesting and detailed article about the role of the game tester
that we suggest you check out at the following link:

http://www.sloperama.com/advice/lesson5.html.

http://www.sloperama.com/advice/lesson5.html

The game producer

The producer is responsible for keeping the project on time, in budget, and top
quality. The term producer was introduced by Trip Hawkins to Electronic Arts in
the 1980s. His vision was to bring some of the qualities of music and video
producers to the video game industry. Today, a producer manages schedules,
costs, and resources, keeping the team on track. The producer will take the
design document and build a timetable with milestones, as well as a list of assets
needed to complete the game. He is also responsible for getting what the team
needs in a timely manner.

Typically, the producer is the liaison between the team and any corporate
entities, such as a publisher, marketer, and financier. This may involve
negotiating contracts, licensing, and the like. The producer coordinates the
actions of the dev team to hit milestones, he checks the quality of work, and
manages the testing team. He will oversee any localization that is needed.

Even if no third-party publisher is involved in a project (as it usually is for a
mobile indie team) the producer covers a vital role for the success of the game.

Indie development is subjected to the most unexpected events: other paid jobs
could take time away from game development, money could be scarce until the
game is shipped, the game could fail for some reason and not provide income,
team members could become undisciplined if they are not hired with a contract,
difficulties could arise when working remotely if an office for all team members
to work together is not available, and so on. If the producer can deal with such
issues, only then can an indie team can reach its goal of making games for a
living. The producer should be prepared to live in crisis management mode: he is
the chief fire fighter and train's the engineer, keeps the project on track by
fighting fires as they arise and preventing them as much as possible.

Keeping things organized

A good spread sheet or database program will help with this task. Microsoft
Excel and Filemaker both can serve in this purpose. Another option is to use a
project planning program, such as Microsoft Project. If you are working
remotely, with team members in different locations, be sure to pick a software
package that allows you to publish to the web.

Filemaker also provides web hosting with their server software. Both Filemaker
and Project will require you to set up your own host server. There are pre-
configured hosting servers, such as FMGateway.com, that provide complete
hosting services for a monthly fee.

Another inexpensive solution is to use a spread sheet in MS Skydrive (formerly
Windows Live) or Google Docs. They are free, but lack the robustness of
dedicated project management software packages.

http://FMGateway.com

Key questions of a producer

The producer must keep three questions clear in his or her mind to fulfill his/her
duties:

e What are we building? It is important to have an exact answer to this
question throughout the development process. The team should have access
to up to date documentation at all times.

e Who is building it? The quality of the product is directly related to the skills
and talents of the team building it. Be honest and objective when evaluating
the team's skill sets. Although, traditionally the producer does not hire and
fire team members, it is the producer's responsibility to keep upper
management informed of any personnel change recommendations.

e How will we build it? Software development, including games, has proven
procedures: we suggest you do some research on the most popular
techniques and talk to your team. They may have used one or two in the
past and may have suggestions.

As we will see in the next section, the producer needs several distinctive skills to
accomplish those duties!

Skills for all!

The skills required by the producer to accomplish his/her duties are as follows:

Cat Herding: The producer's key skill is that of cat herder or human
relations management. A development team is made up of a wide variety of
personalities that think about solutions to problems in a very different way:
a programmer may have a different approach to an artist. The producer's
primary goal is to keep this group of individuals functioning as a team. A
good catchphrase is "commitment over ego". The producer can't let
personal pride cloud their judgment or let a dispute with a team mate derail
the project.

Scheduling: The producer writes and maintains the project schedule, so it is
very important he/she understands how successors work: task A is
dependent on task B which is dependent on task C. He/she must be able to
arrange a correct and effective working pipeline.

Budgeting: Along with making a schedule, the producer will write up a
budget. This is especially important when using outside parties or
independent contractors to supply assets, such as graphics and sound. It will
fall on the producer's shoulders to negotiate bids with these suppliers. The
producer must monitor costs to make sure the project stays in budget. A
typical problem is that a team requests numerous changes to an asset, such
as the graphic of a character. Sometimes, it is the producer's job to say "it's
good enough".

Production Management: After the schedule and budget are set, the
producer makes sure milestones are hit, and that the game's quality is as
high as the schedule and budget allow. A useful tool for this is regular team
meetings, where completed work can be reviewed by the team and
milestones set for the next meeting.

A word of warning on team meeting: have an agenda written up ahead of
time and circulate this to the team prior to the meeting. This will help keep
the meeting on track and as brief as possible. Remember, while in a
meeting, little or no actual work is getting done.

Arbitrate: As with any group effort, there will be disputes within the team.
The producer needs to be on top of any possible conflict and should find a
resolution as quickly as possible. Remember that you have a team of
brilliant people who may not have the best social skills. Be kind, but firm in
your decisions. The success of the project rests with your management

skills.

e Negotiating: The producer is responsible for any contract negotiations with
publishers, marketers, financiers, and the like. Learn how to read a contract;
lack of this skill alone can turn a great project into failure. When in doubt,
do research! Talk to a lawyer if you can afford one. An entire book could be
written on this subject: look online for sample contracts. If you don't
understand something in the document, ask.

¢ Quality Assurance expert: The producer will be responsible for finding
competent testers, as well as scheduling the testing around project
milestones. The producer is responsible for getting the testing results to the
correct people so that any necessary fixes can be implemented.

All the tasks the game producer accounts for, is shown in the following figure:

Management

Who is the producer?

You may have deduced that there is a lot to learn on the job. Luckily, other
professionals have figured this out and education in this role is available through
institutions of higher learning. Many colleges and universities offer certification
in Software Production Management as well as Computer Science.

Business administration is an obvious choice, but also training in game design
and development, production and more specialized courses in animation, music,
or scriptwriting can help to gain a foothold in the industry.

It is definitely worth considering spending the time and money on nailing down
the basic skills before joining the school of hard knocks. It will save you money
and can pay for itself during your first project from the mistakes you've avoided.

As a producer, be prepared for a high level of stress, lack of sleep, and possible
burnout. You are everything to the team and they will look to you for solutions,
resolutions, and endless snacks and drinks. Along the high demands come great
rewards; however, the satisfaction of a successful product is priceless.

So keep smiling, get as much sleep as you can along with some exercise and a
healthy diet. Take up a sport, learn to meditate, find some old comedies on the
tube. Find healthy ways to relax and stay balanced.

There is a prime example of this from a project one of the authors worked on, a
few years ago. He took the position of producer with a couple of fellows who
had financing, but little game production experience. He arranged for a seasoned
team with many games under their belts to handle all aspects of the project.

Unfortunately, the partners decided that they would save some money by
handling some of the asset production themselves. They tackled a challenging
area: motion capture, and character rigging. After they delivered the goods, the
programmer determined that formats were wrong for a mobile app; the game
choked on all the data in the files. Fixing the files raised the cost over what the
developer was going to charge; a classic example of false economy. Eventually,
the game did go to market and it was fun, but it was late and over budget. This
could have been avoided by checking with the developer on what their
requirements were, instead assuming that the bosses knew best.

More on the role and tasks of a game producer can be found at the following
link:

http://www.gamecareerguide.com/features/1009/producing a_videogame_produ
page=3.

http://www.gamecareerguide.com/features/1009/producing_a_videogame_products_people_and_processes.php?page=3

The sound designer

The sound designer is the person responsible for creating all music and sound
effects for a game.

The thing that is most expected from the sound designer is to provide the game
with a unique and distinct sound that can make a difference in the player's
involvement in the game he's playing.

There is one distinctive factor that makes the job of a game sound designer
different from that of his closest relative, the audio designer for movies, which is
randomness.

In games, there is never (or should never be) a total control on the exact
sequence of events that will be triggered by the player. This is the reason why
sound design in games tends to be based on things that may or should happen,
rather than what will happen next. As a fact, sound in games is usually broken
down into chunks that can then be played as needed.

Though audio is an important feature in games, there are two main reasons to
consider the sound designer role less relevant for the purpose of this chapter on
the mobile development team.

The first is that the sound designer is rarely a permanent member of the
development team working on a game, and audio in games is generally added
during the final steps of production. For the most part of development, games are
worked on and tested with just audio placeholders. More likely, the audio
designer is hired as a contract employee during the last phase of development.

The second is that audio is not as important as other features of a mobile game
due to the distinctive kind of fruition of mobile games. As they run on handheld
devices, mobile games are likely played outdoors or in crowded locations, such
as bus and metro stations. Unless the player wears headphones, the music and
sound effects of the game are not very much appreciated. In many cases, the
player himself/herself will deactivate sound and sound effects to not bother other
people around him/her (or be caught playing by his/her teacher, for example!).

Creating music and sound fx

It is not very easy to make a full list of the tools of a sound designer. Sounds can
be produced with many different techniques and tools and their creation requires
operations, such as playing musical instruments, recording from a source,
mixing, and then editing the sounds with software.

A sound designer works with several tools, such as musical instruments,
everyday objects that produce specific sounds, microphones, recording devices,
sound libraries, and digital audio workstations.

Sound libraries are an important asset for a sound designer, because they provide
already made sound effects that can be mixed together to get original sounds and
music. Some of these include the East West Quantum Symphonic Library, Sonic
Implants, Garritan, and ProjectSam Symphobia.

The following is a list of basic equipment that a sound designer should have at
his/her disposal:

e A multi track digital audio workstation (DAW) for PC and or MAC.
There are several such programs and it is impossible to list all of them. We
can mention: Garage Band (which is very cheap), Logic Pro, Reaper (which
is very cheap) or Sound Forge, Magix, Pro Tools, and Cubase. You can
search on the Internet to find out more about the specific features of each of
them.

A two track audio editor, such as Audacity (free license).

A portable hard disk recorder, if you can afford it.

Sound libraries of pre-made music and sounds.

Software to keep libraries organized, such as iTunes.

The following figure represents the working station of a professional sound
editor:

Audio skills and tasks

As a freelance audio contractor and the one and only person on the team who
knows anything about sound, the sound designer is expected to cover all aspects
of sound for games: composing music, creating special effects, mixing, scripting
audio events, managing problems of audio formats, and memory allocation
issues related to the game audio. The sound designer must be ready to deal with
different kinds of problems every day to accomplish his/her task. He/she is also
expected to discuss with other team members about any decision that can have
an impact on the audio assets he is delivering for the project. As you may
understand, this means a lot of responsibility for a single person!

It goes without saying that, the sound designer must be a person with music
talents. He/she needs to know how to play at least one musical instrument, how
to compose original music, how to record sounds, how to edit them and most
importantly, he must be able to convey emotions through music and sounds.

A less obvious, but still very useful skill is that the sound designer must possess
some basic programming capabilities, especially the most commonly used APIs.

Scripting proficiency is a very valuable resource too. It can be of help in better
understanding the needs of the programmer for specific tasks and help him/her
(or the game designer) with the implementation of audio events in the game,
should they be overburdened with other tasks.

Schools of sound production

Though music talents and a strong interest in music are necessary to trigger the
career of a sound designer, a background in audio from an accredited college or
university is very important to be considered for a position on a project. Music
production, sound engineering, recording techniques, post production and
editing are the necessary theoretical requirements to be able to work on a game
development team and take care of audio.

Then experience comes into play, which is, as usual, the most important thing!
Try to get involved in projects, and experiment with tools and musical
instruments if you are interested in making audio for games, or find someone
who can prove his\her skills with a good portfolio of self made sounds and music
for your team.

Audio personality

As with any other creative personality, a good sound designer should possess an
attitude for experimenting. Sound editing, in particular, requires a lot of
creativity in the way different (and sometimes unexpected!) sounds are mixed
together to obtain that specific "door crack" effect you are searching for. A
sound designer should never be scared of trying something completely new.

He must also have that special sensibility to help him create sounds and music
that convey the right emotions for any specific in-game situation as he must be
empathetic with people, in order to use music and sounds to get to their hearts

and take control of their emotions.

Being a good communicator is also fundamental to discuss with the game
designer and understand his requests about the specific kind of sounds and music
he desires for the game. There is an interesting article about the communication
between designer and audio expert we suggest you read, from Gamasutra at:
http://www.gamasutra.com/view/feature/175427/getting the_most_from_your_s

If you are interested in finding resources for audio (game) designers, you can
begin with the following link:

http://www.gamesounddesign.com/articles.html.

http://%20http://www.gamasutra.com/view/feature/175427/getting_the_most_from_your_sound_php
http://www.gamesounddesign.com/articles.html

Summary

We have described the composition of the mobile development team, the key
roles that need to be covered, and explained the commitment required to develop
games.

Then we analyzed each role in the team, providing information on the tools and
duties of each one, and examined the characteristics of their personalities.

We also provided Web references to examine in more depth each role and tables
with salary expectations for key roles in a mobile indie development team.

In the next chapter, we will delve into the intricacies of the creation of graphic
assets for mobile games. What are the tools and the techniques used by game
artists? What kind of 2D and 3D assets must be created and how? What are the
tricks to save system memory when producing graphic assets?

Follow us to the next chapter to find the answers to these questions!

Chapter 3. Graphics for Mobile

Videogames strongly rely on graphics. The production of graphic assets for
mobile games poses several challenges to game artists, mostly dependent on the
necessity to both create nice-looking and appealing graphics while dealing with
reduced screen dimensions and limited memory allocation. In this chapter we
will describe how to create 2D and 3D assets for mobile games, what software
packages and techniques can be used and what file formats support graphics for
mobile games.

In this chapter, we will cover the following topics:

Raster and vector graphics

Graphics file formats

Game videos and cinematics

Software to create graphics for games

2D game assets

3D game assets

Character design for mobile games

Interface and HUD for mobile games graphics

After gameplay quality, graphics are the most important factor in selling a game.
Some have argued that good graphics are the most important factor in impulse
buying, since most of the time a gameplay demo is not available. It sure looks
good, it must be good.

This has been an ongoing discussion for decades, notably with the release of two
games in 1990: Wing Commander by Chris Roberts and Balance of Power by
Chris Crawford. Wing Commander had cutting edge graphics with light game
play and storyline.

The following figure represents a screenshot from Wing Commander (source:
Moby Games).

Source: Moby Games

On the other hand, Balance of Power had brilliant and deep game play but
amateurish graphics. At that year's Game Developers' conference, a debate (to
put it mildly) ensued between the the two developers. Given limited resources,
which is more important: content (game play) or context (graphics and sound) to
the success of a game?

The following figure is a screenshot from Balance of Power (source: Moby
Games):

iane Countries Relations Make Policies Events Briefing

Prestige Value

Source: Moby games

At present, hardware capabilities have increased enough to allow both, with
proper planning. The production of graphic assets for mobile games requires
several gimmicks to make things work properly. Mobile devices have, in fact,
relatively limited hardware capabilities: they lack the computational power of
PCs and consoles. Since games give the most stress on the hardware capabilities
they run on, it is very important to have assets that minimize the requirements
while providing an optimal result.

Another important aspect that must be taken into consideration for mobile games
is that, differently from home consoles and PCs, handheld devices rely on their
battery. The more computationally expensive the app (or game), the shorter the
battery life.

There's no point in having a beautiful game running on the device, if it runs for a
few minutes and then the device shuts off. Again, optimization of a game's
system requirements is a key factor, starting with graphics.

The hardware of today's devices varies very much from one model to the other,
so that for a game to run smoothly on the highest number of devices, it must
have the lowest possible computational requirements.

With so many different mobile phones available, each with its own hardware
configuration, it can be a hard struggle to have your game running smoothly on
the highest number of devices, which is mandatory for it to be profitable.

Fortunately, there are ways to overcome such obstacles. A good starting point is
comparing the hardware of different mobile phones. The following link points to
one such site:

http://www.mobiledia.com/phones/compare/compare.php

First, several techniques have been developed to allow the production of quality
graphics that minimize the hardware requirements for games.

Second, technological development constantly pushes forward the hardware
capabilities of mobile devices, and there are several models today that are
equipped with a Graphic Processing Unit (GPU), a piece of hardware that
specifically takes care of computing graphics. This way, the mobile phone's CPU
is relieved from taking care of all the calculations required by a game, and as a
result, games can run smooth and have excellent graphics at the same time.

http://www.mobiledia.com/phones/compare/compare.php

Pixels and vectors

As we said in the The game artist section in Chapter 2, The Mobile Indie Team, a
game artist's duties involve the creation of graphic assets with both 2D and 3D
techniques. The decision whether to use 2D or 3D graphics is made at a game
design level.

Generally speaking, most mobile blockbusters are 2D games. There are several
reasons for that: 2D games tend to be easier to play and rely on simple
mechanics, which is a plus when targeting occasional players. Playing mobile
games is usually a time-limited diversion, something you do while you are
waiting for something else (a person, a bus, your turn in a line, and so on).
Simple gameplay mechanics better fit such occasions and that's why mobile
games, such as Doodle Jump, Fruit Ninja, or Angry Birds are so popular.

2D games also require less computational power and they can run smoothly on
low-end devices. Even though developing a high-end-device-only game with
excellent photorealistic graphics is a good way to show the potential of a new
technology and the ability of a team of developers, when going to market, the
higher the potential number of people who can play your game, the better the
chances that you can get a profit from it. Not all the people out there possess the
latest and most powerful devices available.

When drawing 2D assets, an artist has two options to consider. 2D graphics can
in fact be created using two different techniques: pixel art (or bitmap art) and
vector graphics.

Pixels

The pixel art refers to a technique used since the early stages of videogame
making, and consists of drawing characters, game objects, and backgrounds by
drawing on every single pixel of the final bitmap.

Since the computational power to manage graphics was reduced and the drawing
tools were not very sophisticated at that time, this was an optimal choice to
produce nice graphics in small sized files. The main drawback with this
technique is that bitmap images cannot be scaled without losing the details and
quality, due to a phenomenon called anti-aliasing. You can find more
information on this on Wikipedia at: http://en.wikipedia.org/wiki/Aliasing

The following is a screenshot of a popular mobile game called Sword and
Sorcery made with pixel art technique:

http://en.wikipedia.org/wiki/Aliasing

Vectors

As the computational power of gaming devices improved and better drawing
tools became available, artists turned to a different technique called vector
graphics. In vector graphics, every line drawn by the artist is transformed into a
mathematical function. As such, vector graphics can be scaled at will without
any loss of details. Software, such as Illustrator and Flash, work with vector
graphics to suit the needs of developing digital artworks for the Web and print
use and almost all web-based games make use of vector graphics to allow full
scalability of the graphic assets. On the other hand, vector graphics files tend to
be larger than their bitmap counterparts.

The advent of mobile games gave new life to the earlier technique of pixel art.
The reduced dimensions of mobile phone screens and the smaller size of graphic
files made with this technique turned pixel art into a useful tool to produce nice
looking graphics of smaller file size, when compared to the more advanced
vector graphics.

The graphic file formats

There are literally hundreds of image file types. The PNG, JPEG, and GIF file
formats are most often used to display the most common image types. They are
listed as follows, divided by family.

Raster graphics

The following file formats are from the family of raster graphics:

¢ Joint Photographic Experts Group (JPEG): This is a compression
method; JPEG-compressed images are usually stored in the JPEG File
Interchange Format (JFIF) file format. JPEG applies lossy compression
to images, which can result in a significant reduction of the file size. The
amount of compression can be specified, and the amount of compression
affects the visual quality of the result. When not too great, the compression
does not noticeably detract from the image's quality, but JPEG files suffer
generational degradation when repeatedly edited and saved.

e Tagged Image File Format (TIFF): This is a flexible format that normally
saves eight bits or 16 bits per color (red, green, and blue) for 24-bit and 48-
bit totals, respectively, usually using either the TIFF or TIF filename
extension. TIFF's flexibility can be both an advantage and disadvantage,
since a reader reads for every type of TIFF file that does not exist. TIFFs
can be lossy and lossless; some offer relatively good lossless compression
for bi-level (black and white) images. TIFF image format is not widely
supported by web browsers. TIFF remains widely accepted as a photograph
file standard in the printing business. TIFF can handle device-specific color
spaces, such as the CMYK color model defined by a particular set of
printing press inks.

e RAW: This refers to a family of raw image formats that are available as
options on some digital cameras. These formats usually use a lossless or
nearly lossless compression, and produce file sizes much smaller than the
TIFF formats of full-size processed images from the same cameras.
Although there is a standard raw image format, (ISO 12234-2, TIFF/EP),
the raw formats used by most cameras are not standardized or documented,
and differ among camera manufacturers.

¢ Graphics Interchange Format (GIF): This is limited to an 8-bit palette, or
256 colors. This makes the GIF format suitable for storing the graphics with
relatively few colors, such as simple diagrams, shapes, logos, and cartoon
style images. The GIF format supports animation and is still widely used to
provide image animation effects. It also uses a lossless compression that is
more effective when large areas have a single color, and ineffective for
detailed images or dithered images.

e BMP: This file format (Windows bitmap) handles graphics files within the
Microsoft Windows OS. Typically, the BMP files are uncompressed, hence

they are large; the advantage is their simplicity and wide acceptance in
Windows programs.

Portable Network Graphics (PNG): This file format was created as the
free, open-source successor to GIF. The PNG file format supports 8-bit
paletted images (with optional transparency for all palette colors) and 24-bit
true-color (16 million colors) or 48-bit true-color with and without alpha
channel; while GIF supports only 256 colors and a single transparent color.
Compared to JPEG, PNG excels when the image has large, uniformly
colored areas. Thus lossless PNG format is best suited for pictures still
under edition, and the lossy formats, such as JPEG, are best for the final
distribution of photographic images, because in this case, the JPG files are
usually smaller than the PNG files.

PNG provides a patent-free replacement for GIF and can also replace many
common uses of TIFF. Indexed-color, grayscale, and true-color images are
supported, plus an optional alpha channel.

PNG is designed to work well in online viewing applications, such as web
browsers, so it is fully stream able with a progressive display option. PNG
is robust, providing both full-file integrity checking and simple detection of
common transmission errors. Also, PNG can store gamma and chromaticity
data for improved color matching on heterogeneous platforms. For more
details refer to http://en.wikipedia.org/wiki/Graphics_file_formats.

http://en.wikipedia.org/wiki/Graphics_file_formats

Vector graphics

As opposed to the raster image formats discussed previously (where the data
describes the characteristics of each individual pixel), vector image formats
contain a geometric description which can be rendered smoothly at any desired
display size.

At some point, all vector graphics must be rasterized in order to be displayed on
digital monitors. However, vector images can be displayed with analog CRT
technology, such as that used in some electronic test equipment, medical
monitors, radar displays, laser shows, and early videogames. Plotters are printers
that use vector data rather than pixel data to draw graphics.

e Computer Graphics Metafile (CGM): This is a file format for 2D vector
graphics, raster graphics, and text and is defined by ISO/IEC8632. All
graphical elements can be specified in a textual source file that can be
compiled into a binary file or one of the two text representations. CGM
provides a means of graphics data interchange for computer representation
of 2D graphical information independent from any particular application,
system, platform, or device. It has been adapted to some extent in the areas
of technical illustration and professional design, but has largely been
superseded by formats, such as Scalable Vector Graphics (SVG) and
Drawing Exchange Formats (DXF).

¢ Scalable Vector Graphics (SVG): This is a 2D graphics format with
properties similar to CGM that uses an XML-based text format. Like CGM,
it supports vector and raster graphics as well as text. SVG is supported by
many popular graphics applications, such as Inkscape or Adobe Illustrator.
All major web browsers and most smartphones include SVG rendering
support.

¢ Drawing Exchange Formats (DXF): This is a computer-aided design
(CAD) data file that provides a bridge from Autodesk's AutoCAD DWF
format to other CAD programs. DXF supports both ASCII and binary
versions. It shares many of the properties of CGM, including interactivity,
portability, and compressibility. Due to inherent limitations in the file
structure, DXF is being phased out in favor of DWF and SVG.

Videos in videogames

The following are the techniques for creating videos in videogames:

¢ Full motion video (FMYV): This is a videogame narration technique that
relies upon pre-recorded video files (rather than sprites, vectors, or 3D
models) to display action in the game. While many games feature FM Vs as
a way to present information during cut scenes, games that are primarily
presented through FMVs are referred to as full-motion videogames or
interactive movies.

¢ QuickTime: This is a complete cross-platform multimedia architecture that
supports creating, producing, and delivering a broad variety of media.
QuickTime provides support for the entire process including real-time
capture, generating media programmatically, importing and exporting
existing media, editing and compositing, compression, delivery, and
playback.

e MPEG-2: This is a standard for the generic coding of moving pictures and
associated audio information. It describes a combination of lossy video
compression and lossy audio data compression methods which permits
storage and transmission of movies using currently available storage media
and transmission bandwidth.

Software to create game graphics

The following software are used for creating the game graphics:

e Photoshop: When dealing with image editing tasks, Photoshop is
universally considered the best available software. It can work with and
export to any kind of image format, it offers the largest selection of tools to
edit images and an endless number of tutorials are available on the Internet
to learn anything you may need to do with it.

All this power, on the other hand, comes at a price. The full Photoshop C6
license costs $699!

e DeBabelizer: Photoshop is not the only choice, naturally. Other options are
available. One that may be not popular but which is very good, especially
for compressing images, is DeBabelizer
(http://www.equilibrium.com/debabelizer/). It is an image editing software
with almost the same capabilities of Photoshop, but it creates lighter * . png
files.

e GNU Image Manipulation Program (GIMP): Another interesting
possibility for those who follow the path of open source software is GIMP.
GIMP (http://www.gimp.org) is a free image manipulation package that
offers anything you may need to produce high quality graphics. It even
supports distinctive image formats of its competitors!

The main advantage of GIMP is that it is completely free, and as any other
well-done open source software, it is supported by a large community of
aficionados who provide plugins, hints, and tutorials. The main
disadvantage is that GIMP does not have the ease of use of Photoshop.
When you work with Photoshop, you understand where all the money you
spent for its license went.

e Adobe Flash: This is a multimedia and software platform used for
authoring vector graphics, animations, games, and Rich Internet
Applications which can be viewed, played, and executed in Adobe Flash
Player. Flash is frequently used to add streamed video or audio players,
advertisement, and interactive multimedia content to web pages.

Flash manipulates vector and raster graphics to provide animation of text,
drawings, and still images. It supports bidirectional streaming of audio and
video, and it can capture user input via mouse, keyboard, microphone, and

http://www.equilibrium.com/debabelizer/
http://www.gimp.org

camera. Flash applications and animations can be programmed using the
object oriented language, called ActionScript. Adobe Flash Professional is
the most popular and user-friendly authoring tool for creating the Flash
content, which also supports automation via the JavaScript Flash
language (JSFL).

3D Studio Max/Maya: When 3D graphics come into play, 3D Studio Max
and Maya are the obvious choices, as they are recognized as industry
standards. They are well-known by artists, their export formats are included
in most popular game engines, and they allow production of the best 3D
graphics and animations available. They have a price, too: both 3D Studio
Max and Maya license costs €3,900 each, VAT excluded!

Milkshape 3D: For those who are not willing to pay for 3D software, there
are two options available. One is Milkshape 3D (www.milkshape3d.com), a
shareware software which only allows low-poly 3D modeling, and is a
favorite for indie game developers. It doesn't have the capabilities of more
professional tools, but it's free and the community supporting it is strong
and offers several tutorials.

Blender: The other option is Blender (www.blender.org), an open source
tool which is getting more and more popular and has almost the same
capabilities of 3D Studio Max. The main difference is that Blender cannot
be exported in *. fbx format. The *. fbx format is a very useful graphics
format which allows to export a 3D model together with its materials,
animations, and other useful stuff. Popular game engines, such as Unity 3D,
support the *. fbx format; so lacking this option is a disadvantage for
Blender. But at least it it's free!

Zbrush\Mudbox: These software packages consist of digital sculpting
tools that are used to create extremely detailed high-poly models. They
basically use brushes, like the ones of Photoshop, to add polygons and
create details on a 3D model. The details of the high-poly models are then
exported as normal maps (explained later) or displacement maps and then
used on low-poly models to fake a large number of details on a model with
few polygons.

Both ZBrush and Mudbox allow full integration with software, such as 3D
Studio Max and Maya, among others. The license cost is $699 for ZBrush
and $825 for Mudbox.

http://www.milkshape3d.com
http://www.blender.org

Resolution issues with mobile games

When dealing with resolution, mobile phones present the highest variability.
Classic phones, those which used to be the most common devices some years
ago, had screen resolutions of 176x208 pixels, while recent iOS and Android
based smartphones can range anywhere between 320x240 to 1920x1080 pixels
for the latest Samsung Galaxy S4.

There are even more options when taking tablets into consideration. Apple iPad
screens range between 1024x768 of first generation models to the 2048x1536 of
third and fourth generation. The Asus Transformer Pad Infinity TF700, the
fastest Android-based tablet available as we write this book, has a screen
resolution of 1920x1200 pixels; the Samsung Galaxy Tab and the Google Nexus
7 have both a screen resolution of 1280x800 pixels. The list of options is very
long.

This exceptional variety within mobile devices poses two problems.

The first is with smaller screens of older cell phone models: when the screen size
is so reduced, every pixel is important. An artist must be very careful when
deciding what to draw and why, since inefficient use of graphics can create noise
on smaller screens which negatively affects gameplay.

The second order of problems arise when porting games designed to run on a
specific set of phones to other devices, and mainly affect the user interface of
your game. As we said, Android devices offer the highest variability: if you don't
plan in advance and take some precautions when designing your game for
Android, you can find yourself spending a lot of time adapting graphic assets
and user interface from one device to another.

Fortunately, Google offers several well documented tools to help developers
deal with such problems, and starting from Version 3.0, Android introduced
elements called fragments which support a more dynamic and flexible UI design
for larger screens.

You can find what is considered the Bible of Google's UI design documentation
at http://developer.android.com/guide/practices/screens_support.html.

iOS devices, on the other hand, are much more consistent and have limited

http://developer.android.com/guide/practices/screens_support.html

variability when compared to Android devices. Designing separate Ul tor iPhone
and iPad and using vector graphics is enough to ensure that your games will
work on either device.

2D graphic assets

In the following section, we will describe the most important types of 2D assets
used in the game development.

Sprites

Sprites can be defined as game objects that have a role in the gameplay of a title:
the main character (we use the word character here in its broadest meaning: a
space ship is a character), enemies, bullets, and collectibles are all examples of
sprites. Sprites are usually animated, which means that the artist draws a
sequence of frames representing the key positions the game object assumes
during the animation for each animated character and for each specific
animation. The final result is an image called spritesheet that contains all the
animations of a game character. The following figure represents part of the
spritesheet of Super Mario Bros for the NES.

-

a-: N © . RN K 5 & X P -
333 FFFFEE

2 & & & & & & & B =
%?}§‘ﬁ§iig}ﬁﬁ#!if
FEEREEREEIEREET

Once the sequences are made, it's up to the programmer to invoke the correct
sequence for each desired animation through code. The 2D-oriented game
engines, such as GameMaker (http://www.yoyogames.com/studio), provide easy
sprite animation management tools. We will discuss the topic of game engines
with more detail in Chapter 8, Mobile Game Engines.

To reduce the size of the file of images used in a game, there is a very popular
and long-used technique which consists of cutting down the number of colors
(color depth) used in the image: the fewer the colors, the smaller the file size.
Such an operation can be automatically done by common image editors, such as
Photoshop. Since cutting down the number of colors of an image can result in a
speckled image, it is a good practice to hand-retouch the image before reducing
the number of colors to get the file size reduction while keeping a good image
quality.

The following figure represents the result of a progressive so called palettization
of an image from full-color to only two colors. With some additional hand-

http://www.yoyogames.com/studio

retouching, it is possible to obtain a smaller file size without losing too much
quality.

Source: http://en.wikipedia.org/wiki/Color_depth

http://en.wikipedia.org/wiki/Color_depth

Backgrounds

Backgrounds are the images that stay behind the game objects of a game. They
are very important because they represent the environment where the game
action takes place and strongly affect the visual appeal of a title. If your game
doesn't have nice backgrounds, players may be turned off and they won't
download it and play it.

Depending on the gameplay characteristics of a game, it can have fixed or
scrolling backgrounds. Fixed backgrounds are generally used on puzzle games
or titles where the game action takes place in a single screen. Tetris, Puzzle
Bobble, and Pang are examples of games with fixed backgrounds.

In this definition, the term "fixed" only refers to the fact that the background of
the game doesn't scroll. It is possible in fact that animation occurs in the
background of the game. Anyway, if no scrolling is involved, we call it a fixed-
background game.

Scrolling backgrounds, on the other hand, is a feature of a game where the
screen represents only a portion of the total game level. Super Mario Bros, R-
Type, or even soccer games where only a portion of the playfield is represented
at a time, are examples of scrolling games.

In a 2D game, scrolling can both occur on the horizontal and vertical axis or both
at once. In Super Mario Bros, for example, the character can run from left to
right (and vice versa), but he can also jump on platforms to climb to a higher
section of a level. As Mario navigates the game level, the game camera follows
his movements, showing a portion of the level corresponding to the character's
position at any time.

When scrolling backgrounds are involved, there are several techniques that are
used to obtain the effect of continuity of the background image and to give the
illusion of depth to players.

Tiles

Tiles are images that are cut so that they can be put one close to each other
without the player noticing the end of the first image and the beginning of the
second. All images are then put close to one another to obtain a larger
composition, called tileset, which contains all the elements needed to create the
backgrounds of the game. Most available game engines allow using tiles to
create seamless backgrounds for your games. The advantage of this technique is
that it saves system memory for the creation of your game levels; a tileset is a
relatively small image that can be used to create endless levels through the
repetition of its elements.

The following is a figure that shows a tileset to create a Zelda-like 2D game
(courtesy of WesleyFG from http://wesleyfg.webs.com/tiles.html).

sibogl v e

{
L

| ET

e
AR
L i

http://wesleyfg.webs.com/tiles.html

The parallax motion

The parallax motion is a technique that consists of putting different images on
separate layers and then letting the code scroll those layers at different speeds.
The layers closer to the player character scroll faster, while those farther from
the character scroll slower. The final effect is that the character and the elements
close to it move at a different speed than the more distant elements. If you have
ever travelled in a train or in a car watching the landscape from the window, you
know what we are talking about. When used correctly, this simple technique
grants a very nice looking illusion of depth for a 2D scrolling game.

Masking

The last technique we would like to describe for the creation of nice 2D assets
for your games is masking. Masking is a technique to edit images that allows the
game engine to display parts of those images as transparent.

It consists of putting your sprites on a homogenous background of some specific
color that is not used for any other graphic asset of the game, then setting that
color as transparent in the game engine. The engine will show the sprite, hiding
the transparent part of the image.

There are actually two kinds of transparency which are used in game
development.

e Full transparency: This means that each part of the image is either visible
or invisible. To use full transparencys, it is necessary to reduce the number
of colors of the image to 256 and then set one color as the transparent one
in the game engine. The engine will show all the colors of the image, except
the one you set as transparent.

¢ Alpha transparency: This is a more refined technique that allows having a
full range of transparency for an image, from fully opaque to fully
transparent. For example, it allows representing part of an image as if you
were looking at it through a colored glass. To obtain the effect, a fourth
channel, called the alpha channel, needs to be added to the already existing
channels of an image (red, green, and blue). A value of zero (black) in the
alpha channel means that that pixel is fully transparent, while a value of one
(white) means that it is fully opaque. Any intermediate value represents
semi-transparency. A semi-transparent pixel is composed partly with the
image color and partly with the background color, depending on the
specific value set in the alpha channel of that pixel.

Both full transparency and alpha transparency are supported by the *.png image
format, so save your graphic assets as *.png when you need part of them to be
transparent.

The following figure represents a texture for a plant and its alpha channel:

Now that we're done describing the fundamental techniques for creating 2D
assets for your games, we can delve into the more complex field of 3D
modeling, animation, and skinning (the process of defining which part of a 3D
model is covered by which part of a 2D texture).

Much additional and useful information about the creation and editing of 2D
assets can be found on the Internet. You can begin your research from:

http://www.gamedev.net/page/index.html

http://www.gamedev.net/page/index.html

3D graphic assets

The advent of 3D graphics offered a brand new set of possibilities for game
developers and posed new problems for the production of graphic assets.

As mobile phones incorporated the hardware required to run 3D games, mainly
Graphic Processing Units designed to take care of graphics, mobile game
developers turned to this new technology and began developing successful 3D
games for mobile devices.

3D models

The production of 3D assets for games begins with the creation of a 3D model of
a game object using software, such as 3D Studio Max, Maya, Blender, or any
other you like. This is usually a basic 3D model with no detail. This model is
then exported in a sculpting software, such as ZBrush or Mudbox, to convert it
into an extremely detailed 3D model, or high poly, a very detailed asset, thanks
to the use of thousands of polygons (depending on the importance of that
specific game asset).

In the following figure, a beautifully detailed 3D model made with ZBrush is
shown:

The high-poly model is first used to create a normal map (or a displacement
map) and then turned into its low-poly counterpart: a 3D model that uses fewer
polygons and thus, requires less computational resources to run in real time and
produces a smaller file size.

This is where the artist's skills come into play. He must be very good to obtain
an optimal result when producing a low-poly model that visually matches the
quality of its high-poly counterpart.

There is a specific software, such as Polygon Cruncher, that automatizes the
conversion of a high-poly model into a low-poly, but to obtain an optimal result
it is always best to do such things manually!

The following figure, taken from Wikipedia
(http://en.wikipedia.org/wiki/l.ow_poly), represents the procedure to get a
detailed low-poly model using a normal map created from the high-poly
counterpart.

,J"-W'-'.;-L .
L e
g RS
- ﬁ.,i.'l.
}
I
\#J }f
!—q\'
L " implified mesh
original mesh simplified mesh Smp :
: ; and normal mapping
4M triangles 500 triangles 500 triangles

Source: http://en.wikipedia.org/wiki/Low_poly

http://en.wikipedia.org/wiki/Low_poly
http://en.wikipedia.org/wiki/Low_poly

Texturing

Once a model has been created, it is necessary to put one or more textures on the
mesh. The mesh of a 3D model only represents its basic geometry which
constitutes a collection of polygons. The texture is the image that covers the 3D
mesh to give it its correct aspect for the game.

The following is the figure of a simple, flat texture for a wall made of bricks:

Materials

Texturing a model is not enough to bring it to life. As we said, textures represent
the visual aspect of a 3D model and generally, don't take into consideration the
way light interacts with the surface of the model.

To make a 3D model look nicer, it is also important to represent the way light
interacts with its surface. A vest doesn't reflect light as a metal weapon does, for
example. As we said in The game artist section in Chapter 2, The Mobile Indie
Team, to recreate the interactions of light with the surface of a mesh, artists
make use of assets, called materials.

A material is a collection of data that define both the generic visual aspect of a
model and the way its surface interacts with light.

A material is usually a collection of at least two maps. The first map is the
texture of the mesh and the second is the bump map, a black and white texture
that defines where the surface is concave and where it is convex. With just two
such maps, the look of a 3D model can definitely be improved.

Bump mapping is also a technique that saves system memory for a 3D model,
reducing the number of required polygons to make it look like it is actually
modeled.

Let's take the example of the wall texture displayed previously. By adding a
bump map to the material of the wall, as we said, it is possible to fake the
concaveness and convexity of the wall.

You first model the wall as a flat parallelepiped (a three-dimensional figure
formed by six parallelograms). Then you create a material for the wall, which
makes use of two maps. The first is a texture where the bricks of the wall are
simply drawn. The second is a black and white bump map that represents the
protrusions and indentations of the bricks composing the wall. Both the maps are
included in the material and then applied to the 3D mesh. The final result is a
wall that looks like it is fully modeled, but instead, it's just a flat parallelepiped
with a nice looking material.

The following figure represents a bump map that can be added to the wall
material to make it look more realistic:

To get a better result when using low-poly models, game artists, as we said, use
normal mapping. It is an improvement over simple bump mapping because it
creates a map of how light bounces on the surface of the high-poly model, which
is more detailed, and apply that map to the low-poly model. The main difference
between a bump map and a normal one is that normal maps represent the
refraction of light in the 3D world, because they allow the re-direction of light
bouncing on a surface according to the orientation of its pixels in the 3D world.
Normal mapping is very useful to fake the details of a high-poly model on a low-
poly one, but requires the original model to get the normal map to be fully
detailed (as we said, these high-poly models are created with sculpting tools like
ZBrush or Mudbox).

The following figure represents a normal map to be added to the material of the
wall instead of the bump map:

The creation of normal maps is a basic skill for any 3D artist and it is a feature
available with any modeling software we mentioned. You can learn more about

it at http://en.wikipedia.org/wiki/Normal_mapping.

http://en.wikipedia.org/wiki/Normal_mapping

The use of materials for 3D models could cover several books by itself.
Modeling software and 3D game engines offer a plethora of tools to create
amazing materials for your models, for example, animating materials that
represent the way snow slowly covers objects in a game environment.

You can find more about it starting from http://www.3d-tutorial.com/.

http://www.3d-tutorial.com/

UV Mapping

It is very likely that the game objects your artists create for a game will not be as
simple as a brick wall. Most of the time, they will need to create complex
models of irregular game objects, such as cars, space ships, or humanoid
characters.

To put a flat texture on a complex 3D model, there is a very popular technique
used by artists called UV Mapping. It basically consists of converting the
configuration of the polygons of a 3D mesh into a flat plane. The image
representing the texture of the model is then aligned to this map, so that each
part of the texture covers the corresponding part on the 3D mesh. If you think of
a six-faced die and the way you can unfold its faces to get a flat representation of
it, you can understand what the UV Map of a 3D mesh is. The operation of
converting a 3D model into a plane is commonly called unwrap.

The following figure represents the unwrapping of a cube:

Unwrapping and UV Mapping of a 3D model can be a labor intensive operation,
depending on the complexity of the 3D model. It takes time, but still it is a
required skill for any 3D modeler. If you want to be a 3D artist, you'd better
learn to do it well.

More about the technical aspects of UV Mapping can be found on the Internet at
http://en.wikipedia.org/wiki/UV_mapping.

http://en.wikipedia.org/wiki/UV_mapping

More on textures

Textures do not always need to be simple flat images. To get the final touch for
your 3D models in addition to using bump and normal maps, the texture of an
important game object, such as the main character of your game, can be
"painted” by a 2D artist to represent things, such as the folds and shading of their
vest or its pieces of armor. By painting the texture of a 3D model, it is possible
to generate a lot of detail for that model which would not be possible to achieve
by conventional lighting methods.

In the end, the final decision about which specific techniques to use for detailing
3D models for a game depend on the artistic direction of the project. To recreate
realistic objects, such as guns and rifles for a First Person Shooter, you will need
several maps for each game asset to get full detailed objects, while for a more
cartoon-looking style you can sacrifice details in favor of colors. The producer
and game designer, together with the leading artist of your game, are in charge
of such matters.

An important aspect that we haven't mentioned yet is that textures must always
have dimensions which are a power of two and conform to regular dimensions.
There are reasons for that, which depend on how computers manage and process
data which we won't explain here. Remember that computers only understand
zeros and ones. It is important to stick to this rule!

Though textures don't necessarily need to be square images, still their size must
be in the range of 8, 16, 32, 64, 128, 256, 512, 1024, or 2048 (though we
suggest, for most mobile devices, to make small use of textures above 512 or
1024 pixels in size, to save system memory. Small screens don't need extra
detailed textures.).

Baking

A technique to save computational power to calculate real-time lights for game
environments is called baking. It consists of "printing" the shadows generated by
the elements which populate a game environment in real time directly on the
textures which cover floors and walls and then apply the texture with the baked
shadows to the game environment. This way, they can be put in the game engine
as objects that don't generate real-time shadows, thus saving power to keep the
frame rate of your game as high as possible.

It is important to remember that, to use baking, the objects with baked shadows
must be static objects. If you move a crate with a baked shadow, the trick will be
revealed to your players and will result in a poor and inconsistent visual
experience.

Animations

The techniques to animate 2D and 3D characters are similar and very different at
the same time. They both require breaking up each animation in a given
(hopefully small) number of key frames and then inserting each frame into a
sequence.

The difference is that in 2D animation, the brain of the player fills in the blank
spaces between two successive frames at a typical rate of 24 frames per second,
creating the illusion of continuity in the animation, while in 3D animation, a
tool, usually provided with the modeling software, takes care of interpolating the
positions of each part of the model according to a set of rules and parameters
between two subsequent positions.

To animate a 3D model, you first need to make its bones, which are the part of
the model that is actually animated. Once the model is provided with bones, the
mesh of the model is rigged to the bones. This is a delicate operation which can
take a lot of time, depending on the importance of that model in the economy of
your game and its complexity. Rigging a model means to define which points on
the surface of the 3D model follow the movement of each specific bone and the
strength of their connection. If a model is not correctly rigged, once you animate
it you will see the mesh messing up badly!

For animating humanoid characters, special tools are available, for example, 3D
Studio Max has a tool called biped.

The biped is basically a humanoid skeleton made of a given number of bones
and their connections. It saves the time needed to create a humanoid skeleton
from scratch and allows the user to define both the number of bones and their
size.

The following figure represents the 3D Studio Max biped in a typical karate
position:

The number of bones is important to define what kind of animations can be
created for the character: the number of fingers in the hands, for example, the
number of segments for the spine, or the bones to animate a tail, should the
character have one.

Scaling the size of the bones, on the other hand, is important to fit the size of the
mesh in order to better rig the mesh to its biped.

Once the mesh is provided with bones and is rigged, a model is animated
through a sequence of key frames. Each animation is broken down into a number
of key positions which represent it. For each key frame, the model is put in a
specific position, acting on its bones (the mesh follows accordingly, thanks to its
rigging). The software takes care of interpolating the movement of each bone in
the model according to a set of rules called inverse kinematics and a set of
parameters defined by the user.

Animating 3D characters is no joke! It requires both talent and knowledge of
anatomy and the rules of body language. Take a look at any Disney movie to get
an idea on how to make objects express emotion through motion.

To stick to the scope of this book, we won't go into further details with regard to
3D animation. Big developers have teams of animators who not only work with
modeling software, but also make use of techniques, such as motion capture, if
they need to create detailed animations for humanoid characters. It is a branch in

the field of 3D computer graphics by itself and we suggest searching on the
Internet starting from http://www.animationarena.com/.

http://www.animationarena.com/

Designing a character for mobile

As we said, the look and feel of your game will influence your potential players
before they even start playing your game. It is thus a general rule to have your
graphics match the game's genre: this rule addresses both the creation of the
graphic assets for your environments and the character design.

The character design process

The process of designing game characters always starts with the definition of its
basic qualities, both visual and character. Use a list of adjectives to create a
mental map of both the character and the visual aspect of your character.

The next step is to search for visual references which can represent the
adjectives in the mental map. Anything can be a visual reference: shapes,
materials, landscapes, and kinetics. Anything that can visually describe a
concept related to your game character is a source for the visual aspect of that
character.

Once you have a small library of visual references for your character, it is time
to start drawing it. A general rule is to begin by drawing basic geometric shapes
and compose them to create the outline for your character.

Since the most important thing for small characters that populate mobile games
is to have a strong silhouette, don't focus on the fine details of your design at this
step: just work on getting a well-balanced, nice-looking outline for your
character.

Once you are satisfied with the outline, you can then begin working on its fine
details to make it even more distinctive. On the other hand, too many details can
add nothing but noise to your design, not to mention the additional time needed
to model such details in the case of 3D characters.

Balance is the key; as we said, for mobile games running on small cell phone
screens every pixel is important. Put in any detail you feel is important to define
your game characters and get rid of everything you don't actually need!

Silhouettes

When designing the character for your game, you want players to immediately
differentiate it from anything else in the game and (hopefully) identify with it. A
basic way to achieve this goal consists of creating a strong silhouette for your
character. A strong silhouette helps your player quickly identify the main
character against the backgrounds and tell it apart from the other game objects in
the scene. As human beings, we recognize patterns. A strong silhouette
represents a pattern that our brain can easily spot so to perceive it as different
from anything else in the game to positively affect the gameplay of your title.

A very useful technique to check if your character fits the requirements of good
character design is to shade the character black and check if it can be recognized
by its silhouette. If the silhouette looks nice and distinctive, you will know that
once it will be scaled down to fit the size of the screen of a mobile phone, it will
still be well recognizable by your players.

The following figure is the silhouette of a very popular game character. Can you
recognize him?

Colors for mobile

The next trick in creating strong characters is to smartly use colors. Since
drawings are made of shapes and colors, you cannot create a good drawing if its
colors don't match the quality of the shape.

Use a unique palette for your game characters and make their color different
from those of the other less relevant game objects of your game. If the main
color of your game character is a tone of blue, don't use blue for your game
enemies. Once things start moving on screen, the better the player can tell his
controlled character apart from the rest, the better the gameplay of your title.

It is also a good practice to create game backgrounds that help the players spot
the relevant game objects and focus on them. By using background colors which
strongly contrast with the game objects, your players are provided with an
optimal gameplay environment to make the best of the game mechanics of your
game.

Once you have succeeded in defining the basic shape and palette for your
characters and have made them distinctive from other game objects and
backgrounds, you can then choose to create the game objects to intentionally get
your players confused. You can, for example, have enemies that hide in the
background or have a shape or colors similar to that of elements the player must
collect. It is an easy and cheap way to add gameplay to a title, but it works if the
visual style of your game is designed following the good practices we
mentioned.

The user interface and HUD

The user interface is a core aspect of games which is sometimes overlooked until
the end of a project. Instead, it has a fundamental role to assure that both the
flow and the playability of your game appeals to players and encourages them to
keep playing.

For mobile games, the interface requires even more attention. Despite the fact
that it is not practical for any game to get players lost in its menus, mobile games
run on screens that are both small and different in size from one another, and
thus require to display useful gameplay information clearly in a quite small
space.

The number of screens that compose the interface of the game must be adequate;
it should avoid repetitions and the structure of the screens map must be
reasonable and intuitive. Also, you must choose the right font for each menu
item.

Another important element of the game interface is the Head's Up Display
(HUD). The HUD is both the graphic frame for the game and the set of
information that is constantly displayed on screen to provide the player with the
information needed to succeed playing: available ammo for his guns, time left to
complete a race or reach a checkpoint, score, available lives, and more.

As this information is constantly displayed on screen during gaming sessions, it
is important to be sure that the info is clearly displayed and it doesn't hinder the
playability of the game due to the reduced device screen.

The following figure is one of the best HUD ever: the helmet of Samus Aran
from Metroid Prime!

==
B —

.. Parasite Queen j

When designing a HUD for a mobile game, game artists not only need to deal
with placing all interface elements correctly on screen, so that the info provided
is clearly readable; they also have to deal with technical problems, such as
scaling the interface appropriately, depending on the different screen resolution
of the device the game could run on.

The first order of problems can be resolved at a design level. Creating the right
user interface for your game is a matter of studying your game with the designer
to set the limits of what specific information the player needs to have
permanently displayed on screen, then deciding how to display it smartly,
without distracting the player from the actual game.

The second order of problems requires planning in advance. We have said many
times that mobile phones have the maximum number of variability with regard
to screen size. Planning prevents your artists from having to redraw the interface
of your game every time a different device is supported.

Easily put, for iOS devices, which only introduce one new standard with each
generation of devices, it is enough to create two different interfaces: one for the
iPhone/iPod touch and one for the iPad/iPad Mini. Create it for retina resolution,
and then scale it down for non-retina models.

For Android games there's no official standard, so the best choice is to take two

or three reference models and design the game interface to fit those models
perfectly. When running on screens different from the reference models, the
game graphics won't be perfect, but will still work and won't demand too much
effort.

Keep a different interface design for Android tablets, also.

Vector graphics automatically scale without any loss of quality and we suggest
using them whenever you can.

Summary

In this chapter, we covered the importance of graphics in videogames in general
and the challenges specific to creating mobile game graphics.

We reviewed the most common file formats for raster and vector graphics.

We discussed the creation and application of 2D and 3D assets, animation, and
the software needed to create them.

Chapter 4, Audio for Mobile, will cover audio for mobile games, including music
and sound effects, and we will cover the most effective uses of sound in games
and the most popular software to create sounds.

Chapter 4. Audio for Mobile

Sound design involves specifying, acquiring, manipulating, or generating audio
elements. It is employed in a variety of disciplines including video game
development. Sound design generally involves modifying recorded audio, such
as music and sound effects. In some cases, it may also involve the composition
or manipulation of audio to create a desired effect or mood. A person who
practices the art of sound design is called a sound designer. For information on
sound designer, visit http://en.wikipedia.org/wiki/Sound_design.

Sound was once an afterthought in terms of game design; now videogame music
is a legitimate industry of its own. Music is one of the many elements of the
overall sound design of videogames, where huge leaps have been made in a
relatively short time. With the advent of directional and simulated surround
sound, game audio became integral to the action itself. Stealth-based games,
such as the popular Assassin's Creed series turned the art of listening and
eavesdropping into a survival skill in itself. Even early games, such as Tetris and
Pac-Man (wacka wacka), earned much of their addictive appeal by getting into
your head with thumping, repetitive sound schemes. Every Tetris player will
recognize its theme song in the first few bars. Well-designed sound and graphics
complement each other to produce rich and enjoyable game play. In this chapter
will will cover:

The history of videogame music

Recording

Playback

Videogame sound types

Digital audio editors

Issues of mobile game audio design

The best practices of mobile game audio design

http://en.wikipedia.org/wiki/Sound_design

Digital sound technology

Musical Instrument Digital Interface (MIDI) and digital technology helped to
drive the rapid evolution of sound design during the 1980s and 1990s. Also, the

Internet is a great resource for sound designers, allowing them to acquire source
material quickly, easily, and cheaply. Advances in digital audio editing software
have enabled sound designers to create and modify samples on their own.

Analog versus digital

Sound recording involves recording an original set of sound waves and
reproducing those waves in a variety of ways. The two basic recording methods
are called analog and digital. Both types of recordings require a sensor, such as a
microphone or an electric guitar pick-up. With analog recording, a physical
record is created by moving a phonograph stylus to imprint a pattern on a vinyl
record or fluctuating a magnetic field via a magnetic tape recording head.

Digital recording bypasses the physical element and creates a record directly on
a hard drive or other digital medium as a series of binary numbers representing
samples of the amplitude of the audio signal at regular intervals. An advantage
of digital over analog recording is the ability to make an exact replica of the file.
Analog duplication often results in a degraded quality replica.

Both the methods use analog playback by vibrating the head of a speaker or
headphone to replicate the original sound waves.

Recording and playback

This section covers the recording and playback technology involved in sound
design.

Recording

The process of capturing an analog audio signal and converting it to a digital
format is done with an analog-to-digital convertor (ADC). This is a piece of
hardware that measures electrical input and records in binary format. The fidelity
of the conversion process is dictated by several factors: the sample rate, the word
length, and compression.

The sample rate

The frequency at which the ADC measures the level of the analog wave is called
the sample rate. The higher the sampling rate the higher the upper cutoff
frequency of the digitized audio signal. Sample rates are measured in frequency
of samples per second; the higher the frequency, the better the audio quality.

The word length

Word length is the amount of data in an individual sample. The longer the word
length, the more accurate the sample. Word size is measured in bits of data.

The number of bits used to represent a single audio wave (the word size) directly
affects the signal. Increasing a sample's word length by one bit doubles its
possible values; the practical limit of which is 24 bits, since that is the maximum
that today's sound equipment can detect.

Compression

Compression is a process to reduce the size of the stored audio file. There are
three basic types of compressions: uncompressed, lossless compression, and
lossy compression.

Uncompressed

An uncompressed (raw or PCM) audio file requires about a megabyte of storage
per second of playback. This format is generally used only for archiving original
master studio recordings.

Lossless compression

This format removes data that is generally unperceivable by audio equipment
and the listener. A good example is the FLAC format, which, while having a
smaller space footprint than PCM, is still too large to be used in the game
development.

Lossy compression

This format sacrifices a varying amount of fidelity for a game-friendly space
requirement. A typical example is the *.MP3 format which uses on an average
about one megabyte per minute of playback time. This is the format we will
focus on in this chapter.

Playback

The sequence of numbers is transmitted from a storage medium into a digital-to-
analog converter (DAC), which converts the numbers back to an analog signal
by sticking together the level information stored in each digital sample, thus
rebuilding the original analog waveform.

This signal is amplified and transmitted to the speakers or headphones.

Types of game sounds

There are a number of sound types, including dynamic, adaptive interactive,
diegetic, non-dynamic, adaptive, and non-diegetic versions. The classification is
based on the perspective we assume to consider sounds in games. From the point
of view of the player's actions, sounds can be divided into Dynamic and Non-
Dynamic.If we, on the other hand, consider the sounds from the perspective of
"where" they occur, we have Diegetic sounds, which happen in the character's
space, and Non-Diegetic sounds. In the following sections we provide
explanations for each of these categories.

Dynamic audio

Dynamic audio is any sound which is designed to be changeable, encompassing
both the interactive and adaptive audio. Dynamic audio is the sound which reacts
to the changes in the gameplay environment and/or in response to the user's
actions.

Adaptive audio

Adaptive audio occurs in the game environment, reacting to gameplay, rather
than responding directly to the user. An example is during timed gameplay, the
music may speed up as time runs out.

Interactive audio

Interactive audio refers to the sound events occurring in reaction to gameplay,
which can respond to the player directly. For example, in Tetris, when the player
drops a piece into place there is a thump sound. The thump is an interactive
sound effect.

Non-Dynamic linear sounds and music

Non-Dynamic linear sounds and music usually occur in movies or cut-scenes.
These will play in a set series without input from the player.

Diegetic sounds

Diegetic audio are sound effects or music that occur in the character's space.
There are three types of diegetic sounds: non-dynamic, adaptive, and interactive.

Adaptive

Diegetic adaptive audio occurs in the game space and may change based on
conditions in the gameplay. For example, during the daylight conditions, birds
may chirp, while during night, crickets chirp.

Interactive

Interactive diegetic sounds occur in the character's space, with which the player's
character can directly interact. The player's actions trigger the sound effect but
the player can't directly affect it. Examples include the character's footsteps, the
creaking of an opening door, or choosing a tune on a juke box.

Non-Dynamic
Non-Dynamic diegetic occurs during gameplay, but the player's actions have no

effect on playback. Examples would include the background music and sound
effects, such as traffic noise.

Non-Diegetic sounds

Non-Diegetic audio takes place outside of the character's space. There are two
types of non-diegetic audio: adaptive and interactive.

Adaptive

Adaptive Non-Diegetic sounds are sound events occurring in reaction to
gameplay, but which are unaffected by the player's direct movements, and are
outside the diegesis or game narrative. An example would be the different
background music for day and night conditions.

Interactive

Interactive Non-Diegetic sounds can react to the player directly, but are also
outside of the game narrative. An example would be the music changing or
starting when the character enters a cafe where a jukebox is playing.

Kinetic gestural interaction

Kinetic gestural interaction can occur in both diegetic and non-diegetic sound, in
which the player (as well as the character, typically) physically participates with
the sound on screen. This usually involves a specialized controller, such as the
Nintendo Wii controller, MS Xbox 360 Kinect, and the guitar in Guitar Hero.

The audio editing software

There are literally dozens of Digital Audio Editors (DAE) available in the
market. The following are a few of the more popular ones:

Avid Pro Tools

Arguably, Avid Pro Tools is one of the best DAE in the market. It is an industry
standard with a full range of features. Developed by Avid Technology, Pro Tools
is available for both Microsoft Windows and Mac OS X operating systems. The
suite is widely used by professionals for recording and editing across music
production, film scoring, film and television post production, musical notation,
and MIDI sequencing. Pro Tools can run as standalone software, or operate
using a range of external A/D converters and internal PCI or PCle audio cards
with onboard DSP. Pro Tools can be purchased and downloaded from
http://www.avid.com/US/products/family/pro-tools.

Fde Edit Veew Track PBegion Event AcdicSute Options Setup Window Help

@ Fitered Dream F=|E- N
- -
i o
1 o8]
e
Fa -
PBan e
o Bat e
-Lorum Cae
kadrar bes
.
-tiada Dl [| T
o | EEER T T
= !
1 Eraer | Rara T
Bass |~M|nm|_u-m
1.0
Bastic Properties | = *
1L

{Crury
L8R (ES

i e
(B B EHEEH [[HS |
5 i . el _ =
Purciman 31331 |Puronismntin Bl-13 DIGIRAC (OAPRESSOR 7 L
Purovron 3182 R oL R i
i st 1 8711 1 g
(i Touks 1 S0LR 100 ks 1 1S N
Pud T L
L3 8 1M
E il M ‘S 4M) M LR 8 Im
i i — T = T
Wl
14811 BE A im i 42
ol et .
I 4 EEMENTE
Mar
- - - - - : s ¥ - 3
FX 13, X L
" [A)M
1% T ;
! i Fiurn X
Masder 1 -
| | I . —

Avid Pro Tools screenshot

http://www.avid.com/US/products/family/pro-tools

Sound Forge/Sonic Foundry

Sony Sound Forge by Sony Creative Software is a digital audio editing suite
which is aimed at the professional and semi-professional markets. It is capable
of recording, editing, and reformatting sound files in a number of formats
including WAV, AIFF, and MP3. A limited version, sold as Sound Forge Audio
Studio, provides an inexpensive entry-level digital audio editor. Sound Forge can
be bought and downloaded at the following website:

http://www.sonycreativesoftware.com/audiostudio

fomd oo 7 = []
U G
Bl Eda Gew fuen Process egn loos FiFavortes Opoors Window tee
i B8 ot ol e § e b e
CHR-RE N [R R
= Vocsl Mt [§]
47 ar
umﬂmﬂm ‘-l... .. m-mﬂ '.ll. :I !“!
=

) = e:\»mu 00T potaasinn]
! ' 4

U277 (T2 9970 B

[. ol @ %
- i
a5
ul
519
5l
"
wd
=
)
]
ni
=
1 el
[T U 4
= = = = B W »
MMl R ———H 00220857 000006, 523 11,5 DECH B R — 0712470 [00:0714.089 20:06:01.630 125 =1

#1004z | bt | Seren | 0001715 | 1578978

Sound Forge screenshot

http://www.sonycreativesoftware.com/audiostudio

Audacity

Audacity is a powerful, open source free digital audio recorder and editor
available for Windows, Mac OS X, Linux, and other operating systems.
Audacity has been available on Source Forge from October 2011 with over 76
million downloads. Audacity has won multiple awards, including the
SourceForge 2007 and 2009 Community Choice Award for Best Project for

Multimedia. Audacity is available for download here:

http://audacity.sourceforge.net/

800 Audacity Project
= : _ :FT'W_E_. ﬁ §L| iL| |
" [FJD‘] @l J‘Q) _E E Rl ' 1 3 ' '] ' % % II Rl E 1 ¥ ' ! 1 ! L % I!
— | i | — | e | = S e| ok 4 vl -42 -24 -12 -6 0 ’ﬁvi -42 -24 -12 -6 0
2 2 = 9 B 2
LD 5! g i) i 2 B oo (& BlAA &l Ll :
| Core Audio 3| 49 | Built-in Output = |ﬁ| Built-in Input E | 2 (Stereo) Input Channels % |
5|5 I:(IJO I:EIIIS I:illﬂ hI:ZII.S I:IZO I:IZS I:?O 1:|35
® Audio Trac | L0
Stereo, 44100Hz 0.5-
32-bit float :
Mute | Solo 0.0
= o |
URE B :i_' Lt ~0_5_
L Eo|_
o g b L0
1.0
0.5
|
0.0
~0.5
| « | [-10

Project Rate (Hz):

Selection Start:

(s)End () Length

Audio Position:

| [ISnapTo [00h 01 m 145+ [00h01m 145 |[00h00m 00 s+

“Click and drag to

select audio

Audacity running on MacOS screenshot

http://audacity.sourceforge.net/

Ableton Live

Ableton Live is a software available for both Windows and iOS which is
especially good to rapidly and easily create sound effects. The basic suite of
upcoming Version 9 is quite cheap and you can try the free trial version before
deciding if it is the right software for your needs (https://www.ableton.com/).

Ableton Live screenshot

https://www.ableton.com/

Designing audio for mobile games

The creation of good audio and sounds for mobile games poses specific
problems to audio designers that depend on both the technical characteristics of
mobile devices and the distinctive conditions at which mobile games are played.

In the following sections, we will discuss the most important considerations
which specifically relate to the creation of optimized audio for your mobile
games.

Planning the audio in advance

The speed at which the mobile games are developed usually means that music
and sounds are often the last element to be added to a game. However, poorly
designed audio can negatively affect the appeal of a title to its target audience
and thus its sales.

Therefore, if you want your title to sell well, we suggest taking care of sound as
any other crucial element of your game from the beginning of the development
process. Of course, gameplay must be fun, but poor sound can hurt an otherwise
high quality game.

Hardware limitations for mobile games audio

As far as the hardware capabilities of mobile phones constantly evolve, users
expect better audio for their mobile games and developers can go beyond the
standard of a few kilobytes for their music scores.

Still, mobile devices have limited audio capabilities when compared to PCs and
home consoles that mobile audio designers need to take into account.

For example, mobile phones are generally provided with a single speaker. Using
headphones can improve the audio experience, and with additional hardware the
iPhone can output stereo sound (on Wikipedia, you can read that Stereo audio
was added in the 3.0 update for hardware that supports A2DP
http://en.wikipedia.org/wiki/IPhone).

In any event, as a developer, you can't rely on your audience to always use
headphones when playing mobile games. Many games these days, advise that
they are best played with headphones, but this depends on the gameplay and how
dependent it is on sound cues.

Another technical obstacle is that the audio capabilities of a mobile device are
usually optimized for speech and don't necessarily work as well for other audio
purposes. It takes experience, a good sound editing tool, such as those we
mentioned, and a lot of fine tuning to deliver an adequate sound experience for
your games.

Fortunately, creating audio for mobile games doesn't only mean dealing with
limitations. High-end devices allow pretty good audio performance that can be
exploited by audio designers to improve the overall experience of a mobile
game. For example, iPhone and iPad developers can make use of advanced
APIs, such as Open AL, to create excellent sounds for their games. These
libraries even allow simulated audio positioning in the 3D space or giving
players the option to choose the music played in their games.

http://en.wikipedia.org/wiki/IPhone

The role of audio in mobile games

Generally speaking, mobile audio design follows the same rules of audio design
for any other game platform. The goal of the game audio is to immerse players
in the game world and improve their gameplay experience.

Typically, your mobile title will require the following audio elements: looping
background music, in-game sound effects, dialog, and interface sounds.

A key aspect is that those sounds that are most often played don't bother players
even after being heard hundreds of times. Work with volume, pitch, and sound
modulation over time (game engines usually offer tools to do that) and test as
much as you can to be sure that the final experience should always be pleasant to
players, rather than annoying.

Listening conditions for mobile games

Mobile gaming has distinctive characteristics of its own that need to be taken
into account by audio designers with regard to the kind of experience that mobile
games deliver to the players.

For example, the listening conditions for a mobile game are hardly comparable
to that of a title you can play on a home console or PC. The spatial sound
available for house speakers, as well as the difference between left and right
channels, may not be available on a mobile phone when playing on a bus or in
the doctor's waiting room. As we said, headphones could help here, but you
cannot rely on players using them.

Then there's noise! When playing outdoors, all kinds of noise can interfere with
your game sounds: background sounds, other people's conversations, dogs
barking, and the like, which will negatively affect your game audio, if not
masking it at all. Testing your game audio in different environments and with or
without headphones, is crucial to find the optimal setting and tuning for your
game audio.

Another aspect to be taken into account is the social aspect of playing in public.
People around our player shouldn't be bothered with audio coming from his
mobile phone or the player may not want people to know what he is doing.
Those facts imply several decisions to be taken at a design level, for example,
setting the ideal volume game sounds should be played at or the conditions at
which audio starts and stops playing.

As you can see, sound design for mobile games should not be seen as a task
independent from the more general design of a game as a whole!

Best practices for mobile games audio
design

In the following sections we will suggest a few basic practices that can help
audio designers to address the most common problems when creating audio and
sounds for mobile games.

Scripting skills for a mobile audio designer

Due to the reduced size of mobile developing teams, a very useful skill for your
audio designer to have is the capability to use the scripting language of your
game engine of choice to manage in-game audio. This will have two main
advantages: the first is that the other team members won't have to take care of
this specific aspect, as they will already be overburdened with the other elements
of game development: designing, programming, or artwork production. The
second advantage is that, as the sound expert takes care of putting audio and
sounds in the game, the overall quality of the project will improve.

Most game engine scripting languages, as we will see in the following chapters
of the book, are Java or JavaScript-based (UDK and Unity among the others). If
your audio designer can deal with such tools, not only the overall quality of your
game will be better, but it can also help meet the deadlines of your project.

File compression

As mobile devices lack the memory capabilities of home consoles and PCs, it is
fundamental to use compression algorithms to reduce the size of your audio
files, while keeping an acceptable quality. For example, in order for your iPhone
game to be downloadable under the 3G standard, its size cannot exceed the
threshold of 20Mb.

As we said, the lower the bitrate of an audio file, the lower its quality.
Fortunately, when developing audio for mobile games, there is no need to
produce optimal 5.1 sound quality. It is thus easier for the audio designer to
balance the reduction in the bitrate of the audio files and yet have those sound
good on a mobile device. For example, with MP3 compression, which is
generally accepted by most popular game engines, stereo audio file size is
almost the same as their mono counterparts.

Looping background music

A very annoying problem that may arise when creating audio for mobile games
is with looping background music. When an uncompressed file is converted into
an MP3, the algorithm generally adds samples that can make it impossible to
create seamless looping music backgrounds. Game engines provide solutions to
this issue. As an audio designer, you'd better be ready to face such problems.

To learn more

Further details on the development of audio and sounds for iOS mobile games
can be found in this very good article on Gamasutra:

http://www.gamasutra.com/view/feature/134597/ios_audio_design_what_everyoi

http://www.gamasutra.com/view/feature/134597/ios_audio_design_what_everyone_.php

Final advice

We mentioned several times that adding audio to a game only in the final steps
of the development process is a bias of mobile game development and we
stressed the importance of considering audio and sounds for as part of the
general design of a game. We would like to say more on this topic.

Since game developers and sound experts don't share very much common
knowledge and hardly possess a common terminology, if the game designer and
audio expert don't discuss their opinions on what kind of audio and sounds are
required for a game, a lot of confusion may arise, with the consequence that time
and money can be wasted.

Communication is crucial in this matter. Always take your time to instruct your
audio designer on what exactly is expected from him/her and make every effort
to be sure that you two share a common vision on the audio and sounds desired
for your title. Provide your sound designer with a full list of the audio and
sounds for your game early on during the development process and also send
him examples and references of what you have in mind. This will reduce the
number of iterations the sound expert has to go through before creating the
perfect sound asset and will help him to fulfill his tasks while meeting the
deadlines, thus saving time and money.

With some practice, you will see that developing a communication channel with
your sound designer will provide your game with better audio and sounds and
improve the overall quality of your project.

A very interesting article on this topic can be found at:
http://www.gamasutra.com/view/feature/175427/getting the_most_from_your_s

http://www.gamasutra.com/view/feature/175427/getting_the_most_from_your_sound_.php

Summary

In this chapter we discussed the history of videogame music. We reviewed how
sound is recorded and played back. We listed the sound types for games and the
most popular digital audio editing software.

Finally, we described the main issues and best practices when dealing with the
creation of audio and sounds for mobile.

During the course of the following chapter, we will delve into the details of
mobile game programming.

We will describe the most popular coding and scripting languages and their
characteristics, the development environments that are most commonly used,
and the best practices of mobile games programming.

Chapter 5. Coding Games

In this chapter, we deal with programming languages to create mobile games. It
is a very rich topic that cannot be entirely discussed in a single chapter dedicated
to mobile game development, though we will give you all the information
needed to approach the matter, and provide useful hints to find the programming
language that best fits your needs to develop mobile games.

We begin with a general discussion on the characteristics of programming
languages and then we describe the most useful languages to create games for
the mobile market. We end the chapter with the description of the program
structure of a game.

In this chapter, we will cover the following topics:

Main features of programming languages
C++

Java

Scripting languages

Game programming for mobile
Objective-C

HTML5

The game structure

Main features of programming
languages

A programming language is an artificial language used to create programs that
express precise algorithms to make a computer perform computations.

Programming languages allow the manipulation of data structures and the flow
of execution of a program.

There are several different kinds of programming languages, which differ in
many aspects, the most important of them being the computations they are
capable of, also known as the expressive power of a programming language.

Each programming language provides a basic set of elements, which describes
data and the processes and transformations which can be applied to them, also
called primitives of that language.

A very important element of programming languages is their syntax. Most
programming languages are textual and their syntax includes words, numbers,
and punctuations. However, there are other programming languages that make
use of a graphical approach, where programs are created by a visual
representation of symbols, for example, a flowchart.

The syntax of a program defines the possible combinations of symbols that
constitute a syntactically correct program.

Another way to differentiate between programming languages is whether they
require static typing or allow dynamic typing.

Static typing means that all expression types of that language are predetermined
before the program is executed. If an expression expects a string data type and
you pass them integers, the output is an error message.

In the category of static typing, we can also distinguish between programming
languages that require types to be specified at the beginning of a program
(variable declarations) and languages which can infer the type of data passed to a
function by the context in which the operations occurs.

A mainctraam lananaae anirch ac (C4++ ic an avamnla nf ctaticallvetymad Tananaaonc

42 111Uar1i10oLrLuLng lull&uubL ULl U 'Y 10 UL \—Aullll.llL v Ol.bll.lhull] I.J]_.l\—‘.l Lulleuusua,

while C# (C sharp) and Java make use of variable declarations, but can also infer
data types in limited cases.

On the other hand, dynamically-typed languages do not require types to be
explicitly defined at some point of a program and allow a variable to refer to
different types of data at different points of the program's execution. This could
be both an advantage and a problem; it allows a more flexible approach to
programming, but it also makes debugging difficult. Lisp, Perl, Python, and
JavaScript are examples of dynamically-typed languages.

Orthogonal to the dichotomy between static and dynamic typing, there is the one
between strong and weak typing.

Strong-typing languages don't allow operations to be carried out on wrong types
of data, such as multiplying a string by a number. Weak-typing languages allow
these kinds of operations with the same risks we mentioned previously; it is a
more flexible way to create computer programs, but it is also more prone to
generate errors that are hard to detect as well.

Libraries

The core operations that are available for a programming language are contained
in libraries. Libraries include definitions for algorithms, data structures, and
input and output operations. Programming languages such as C++ or Java cannot
work at all if such core libraries are not included as a part of any program written
with them.

Abstraction

The capability of a programming language to perform operations strongly
depends on its abstraction level. Early programming languages were tightly
related to the hardware they ran on, thus limiting the utilization of programs
written for different hardware. However, more recent programming languages
are designed so that programmers can write programs that are less tied to the
complexity of the computer for which the program is written, thus requiring less
effort from programmers to write computer programs that can run on different
hardware configurations. The process of converting a program to run on a
different hardware platform is called porting.

Implementation

The abstraction level of a programming language is directly related to its
implementation. Implementation provides a way to execute a program on
different hardware and software configurations. Programming languages can be
implemented in two ways: by compilation or by interpretation.

Compiled programs are directly executed by the hardware of the computer they
run on, while interpreted languages are executed by an interpreter, software that
takes care of converting the instructions of the program into machine code, the
lowest-level programming language. As such, interpreters can be considered as
an interface between a programming language and the hardware of a computer.

Generally speaking, compiled languages allow for operations to be carried out
faster when compared to interpreted languages, as they take direct control of the
operations carried on by the computer hardware.

For example, the technique of Just-in-Time compilation speeds up the execution
of a Java interpreted program, by using a so-called virtual machine that
translates specific chunks of code called bytecode into machine code just before
the execution of the program.

Usage

There are thousands of different programming languages available and not all of
them are able to carry out the same kind of operations or treat the similar kinds
of data.

When we use spoken languages, we can commit small errors, and still expect to
be understood by our listener. Programming languages, on the other hand, don't
allow such flexibility because we cannot expect the computer to understand what
we intended to write. A computer program can only work if the programmer is
absolutely precise when writing the code. This is why programming languages
provide very structured mechanisms to define the data they can deal with and the
operations that can be carried out on that data. This is also the reason why
debugging a piece of code can be a hard task if the program is not written
according to the syntax, the abstraction rules, and the best practices specific to
that programming language! Programmers have a phrase for this: Garbage in,
garbage out (GIGO).

There are several books and online resources that you can refer to delve further
in the details of programming languages. A good starting point is the Wikipedia
page at http://en.wikipedia.org/wiki/Programming language.

http://en.wikipedia.org/wiki/Programming_language

Game programming

When developing video games, the decision on which programming language to
use cannot only be dictated by the proficiency of your game programmer. As a
developer, you must also take into consideration the libraries and APIs which
best support the design characteristics of your game. For example, there are
libraries entirely focused on managing game Al tasks, such as path finding. If
you plan to develop a game whose gameplay strongly relies on Al, you'd better
consider which programming language offers libraries that perform such tasks,
before starting development. This is the reason why it is so important for a game
programmer to be at ease with more than just one programming or scripting
language.

When graphics come into play, there are several APIs available designed to
manage 2D and 3D graphics for games. OpenGL and Direct3D are the most
popular 3D graphic APIs, which offer native support for Microsoft Windows
OS. If you want to know more about OpenGL and Direct3D, we suggest the
following links:

http://www.opengl.org/

http://social. msdn.microsoft.com/search/en-US/windows/desktop?
query=direct3d&Refinement=181

With regard to mobile game development, the decision about the programming
language to use also depends on the target platform of your game.

We already mentioned that Java should be your choice when developing games
for the Android platform, while Objective-C is the programming language for
iOS game development. There are other options as well, naturally. C++ can be
used to program games for the iOS, using the game engine of your choice (game
engines will be discussed in Chapter 8, Mobile Game Engines) and for the
Android with the Android Native Development Kit, available at
http://developer.android.com/tools/sdk/ndk/index.html.

If you plan to use a game engine, and we recommend you to do so, get proficient
with JavaScript if you intend to use Unity3D, learn UnrealScript if you are
oriented towards the Unreal Engine, or LUA if you want to develop games with
Corona SDK (among others).

http://www.opengl.org/
http://social.msdn.microsoft.com/search/en-US/windows/desktop?query=direct3d&Refinement=181
http://developer.android.com/tools/sdk/ndk/index.html

For multiplatform browser games, HTML)5, featuring dedicated engines such as
ImpactJS (http://impactjs.com/) and Canvace (http://canvace.com/) is a good
choice too. Though this standard is not yet fully featured as we write this book,
when compared to the game engines we mentioned (for example, HTML5
doesn't fully support audio and sounds), still it is considered a standard for
upcoming browser-based games and the most promising alternative to the
already popular Flash ActionScript.

http://impactjs.com/
http://canvace.com/

C++

C++ is a statically-typed, compiled, intermediate-level language and is actually
the most used programming language for game programming. It can be
considered, easily put, a version of the popular C language with object-oriented
features, which include the ability to create classes.

C++ is implemented on several hardware configurations and operating systems,
and being a very efficient way to compile native code, it is used to develop
system software, applications, device drivers, data servers, and naturally, video
games.

Renowned companies such as Microsoft and Intel offer C++ software compilers
(for example, the popular Microsoft's Visual Studio) to create and manage
programs written with C++. You can check the latest version (at the time of
writing) Visual Studio 2012 Express at
http://www.microsoft.com/visualstudio/eng/products/visualstudio-express-

products.

Being such a versatile programming language, C++ has influenced several other
languages that are used for game programming, such as Java and C#. If you are
about to decide which programming language to learn to begin with, C++ should
be your first choice!

http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products

Memory management

When programming mobile games, memory management is a crucial aspect to
enhance the performance of your code, while keeping the hardware requirements
for your applications as low as possible.

C++ offers four types of memory management techniques:

e Static memory allocation: This means that values are assigned to variables
once and for all inside a program, so that these values do not change during
the execution of the program. To achieve that, the static keyword is put
inside the variable name in the variable declaration section of the code.

¢ Automatic memory allocation: This implies that the amount of memory
allocated to store a variable value is automatically freed once that variable
goes out of use in the program. This operation is performed by a special
method available in C++ called destructor.

¢ Dynamic memory allocation: This happens when the memory allocation
for a variable value is manually assigned using the new and delete
keywords.

e Garbage collection: This is a very useful operation that we already
mentioned when discussing the basics of iOS game development in Chapter
1, Operation Systems — Mobile and Otherwise. It is a way to automatically
manage memory allocation that relieves the programmer from doing it
manually and is performed by dedicated software such as the very popular
Boehm-Demers-Weiser garbage collector

(http://en.wikipedia.org/wiki/Boehm_garbage_collector).

Memory management is one of the most important aspects of the C++
programming language. It is both a welcome feature, as it gives full control to
programmers over the execution of a piece of code, and a blamed characteristic,
for it requires extra work of programmers when compared to other languages
such as Java or Perl, which don't require any memory management at all. It is a
classical situation of balancing the pros and cons of control over efficiency!

http://en.wikipedia.org/wiki/Boehm_garbage_collector

Objects

C++ is an object-oriented programming language that uses classes. Classes are
definitions of types of data structures and the functions that operate on those
data. Thanks to the use of classes, C++ allows abstraction, encapsulation,
inheritance, and polymorphism.

We already mentioned that abstraction allows a piece of code to work
independently of the hardware it runs on.

Encapsulation means that all data are contained and hidden in a class, and are
only accessible to members of that class, so that classes work as some kind of
black boxes. The advantage of this technique is that it prevents human errors,
since the class can't be accidentally modified or corrupted while writing a piece
of code.

Inheritance means that when a new class is declared, which extends a pre-
existing class, it automatically gets all the attributes and behaviors that were
available to the class it extends. Inheritance saves development time and efforts.
For example, when programming game objects for your application, the
programmer can create a general class which defines the basic properties
common to each game object, and then extend other classes from that which will
share the same so-called members.

Polymorphism, as some say, can be considered as the feature of object-oriented
programming that fully expresses the potential of such programming languages.
It means that the same code or operations behave differently in different
contexts.

A full explanation of this feature goes beyond the scope of this section about
C++. We suggest visiting

http://www.cs.bu.edu/teaching/cpp/polymorphism/intro/, which provides
examples to clear the concept of polymorphism.

http://www.cs.bu.edu/teaching/cpp/polymorphism/intro/

Complaints about C++

Being a multi-paradigm and all-purpose programming language, C++ is blamed
for being too generic and for not enforcing a well-defined programming style.
There is a very funny satirical article where Bjarne Stroustrup, developer of the
C++ language, is portrayed as confessing to the complexities of this
programming language. You can check it out at http://harmful.cat-
v.org/software/c++/I_did_it for you_all.

http://harmful.cat-v.org/software/c++/I_did_it_for_you_all

Java

Java is an object-oriented, multi-purpose programming language based on
classes. It's main feature is portability and its motto is "write once, run
anywhere!". Java is designed to be as platform-independent as possible, so that
Java programs will run regardless of the platform. This is achieved thanks to the
Java Virtual Machine (JVM), a program which compiles programs written in
Java into bytecode. Bytecode is analogous to low-level machine code, so that
programs can run with different operating systems or hardware configurations.

Java derives most of its syntax from C and C++, though it is considered to be far
easier on its users!

Unfortunately, portability has its price; as with any interpreted program, Java
code tends to be slower and requires more memory than software written with
compiled languages such as C++. Anyway, since Just-In-Time compilation was
added in 1998, the execution speed of programs written with Java has improved.

The Java SE platform, which is derived from the original implementation by
former developer and owner, Sun Microsystems, is the current implementation
of the Java platform and it is available for Mac OS X, Windows, and Solaris.
The Oracle implementation is distributed into two versions: Java Runtime
Environment (JRE), which is required to run Java programs and Java
Development Kit (JDK), intended to develop software and contains the usual
development tools (compiler, debugger, and so on).

Several platforms offer direct hardware support to Java code; not only
computers, Microcontrollers, TVs, but even video-recorders are controlled
through Java code!

More important for the scope of this book, ARM-based processors can
implement hardware support for Java bytecode, and 95 percent of today's
smartphones host an ARM processor.

Memory management

Besides portability, the other main feature of Java is its automatic garbage
collector. Java doesn't allow explicit memory management. Once the
programmer creates an object, the garbage collector takes care of freeing the
memory allocated to it, if no references to that object remain as the code is
executed. This cannot entirely prevent memory leaks, though. It is still possible
that a reference to an object that is no longer needed remains, as it is part of
another structure, such as an array, which is still active.

Nonetheless, the automatic garbage collector of Java spares a lot of effort to
programmers, as they aren't forced to explicitly manage memory. Manual
memory management in other languages can be a source for errors that can
cause instability or make a program crash, it is very hard to identify the causes
unless complex methodologies are adopted.

Syntax

The Java syntax is basically derived from C++, and similar to C++, Java is an
object-oriented language. Java differs from C++ in the fact that it is less
structured than C++. In Java, every piece of code is written inside a class and
everything, except the usual language primitives (strings, integers, Boolean
variables, and so on), is treated as an object. Java also lacks some low-level
features of C++ we discussed, such as inheritance.

Java for mobile — Java ME

Java Micro Edition (Java ME or J2ME) is a subset of Java SE, designed for
use on mobile devices such as cell phones. Java ME is embedded in millions of
dumb (non-smart) devices around the world. For most smartphones, it is possible
to download and run Java-ME-based games that have been approved by their
carrier.

As we already mentioned in Chapter 1, Operating Systems — Mobile or
Otherwise, Android-based smartphones run Java ME and the Android SDK,
used to develop mobile games for the Android platform, uses Java ME as well.

Gaikai is a very useful Java application for those of you that are interested in
playing video games demos. It is a cloud-based application, which allows
playing PC and console games on any computer or mobile device (provided it
has access to an Internet connection).

Note

Since Gaikai was acquired by Sony, their cloud gaming system has been offline.
At the time of writing, their website says this will change in the near future.

There are many Java-based game emulators online, including ones for classic
console, arcade, and mobile games. Mobile9 (www.mobile9.com) has all three
platforms and more.

http://www.mobile9.com

Objective-C

Objective-C is the main programming language used by Apple for the OS X and
iOS operating systems and their respective APIs: Cocoa and Cocoa Touch.
Based on the C programming language, it adds object-oriented programming via
a thin layer of interface similar to Smalltalk.

It was developed in the early 1980s by NeXT for its NeXTSTEP operating
system. It was selected by Apple as the main language from which OS X and
iOS are derived. Generic Objective-C programs that do not use the Cocoa or
Cocoa Touch libraries can also be compiled for any system that can run basic C
and vice-versa.

Cocoa

Cocoa is Apple's native object-oriented API for the Mac OS X operating system.
Most OS X and all iOS applications are built using Cocoa. Combining Xcode
and Cocoa provides an excellent set of development tools for both operating
systems.

Cocoa Touch

Cocoa Touch is a UI framework for building software programs to run on the
iPhone, iPod, and iPad from Apple Inc. It's mostly written in Objective-C and
adds features to OS X that are targeted specifically at iOS devices. Cocoa Touch
provides a Model-View-Controller software architecture, just like Cocoa. Tools
for developing applications based on Cocoa Touch are included in the iOS SDK.

Xcode

Developed by Apple, Xcode is an SDK for developing software for OS X and
iOS. Initially released in 2003, you can download the latest stable release
(version 4.5.2) for free from the Mac App Store. If you are a registered
developer, you can download preview releases and previous versions of the suite
through the Apple Developer website.

The suite includes the Xcode IDE and the Interface Builder. It also has most of
the Apple's developer documentation; the Interface Builder is used to construct
graphical user interfaces.

Working with objects

When building apps for OS X or iOS, you'll spend most of your time working
with objects. In this case, objects are instances of Objective-C classes, some of
which are provided for you by Cocoa or Cocoa Touch and some of which you'll
write yourself.

To create your own class, you need to start with a description that includes its
public properties and a list of methods. Methods must include what kind of
messages it can receive, what happens when the method is called, and the
necessary code to implement the method.

Extending classes with categories

Instead of creating an entirely new class to provide minor additional capabilities
over an existing class, you can define a category to add functionality to an
existing class. You can use a category to add methods to any class, including
classes for which you don't have the original implementation source code.

With a class' source code, you can add new properties or change its current
properties with class extensions. Class extensions are particularly useful when
customizing a framework.

Protocols define messaging contracts

Generally, the work in an Objective-C app happens when objects send messages
to each other. Usually, the construct of messages is determined by the methods
defined in a class. At times you will find it helpful to define a set of related

methods that are independent of a specific class.

Objective-C provides protocols that are used to define a group of related
methods; either optional or required. Any class can use a protocol, which means
that it requires implementations for all of the methods in the protocol.

Values and collections

In addition to primitive types defined by the C language, such as int, float or
char, Objective-C can also use Cocoa or Cocoa Touch classes to represent
values. These classes include:

e Strings of characters are defined with NSString
e Different types of numbers use the NSNumber class
e The NSvalue class for other values such as C structures.

Collections are generally represented as instances of one of the collection
classes, such as NSArray , NSSet or NSDictionary , which are used to collect
other Objective-C objects.

Blocks

In C, Objective-C, and C++, blocks are a feature that represent a unit of work;
which makes them similar to closures in other programming languages. They
include a block of code along with a captured state, blocks can be used to
simplify common tasks such as:

e Collection enumeration

e Sorting

e Testing

e Concurrent or asynchronous schedule tasks

Error Objects: Cocoa and Cocoa Touch handles programming errors, which need
to be fixed before an app is submitted to the App Store.

All other errors are represented by instances of the NSError class. Be sure to
plan for errors and decide how best to handle them in such a way that does not
negatively impact the user experience.

Please note that Objective-C includes internal exception handling.

Objective-C conventions

Objective-C code has a number of established coding conventions. For example,
method names start with a lowercase letter and use camel case for multiple
words such as doThis or doThisInstead. Make sure that method names are
easily understood but not too long.

Also, there are a few conventions that are required if you want to use the
language or framework features. For example, property accessor methods must
follow strict naming conventions in order to work with technologies such as
Key-Value Coding (KVC) or Key-Value Observing (KVO).

Apple Developer documentation can be found at
http://developer.apple.com/library/ios/#recipes/xcode_help-

documentation_organizer/BrowsingDocumentation/BrowsingDocumentation.htir
Getting started

To get started with programming Objective-C, you will need a Mac running OS
X Version 10.7 or later. If you have an earlier version of Mac OS X, you need to
upgrade.

We need to follow the ensuing steps for getting started:

1. Download the latest version of Xcode.

2. Open the Mac App Store app on your Mac, search for Xcode, and click on
Free to download Xcode.

3. Enroll in the Mac Developer Program.

After you enroll in the program, you have access to the tools and resources you
need to distribute your app. You will learn more about these tools later in the
road map.

For more information on getting started, go to
https://developer.apple.com/library/ios/navigation/#section=Resource%20Typesé

http://developer.apple.com/library/ios/#recipes/xcode_help-documentation_organizer/BrowsingDocumentation/BrowsingDocumentation.html
https://developer.apple.com/library/ios/navigation/#section=Resource%20Types&topic=Getting%20Started

HTMLS

HTMLS5 is a markup language, which extends the capabilities of former markup
languages and introduces new APIs to create complex web apps, so that it can be
used to create cross-platform applications and games. Among its features,
HTMLS5 is designed to run on low performance devices such as smartphones and
tablets, this is the reason we decide to mention it in this chapter about
programming languages for mobile games. Have you ever heard of a game
called Cut the rope? Well, it has been developed with HTML5!

Well known by web developers for years, the decisive push towards popularity
of HTML5 was given in 2010 by Steve Jobs, who stated that since Flash was not
open platform, as it is controlled by Adobe, it could no longer be the standard for
multimedia applications.

At Cupertino they believed that HTML5, with its open platform, could become
the new standard for web applications and overcome Flash. As a consequence,
iOS devices don't support Flash and this is the reason why many developers
turned to HTML5 to develop games for the iPhone and the iPad.

Canvas

The main feature that allows HTMLS5 to be used to develop games is its APIs,
which can be controlled with JavaScript to create interactive, multimedia
applications.

Among the APIs, the most important for game development is an element called
Canvas, defined by the <canvas> tags.

The canvas block can be added to a web page and then manipulated through
JavaScript to paste images, set compositing modes, manage alpha,
transformations and scaling, and to draw basic shapes.

The drawback of the canvas element is that, though it is well supported by both
desktop and mobile browsers, the rendering speed varies very much, depending
on each specific platform.

HTMLS5 and Flash

While HTMLS5 is often compared to Flash and is considered as its main

rarmnntitar tha tvra tacrhnAaladince Aiffar im mmnanyr nenAnte

LULLIPTLUILUL, LT LWU LCULLIVIUZEICD ULLITL 111 1dlly dadpTueLwd.

They both allow to play audio and graphics inside web pages and to manage
vector graphics. On the other hand, Flash is a complete tool of its own, thanks to
its scripting language called ActionScript, while interactions between elements
of web apps created with HTML5 can only be implemented through JavaScript.
In the end, many features of Flash have no counterpart in HTMLS5 yet!

We mentioned that Apple gave a decisive push towards the spreading of HTML5
instead of Flash. The reason is that Flash-based apps cannot be directly rendered
by web browsers. A freely available component called Adobe Flash Player is
required. But, Adobe Flash Player is supported by any platform, excluding the
iOS (and Android Version 4.1 and higher)! The result is that no Flash-based
application can run on iPhones, iPad, iPod Touch, or even Apple TV.

On the other hand, the HTMLS5 standard is supported by all major web browsers,
both desktop and mobile. This is why some game developers turned to HTML5
to develop iOS games and why HTMLS5 is considered the optimal choice for true
multiplatform game development.

Issues with HTML5

The debate on whether HTMLS5 is the ultimate tool to create cross-platform web
application, and thus games that can equally run on different mobile phones, is
still developing.

There are in fact two main issues when using HTML5. One is that different
browsers implement HTMLS5 in different ways, so the performance of a HTML5
game can dramatically differ, depending on the specific browser it runs on.

The other is that the implementation of HTML5 games rely on the use of a
complex chain of tools: WebGL to have 3D graphics rendered by the GPU in the
browser window, SVG for vector graphics, NaCl to compile C/C++ native
modules, WebSockets to support multiplayer, WebAudio, Canvas, DOM, and
obviously, JavaScript; it is a quite long list!

HTMLS5 games

We guess you are asking yourselves which kind of games can be developed with
HTMLS5?

Desktop: There are obviously desktop browser games, which also include
Facebook games. As we said, HTML5 is supported by all major web browsers,
though all web users are very likely to already have the latest Flash Player
installed on their PCs.

Mobile web browser: More importantly for the goal of this book, HTMLS5 is
supported by mobile web browsers. Generally speaking, when referring to
mobile gaming, one's likely to have apps in mind, stand alone programs that can
be downloaded and then run on a mobile device. Developing games that run in
mobile web browsers, on the other hand, is a viable alternative, as it is a growing
market which already offers dedicated portals to buy high profile games. There
are obviously issues related to performance when your game runs on different
iPhone models and even more due to Android devices variability. But this is an
issue of mobile development in general, regardless of the specific technology
you intend to use. You shouldn't forget that HTMLS5 is a rather new technology
and still under development; the issues you face today could be resolved
tomorrow!

Mobile apps: Mobile games in the form of downloadable apps can also be
developed with HTML5, though in this case, you will need a third-party
development framework such as PhoneGap. Using PhoneGap, HTML5 and a
little bit of JavaScript, it is possible to create games that natively target all
mobile platforms with a single codebase. Since 2012, in fact, the PhoneGap
Build service allows source code to be cloud-compiled and generate apps that
can run on any desired mobile platform: iOS, Android, Windows Phone,
Blackberry, and so on.

Even tablets such as the Blackberry PlayBook offer support for HTML5 games.

If you want to know more about PhoneGap we suggest to check
http://phonegap.com/.

http://phonegap.com/

Conclusions

In conclusion, HTMLS5 is both a viable option to develop mobile games and a
source of problems and performance issues.

On one hand, it allows true cross-platform games development. For example,
using a framework such as PhoneGap, the same JavaScript code can target any
platform you may decide to develop your game for.

On the other hand, since HTMLS5 is implemented differently on each platform,
your game will very likely perform differently, depending on the specific
platform it runs on. Moreover, when compared to Flash, HTML5 games
development is no easy task, as you need several side-tools to implement the
required features for your game, JavaScript being the glue between all such
tools.

Finally, HTML5-based games are generally slow, while at the same time,
HTMLS5 offers very easy debugging solutions.

So, is HTMLS5 the right choice? It depends on your needs and what you want to
achieve. Right now, HTMLS5 still seems immature when compared to other
languages and the tools you need to create HTML5 games are still buggy and not
perfected. But HTMLS5 is also considered by many developers as the future of
mobile game development.

As Morpheus says to Neo: "I told you we can only show you the door, you have
to walk through it!"

Scripting languages

Scripting languages are programming languages used to create programs that run
in another software application. They are usually interpreted from source code or
bytecode, while the environment in which they run is programmed with a
compiled programming language such as C++. This is a way to prevent scripts
from causing fatal errors, since users cannot access the original source code or
modify it.

Generally speaking, scripting languages are easier and faster to pick up, when
compared to true programming languages, thanks to the implementation of a
simpler syntax.

There are several kinds of scripting languages; some are domain specific, with
very specific design and implementation goals while others address more general
purposes. Scripting languages are usually meant to automate a specific set of
actions; many popular software packages offer internal scripting languages to
perform user actions. For example, 3D Studio Max, Maya, or Blender have an
internal scripting language to program so-called macros that automate operations
available in the software environment. Scripting, in this case, is a way to save
time when the user has to carry out repetitive operations.

With regard to the scope of this book, we discuss scripting languages as
programming languages supported by game engines such as Unity, UDK,
Corona SDK, and so on. They are used to program the game logic, the behavior
of game objects, the user interface, and any other aspect involved in the creation
of the gameplay inside a specific game engine. ActionScript, JavaScript,
UnrealScript, and LUA are the examples of scripting languages that are
supported by popular game engines.

Structure of a game program

Regardless of its destination platform or complexity, each game has a basic
structure made of three sections: initialization, the game loop, and termination.

Let's describe each one of them.

Initialization

The initialization is where you set anything that the game needs to get going,
mainly variables. You set the starting position and parameter values of the main
character, the number and starting position of enemies, collectibles and bonus,
the difficulty settings, activate data sharing, and run connection protocols; the
list may be pretty long, you got the idea.

The game loop

The game loop is the heart of the game, the fundamental routine that keeps going
as long as the player keeps playing. In this part of the game program, you get the
input from the player, compute the consequences of his actions, and draw the
results on screen. Then repeat.

The following script represents the basic structure of a game loop:

int main()

{
bool gameEnded=false;
while(!gameEnded)
{
HandleInput(); //Reads keyboard, mouse or any other
//kind of input used by the player
Update(); //Updates game logic and, based on info
//gathered with the previous step
Draw(); //Draws graphics on screen,
//a process called Render.
3
}

In this piece of script, the loop given by the Hand1leInput(), Update(), and
Draw() functions is repeated as long as the gameEnded variable remains true.

At some point that variable turns its value to false, likely due to the main
character death. The loop then stops, the Game Over message is displayed, and
the game gets ready to start a new match.

Termination

The final section is termination. The player decided to quit playing, so it is time
to clean up the system memory from any residual of the game routines and
perform any shut-down operation required.

This phase is especially important for smartphones, which are kind of omnitools
that solve many different tasks. You surely don't want a game that keeps running
on your device, sucking down system resources, and slowing down its
performances.

Conclusion

This is the basic plan all games stick to, regardless of platform and programming
language. The internet is full of resources to develop the game structure of a
game in any language you may want to use.

We thus close this section with a few pieces of advice. One is to draw on screen
only after all other operations regarding the game logic are performed.
Otherwise, the player could experience errors, for example, on the position of
game objects.

The other is to learn to manage the time-related functions of the programming
language of your choice because they allow to keep the frame rate of your game
stable, both during gameplay sessions and across different devices.

Summary

In this chapter we discussed the general characteristics of programming
languages and examined the two most popular ones: C++ and Java.

We described what a scripting language is and provided basic details of two
programming languages used for game development today: Objective-C and
HTML5.

Finally, we provided an example of the basic structure of a game program and its
main sections.

In the next chapter, we will discuss today's smartphones and tablets as gaming
devices.

We will analyze their I/O characteristics and their technical features such as
touch screen, gyroscope, proximity, and light sensors, and describe how these
features can be exploited to design games that perfectly fit the mobile platform.

Chapter 6. Mobile Game Controls

The control system, together with graphics, is the factor that most affects the
gameplay experience. If game controls are not intuitive and easy to learn, or
don't respond promptly to players' actions, players won't enjoy playing that game
and it won't sell much.

We thus dedicate a chapter to describing the available input methods and
technologies available on today's mobile devices, including keypads, touch
screens, and sensors that can enhance your gameplay experience. By knowing
the strengths and weaknesses of each input method available on today's
smartphones, you will be able to make the right choice when designing the
control system for your next mobile game.

In this chapter we will cover the following topics:

Input technology
Touchscreens

Keypads

Touchscreen gestures
Built-in devices

Future input technologies

Input technology

What is the difference between passive (video) and active (games) digital
entertainment? The answer is being able to control the outcome of the
experience. And how does one control the game's outcome? Well, with the
controls, also known as input. The two most common forms of input are via the
keypad of traditional phones featuring physical buttons, and the touchscreen and
sensors that smartphones are equipped with. As smartphones featuring
touchscreens and sensors represent the latest technology, which is replacing
traditional cell phones, this chapter concentrates on the touchscreen and the
many input options available on today's smartphones.

Touchscreens

The touchscreen is the natural evolution of the icon-based operating systems we
are used to. Instead of selecting data represented by icons and then issuing
commands to manipulate them with a mouse, with touch interfaces there is a
direct manipulation of the data through a set of predefined, touch-based actions
performed with our fingers on the screen.

Mobile devices can use lots of different methods to detect a person's input on a
touchscreen. Many use sensors and circuitry to monitor changes in a specific
state. Many monitor changes in electrical current. Others monitor changes in the
reflection of sound waves or beams of near-infrared light. Some measure
changes in vibration caused when your finger hits the screen's surface, or
cameras to monitor changes in light and shadow.

Contemporary devices can process more than one touch at a time. This makes it
possible to use multitouch gestures, which we will discuss later in the chapter.
Earlier touchscreen devices may or may not be able to process more than one
touch.

For example, the Apple iPhone has a multitouch user interface that requires
touching multiple points on the screen simultaneously. One example is called
spread and pinch, where the thumb and forefinger touch the screen at the same
time; bringing the fingers together (pinching) zooms out the image while moving
the fingers apart (spread) zooms in.

The iPhone is not the only device that allows multitouch operations: Android
and Windows Phone-based devices do that too. To allow multitouch operations,
screens have capacitors arranged on a grid. When a touch occurs, the device
detects its location and direction of movement. A feature of this configuration is
the ability to process more than one touch simultaneously.

Generally, two methods are used to detect touch; mutual capacitance and self-
capacitance. Mutual capacitance requires two distinct layers of material; one
carries electrical current and the other has electrical sensors. Self-capacitance
combines the current and sensors into a single layer.

The following figure shows the basic construction of most touchscreens. The
processor detects changes in state between the two conductive layers and then

calculates where the cursor should be displayed on the LED screen.

Conductive Layer
I

Spacer Layer

\ Conductive Layer

LED Layer

Keypads

These are most common in older mobile devices, although some smartphones
have a keypad and a touchscreen, such as the Blackberry. There are three
configurations: numeric, alphanumeric, and directional. Following is a figure of
the Blackberry Bold, a smartphone featuring all three configurations and that is
also equipped with a touchscreen. (This screenshot has been taken from

http://us.blackberry.com/smartphones/blackberrybold.html?

lid=us:bb:devices:blackberrybold&lpos=us:bb:devices#!family=Bold.)

*2zBlackBerry

Fri, May 20 12:21

ﬂ I

http://us.blackberry.com/smartphones/blackberry-bold.html?lid=us:bb:devices:blackberrybold&lpos=us:bb:devices#!family=Bold

Touchscreen gestures

Touchscreen smartphones allow a variety of operations to be performed by
users, both single and multitouch. Multitouch gestures refer to touchscreen input
that uses two or more fingers at a time. The following is a list of the most
common touch-based operations available with Apple, Android, and Windows
Phone devices.

Single—tap

Touch the screen with one finger, once. This is the fundamental operation
required to type text messages and notes, and to launch applications.

Double—tap

Tap the screen twice, with one finger. This is usually done to select a piece of
text to edit it.

Long press

Press the screen with one finger, and hold. This operation is generally used to
select and move icons around the screen.

Scroll

Touch the scroll with a single finger, and move it up and down, or left and right.
You do this when, for example, you need to find a contact in your list.

Spread and pinch

To "spread" means to touch the screen with thumb and forefinger and move the
fingers apart, an action also known as "pinch in". This is often used to zoom in.

Pinch (or pinch out), on the contrary, means to touch the screen with thumb and
forefinger and move the fingers together. This is usually done to zoom out.

.

¥

/'

Pan

Touch the screen with one finger and move in any direction. This operation is
used to pan the view when an application offers an interactive area which is
larger than the available screen, as is the case, for example, when playing
strategic and management games.

Flick

Touch the screen with one finger and move it rapidly side-to-side or up and
down. In games this is used to kick things away, like the ball in soccer games.

Multifinger tap

Touch the screen briefly with two or more fingers. Different applications
implement this action to perform specific tasks, such as resizing an image,
zooming in, or zooming out.

Multifinger scroll

Touch the screen with two or more fingers and move them side-to-side or up and
down. For example, the latest Google Map application allows the use of this
action to change the inclination of the plane with respect to the user's view.

Rotate

Touch the screen with thumb and forefinger, and rotate the forefinger around the
thumb. This is often used to rotate an image on screen and is a popular touch
operation in puzzles and investigation games.

(Images courtesy of Wikipedia)

http://en.wikipedia.org/wiki/Multi-touch_gestures#Multi-touch_gestures

http://en.wikipedia.org/wiki/Multi-touch_gestures#Multi-touch_gestures

Input interfaces for mobile games

The advent of the iOS and its revolutionary touch user interface is responsible
for one of the most interesting aspects of mobile game development: the
possibility of creating games that rely on very innovative input control systems.

Not only the usual touch actions, such as swiping and tapping, have been
exploited to create the mechanics for innovative and popular games belonging to
various genres, such as Fruit Ninja, Spider the Secret of Bryce Manor, Angry
Birds, or Temple Run.

As the iPhone and the majority of smartphones are provided with sensors to
detect movement, proximity, light, a camera, a microphone, and a headphone
jack, these pieces of hardware have been taken into consideration by game
developers to create games that were simply not possible before the advent of
the touch interface and today's smartphones.

In the following sections, we examine the distinctive features of mobile devices
from a mobile game designer's perspective. How can we exploit the potential of
built-in and external components of today's smartphones to design games?

Built-in devices

We begin our tour with the features of a smartphone which are the built-in
features. Modern smartphones include a variety of built-in sensors that can be
accessible for mobile games, and we encourage you to exploit these whenever
you can in your games.

There is more than one reason for this. The successful built-in features of one
device tend to be adopted by competitors over a period of time. In fact, the most
popular smartphones tend to share relevant and appreciated features, such as the
accelerometer. The accelerometer is featured by any smartphone we can think of
today, and it is a piece of hardware that any smartphone owner expects to have
on his device.

If you design a game mechanic around the accelerometer, you can be pretty sure
that your game can reach the largest audience possible, which is a good start for
any indie game.

GPS

The Global Positioning System (GPS) is a space-based satellite navigation
system that requires an unobstructed line of sight to four or more GPS satellites.
The GPS can provide very accurate location information to the device, for itself
and its surroundings. For example, it is possible to search for nearby restaurants,
landmarks, and so on.

GPS games usually include an element of Augmented Reality (AR). One
example of a GPS game is Shadow Cities by Grey Area. Players team up to
conquer their neighborhood, street by street, using magic spells. One of the few
MMORPGs (Massively Multiplayer Role Playing Games) on mobile devices,
Shadow Cities is free to play and is available on the App Store on
www.shadowcities.com.

http://www.shadowcities.com

Accelerometer

Smartphones are provided with a 3-axis accelerometer which detects the
orientation of the phone in the space and changes the screen orientation
accordingly. Most applications take advantage of this feature by swapping
between landscape and portrait view, for example, when viewing a photo.

With regard to games, the accelerometer (and the gyroscope) are exploited by
tons of games; generally all games which simply weren't possible on any other
kind of device.

So many games use the accelerometer for driving, that there's no need to
mention any. Tilt the iPhone left/right to turn your vehicle accordingly.

Doodle Jump is a completely different kind of game, still popular regardless of
its age, which requires the player to tilt the iPhone left or right to control the
jumping direction of the game character as he climbs an endless series of
platforms.

2+ I

-

{-ﬁa.vaid

=)

\
>

*ouch H‘ne ScReen *‘o s}mcﬂ'

!%

JUI'TIP on H’\E.SE-

Rolando is a very smart physics-based platformer where you control a spherical
character by tilting the iPhone to exploit gravity, and to get momentum to
overcome obstacles and get to the end of each level.

Camera

All smartphones have a built-in camera which is often used for games based on
Augmented Reality. AR is a technique which allows enhancing the real-world
environment by overlaying computer generated elements such as 3D characters
that are visible in the real world when watching through the camera. It provides
interactive and digitally manipulatable information about the real world of users
and has many uses, not only in architecture, tourism, and entertainment but also
has uses in medicine, the military, and obviously, in gaming. More on AR can be

found at http://en.wikipedia.org/wiki/Augmented_reality.

Among recent popular titles that use AR to enhance gameplay, we would like to
mention Star Wars: Falcon Gunner and AR Defender.

Falcon Gunner is a classical First Person Shooter (FPS) in which the player is
asked to shoot incoming enemy ships. The distinctive feature of the game is that,
thanks to AR techniques, the player can see the enemy ships attacking him as
they fly in his actual environment.

AR Defender is a tower defense game where the player controls a defensive
tower as it fires against enemies attacking in the kitchen, the bathroom, the bus,

http://en.wikipedia.org/wiki/Augmented_reality

or wherever the player decides to land the marker.

Microphone

Speech recognition is an interesting opportunity for mobile developers, since
Fonix developed its Voiceln toolkit for the iPhone. The most important game
developers such as EA, Ubisoft, and Harmonix, creators of the Guitar Hero
franchise are already licensees for this technology, which means that the number
of games which feature speech recognition will grow over time as the
technology gets more popular. As we write, there are several applications which
offer speech recognition services already available on the Apple Store.

Smartphones, on the other hand, are provided with a built-in microphone which
has already been used to develop many quirky games that use the microphone as
an input device.

Zoom Zoom is a car racing game in which the car speed is controlled by the
player's voice: the more noise you make, the faster the car goes.

iBBQ is a barbecue simulator. As a player, you are requested, among the other
things, to blow in the iPhone microphone to blow on the embers to revive the
fire.

Sonic Lighter is a lighter simulator with a distinctive feature: the possibility of
blowing in the microphone to blow out the flame.

But the most popular application using the iPhone microphone as an input device
is Ocarina. The player must tap the holes displayed on screen and blow in the

microphone to play with this ocarina simulator.

These are just a few examples of creative ways to exploit the technical
characteristics of a device to create innovative gameplay without spending
millions. Keep these in mind when planning your next indie game or
application!

External controllers

A number of manufacturers provide add-on controllers that can simulate classic
console controllers, joysticks, and even miniature arcade cases. They are a
reasonable alternative to virtual buttons on the screen and generally provide a
better user experience, especially for the more retro-styled mobile games.

On the other hand, they are external hardware, and as such you cannot expect
them to be a requirement for a game. Designing a mobile game around an
external control only makes sense if you are developing the game for the
hardware manufacturer in the first place.

Anyway, they exist, and are quite popular too, so why miss the opportunity of
supporting them in your next game in order to provide extra value?

Gamepads

These are Bluetooth external controllers consisting in a control pad and a full set
of buttons to offer optimal control capabilities for more console-style oriented
titles. Such devices offer some advantages and have drawbacks.

The first advantage is that a gamepad is a better controlling device than a
touchscreen when dealing with levers and buttons, because a gamepad offers that
tactile feedback to the player's actions that the virtual pad on a touchscreen
cannot. This is very important for action games. Secondly, the player has his/her
hand on the pad and don't encumber the screen area with their fingers. Finally,
playing with your iPhone won't leave any oily traces on the screen, which is

good anyway!

One disadvantage is that external controllers must be supported by titles, to work
with games. This means that game developers are supposed to take care of
supporting one or more of these controllers in their games. As a developer, you
have to consider the extra time and money it costs to support gamepads and
compare it with the popularity of such devices.

Gamepad models range from those that apply to the device itself, offering a
better grip on the smartphone and turning it into a true handheld game console,
while others are provided with a docking station for the mobile device, so that
the player only holds the gamepad in his hands, such as with the debated Duo
Gamer, the first gamepad officially approved by Apple, which costs $79 at the

time of writing, and is only compatible with the Gameloft titles. There is also the
retro style 8-Bitty controller by iCade which is basically a NES controller
connected via Bluetooth to your iPhone.

Others are as small as a key holder and only offer a cross-directional pad and a
couple of buttons, enough for more arcade-oriented, old-school titles.

For those of you with a steam-punk soul, it is even possible to connect Bluetooth
or USB gaming devices to an Android phone. We know of gamers who use their
PS3 controller to play mobile games! If you are interested, we suggest you
checkout the following link:

http://reviews.cnet.co.uk/mobile-apps/how-to-play-android-games-with-your-
ps3-controller-50004688/

Analog sticks

For those not interested in playing mobile titles with a gamepad, there are
several stick controllers that directly apply to the screen, right above the virtual
pads, to offer a better sensibility when playing, such as the well-designed Fling
by Targus that attaches to the device with suction cups and is transparent, in
order to not obstruct the player's view.

http://reviews.cnet.co.uk/mobile-apps/how-to-play-android-games-with-your-ps3-controller-50004688/

There is even one stick controller that detects the player input through the
iPhone camera. It is an analog stick developed by a group of Japanese
researchers at the Kejo University (http://www.keio.ac.jp/) which uses markers
to send input to the on-built camera. The markers on the controller are detected
by the camera. As the player moves the stick, the markers move too, and their
movement is interpreted through the iPhone camera and turned into movement
of an object on the screen, like a game character.

Touch-enabled cases

Another interesting line of external controllers is consists of touch-enabled cases
such as the Sensus by Canopy. It is an iPhone case equipped with capacitive
back and side areas to control games and the device in general, without
obscuring the screen with your hands. As with the gamepad discussed
previously, these kinds of accessories help keep the screen free and clean, but
need to be supported by developers. The Sensus, in fact, comes with a free SDK
to help game developers quickly and easily offer support for the device in their
games.

http://www.keio.ac.jp/

SENSUS

TOUCH SEMSITIVE CA5E

Grip

Here is an example of a touch-enabled device. Docomo has a new technology
that it calls the Grip UI concept, which allows users to interact with a
smartphone by gripping it in different ways. In addition to sensing where
pressure is applied, this technology will detect different levels of pressure
applied, and can execute certain functions or shortcuts corresponding to specific
input. So for example, it could unlock your phone by gripping it in a certain
manner, or launch an application. This has some exciting implications for
gaming input.

http://technology.xin.msn.com/technology-news/techinasia-article.aspx?cp-
documentid=250777765

http://technology.xin.msn.com/technology-news/techinasia-article.aspx?cp-documentid=250777765

Cabinets

For those who are really hardcore mobile gamers, the iCade and the iCade Jr are
accessories that turn your iPhone/iPad into a true old school cabinet. Though
large, the selection of games (mainly Atari titles) supported by the device is still
limited, so the same issues that arise from other external controllers occur. We
only mention the iCade for its aesthetic qualities.

Headphones

As we switch to the topic of audio-based games, we also move from input to
output systems.

Audio-based games are important for two reasons. First is that it is a way to
create innovative gameplay.

There's a game called Papa Sangre, where the player is asked to control the
direction the game character moves in, to reach specific sound sources. The
screen only displays the actual direction the character is facing. The direction it
must move to is to be inferred by sound cues, that are delivered to the player
through the headphones thanks to positional audio technology. By not displaying

anything on the screen and the use of strange, disturbing sounds, this game is
capable of providing pretty cool immersion and an uncommon, and almost scary,
gaming experience.

In Audio Invaders, the player controls the popular ship from Space Invaders by
tilting the iPhone to move left or right. The screen is pretty much black and
enemy ships are not fully displayed. The player must infer their position to fire
at them using audio cues provided through the headphones to his left or right ear.

UARIED SPACECRAFT

()

INUISIELE - % .
UNTIL HIT : COLLECTARELES

(LT o
=y

(]

LT

. A
MOUE ToOkWaREDS THE
SOUHDS TO FIND THEM L J EXPLOSIONS

. .AND FIRE M J ON IMPACT =—

But second and the most important reason in mentioning mobile games and
applications that rely on audio as the main output channel is that these kinds of
games are accessible to people with visual impairments. Still today, very few
games offer such feature, and most of the time this fact is unavoidable, since
after all, video games are video games. Whenever you, as a developer, create a
game that can be played even by those with impaired vision, you not only show
that you are a very smart developer who can design games that target the largest
audience, but also prove that you have sensibility towards other people's needs,
which is a nice personal quality!

Future technologies

There are some technologies on the horizon that will be widely available very
soon. One example is eye tracking; brainwave readers are another. Both have a
lot of gaming potential, so we would like to say a few words on each of them.

Eye tracking

Using eye movement as an input device has been around for a long time, but up
until recently it was prohibitively expensive. This is rapidly changing, with eye-
tracking add-ons becoming cheaper over time.

Senseye is an example that has been designed to allow users to interact with their
mobiles through eye movement tracking. Uses include scrolling a web browser,
controlling game objects, and turning on the screen as it's looked at.

Starting in 2013, eyetribe.com (Senseye's maker) plans to integrate their
technology into new smartphones as well as releasing an add-on device for older
models.

Docomo's I Beam invested in this technology and their tablet has eye tracking
built in. Still in the prototype stage, there have been no announcements on the
specifications or release dates at this time.

(1 1—%—0
HEeoE=cesht

Brainwave readers

The second interesting technology that we would like to mention is that of
brainwave readers.

It is now available at a reasonable cost; there is hardware that allows us to record
the electric signals emitted by areas of our brain cortex using headsets which
don't require expertise to be worn, and gels of any sort that are used to improve
the conduction of signals coming from our brain.

Such a headset can be connected to a mobile phone with an application running
which can read the signal coming from the headset and perform interesting and
useful functions, ranging from the field of pure entertainment to more medical or
experimental oriented tasks.

NeuroSky (http://www.neurosky.com/Default.aspx) is a company which invests
in the brainwave reader technology, and they have developed a kit with the
headset and a suite of applications to run on your mobile phone, to take
advantage of the signal coming from your brain.

The potential for gaming is unimaginable. If you are interested in this topic, we
suggest you checkout the following link showing the potential of the brainwave
reader technology:

http://www.ted.com/talks/tan _le_a_headset that reads_your brainwaves.html

The following figure represents a bluetooth headset for reading brainwaves and
sending the signal to a mobile phone:

http://www.neurosky.com/Default.aspx
http://www.ted.com/talks/tan_le_a_headset_that_reads_your_brainwaves.html

Summary

This chapter covered the basic technology of input devices and the standard
gestures used with touchscreens. It also discussed the uses of other built-in
sensors and output devices. We covered a variety of external controllers such as
joysticks, cabinets, and headphones. We looked at some future technology such
as eye-tracking and the brainwave readers.

In the next chapter we will cover the topic user interface design. We will discuss
relevant theories about interface design and describe the best practices to design
interfaces for mobile games.

Chapter 7. Interface Design for Mobile
Games

In the previous chapter, we described the I/O capabilities of today's smartphones.
In this chapter we will analyze the process of creating user interfaces for mobile
games which take advantage of such capabilities.

With so many different screen sizes, so little space to work with, and no real
standard in the videogame industry, interface design is one of the toughest parts
of creating a successful game. We will provide you with what you need to know
to address the task properly and come up with optimal solutions for your mobile
games. In this chapter, we will cover the following topics:

Approach to user interface design
Diegesis theory and videogames
User interface design

Icons design

Best practices of Ul design
"Must-have" game options

The role of the user interface

The user interface is the element that most affects the gameplay of a title, as it
defines how the player interacts with the game and accomplishes the task he is
presented with.

A well-designed user interface can make a game with simple mechanics feel
fresh and interesting, while fully supporting the expectations of the player. It is
always a nice surprise for a player when he realizes he can perform some
specific action exactly how he imagined it through the game interface: if you can
make many players happy like that, your game will climb up the sales charts!

At the same time, the contrary is true as well. No matter the number of
innovative game features and mechanics, the quality of graphics and sound, the
license you are exploiting, or the story you develop throughout a game, if the
interface is patchy, intricate, not intuitive and unappealing, your game isn't likely
to sell well.

As we saw in the previous chapter, today's smartphones offer a completely new
set of input styles for games. It's up to you, as a mobile game developer, to fully
exploit those features to create an interface which optimally fits the needs of
your potential players.

Approaching user interface design

When developing a game, there is no official standard or pre-defined set of rules
to follow to design its interface. Different games rely on different mechanics and
there is always more than one way to implement effective controls for a game.

To approach the task correctly, it is good practice to invest some time in
research. A good starting point is to study the general aspects of interaction
design. Design affects the shape of the tools we use in our everyday activities at
any level and cognitive psychology has thoroughly investigated the means to
design effective interactions between humans and the tools and instruments they
use. We suggest having a look at The Theory of Affordances by James J. Gibson,
described in his book The Ecological Approach to Visual Perception
(http://en.wikipedia.org/wiki/Affordance) and reading the book by Donald A.
Norman The Design of Everyday Things.

The next step is to get proficient with general Ul theory. Game engines offer
several assets to implement the graphic interface for a game, but how can you
make the best of it if you don't know the strengths and weaknesses of a drop-
down list compared to a combo box? Which are the pros and cons of each
interface element?

Once you understand which interface element is good for what, you can start
learning from the success or failures of other developers. Take some time to
study the interface of both successful and unpopular games to understand what
worked and didn't work for them, what were the reasons they adopted a specific
solution for a game mechanic, if there were other options available, and why
were they discarded.

Some elements of the UI of a game are shared regardless of the genre, while
others are distinctive for different genre. For example, any game should provide
the player with info to understand if he's winning or losing. Such info is usually
provided in the Heads up Display (HUD) of a game, in the form of score,
available lives\energy, or position of the player in a racing game.

On the other hand, each game genre has its own distinctive UI characteristics
that players, especially experienced ones, expect to find in a title. By not
supporting such expectations, you enter a risky gray area, as you may find your
game frustrates the players, as it contrasts with what they learned during their

http://en.wikipedia.org/wiki/Affordance

career. For example, Real Time Strategy (RTS) games allow selecting a group
of units to issue orders. The possibility to drag a selection box around a group of
units is an expected feature of any RTS title. By not implementing such feature
you basically bet against your players: before you do that, take some time to
think if it really makes sense for your game to deny what other games proved to
have worked fine. There are other ways to be innovative when designing a game
than messing up with the interface, which could result in a total failure for your
game!

Practicing is the best way to learn to design effective UI for games, in the end.
Approach different genres and try different solutions, then test them. Have both
experienced and un-experienced players try your game interface. Ask them what
worked for them and what didn't, and why. You may find, for example, that the
gaming experience affects the evaluation of a game interface, as experienced
players know what to expect, while casual gamers are less likely to make
comparisons. To please all of them is hard work of tuning and refinement, which
takes time and effort to accomplish. If you do it right, your game will be enjoyed
by many gamers and get you good revenue. A good rule of thumb is watch as a
player encounters a new feature. If it takes them more than 30 seconds to figure
it out and/or they ask more than three questions, the interface needs to be
redesigned.

Ul in videogames

Throughout the history of videogames, interfaces have evolved according to the
evolution of game mechanics, which basically got more complex with time. If
you think that an Xbox 360 controller has two analog sticks, a D-pad, and 13
buttons, while the Atari 2600 pad had a stick and one button, you can understand
what we mean! The way you take advantage of such potential to develop the
proper interface for your gameplay, can make a difference between fame and
failure. As we saw in the previous chapter, today's smartphones rely on touch-
screen controls and a few sensors for input, so they can't compare to gamepads
with regard to in-game controls capabilities. But it is also true that a very
interesting aspect of mobile gaming is that it brought simple mechanics that
characterized old-school games back to the top. Give all attention you can to
converting your game controls in an effective user interface for your target
device and your gameplay will very much benefit from it.

When games were basically 2D, there was not too much to question about
realism. Games weren't realistic and the interface only needed to show the score,
available lives, equipped weapons, or actions available. Interface design only
required being effective and consistent, and the suspension of disbelief was not a
matter of concern.

With the advent of 3D in videogames, designers had to face the problem of
realism and how to preserve the players' immersion throughout the game. If
one's playing from the perspective of the game character in a First Person
Shooter, is it acceptable to provide him with a HUD? Won't this break his
suspension of disbelief? Though a full detailed HUD can fit Crysis, which is set
in the future, how can it be adapted to a title set in WWII?

Still, players need plenty of info when playing shooters, especially competitive
ones: ammo available, direction they are facing, stance of the character, map,
and others. Correctly displayed, these info can make the difference between "life
and death" during a multiplayer death match.

With regard to the types of different interface styles adopted by videogames, a
very popular theory, adapted from the diegesis theory used in literature and film,
defines four categories to classify game interfaces: diegetic, non-diegetic,
spatial, and meta.

The classification is based on two dimensions, depending on the answers given
to the following two questions:

¢ s the interface component part of the game story\narrative?
e s the interface component part of the actual game space?

The following figure offers a representation of this classification:

Is the interface component part of
the game story/narrative?
no yes
- non-diegetic spatial
s the representations | representations
interface
component
part of
the actual game
space? ves meta diegetic
representations | representations

Let's explain these concepts through examples taken from actual 3D games.

e Diegetic: A diegetic representation answers "yes" to both the questions of
the diagram: the component is part of the game narrative and it is located
inside the game world. It is experienced by both the player and his
character.

Shadow of the Colossus implements a diegetic representation of the
compass which tells the player where he should go. When the player needs
to know where to go next, he can make the game character raise his blade in
the sun and a light beam appears that shows the direction to take. Check the
following figure which represents a screenshot of the game:

Health is represented by a bar on the suit of the game character in Dead
Space or the stealth level represented as colored LEDs on the suit of Sam
Fisher (Splinter Cell) are other examples of this approach.

The good thing about diegetic representations is that they tell the player
what he needs to know without breaking the continuity of the gaming
experience. The bad thing is that, if not done properly, it can be very
destructive to the game flow and can annoy the players. In Grim Fandango,
the inventory can only be scrolled one item at a time. Though realistic, this
option frustrates the players and breaks their suspension of disbelief.
Non-diegetic: Opposite to the former definition, a non-diegetic component
is rendered outside of the game world and it is only available to the player,
not to his character. A non-diegetic component answers "no" to both
questions; it represents the approach used by most games which offer a full-
optional HUD to their players.

o Call of duty: Modern warfare uses a typical non-diegetic HUD, which
perpetually displays several pieces of useful info to the player: the
weapon he is wielding and its cross-hair, the amount and types of
ammo and grenades available, a map and a compass for directions, and

the stance of the character, among the others.

The following figure is a screenshot from the game:

If it is well-designed, a non-diegetic interface goes unnoticed by the players
and has no detrimental effect on their experience, as they have adapted with
time to the use of such HUDs in games.

HUDs can be very complex or very minimal, according to the complexity
of the game mechanics and what is necessary for the player to be aware of
to play the game. Tactical shooters, simulations, and RPGs tend to have the
most complex interfaces, as players are supposed to be aware of many
things to effectively play such games, while more action oriented titles tend
to require less stuff to be continually displayed on screen.

A very interesting example of a game with basically no HUD is Peter
Jackson's King Kong, an adventure FPS with no ammo, health, or even
cross-hair displayed on screen. Aiming with no reticule and the low amount
of ammo available in the game made every fighting sequence pretty

engaging and full of tension. Think about such examples whenever you are
about to decide which components are really necessary when designing the
HUD for your user interface.

The following figure represents the absence of HUD in King Kong.

Spatial: These components are elements that live outside the game
narrative ("no" to the first question), as they are not experienced by the
game characters, still they appear inside the game world to provide specific
cues to the players ("yes" to the second question).

In Fable 2, the player is told the direction of his next objective via a shiny
trail that appears on the ground, in front of the game character. Whether we
assume that the game character can see it or not, the trail is an artifact
created by the game designer to help the player never get lost in the game
world, which doesn't actually affect the game story and it is a smart
implementation of the compass which perfectly adapts to the look and feel
of the title.

The trail is represented in the following image taken from Fable 2:

Another example is the brackets which appear on selected units in RTS
games. If those brackets weren't put inside the game environment, it would
be pretty hard for a player to understand which units he is in control of at
any moment. Still, we cannot assume that the brackets are perceived by the
game units or affect the outcome of a battle.

Spatial components tend on one side to encumber the game view, as they
consist of icons and text displayed on screen and add to anything else which
is already in the player's view. On the other side, they are more than
helpful; they can be necessary to fully exploit the game mechanics of a title.
Ask any WOW player about the configurable interface of their favorite
title!

Meta: This is the last category and it stands for all those components of an
interface which exist in the game world, so "yes" to the first question, but
are not visualized spatially in the game world, so "no" to the second
question. The blood splatters on the screen which reduces visibility for a
short while in shooters are an example of such components. Another one
we would like to mention is Samus' face reflection in the helmet in Metroid
Prime, as shown in the following figure:

—— -

— -
35|lli"li ==

The aim of such components is generally to make the game experience feel more
real and consistent for players, they are little touches that help the player sustain
the suspension of disbelief as he plays a title.

It's important to note that making the game experience feel more real and
consistent doesn't necessarily mean more realistic. Think of the lens flare effect
in a racing game. As the lens flare is an effect generated by light refracting on a
lens, whenever we are shown a lens flare in a game, the designer is telling us
"this is just a game, you are not really driving a car". On the other hand, we as
entertainment consumers, are so used to the representation of sports and events
on TV, that whenever a game features special effects, such as lens flare, we feel
like we are witnessing the real event through a TV camera, not just a game.

The diegesis theory provides us with a useful scheme to make a basic
categorization between different game interfaces, though, as any model, it could
not perfectly apply to any game we may experience. Definitions are useful, but
more important is that the interface that you are designing for your game fits its
needs. The most important thing for a game interface is that it serves the purpose
of the game mechanics and puts the player in the optimal conditions to fulfill the
game goals. Never stick to a model based on a prejudiced assumption or a style
manifesto; instead, ask yourself what is the look and feel you want for your
game and what kind of involvement you want for your players, then choose
wisely the kind of interface that best adapts to your assumptions.

If you want to examine this topic in more depth, we suggest the following
articles from Gamasutra:

e http://www.gamasutra.com/view/feature/4286/game_ui_discoveries_what_p
print=1

e http://www.gamasutra.com/view/feature/132475/a_circular_wall_reformulat
page=4

http://www.gamasutra.com/view/feature/4286/game_ui_discoveries_what_players_.php?print=1
http://www.gamasutra.com/view/feature/132475/a_circular_wall_reformulating_the_.php?page=4

Designing the Ul

The UI of a game should be designed while taking two aspects into
consideration: what the look and feel of the game is and what are the actions the
main character will perform, and how.

Begin by defining a list of functions that must be included in the Ul, things such
as score, available lives, real and virtual money amount, cross-hair, and mini-
map, whatever is absolutely necessary to be displayed in the interface of the
game.

Then map these fundamental functions to different interface methods. Take each
item on the list and ask yourself which is the interface method that better fits the
needs of the game with regard to that specific interface component. For example,
assume we need to show the health status of units in a strategic title: will the
player better benefit from a spatial method, such as drawing a health bar on the
top of the unit, or a diegetic method, such as displaying the health status as
actual damage to the unit model/sprite?

When making such a decision, always keep in mind the look and feel you want
for your game. If your game mainly relies on immersion, try to manage the most
important components with diegetic methods. If efficiency and clarity of the info
displayed on screen is what you care most about, it is very likely that a spatial or
non-diegetic representation will better serve such purposes.

Iterate the process many times, until you feel like the main components of the
interface are displayed with the best method and the way game actions are
performed reflect the look and feel of the game and/or the main character style.

Remember that a game interface is not only made of graphics juxtaposed on the
screen: audio, animations, and FX can be used as well. For example, the position
of enemies in the game world could be displayed as colored dots on radar, but
you could also use audio cues and audio positioning techniques to lure the player
toward the enemies. Try to mix things up, and as usual, be creative!

Aesthetics

Optimal functionality is not enough for a game interface to be well-designed.
The game interface should also be consistent with the aesthetics of your game. If
you are working on a futuristic title, there's no question that the interface should
be futuristic as well.

As the best interface is the one which the player doesn't even notice, many
developers agree that the Ul is secondary to the artworks of a game. Always
create interfaces that are consistent with the other artwork of your product and
that complement them. If you design an intrusive interface, it will pop out of the
screen and distract the players from the engagement of playing your title.

More on vectors and rasters

We already discussed the topic of rasters and vectors graphics in Chapter 3,
Graphics for Mobile. We are now going to delve into the details of these
drawing techniques with specific regard to UI design.

The variability of screen sizes and resolutions that (from a game developer
perspective) affects mobile devices, especially Android smartphones, requires
specific techniques to design game interfaces to deal with such variability.

The risk that must be avoided at all costs is that you need to redesign the game
interface every time you target a new device for your game, as scaling up or
down an interface can be very problematic.

As we already said, when creating graphics for games, there are two options
available: drawing pixel by pixel (raster graphics) or drawing with curves and
gradients (vector graphics). Vector graphics result in lighter files but they are
less efficient for real-time graphics, as vectors must be converted into raster
before they can be displayed on screen. Raster graphics, on the other hand, don't
need such conversion, resulting in better game performance.

The important thing here is that vector graphics can be scaled, while rasters
cannot. A good solution to address the problem of scaling the game interface to
adapt to different devices is to create a basic template for your game UI using
vector graphics and working with dedicated software, such as Adobe Illustrator.
Scale vectors as needed, until you find the size that best fits the needs of your
game.

Then convert vectors into rasters (bitmap, JPEG, or PNG file formats) as you
move to the actual interface for the game. This procedure will help you save
time and money, should a new device become available with different screen
size\resolution, requiring scaling up or down the Ul you already designed. In
such cases, you just need to scale the template in vector graphics and then
recreate the rasterized assets from that template. With raster graphics, on the
other hand, you would be forced to redesign every interface component
altogether.

Whether to use vector or raster graphics also depends on the artwork styles you
chose for your game. For example, vectors rarely suit realistic graphics. As the

hnnrﬂ'\n]r] fnhhnn]ndv :\r]vnnr‘nc n]nvnrc dnnnrn”v ovnoart mnro rnn]icfir'_]nn][inn'

IUICENACENLWIAN | LLLIIIIULU&J ULV UuLivLC oy Plu] A B J 6L11L1ul1] LAIJLLI. 111U L LLuiioure 1uu1x1116

games. In such cases, you should prefer to produce the graphic assets for your
interface as bitmaps.

On the other hand, vector art allows creating perfect stylized graphic artworks
for those titles with a strong characterization, in terms of creative direction. Kid
Vector is one such title: a platformer with excellent controls and vector graphics,
as you can see in the following figure:

Designing icons

Icons are a very important element of any mobile game from the very beginning
of its commercial life. When you upload your new game on the App Store, it's
mainly the icon you provide that will convince potential customers to try your
game. Badly- designed and crafted icons won't attract many players in the sea of
potential apps to download!

Creating the perfect icons for your game is not to be overlooked. But which are
the best techniques to create nice, crisp icons? In the previous section of this
chapter, we discussed the differences between raster and vector graphics. Now
we will apply those concepts to the creation of game icons.

First of all, we need to re-formulate the concept that vector graphics can be
scaled at our wish with no quality loss.

Though it is true that vectors can be scaled, when the size of an icon is less than
48x48 pixels, some weaknesses of the vector based approach emerge. If you
create a 24x24 pixel vector image and scale it down to 16x16 pixels, some
blurring will occur, as there is no way to match the proportions between the two
sizes.

As you may notice in the following figure, the first line of icons, created as
separate files, are far more detailed and crisp than the second line of icons,
obtained by scaling a single vector file.

EACH =IZE CUSTOM CREATED, SAVED AE PMNG

Whenever you need to create small sized icons, the best thing to do is to design
separate bitmaps, scaled to match every required size. Even if it takes a little

more time to achieve, it prevents the poor results obtained when scaling a single
vector to different icon sizes.

On the other hand, you just need to worry about it for small, very detailed icons.
If the size of your icons is more than 48x48 pixels and/or your icons are not

filled with many fine details, you won't have to worry about the vector scaling
problem.

Best practices in Ul design

Now that we have discussed the theoretic aspects of interface design for mobile
games, in the following section we will provide a list of useful hints to approach
the creation of a well-designed UI for your next game.

The first golden rule is that the better the game interface is designed, the less it
will be noticed by players, as it allows users to navigate through the game in a
way that feels natural and easy to grasp.

To achieve that, always opt for the simplest solution possible, as simplicity
means that controls are clean and easy to learn and that the necessary info is
displayed clearly.

A little bit of psychology helps when deciding the positioning of buttons in the
interface. Human beings have typical cognitive biases and they easily develop
habits. Learning how to exploit such psychological aspects can really make a
difference in the ergonomics of your game interface. We mentioned The Theory
of Affordances by Gibson, but there are other theories of visual perception that
should be taken into consideration. A good starting point is the Gestalt Principles
that you will find at the following link:

http://graphicdesign.spokanefalls.edu/tutorials/process/gestaltprinciples/gestaltpri

Finally, it may seem trivial, but never assume anything. Design your game
interface so that the most prominent options available on the main game screen
lead your players to the game.

Choose the target platform. When you begin designing the interface for a game,
spend some time thinking about the main target platform for your game, in order
to have a reference resolution to begin working with. The following table
describes the screen resolutions of the most popular devices you are likely to
work with:

Device model Screen resolution (pixels)

iPhone 3GS and equivalent [480x320

http://graphicdesign.spokanefalls.edu/tutorials/process/gestaltprinciples/gestaltprinc.htm

iPhone 4(S) and equivalent |960x640 at 326 ppi
iPhone 5 1136x640 at 326 ppi
iPad 1 and 2 1024x768

iPad 3 retina 2048x1536 at 264 ppi
iPad Mini 1024x768 at 163 ppi
Android devices variable

Tablets variable

As you may notice, when working with iOS, things are almost straightforward,
as with the exception of the latest iPhone 5, there are only two main aspect
ratios, and retina displays simply doubles the number of pixels. By designing
your interface separately for the iPhone/iPod touch, the iPad at retina resolution,
and scaling it down for older models, you basically cover almost all the Apple-
equipped customers.

For Android-based devices, on the other hand, things are more complicated, as
there are tons of devices and they can widely differ from each other in screen
size and resolution. The best thing to do in this case is to choose a reference,
high-end model with HD display, such as the HTC One X+ or the Samsung
Galaxy S4 (as we write), and design the interface to match their resolution. Scale
it as required to adapt to others: though this way, the graphics won't be perfect
for any device, 90 percent of your gamers won't notice any difference.

The following is a list of sites where you can find useful information to deal with
the Android screens variety dilemma:

e http://developer.android.com/about/dashboards/index.html
e http://anidea.com/technology/designer%E2%80%99s-guide-to-supporting-

multiple-android-device-screens/

http://developer.android.com/about/dashboards/index.html
http://anidea.com/technology/designer%E2%80%99s-guide-to-supporting-multiple-android-device-screens/

e http://unitid.nl/2012/07/10-free-tips-to-create-perfect-visual-assets-for-ios-
and-android-tablet-and-mobile/

http://unitid.nl/2012/07/10-free-tips-to-create-perfect-visual-assets-for-ios-and-android-tablet-and-mobile/

Search for references

There is no need to reinvent the wheel every time you design a new game
interface. Games can be easily classified by genre and different genres tend to
adopt general solutions for the interface that are shared among different titles in
the same genre.

Whenever you are planning the interface for your new game, look at others'
work first. Play games and study their Ul, especially from a functional
perspective. When studying others' game interfaces, always ask yourself:

e What info is necessary to the player to play this title?

e What kind of functionality is needed to achieve the game goals?

e Which are the important components that need to stand out from the rest?
e What's the purpose and context of each window?

By answering such questions, you will be able to make a deep analysis of the
interface of other games, compare them, and then choose the solutions to better
fit your specific needs.

The screen flow

The options available to the players of your game will need to be located in a
game screen of some sort. So the questions you should ask yourself are:

e How many screens does my game need?
e Which options will be available to players?
e Where will these options be located?

Once you come up with a list of the required options and game screens, create a
flow chart to describe how the player navigates through the different screens and
which options are available in each one.

SELECT PLAYERS

_CHOOSE TRAINING
i TRAINIMG
MAIN SCREEN

OPTIONS AUDIO

GAME CONTROLS |

QuIr

The resulting visual map will help you understand if the screen flow is clear and
intuitive, if game options are located where the players expect to find them, and
if there are doubles, which should be avoided.

Be sure that each game screen is provided with a BACK button to go back to a
previous game screen. It can be useful to add hyperlinks to your screen mockups
so that you can try navigating through them early on.

Functionality

It is now time to define how the interface you are designing will help users to
play your game. At this point, you should already have a clear idea of what the
player will be doing in your game and the mechanics of your game. With that
information in mind, think about what actions are required and what info must
be displayed to deal with them. For every piece of information that you can
deliver to the player, ask yourself if it is really necessary and where it should be
displayed for optimal fruition.

Try to be as conservative as you can when doing that, it is much too easy to lose
the grip on the interface of your game if new options, buttons, and functions
keep proliferating. The following is a list of useful hints to keep in mind when
defining the functionality of your game interface:

Keep the number of buttons as low as possible

Stick to one primary purpose for each game screen

Refer to the screen flow to check the context for each game screen
Split complex info into small chunks and/or multiple screens to avoid
overburdening your players

Wireframes

Now that the flow and basic contents of the game interface is set, it is time to
start drawing with a graphic editor, such as Photoshop.

Create a template for your game interface which can support the different
resolutions you expect to develop your game for, and start defining the size and
positioning of each button and any pieces of information that must be available
on screen. Try not to use colors yet, or just use them to highlight very important
buttons available in each game screen.

This operation should involve at least three members of the team: the game
designer, the artist, and the programmer. If you are a game designer, never plan
the interface without conferring with your artist and programmer: the first is
responsible for creating the right assets for the job, so it is important that he/she
understands the ideas behind your design choices. The programmer is
responsible for implementing the solutions you designed, so it is good practice to
ask for his/her opinion too, to avoid designing solutions which in the end cannot
be implemented.

There are also many tools that can be used by web and app developers to quickly
create wireframes and prototypes for user interfaces. A good selection of the
most appreciated tools can be found at the following link:

http://www.dezinerfolio.com/2011/02/21/14-prototyping-and-wireframing-tools-
for-designers

http://www.dezinerfolio.com/2011/02/21/14-prototyping-and-wireframing-tools-for-designers

The button size

We suggest you put an extra amount of attention to defining the proper size for
your game buttons. There's no point in having buttons on the screen if the player
can't press them.

This is especially true with games that use virtual pads. As virtual buttons tend
to shadow a remarkable portion of a mobile device, there is a tendency to make
them as small as possible. If they are too small, the consequences can be
catastrophic, as the players won't be able to even play your game, let alone enjoy
it. Street Fighter 1V for the iPhone, for example, implements the biggest virtual
buttons available on the Apple Store.

Check them in the following figure:

When designing buttons for your game interface, take your time to make tests
and find an optimal balance between the opposing necessities of displaying
buttons and saving as much screen space as possible for gameplay.

The main screen

The main goal of the first interactive game screen of a title should be to make it
easy to play. It is thus very important that the PLAY button is large and
distinctive enough for players to easily find it on the main screen.

The other options that should be available on the main screen may vary
depending on the characteristics of each specific game, although some are
expected despite the game genre, such as OPTIONS, LEADERBOARDS,
ACHIEVEMENTS, BUY, and SUPPORT.

The following image represents the main screen of Angry Birds, which is a
perfect example of a well-designed main screen. Notice, for example, that
optional buttons on the bottom part of the screen are displayed as symbols that
make it clear what is the purpose of each one of them. This is a smart way to
reduce issues related with translating your game text into different languages.

Test and iterate

Once the former steps are completed, start testing the game interface. Try every
option available to check that the game interface actually provides users with
everything they need to correctly play and enjoy your game.

Then ask other people to try it and get feedback from them. As you collect
feedback, list the most requested modifications, implement them, and repeat the
cycle until you are happy with the actual configuration you came up with for
your game interface.

Evergreen options

In the last section of this chapter, we will provide some considerations about
game options that should always be implemented in a well-designed mobile
game Ul, regardless of its genre or distinctive features.

Multiple save slots

Though extremely fit for gaming, today's smartphones are first of all phones and
multi-purpose devices in general, so it is very common to be forced to suddenly
quit a match due to an incoming call or other common activities.

All apps quit when there is an incoming call or when the player presses the home
button and mobile games offer an auto-saving feature in case of such events.

What not all games do is to keep separate save states for every mode the game
offers or for multiple users.

Plants vs. Zombies, for example, offers such a feature: both the adventure and
the quick play modes, in all their variations, are stored in separate save slots, so
that the player never loses his/her progresses, regardless of the game mode
he/she last played or the game level he/she would like to challenge. The
following is a screenshot taken from the main screen of the game:

WELCOME BACK

Packt

T THIS IS nOT Y0OuU. CLICK MERE

\n i iV TR

A multiple save option is also much appreciated because it makes it safe for your
friends to try your newly downloaded game without destroying your previous
progresses.

Screen rotation

The accelerometer included in a large number of smartphones detects the
rotation of the device in the 3D space and most software running on those
devices rotate their interface as well, according to the portrait or landscape mode
in which the smartphone is held.

With games, it is not as easy to deal with such a feature as it would be for an
image viewer or a text editor. Some games are designed to exploit the vertical or
horizontal dimension of the screen with a purpose, and rotating the phone is an
action that might not be accommodated by the game altogether.

Should the game allow rotating the device, it is then necessary to adapt the game
interface to the orientation of the phone as well, and this generally means
designing an alternate version of the interface altogether. It is also an interesting
(and not much exploited) feature to have the action of rotating the device as part
of the actual gameplay and a core mechanic for a game.

Calibrations and reconfigurations

It is always a good idea to let players have the opportunity to calibrate and/or
reconfigure the game controls in the options screen.

For example, left-handed players would appreciate the possibility of switching
the game controls orientation.

When the accelerometer is involved, it can make a lot of difference for a player
to be able to set the sensibility of the device to rotation. Different models with
different hardware and software detect the rotation in the space differently and
there's no single configuration which is good for all smartphones. So let players
calibrate their phones according to their personal tastes and the capabilities of
the device they are handling. Several games offer this option.

Challenges

As games become more and more social, several options have been introduced
to allow players to display their score on public leaderboards and compete
against friends.

One game which does that pretty well is Super 7, an iPhone title that displays, on
the very top of the screen, a rainbow bar which increases with the player's score.
When the bar reaches its end on the right half of the screen, it means some other
player's score has been beaten. It is a nice example of a game feature which
continually rewards the player and motivates him as he plays the title.

Experiment

The touch screen is a relatively new control scheme for games. Feel free to try
out new ideas. For example, would it be possible to design a first person shooter
that uses the gestures we outlined in the previous chapter, instead of traditional
virtual buttons and D-pad? The trick is to keep the playfield as open as possible
since the majority of smart devices have relatively small screens.

Summary

During the course of this chapter we introduced some basic theory behind
interface design with The Theory of Affordances by Gibson and the book The
Design of Everyday Things by Norman.

Then we moved to the specific aspects of videogame interface design, describing
the diegesis theory and listing some fundamental problems related to the creation
of optimal interfaces for videogames.

In the last part of the chapter, we suggested some of the best practices for
videogame interface design and mentioned a few options that no game should
lack.

In the following chapter we will discuss game engines, their features, and how to
take full advantage of their potential.

Chapter 8. Mobile Game Engines

A game engine is a software used to develop and run games. It is based on a
collection of tools to create or import all assets and elements of a videogame,
and pull them together to make them work as a whole. Rendering, materials and
lighting, physics, particle effects, collision detection and management, Al and
gameplay scripting, GUI design and game controls: a good game engine either
allows to directly create such game elements and functions, or offers the
possibility to import elements and assets from other software. For example, 3D
models are usually created with third-party programs such as 3D Studio Max or
Maya, and are then imported with a specific file format (such as *. fbx files) in
the game engine

In this chapter, we will cover the following topics:

e What a game engine is

e What engines can do

e The main characteristics of the most popular game engines
e The first part of the tutorial to create a game with Unity 3D

For quite a long time, game companies used to create their own game engines
and then used that technology to develop a series of titles to recoup the costs and
speed up the development process. Lucas Arts' SCUMM engine which powered
so many graphic adventures, the id Tech engine developed by John Carmack (id
Software) for the Quake saga, or the Unreal Engine are examples of popular
game engines created and used by game companies to develop their own games.

As the costs to build a game engine from scratch improved with the quick
advancement of computer technologies, many developers began licensing their
engines or even turned their whole business towards the creation of game
engines and other game-related middleware, rather than games. At the same
time, smaller companies found the opportunity to invest their money in buying
the license of an already crafted and bug-proven engine, rather than developing
their own, resulting in saved time and money, and the opportunity to begin
development from day one.

This aspect is especially true for mobile indie teams, there are so many full-
featured engines available today which target single or multiple platforms, each
with its own strengths (and weaknesses), that there is really no reason for not

[SR I I | SRR PY D R R APEG | QU DR L [

usiig ulelll. vve SUoLgly suggest you Lo 101H0OW ULS duvice, ulless your godl ds
developers is to sell engines and middleware to game developers, spend some
time understanding your specific needs, research on the Internet to find the
engine that best fits those needs, then get that engine and begin developing your
game. You will find this process easier, faster, and cheaper than building your
own tools from scratch.

What engines can do

As we said, there are several engines to choose from. Some are very easy to pick
up and learn, though limited in their capabilities, which makes them excellent
tools for educational purposes. Others target a single platform, as it is with
Cocos2D, which in its first versions only allowed game development for the
iOS. Most game engines, on the other hand, target multiple platforms, as is a
more profitable marketing strategy to widen the potential gamers audience as
much as possible. There are even engines which are considered genre-specific,
as it is the case with the Unreal Engine, which many people regard as the perfect
tool for crafting only 3D shooters, although several unconventional games
showed that with good ideas and a little bit of programming, almost any game
genre can be developed with a professional tool.

There are several functions that all game engines share. In the following
sections, we will list the most important.

Importing graphic assets: All game engines offer the possibility to import
graphics assets for games. 2D-oriented engines allow users to import sprites and
spritesheets, tilesets, and background images, while 3D engines import 3D
models, materials, textures, and animations. Depending on the specific
characteristics of each game engine, not all file formats may be supported. When
choosing the game engine for your next game, be sure that *. png files are
supported for 2D assets and that a 3D engine supports the *. fbx file format, as
this format imports 3D meshes together with materials, textures, and animations,
in a single operation.

Creating game levels and environments: Regardless of whether they are 2D-or
3D-oriented, game engines offer the possibility to design game levels with the
graphic assets imported from a third-party software. It can be the disposition of
platforms for a 2D game or the terrains of a 3D game. Clearly, the creation of
game levels with a 3D engine is far more complex than assembling levels for a
2D platform, as 3D requires, for example, to deploy light sources, which is a task
of its own. It is not by chance that people working at the creation of 3D game
levels are called environmental artists!

Adding audio to a game: Game engines provide tools to implement audio in
your game, may it be sound effects, which are played when specific events occur

or the background music to make it more immersive. Engines also usually allow
users to perform sound editing, such as tuning the volume or changing the pitch
to better merge them into the gameplay experience.

Creating the Ul for the game: As any game requires a Ul, game engines
provide the tools to design game controls and the graphic interface for your
game. It is generally a set of buttons and labels to display useful info to the
player, but the most professional software even offer compatibility with
middleware tools to create very advanced, dynamic GUISs, as is the case of
Scaleform, used to craft the interface of popular games such as Batman Arkham
Asylum and Mass Effect.

Programming the enemy Al and script game events: Not all engines provide
effective enemy Al design tools. For example, in its former free versions, Unity
3D was offered with no built-in tool to create paths for game characters, while
the Unreal Engine implemented waypoints and navigation meshes as part of the
engine itself, from the very beginning. When a useful function is not natively
implemented by a game engine, and pathfinding is one such function, it is very
common that a third-party developer created those tools. Such is the case with
the A* Pathfinding Project for Unity, a package developed by Aron Granberg
that provides pathfinding and navigation meshes management for Unity. You

can check it out at http://arongranberg.com/astar/docs/index.php.

On the other hand, all game engines offer the opportunity to code game events
triggered by the players' actions. The task is usually achieved through a scripting
language that is easy to grasp (when compared to a programming language) and
allows quick and easy implementation of game events. Lua is a scripting
language implemented by popular game engines such as Corona SDK.
JavaScript is another and it is used, for example, to script events in Unity 3D.
Other engines may implement their own scripting languages, as it is the case of
the Unreal Engine (UnrealScript) or GameMaker (GameMakerLanguage).

Building the executable of a game: The last feature no engine can miss is
cooking everything you put inside your game to create the final build, the
executable file which will be downloaded by your players. The build of a game
is basically the final result you get from a game engine after you spent weeks or
months feeding it with graphic assets, script files, audio, and anything else you
needed for your game. Depending on the scope of the game you developed,
cooking the final build can take minutes to hours. It took us around 14 hours to

http://arongranberg.com/astar/docs/index.php

cook the final build of our FPS XX The Breach, developed with UDK!

What engines can't do

Generally speaking, each game engine has a slogan, which more or less tells you
that you can achieve everything without doing anything with that engine, the
most advertised sentence being "without any coding". Our advice is to distrust
such statements if a game engine doesn't allow to add your personal pieces of
code in one way or another, maybe it is just a poor tool, probably designed for
specific tasks and which may not fit your specific game design needs.

Game engines

Generally speaking, each engine can serve several purposes with regard to game
genre and no engine can be described as a single-gameplay-style-oriented one.
But it is also true that each engine has its own weaknesses and strengths, which
make it more or less fit for a specific game genre, a technology, or gameplay
styles. In the following sections, we are going to provide a selection of different
game engines, mentioning useful information on their strengths and weaknesses,
and analyze which purposes each one serves the best. Our selection won't
obviously include all game engines available as we write, we will only focus on
the most popular, with regard to their features, target platforms, and professional
versus educational purposes.

2D game engines

Generally speaking, there are several reasons why a newly assembled team
should begin dealing with 2D games.

One is that touchscreens of today's smartphones offer a better support for 2D-
style gameplay. Another is that 2D games are usually easier to develop, as they
require less mathematics and algebra to be coded, while sprites and 2D
backgrounds are easier to craft. Finally, 2D games have lower hardware
requirements to run on mobile devices.

As you are going to begin the development of your first game, we suggest you to
go for a 2D game. The following engines can help you fulfill this goal.

Torque 2D

Torque 2D is a 2D game engine, which is based on the popular Torque Game
Engine developed by Garage Games (http://www.garagegames.com/).

A former version of the engine, called iTorque, was designed to develop games
specifically for the iOS platform, though its latest incarnation also supports
publishing for Windows OS and thus the development, for example, of browser
games. We will now review the features of Torque 2D:

e Torque 2D provides a very intuitive drag-and-drop interface and a robust
C++-based scripting language called TorqueScript, which makes game
prototyping quick and easy.

e It supports OpenAL libraries for full-featured sound capabilities and a
physics engine called Box2D to add physics to your gameplay.

¢ Its simple WhatYouSeelsWhatY ouGet interface, which supports several
image formats, particle systems, and tilemaps among the others, allow even
inexperienced users to make their own high-quality games, thanks to a
strong community support and very little coding required.

e Torque 2D also features built-in multiplayer and Internet game support to
further enhance the gameplay of your titles while keeping performances
high.

e As it is based on the popular Torque 3D engine, Torque 2D is a very solid
and mature development tool, which has been recently upgraded to support
3D models to create interesting mixtures of 2D and 3D elements, though it
is customized for 2D gameplay. If you aim towards the creation of full-3D

http://www.garagegames.com/

games, there are better options available, which we will analyze in the
following sections of this chapter.

e Torque 2D is based on C++ source code and as such it requires an installed
C++ compiler to make the final build of your games. A license is also
required to make use of this game engine, which is around $1000 as we
write.

Cocos2D

Cocos2D is an open source, free framework, based on an MIT license, which
allows development of games for the iOS and Android. Its architecture is based
on a pre-existing engine written in Python and first converted to Objective-C for
the iPhone, and then to JavaScript to support Android development.

Cocos2D is excellent for the first time developer for the following reasons:

An intuitive interface

A full set of libraries including Box2D and Chipmunk physics engine

It's open source and free

It allows mixing native and external C++ libraries to extend its capabilities
It now supports 3D

It has a strong user community

There are a few disadvantages of Cocos2D:

® You are stuck with iOS. There is no native support for Android, so you will
have to port to JavaScript.

¢ Objective-C has a fairly steep learning curve; so previous experience with
C++ is recommended.

Being approved by Apple and with almost 3000 titles available on the Apple
Store developed with this tool, Cocos2D is definitely a good choice for any indie
mobile team interested in making 2D games.

You may want to check the following link for a list of best practices when using
Cocos2D:

http://www.cocos2d-iphone.org/wiki/doku.php/prog_guide:best_practices
Corona SDK

Corona SDK is another mobile-oriented engine, which allows developing 2D

http://www.cocos2d-iphone.org/wiki/doku.php/prog_guide:best_practices

games for the iPhone, iPad, and Android devices. It is based on OpenGL
libraries and C++ programming language, though it also integrates scripting with

Lua.

Corona's advantages are as follows:

The use of Lua makes it easy to compile for iOS and Android from the
same code base. This saves time and money for multiplatform development.
Lua is a very efficient scripting language, resulting in a fraction of the
number of lines of code than needed in Objective-C for example.

It supports standard physics libraries such as Box2D.

It has a strong community of people to help with development issues.
Corona offers built-in support for the distinctive hardware features of
today's smartphones, such as the accelerometer, the GPS, the compass, and
the camera.

This engine offers a very interesting licensing policy, you can download the
engine and use all of its features for free, and then pay only if you wish to
create builds for the iOS or Android (though they have separate costs).

And now the downside of Corona SDK:

Android support is pretty bad, causing any kind of flaw you can imagine.
Inconsistency between the performances you get from the simulator (yes,
Corona SDK offers a simulator to run your tests!) and the actual device.
Unexpected crashes without proper reporting, which generated a common
statement among the community of developers that Corona is not fit to
develop for the Android platform at all. Corona SDK requires your code to
be uploaded to Ansca Mobile servers for compilation. You send them your
code and they return you the executable. This fact has two main
consequences: the first is that, if you are offline, you can't compile your
code. The second and more severe problem is that you must send them your
code, without knowing what they actually do with it, as Ansca Mobile is
known for not being particularly transparent about its internal procedures.
Finally, many users complain that applications developed with Corona SDK
tend to be slower when compared to other frameworks and it doesn't allow
integration with external libraries.

3D game engines

Though mobile gaming instilled new life in 2D titles and strongly propelled old-
school game mechanics to appeal to the casual audience, as demonstrated by the
large popularity of 2D games such as Angry Birds, Fruit Ninja, or Jetpack
Joyride, 3D is the players' most expected feature in today's games.

What follows here is a description of the most popular game engines which we
recommend to develop 3D games for mobile.

Shiva 3D

Shiva 3D is a 3D game engine developed by StoneTrip
(http://www.stonetrip.com/), which can be used to develop games for any target
platform you may choose, such as Windows and Windows Phone, OSX and iOS,
Linux, Android, Blackberry, PSP, and Wii. With the release of the Android SDK
in 2010, Shiva 3D was the first engine to support the development of 3D games
for the Android platform.

Shiva's advantages are as follows:

e Shiva 3D supports native C++ compilation, which means you can import
your own libraries to add functionality to your games

e [t uses Lua as its scripting language

e Though it is claimed to work with Mac OS X through parallels, Shiva 3D
editor is Windows-only, which means that you don't need to own a Mac to
develop iOS titles

e Unlike other engines, what is displayed in the editor windows of Shiva 3D
is almost equal to the final rendering you get after building your app

e The lightmapping is generally of high quality, performs pretty well on
mobile devices, and dynamic shadows are fully supported

e It includes libraries to manage basic pathfinding and allows control of it
through scripting, which saves development time

e The same project file can be compiled for any target platform

¢ Finally, when compared to its competitors, Shiva 3D is quite cheap, as the
editor is free to use and a license is required just to publish games

The flexibility Shiva 3D offers with regard to the target platforms it can address,
comes at a price, though:

http://www.stonetrip.com/

e Shiva 3D doesn't support popular 3D file formats such as *. fbx or *.obj,
as other engines do, and it only imports *.DAE files. Several users also
claim that the only way they could import 3D models and their mapped
textures in the editor was thanks to a third-party software, namely Ultimate
Unwrap Pro (http://www.unwrap3d.com/u3d/index.aspx).

e The learning curve to get proficient with the interface is quite steep, and the
editor doesn't allow reconfiguring the layout of the different windows of the
editor, which can only be set according to a list of predefined layouts.

e The physics engine is claimed to be very limited.

e The error messages, which may occur when building your app are vague
and not very helpful (a trait unfortunately shared by its main competitor
Unity 3D).

e The documentation is sparse and poor.

¢ The most frustrating feature of Shiva 3D in the opinion of users is the
terrain editor. Differently from its competitor, the terrain editor in Shiva 3D
is implemented through chunks, which are a bit tricky to select and keep
selected as you sculpt the terrain, with the result that creates terrains with
Shiva 3D requires a lot of time and effort.

In conclusion, Shiva 3D is a very good tool that offers a perfect balance between
costs and capabilities, which make it especially fit for teams with a low budget.
There are better tools available on the market, but they all cost much more than
Shiva 3D.

Unity 3D

Unity 3D is a cross-platform engine developed by Unity Technologies, which
can be used to create games for desktop PCs, the Web, consoles, and mobile
devices. It is the most popular game engine used by game developers today
(especially indie teams) and the one that first offered to small, indie developers
the opportunity to develop their projects with a professional, almost full-featured
tool coming with a low cost, and thus affordable license. It can be said that if
we've got so many almost-free engines available today, a big chunk of the credit
goes to the success of Unity.

The engine is written in C/C++ (thus allowing extension of its capabilities with
external libraries) and supports scripting through JavaScript, C#, and Boo. The
Version 4.0 is the latest update to the tool and it comes in two main licenses as
we write; the free license with limited capabilities and the Pro license, which

http://www.unwrap3d.com/u3d/index.aspx

costs $1500 and offers all the features supported by the engine. Still, with the
Pro version of Unity 3D, separate licenses are required to create builds for
Android, i0S, and Adobe Flash Player. You can refer to the following link for a
detailed description of the different license available and their costs:
https://store.unity3d.com/. With a cost of $1500 for the Pro version, the Unity
3D full-featured license, which allows creating game builds for the mobile
market is not cheap, when compared to its competitors!

On the other hand, there are several features supported by Unity such as post-
processing, physics, bump and reflection mapping, ambient occlusion, dynamic
shadows, and render to texture functions, among the others.

The interface is very intuitive and the actions required to create assets and so-
called Prefabs (game assets that can be instantiated at will into the game) are
handled with extreme simplicity; you perform most of the actions through a
drag-and-drop interface, which for example allows adding a script to control the
behavior of a game object by simply dragging the script on the game object itself
in the editor window.

There are many reasons that help make Unity 3D the perfect tool for a mobile
indie team. Its interface is intuitive and very easy to grasp. The editor is quite
powerful and allows to quickly prototype game mechanics with few mouse
clicks. Unity 3D supports all major 3D file formats, * . fbx in particular, so that
you can easily work with professional software such as 3D Studio Max or Maya,
and then import the result in Unity without compatibility problems. Support is
really strong, both by the community of users, which is always ready to provide
the answers to any problem you may face in the dedicated forums, and by the
developers, as Unity comes with very detailed and extensive documentation.

Unfortunately, there are also reasons why not all developers, especially the true
professionals, are so fond of Unity 3D. As it often happens with many engines,
once the initial enthusiasm for its intuitive interface goes down, problems start
arising. First of all the quality of lights and rendered graphics in Unity is not as
good as other tools, unless you know how to code your own shaders. Shadows
tend to look low resolution, and as we already mentioned, dynamic shadows are
only available with the Pro version. The terrain editor looks dated, as for
example, it doesn't allow creating destructible terrains. The physics engine is
blamed for creating performance issues and there's no native pathfinding, nav-

mesh, or Al support, unless you turn to the latest pro version of the engine or
third-nartv middleuware Finallv ac we ctated nrevinnclyv TThitv ie nnt chean far

https://store.unity3d.com/

(USRI EY o [ENVEVIVEEUR A R R U N IV V] UU YY L ULtuleu LC vivuus ~riiav 14U 11UL v u FRVIE
b b

the average indie developer, to create games for the mobile market you are
required to invest not less than $3000 in licenses.

Before ending this section on Unity 3D, we would like to mention the Asset
Store. It is a collection of asset packages which contain 3D models, textures,
materials, sound effects, particle systems, scripts, and networking resources
which can be bought and then implemented in your game. The Asset Store
allows the community around Unity 3D to share contents and has turned this
engine into a perfect tool to begin the game developing business.

In the following screenshot you can appreciate a popular game developed with
Unity 3D: CSR Racing by Natural Motion for the iPhone.

RACE TIME
" 9.30

Top-quality engines

Among so many engines available to create games, there are some which simply
are capable of reaching higher standards with regard to quality, visual quality in
particular.

The Unreal Engine is one such tool, credited by most users as the only really
good engine to develop games which meets the actual industry standards.

In the next section, we will provide a description of the characteristics of the
Unreal Engine and its development kit.

Unreal/UDK

The Unreal Engine is the 3D game engine developed by Epic for its popular
Unreal saga, available today in its 3rd generation and which powered games
such as Gears of War, Batman: Arkham Asylum, or the Mass Effect franchise,
just to mention a few. In 2009, Epic released to the general public a free version
of the UE3 SDK, called Unreal Development Kit, thus offering the community
of indie game developers a tool like they never had before.

Though the engine was designed with shooters in mind (the Unreal games were
first person shooters), it has been successfully adapted over time to several other
game genre and applications, ranging from 3rd person games (shooters, action
games, and RPGs), stealth games, melee fighting games (we suggest you to have
a look at the very interesting Chivalry Medieval Warfare shown in the following
picture. The link to the game is http://www.chivalrythegame.com/), and MMOs,
but also to create detailed 3D simulations, serious games and training software:

http://www.chivalrythegame.com/

The rendering capabilities of the Unreal Engine are what makes it better than
most of its direct competitors, as it supports many advanced features such as
HDRR, pixel per lighting, dynamic shadows, and global illumination, as well as
advanced physics, destructible environments, and crowd simulations.

The Unreal Engine also offers a complete set of tools to create beautiful assets
for your games, featuring a very advanced material editor, the AnimEditor to
manage 3D characters animations, and the possibility to create terrains and level
geometries, this one in particular being a feature which other engines lack.

The Unreal Engine is written in C++ and offers both a visual scripting tool called
Kismet, and a scripting language called UnrealScript to extend classes and code
behaviors for the actors of your games.

The editor is offered with a free license, though a fee of $99 is required to sell
games and 25 percent royalties must be paid to Epic, if your games earn money
above the threshold of $50,000.

In 2010, Epic released its first iOS game called Infinity Blade, a sort of tech-
demo to show the potential of the engine with regard to mobile development,
which reached the top of the iTunes App Store charts, was named by IGN as the
Best iPhone Game of the Year and won several other awards in Best Action and
Best Graphics categories. With Infinity Blade, Epic declared to the world that
yes, mobile games could definitely be developed with UDK!

You can have a look at the breathtaking graphics of the Infinity Blade in the
following screenshot:

On the negative side, there's complexity. Though the editor interface is clear and
well-structured, still you need a lot of practice to grasp its full potential. Every
tool included in the development kit is a software of its own which requires time
and practice to be mastered, given that mastering each one of them is even
possible.

The Unreal Engine allows the best graphic quality standards to be reached, but it
doesn't do it by itself. It will take a lot of time to learn its intricacies and many
attempts resulting, inevitably, in failures, before you get the graphic quality you
ever dreamed of for your games.

UDK doesn't offer any access to its source C++ code, which means that
whenever you need to implement some specific functionality, you first need to
understand how things are done according to its internal logic and to class
mutual dependencies, and then adapt. Delving through the classes of UDK can
be a painful process (as we showed in a former chapter), which requires unreal
patience and which you cannot expect to accomplish before stepping into many
failures.

LIpr SRy | P SRS S BN L L SRS | ORI I Y AR SIS [

rindiy, ulere 1s ule ncelse Ccosty givilg £Zo percellit Ol ule revewues o Lpic il
case your sales go well means that compared to other available engines, UDK
costs a lot more.

That said, if you are ready to put time and effort in the learning process, UDK
grants the possibility of creating high-end games, which clearly stand out from
the mass of titles available for any platform. Many teams, even small indie ones,
succeeded in developing well-crafted games and made a name for themselves,
thanks to this wonderful tool. Whatever the engine you put your hands on when
you begin your adventure in the industry of game development, UDK is the
point you should arrive at, sooner or later.

Educational engines

In the last section dedicated to game engines, we will describe two engines that
are particularly fit for educational purposes, due to a very friendly visual
interface. Despite the fact that some nice games have been created with such
tools, no true professional would recommend them, these are software for
beginners who can use them to understand what a game engine is and how to
create a complete game from scratch.

GameMaker

GameMaker is a very interesting game engine developed by Mark Overmars and
published by YoYoGames. Its main feature is that it allows to quickly create 2D
games without any need to write anything. The interface offers the possibility to
define the behavior of game objects (as the actors of your game are called) by a
simple procedure based on events (such as creation of the game object, collisions
occurring with other objects, or mouse-and keyboard-related actions) and then
choosing the actions that must take place when those events occur. The action
list provides all the basic things you can expect to happen in a game, such as
moving actions, modification to gravity or vertical speed of game objects,
destruction or creation of game objects, or drawing score, available lives, or
health bars on the screen. It also allows users to perform basic logic and
mathematics checks, such as whether a collision occurs, if a position in the
world is free, or whether a certain expression is true or false.

Once you learned these basics, you will very likely feel the need for something
more flexible and complex to happen in your game, at which point you can turn
to its built-in, and quite easy to learn scripting language, called Game Maker
Language, to begin coding stuff your own way. GameMaker even allows
proficient programmers to extend the capabilities of the engine by programming
their own DLL to perform specific tasks they may need.

GameMaker has been used to develop hundreds of 2D games according to many
genre, such as platformers, maze and puzzle games, arcade shooters, and
strategy games. Even more, YoYoGames offers the opportunity to registered
users to upload games made with GameMaker on their site to show and share
them with the community. A very popular game called DeathWorm, made with
GameMaker, after being largely claimed by the community of users, was
eventually converted for the iOS and downloaded from the App Store by almost

S millinn nannlal Van ran chacl it in tha fallnwing crroonchnt:

o111 l_'bul_llb. 4 ULl LU UEBICUIY 1L 111 LlL 1vLIuv vy l116 OLULLULULIVLIIUL,.

149

The latest update of GameMaker offers support for Mac and Windows, and
separate licenses can be bought to export for the iOS, Android, and HTMLS5.

With its friendly interface, its very intuitive workflow, the abundant
documentation, several easy-to-follow tutorials, a large community ready to help
behind it and its cheap price, GameMaker is definitely the best tool to learn how
to develop a game for anyone interested in approaching this line of work.

GameSalad

GameSalad is another user-friendly engine developed by GameSalad Inc. which
is perfect for beginners, as it doesn't require any coding thanks to a fully
implemented drag-and-drop interface that allows users to create games for all
mobile platforms such as iOS, Android, HTML5, and Windows Phone. Similar
to GameMaker, GameSalad is usually used for educational purposes or by artists
and designers to quickly prototype their gameplay ideas.

The implementation of gameplay is based on the creation of behaviors for game
actors based on sets of rules, which define how the actor reacts to various events

happening in the game. Everything is managed through a clean and clear visual
interface, and tutorials, help boards, and forums are abundant, as well as the
extensive and easily available documentation.

The GameSalad editor, called Creator, can be downloaded for free, as the
$299\year license is only required to publish your games for Android or
Windows 8, or to implement features such as In-App Purchase, iAds, or
GameCenter. For the full feature list of the engine you can check the GameSalad

Inc. site at http://gamesalad.com/creator/pricing.

Though it has been used for thousands of games, some of which made a score on
the App Store, GameSalad is considered a tool for starters to get a grip on how
things interact with each other in a game environment and for designers and
artists without any coding knowledge to quickly prototype gameplay ideas.
Again, it is very likely that at some point, as you get more proficient with the
subject, you will turn towards something more professional and evolved than
GameSalad.

For a full list of tutorials to begin creating games with GameSalad, you can refer
to http://mac.appstorm.net/reviews/games-reviews/become-a-game-developer-

with-gamesalad/.

http://gamesalad.com/creator/pricing
http://mac.appstorm.net/reviews/games-reviews/become-a-game-developer-with-gamesalad/

Unity3D Tutorial — part 1

Now that we have described several game engines, it is time to pick one and start
assembling a game with it. As our reference title to develop the tutorial we chose
a classic game named Space Invaders by Activision.

In this first part of the tutorial, we will create the setup for our game
environment. In the next chapter, we will add the main actors for our game: the
player's ship and the enemies, and define their behaviors. In the last part of the
tutorial in Chapter 10, Balancing, Tuning, and Polishing Mobile Games, we will
add the final touches required by the game. As the engine to be used to develop
the game, our choice is Unity, for several reasons. First of all it is a professional
tool, so whatever you learn about it can be useful for your career as a game
developer. It is a both an excellent 2D and 3D engine, which means you can
develop any game you like with it. Unity is also very user-friendly, which will
help grasp the basics with a short tutorial. Finally, the basic user license of Unity
is free, which means you can download it and follow the tutorial at no cost!

In case you haven't done it yet, go to http://unity3d.com/ and download Unity,
we suggest Version 4 or 3.5.7. The first is the latest, the second is the more
stable.

You may also need a 3D-modeling software to create the assets that will be used
for the game. We mentioned several such tools in Chapter 3, Graphics for
Mobile, of this book, we suggest you to pick one of them to work with, as this
will help you to get familiar with software that are considered as Industry
standards.

In case you can't or don't want to to model your own assets, we will provide
them anyway as part of the contents of this book.

http://unity3d.com/

HI-SLUUORE SULUEREdZ 2

P EE Y
i A A A A A5 A5 A A5 A5 4
i A A A A A5 A5 A A5 A5 4
=¥ ¥ 3 3 -1 1 1 -1 I

3

A
)
it
)

Space Invaders

Though Space Invaders is a 2D title, we will assemble it with 3D assets. Even if
we are not going to exploit true 3D features for our prototype, by adopting a 3D
perspective, we will have the opportunity to show a broader set of features of
Unity 3D.

Anyway, as we have a limited number of pages to show a lot of information, we
will assume you are familiar with the basics of the Unity interface.

Let's get to work now!

Tutorial part 1A — importing 3D models

From the reference image, we can define a list of assets we will need for our
game:

Four different models of aliens, one for each line

One model for the player's ship

One bullet for the player's ship and one for the aliens
One asset for the barriers that protect the player's ship
A basic GUI with scores and available lives

We can import 3D models using the following steps:

1. Let's begin with the 3D models. Open up 3D-modeling software of your
choice and create some simple models inspired by Space Invaders like the
ones represented in the following pictures. We need four models for the
aliens and one for the player's ship, or if you prefer there are several
websites that have graphics and sounds from the original game.

2. Since we are only going to make a prototype, you can use any primitive you
like. Our main interest is to show you how to import 3D models in Unity.
The following screenshot represents the assets we made for this tutorial,
using 3D Studio Max. It is very important that you create all the assets for

iens models with the same size.

3. Export each model separately as *.fbx or *.obj, and save it with a
meaningful name!

4. Now open Unity 3D and start a new project. A window similar to the
following will open where you can set a folder and its path to store our
game. The window also allows a list of basic Unity packages to be included
in your newly created project. As we don't need them, don't flag any
packages from the list:

Unity - Project Wizard

Open Project | Create Mew Project |

Project Location:

Import the following packages:

[] character Contraller.unityPackage
[7] Light Cookies.unityPackage

[7] Light Flares.unityPackage

[7] Partides. unityPackage

[7] Physic Materials.unityPackage

[7] Projectors.unityPackage

[7] Seripts.unityPackage

New Project

e With your new project opened, go to the Project panel and create a new folder
to store our 3D models. Name the folder 3DModels as well:

3 Project

Creata = : (o All

Folder

lavascript
C# Script
Boo Script
Shader

Prefab
Material
Animaticn
Cubermnap
Lens Flare
Customn Font
Physic Material
GUI Skin

New Folder

* Now we can import our models. With the 3DModels folder selected in the
Project panel, navigate to Menu Bar | Assets | Import New Asset, and from the
displayed window, select the 3D models for the aliens and the player's ship.
Unfortunately, you cannot import all of them with a single operation, you will
have to import them one at a time.

» A very useful feature with Unity is that you can create so called Prefabs, assets
that can be created and instantiated multiple times in the game scene. The
advantage of Prefabs is that all its instances are linked to the Prefab they come
from, so that you can modify multiple instances of game objects cloned from the
Prefab by working on the original Prefab itself.

» Let's show this feature.

» Select one of the alien's models and drag it into the scene. Now go back to the
Project panel and create a new folder. Name it Prefabs. If you are wondering
why create a separate folder for every type of asset we are working with, the
reason is to keep projects well organized. This is going to be a simple game with
few assets, but a real game will require many. So we better not get overwhelmed
by lack of order!

o With the Prefabs folder selected in the Project panel, click again on the
Create button and now make a new empty prefab. Assuming you selected the

model for the first type of alien, name this prefab Alieni. To complete the
Alieni prefab, drag the model in the Unity Hierarchy panel into the newly
created prefab. Now the empty prefab is filled with the 3D model for our first
alien asset.

* You can now delete the alien model from the scene and then drag the alien
prefab into the scene instead.

e Finally, we can show you the power of Prefabs. Create multiple instances of
the Alien1 prefab by pressing Ctrl+D to get something like this, where we have
created four instances of Alien 1:

e Now create a new folder for our materials in the Project panel and name it
Materials. With the Materials folder selected, create a new asset, a material
this time. Name it red (or whatever the color you like) and then, with the
material selected, click on the white rectangle in the upper-right corner of the
Inspector panel in Unity. Refer to the following screenshot for clues:

— = Hierarchy } =

L cresee-| @A
Alienl
Alienl
Alienl
Alienl
Main Camera

Gizmos ~ i ar All

0 set the —~
r material

his —

@ Project

it

| Create '| (o All

> 3DModels
v Materials

¥ (3 Prefabs
[Alienl

a X

{ Layers - l:::{f-'l Split - }
G Ins.pector i - hg_
#*

: red
Shader | Diffuse

Main Color
Base (RGB)

Tiling

=
| |
¥ Colors E
b Sliders =
AN 755

» Pick the color you like and then, in the Project panel, select the Alien1
prefab. In the Inspector panel you should see a Mesh Renderer component
with a material item in it. Click on the arrow to make the Element 0 slot appear,
then drag the newly created material into that slot, as shown in the following

screenshot;

| = Hierarchy
Cr!ata‘| o= All

Gizmns'l "._q-.qll—‘_

4 split v |

Alienl
Alienl
Alienl
Alienl
Main Camera

1e material
slot

| @ project

| Create ‘| (o A
| > 3DModels
v Materials
! D red
| Y Prefabs
@ alienl

Gizmaos 7| (o= All 1

: .-; >

il] Inspector
| | Alienz | [] static = |
Tag | Untagged ¢ | Layer | Default | |
¥ .. Transform @ % |
Position
X [41.6429] ¥ [124 8681 Z -340.22¢
Rotation
X [16.4226: ¥ [0 | z [0 |
Scale
x[o1 | v [0.09999] Z [0.09999]
¥ i Box 004 (Mesh Filter) [# ‘
Mesh B Box004
Y= esh @ #
as adows
Receive Shadows
¥ Materials
Size
Element 0 m [o]
Use Light Probes L |
¥ (& M Animatfon i,
Anim abi Mone (Animatioi®
ations
Play Automatically [
Animate Physics -
Culling Type Always Animate |
Mo Mame #, |
I‘ Shader | Diffuse - |
Main Color I:f

Base (RGB)

Preview

e This is how you can quickly edit multiple game assets with a single action
through Prefabs. All your aliens should now have turned red, all at once!

e However, for the necessities of our project, we want the aliens to be white. So
create a new white material and use it instead of red on the aliens. In the next
part of the tutorial in Chapter 9, Prototyping, we will reference these objects.

e Repeat the previous steps to create more Prefabs: the remaining three aliens
and the player's ship. For the player ship you also need a green material.

e Let's do a couple more assets before moving to the next section. We actually
need the bullets to be fired by both the player's ship and the aliens. We will use a
simple sphere for the player and a capsule for the aliens.

o The sphere and the capsule can be created from the main menu bar, navigating
to GameObject | Create Other, as shown in the following screenshot:

=% Unity - Untitled - Spacelnvaders_proto_book - PC and Mac Standalone™
File Edit Assets | GameObject | Component Terrain - Window Help

5 <+ BN

Scene
Textured

Create Empty
Create Other

Center On Children

Make Parent

Clear Parent

Apply Changes To Prefab
Break Prefab Instance
Move To View

Align With View

Align View to Selectec

Ctrl+5Shift+M .

3

Ctri+Alt+F

Ctrl+Shift+F

Particle System
Camera

GUI Text

GUI Texture
30 Text

Directional Light
Point Light

Spotlight
Area Light

Cube
Sphere

CaEsuIe

Cylinder

Plane

» Size the two objects in the scene view as needed, then create two new Prefabs,
name one PLBullet and the other AlienBullet, then drag the sphere and the
capsule from the scene into the empty Prefabs accordingly. Remember also to
make PLBullet green and AlienBullet Prefabs white.

This ends the first part of this tutorial, where we showed you how to import 3D
models in Unity, how to use them to create Prefabs and the importance of using
Prefabs to easily manage multiple game objects. We also showed how to create
materials and how to apply them to your imported models. We finally showed
how to create basic primitives which are available in the Unity main menu.

Tutorial part 1B — setting up the scene

The next step is to begin setting up the scene for our game prototype. To do that
we suggest you to begin by using a screenshot of the original game as a

reference layout:

1. We will use the same screenshot from Space Invaders displayed at the
beginning of the tutorial, you can find one anywhere on the Internet.
2. Download a screenshot and then import it as a texture. Any *. jpeg or

* . png image will do.

3. Create a Textures folder in the Project panel and then import the image as
a new asset inside the folder (you can name it InvadersTexture).

4. Then use the image to create a new material in the Materials folder.

5. Create a new material, name it InvadersMaterial and then drag the texture
into the texture slot of the material. Refer to the following screenshot for

reference:

+= = Hierarchy

=| fi | | <) || Gizmos 'i 'Ev..ﬁl.l.

e

) | Create * | (ar All

Main Camera
Flane

drag the t
into this s

3 Project =
| (e All Y

| Create 'i

» 3 3DModels
¥ 3 Materials

@ green

* InvadersRef
D red
@ white

» (53 Prefahs

» 53 Scenes

v 3 Textures
.space—invaders

© Inspector | .=
InvadersRef @
Shader | Diffuse rl
Main Color
Base (RGB)
Tiling Offset
=1 o
v 1 o
axture

Preview

o Now create a Plane in the scene, selecting GameObject | Create Other |

Plane in the main menu.

o Set the correct position for the plane, and then drag the Invaders material onto
the plane to add it. It could happen that, once dragged onto the plane, the texture
will not be displayed with the correct orientation. In such case, double-click on

the texture in the Project panel to open it with the default image editor and
rotate it as required. Then save it to have it correctly displayed in the Scene

view.

» To setup our scene, let's begin by setting the right position for our reference
plane. Select the plane with InvadersMaterial and set its position coordinates
in its Transform component (Inspector panel) to 0 for x, y and z, as shown in

the following screenshot:

#| | w0 | d |) || Gizmas ~| B AT

='| S | ad | 4]:Iii Gizmus's (e All

= Hierarchy |

!

| Create =/ (o All

Main Camera
Flane

'_ﬁ Project |

| Create - o All

» 53 30Medels
v 3 Materials
& areen
i@ InvadersMaterial
Q) red
Q) white
» (3 Prefabs
b (53 Scenes
L4 @Textures
InvadersTexture

Cast Shadows
Receive Shadows

® Inspector | .=
-~ [[Plane | [static «

Tag | Untagged #| Layer [Defaulr ¢ |
¥ ... Transform [%
Paosition

x [o ¥ [0 |z [o
Rotation

% [-90 | » [o z o
Scale

% [1 | ¥ [1 |z [1 _
¥ i Plane (Mesh Filter) L2

Mesh B plane o]
¥ .4 ¥ Mesh Collider 3,
Is Trigger -
Material |Mone (Phvsic Mate) @
Convex]
Smooth Sphere Colli[_]
Mesh # Plane @
¥ @i M Mesh Renderer @ 3

¥ Materials
Size 1
Element 0 D InvadersMateri.©

Use Light Probes Ll

InvadersMaterial @ #.
Shader | Diffuse - |
Main Color [1.2
Base (RGB)
Tiling Offset
x (1 o

* Now for the main camera; as you may notice, with each new scene, Unity

automatically adds a default camera, named Main Camera. Select it in the
Hierarchy and set its position in the scene view; you can refer to the game
window to check the final result you will get.
» To make things easier, these are the values we set the camera with:

e Positionx =0

Position y = -0,05

Position z = -5

Field Of View = 81

Game Aspect = Standalone (1024x768)

» To display things using 3D we also will leave the camera projection mode to
Perspective, though our prototype will only implement 2D gameplay.
* We also suggest adding a directional light to the scene to see things better

(GameObject | Create Other | Directional Light).

e Check the following screenshot to confirm what you should see on the screen:

[ayers - | [4spit -]
= #5scene | += | = Hierarchy) B Inspector | e
||| standalone (1024576 Mazximize on Play | Stats | Gizmos - II Create = (G- All l@ &isicanes [static v
S tiiie ainaallig s T Maica s PR]
| Main Camera - =
SCORE<1> HI-SCORE SCORE<2> Plane ¥ .. Transform @
Position
ele00 ecoeo Bl 0 ¥ |-0.05 Fl -
Rotation
X (0 X0 Z8 0
asaanasananas Seais
Ash Amh A A A A A S Ah A R x {1 ¥ [1 z[1
e = . u . J. s e v i
s A A A A B A SR A B @ Camera @
Clear Flags | Skybox]
t_ R R R R R R R R R A Background [=——
L33 3 8 8§ _§ % _§ 1_J}_J Culling Mask [Everything %]
% Projection | Perspective % |
Field of View ey | 51
Clipping Planes
Mear 0.3 Far 1000
Normalized View Port Rect
1 project | = X 0 o 0
|| Create~ ar All W 1 H 1
- — — » £ 3DModels
CREDIT 88 ¥ 5 Materials Depth 2

D green Rendering Path | Use Player Settings % |
@ InvadersMaterial Target Texture None (Render Text @
e — T |

Setting up the scene is over. In this section, we showed how to use a texture to
define a material for a game object, how to set the position and rotation of a

game object in the scene view by editing the values in its Transform component

in the Inspector panel and how to control what is displayed by the main camera
of your game, working on camera position, rotation (if needed), field of view,

and projection mode.

Summary

In this chapter, we discussed what a game engine is and how it can speed up
game development time. We listed several popular game engines that can handle
2D and 3D game environments.

In the next chapter, we will discuss the prototyping process and provide the
second part of the tutorial, where we will define the basic game mechanics and
the interface for the Space Invaders demo.

Chapter 9. Prototyping

Prototyping is the process of testing various aspects of an app, usually in a quick
and incomplete manner. The purpose is to find out if a good idea works as
imagined. In this chapter we will cover:

The steps in the prototyping process

The types of prototypes

Methods for rapid prototype development
Prototyping tools

A continuation of the prototyping demo

Steps in the prototyping process

The process of prototyping involves the following steps:

1.

Defining it: What is your good idea supposed to do?

2. Building it: Pick a prototype type and get it done.
3.
4. Fixing it: How can it better match the intended design?

Testing it: Is it doing what it's supposed to do?

Now let's look at each step in more detail.

Defining the prototype

This is the first step in designing the game. Usually a game concept starts with a
good idea. Often at times it will be an activity the player will do; in general it is
best to start with something the player is going to do most often.

The designer should write down, in detail, a description of the activity that the
programmer will use to build the prototype. Let the team review the description
to make sure everyone understands what is required.

Building the prototype

There are a number of ways to build a prototype, but the goal is to have an app
that accurately reflects the design idea and that is built quickly. Leave any
extraneous work such as fancy graphics and sound until later in the development
process.

Testing the prototype

Now your play testers get to see how accurate the prototype is and whether it is
fun. If at all possible, having new testers waiting for builds is an excellent idea.
Unfamiliarity with previous builds will optimize the chances of finding
overlooked bugs and/or design flaws.

Fixing the prototype

Once you have the play testing evaluations, it is time to decide what to keep in
and what to cut. This can be a painful process when the team has grown attached
to a project. It is imperative that the prototype is judged objectively. This can be
the point at which a design dead end can be discarded to avoid a waste of time
and resources.

Prototyping styles

There are two basic styles of prototypes, each of which is used at different times
in the development process. These are described as horizontal (big-picture) and
vertical (drill-down).

Horizontal prototype

A horizontal prototype is targeting a high-level feature list for the app; for
example, a mockup of the game interface and its screens (a wireframe) is
considered a horizontal prototype. It has little or no functionality; it is much like
a feature laundry list that identifies necessary elements for a particular aspect of
the app. Context over content!

The following diagram represents a simple wireframe mockup of a game flow:

Startup

Vertical prototype

A vertical prototype is focused on a single aspect or set of aspects of the app.
The goal is to explore and/or flesh out those elements to the point where it is
clear whether they work or not. The emphasis is on functionality rather than

presentation. Content over context!

Types of prototyping

There are two basic types of coding used in prototyping: disposable and
reusable. With the first type, the goal is to get a proof-of-concept out as quickly
as possible with no concern for reusability. With the second type the plan is code
created for the prototype will to some degree be used in the final app.

Disposable code

Disposable code is just what it sounds like; it is meant to be tossed out after the
prototyping process is complete. This type of prototyping is also called
throwaway or rapid prototyping.

Disposable coding is an effective way to test out untried concepts early in the
design process. Some good ideas just don't work out as planned and finding this
out quickly is an important use of the prototyping process.

Mobile game development is heavily reliant on an efficient and robust
development cycle. Keeping costs to a minimum can mean the difference
between success and failure of a project. The ability to determine from the start
of the project that a core game mechanic will be engaging and entertaining is the
number one use for disposable code.

There are a number of rapid prototyping methods that range from the very
simple to more complex.

Your imagination

The best place to start prototyping is at the very beginning of the design process.
Take that good idea and imagine how the player will interact with it. Try to
figure out what will keep the player interested with a specific activity. Are there
enough options to keep the gameplay engaging? Are there other actions or
gameplay aspects that will broaden the gameplay experience without
unnecessarily complicating things?

Pencil and paper

Once you have a mental image of a game mechanic, work it out on paper. Do the
math on a spreadsheet if possible. If appropriate, play out scenarios with other
team members. The designer acts as the game master (GM) and another team
member or members try different actions. The GM figures out what the result of
the player actions are. This is a good way to spot weak spots in a mechanic,
since the designer may not have thought of every aspect of the gameplay.

Use of game accessories: dice, playing cards, dominoes, and checkers (board and
pieces) are some examples of potentially useful items. To get the creative juices
flowing, try taking two or three of the accessories and coming up with a

completely genre style game. For example, one of the authors used a standard
card deck and a set of dominoes to prototype a simple dungeon crawl game

similar to the classic "Dungeon!" (http://en.wikipedia.org/wiki/Dungeon).

Visual prototypes

These are usually mockups of the game screens, sometimes with limited
interactivity. Also called wireframes, they contain basic information on what
data is on a screen and what screens can be accessed from the target screen.
Many graphics programs, such as Visio and PowerPoint allow hyperlinks
between pages. Placing a link on a button mockup and then connecting it to
another screen mockup is an effective tool for spotting screen navigation
problems.

Interactive prototypes

The goal of an interactive prototype is to simulate the game mechanics as
quickly as possible while being faithful to the designer's vision (in case you
missed what a game mechanic is, you can refer to

http://en.wikipedia.org/wiki/Game_mechanics).

http://en.wikipedia.org/wiki/Dungeon
http://en.wikipedia.org/wiki/Game_mechanics

This is the phase where rubber meets the pavement; stuff gets done. There may
be a fair number of throwaway prototypes in this phase, possibly with multiple
features in a single app.

Generally a good way to power through this stage is to define the action the
player will do most during the gameplay and test it first. Once it is fun, test the
second most common activity alongside the first. Continue this process of
adding new actions until the gameplay feels robust; a good rule of thumb is from
three to five elements and no more than seven.

Once you have a good idea of how the gameplay works, then it's time to go to
the next type of prototype: reusable code.

Reusable code

Also called Evolutionary or Bread board prototyping, the goal here is to produce
code that is used in the final app. The prototyping process continues, even
though the goal is producing final code. Remember that in the Throwaway phase
we were looking for high-level (horizontal) solutions for design problems. Now
we are digging deeper, looking for low-level (vertical) solutions to the
underlying, possibly unanswered gameplay details.

At this phase, it is useful to review the basic stages of the prototyping process:
defining, building, testing, and fixing. These phases are critical throughout the
development process, especially when the code is intended for use in the final
product. Every time a feature is added, it needs to be fully evaluated in
relationship to the existing features. Otherwise there is the risk of introducing a
hidden, deal-breaking bug, or exploit.

The philosophy behind Evolutionary prototyping is that an app is never finished;
it can always be refined, polished, and expanded. Often, a product is good
enough for the current iteration and the constraints of resources. In mobile game
development, this may manifest as version releases, future products or
downloadable content packages (DLCs). If some cool new ideas emerge
during the development cycle, but it's not possible to implement them with the
available resources (time and money), write them down. Plan them for the next
iteration of your game.

Why prototype?

Just in case the reasons aren't obvious yet, let's list them again.

e It saves time and money: This is pretty important, since changes cost less
early on than later in development.

¢ It promotes better overall quality of gameplay: By giving players a
chance to try out your good ideas before they are set in stone, there are
more opportunities to improve the player experience, resulting in a more
fun game. The more fun the game is, the better chance of more sales. And
more sales are good sales!

What to avoid

These are some common mistakes that can be counterproductive.

¢ Losing the big picture: While working on individual elements of a project,
don't lose sight of what the final goal is. It is fun, exciting, and very
rewarding to get one thing or another up and running, which is why a
secondary feature may work its way up the priority list. If this happens and
it works with the overall design, great! Just remember to check that it
doesn't unseat something critical to the design's original intent.

e Feature creep: Sometimes good ideas come along at the right time,
sometimes not. Be careful not to add in something that breaks the existing
app. Also the process of continually adding features means the project's
milestones are constantly shifting, which makes it very difficult to hit them.

e Feature attachment: Just like in romance, it is easy to fall in love with the
concept of a game feature. Once this happens it is difficult to see the reality
that the feature (or relationship) just doesn't work as hoped. When this
happens you just have to bite the bullet and toss it out, otherwise you can
wind up burning yourself out trying to fix the unfixable.

e Too much time and money: The whole point of prototyping is to save you
time and money. If you find that the prototype is costing more than you
budgeted, consider paring back the features or possibly pulling the plug on
the project.

Tools

Here is a partial list of tools that will assist with the prototyping process, broken
down by the phase they are best suited for all phases The following list contains
the software that you are going to use throughout the entire prototyping process,
as they are the basic tools for writing documents, make draws and sketches, and
create diagrams and presentations.

e Microsoft Office/Open Office: This is essential for documentation
throughout the project. MS Office is available for a price from the
Microsoft website. Open Office is free and open source and includes many
of the features in MS Office.

e PowerPoint: This is useful for wire frame mock ups and quick proof of
concepts. It is included in MS Office and Open Office has an equivalent
application in its bundle.

e Visio: This is an excellent tool for creating flow charts, placeholder
graphics, screen mock ups, and wireframes. It is available for a price from
the Microsoft website. Open Office contains a similar application for free
tools for wireframes.

As mentioned in Chapter 7, Interface Design for Mobile Games, the creation of
wire frames has a fundamental role in the process of designing the game flow
and User Interface for a game. In the following list you will find popular tools
for such tasks:

e Pencil project: This is designed for creating Graphical User Interface
(GUI) wireframes; it's a free, open source application to mock up screen
layouts. This is available at http://pencil.evolus.vn/.

¢ Flairbuilder: This is used to create interactive Web and mobile prototypes
and wireframes. The cost is 99 dollars and up, depending on the number of
licenses purchased. This is available at http://www.flairbuilder.com/.

e Axure: This is considered a top of the line prototyping tool, Axure is
targeted at Web and mobile prototyping. There are trial, standard, and
professional versions available at http://www.axure.com/.

http://pencil.evolus.vn/
http://www.flairbuilder.com/
http://www.axure.com/

Tools for rapid prototyping

There are many game software development kit (SDKs) available, including
powerful integrated development environment (IDEs) that are free to use. We
list some here for your reference.

e Game Maker: This is an SDK designed for 2D game development. It has a
free version with reduced functionality and functional versions from 50
dollars and up. This can be found at
http://www.yoyogames.com/gamemaker/studio.

e Unity 3D: This is one of the most powerful free game SDKs available. It
has a very complete library as well as a robust online user community. This
is why we picked Unity to build our prototype tutorial. You can check
anything you may wish to know about Unity 3D at http://unity3d.com/.

e Havoc Project Anarchy: This is a recent initiative (as we write) that aims
to provide users with a full featured game engine, created by the popular
company Havoc. The basic license is free to use, you can check this project

at http://www.projectanarchy.com/.

http://www.yoyogames.com/gamemaker/studio
http://unity3d.com/
http://www.projectanarchy.com/

Unity3D tutorial — part 2

In the first part of our tutorial in Chapter 8, Mobile Game Engines, we prepared
the game scene. In this second part we will show how to make things behave

properly.

Let's begin thinking about the game logic we are going to implement in our
game.

In Space Invaders the player controls a ship located at the bottom of the screen,
which moves left and right and shoots bullets.

The goal is to destroy wave after wave of aliens approaching towards the
player's ship from the top half of the screen, before they reach the bottom of the
screen, while avoiding the bullets they fire.

Aliens move according to a snake-like pattern; they begin moving right and as
they reach the right boundary of the screen, they invert direction and move a
little bit closer to the bottom of the screen, then repeat the cycle as they move
left and reach the left boundary of the screen.

Once in a while, aliens shoot bullet towards the player's ship.

Player's bullets move bottom-up, while aliens' move top-down.

The player's ship

As the player's ship is easier to implement, we'll begin with it.

1.

Drag the PLShip prefab into the Scene View and set its position at
coordinates X=0, Y=-15, Z=15 (these are arbitrary values, but they are
consistent with camera settings we defined earlier). You can edit the scale
of the PLShip prefab in case it is not the right size by changing its scale
values in the Transform panel in the Inspector panel.

We want the ship to move left and right and fire a bullet, to do that we
create a JavaScript file and add it to the PLShip prefab.

In the Project panel create a new folder, name it Scripts and then create a
JavaScript file in the folder. Name it Controlship and double-click it to
open in the default script editor provided with Unity, called MonoDevelop.
As you can see, any newly created JavaScript file is already provided with
two main function declarations: the Start () function and uUpdate()
function.

The start () function is useful to set default values for variables when the
game starts, while the Update () function is a very important one, which is
called by Unity engine (almost) once per frame. Basically, when you need
some operation to be performed continuously, put your code inside the
Update() function.

To take control of the player ship we need the following code to be added
to the script. We put comments to make the operations performed clearer,
as we cannot make a full explanation on game programming here.

#pragma strict

//this var is needed to fire bullets from the ship
var myBullet:Rigidbody;

//this is a true\false var to control player's ship fire
//rate
static var canShoot:boolean;

function Start () {
//we want the player to be able to shoot as the game
//starts
canShoot=true;

}

function Update () {

//1is the player pressing right button?
if(Input.GetKey("right"))
{

//ship moves right
transform.Translate(Vector3(2,0,0));

}
//1is the player pressing left button?

if(Input.GetKey("left"))

{
//ship moves left

transform.Translate(Vector3(-2,0,0));
}

//1s player pressing the fire button (spacebar)
if(Input.GetKeyDown('"space")&&canShoot)

{
//create the bullet

Instantiate(myBullet, transform.position, transform.rotation);
//player can't fire for a while
canShoot=false;

}

7. Save the file and go back to Unity, then, in the Project panel, drag the
script onto the PLShip prefab to add it.

8. You can check in the Inspector panel that the script has been added to the
prefab. You will also notice that the script requires a Rigidbody variable to
be instantiated for the script to work, as defined by this line of the
ControlShip script:

//this var is needed to fire bullets from the ship
var myBullet:Rigidbody;

» To instantiate the variable, we first need to add the Rigidbody component to
the bullet. To do that, select the PLBullet prefab in the Project panel, then go to
the main menu and select Component | Physics | Rigidbody, as shown in the
following screenshot:

= n |
| Layers + it - |
i a

L
i O Inspector
A M BaBa |

Character Controfler
Bound
Box Collider Main Camera

- PlShep
Sphere Collider Swarm

¥ . sphere (Mesh Filter) [9
Mesh i)

o

*) sphere Collider de.
15 Trigger i

Tesrain Collider Material None (Phvsic Mz @

Canter
Interactive Cloth

Skinned Clath
Cloth Renderer 7wl o Mesh Renderer
Cast Shadaws]

Hinge Joint Receive Shadows [

Faxedt Joint
Spring Joint
Character Joint

Use Light Probes L]
Configurable Joint y

= . green
Shader | Diffuse

Main Caler
Base (RGB)
Tiing

yii

Seripts
|11 cantralship

¥ & Textures
WinvadersTexture

» Select the PLBullet prefab and drag it into the empty slot on the script
component of the Inspector panel.

* Now that the Rigidbody component has been added to the PL.Bullet prefab,
we need to edit a couple properties in the Inspector panel. Uncheck the Use
Gravity option and check the Is Kinematic option. This way the bullet won't be
affected by gravity and it will trigger collisions with other game objects. If you
want to know more about Rigidbody and Collision Detection, we suggest you
to refer to the Unity manual.

» Check the following screenshot to see you did things right:

U5E LIgNT FTO0ES J ’
¥ & Rigidbody G %, |
Mass |1 |

Drag 0 |
Angular Drag 10.05]
Lse Gravit

Is Kinematic [

Interpolate [Mone &
Collision Detection | Discrete =

b Constraints

3 Project = green

| Ereate'l o All) shader [Dift
Imuse

b £ 3DModels St

HEE. Main Colaor

b o Materials Base (RGB)
| ¥ (55 Prefabs

[ﬂ e Tiling Offset
(1l Alienz 2 il o
Eﬂ Alien3 y il 0

Eﬂ Aliend
[:ﬂ AlienBullet
® PLEuUllet

e Now we can finally drag the PLBullet prefab into the My Bullet slot of the
Control Ship (Script), as shown in the following screenshot:

=TTE T
Element 0 @ areen el
Use Light Probes -
¥ (0 Animation i
Animation Mone (Animatiom
 Animations
Play Automatically [
Animate Physics -

Culling Type Always Animate
¥ | & control Ship (Script) i,

Script l5] ControlShip @
My Bullet Mone (Rigidbody @

|ﬁ ArdiRet ' - green / &,

et At e of oo O -
abMmdetis &1 1 I Lo

o — .

> Materials

v Prefabs

[l Alienl

[alienz

[t Alien3

[Aliend

[g alienBull

[l PLBullet

¥ Scenes
 tut_ 01

v Scripts
ContralShip

¥ CdTextures

InvadersTexture

Preview

* Next we need to take care of the PLBullet behavior with another script. Create
one in the Scripts folder, name it ControlPLBullet and double-click on it to
open.

o With this script we are going to tell the bullet to move up once created and to
check for collisions with enemy aliens and other objects such as barriers
(discussed in the last part of this tutorial in Chapter 10, Balancing, Tuning, and
Polishing Mobile Games).

» The following code is to be put in the ControlPLBullet script:

#pragma strict
function Start () {

}

function Update () {

//71NUve pulLlclL Up UliLt Ll calLcu

transform.Translate(Vector3(0,2,0));

//Y=100 defines upper screen limit
if(transform.position.y>100)

{
//destroy bullet as it goes outside the upper
//screen limit
Destroy(gameObject);
//once the bullet is destroyed, allow the player
//to shoot again

moveShip.canShoot=true;

}

}

//this function checks for collisions
function OnTriggerEnter(other:Collider)

{
//1if bullets collides with aliens, destroy both

if(other.gameObject.tag=="Enemies"){

Destroy(gameObject);

Destroy(other.gameObject);

//once the bullet is destroyed, allow the player
//to shoot again

ControlShip.canShoot=true;

}

//1if bullet collides with barriers, destroy it and a
//piece of the barrier
if(other.gameObject.tag=="BarrierBrick"){

Destroy(gameObject);

Destroy(other.gameObject);

//once the bullet is destroyed, allow the player
//to shoot again
ControlShip.canShoot=true;

}

e The script basically controls that the bullet moves up once fired. In the
Update() function we also check if a collision occurs and perform the desired
action when this happens.

* You will also notice that we are using Tag to check what the bullet collides
with.

e Tags are another very useful feature offered by Unity that allows us to give an
identification name to game objects to be used to check collisions and other

events. We will explain how to use tags as we go on with this tutorial.
¢ It may be necessary to adjust the bullet speed, which can be done by
modifying the following line in the Update() function:

//move bullet up once created
transform.Translate(Vector3(0,2,0));

o The Y threshold to destroy the bullet once it goes beyond the upper screen
limit could require to be changed too, by editing the following line in the
Update() function:

//Y=100 defines upper screen limit
if(transform.position.y>100)

e Now, everything should be ready to test the ship controls. Launch the
application and check that the ship actually moves left and right with the arrow
keys and fires when you press the spacebar.

Feel free to tweak its movement speed values according to your tastes.

The aliens

Now that the player's ship is over with, we can take care of the alien invaders.

As we want them to move as a single group, the best thing to do is to have a
GameODbject, which is not actually part of the group yet, control them.

1.

Create an empty GameQObject in the scene, name it SwarmManager and put
it at the coordinates X=-18, Y=12, Z=15.

Our next step is to add a script to SwarmManager. We will use this script to
have the swarmManager game object create the alien swarm and move it in
the scene.

Let's begin by creating the alien swarm in order to check that the position
we set for SwarmManager is correct for the setup we defined.

Create a new JavaScript file in the scripts folder and name it
ControlSwarm, then double-click on it to open it in MonoDevelop.

The first part of the script takes care of creating the alien swarm. To do that
we just need to declare four GameObject variables to store the alien prefabs
and a for {3} cycle to create four rows of aliens.

//we need a GameObject variable for each alien type in the
//swarm

var Alienl:GameObject;

var Alien2:GameObject;

var Alien3:GameObject;

var Alien4:GameObject;

function Start ()
{
//we want 11 aliens per row
for(var 1=0;i<11;i++)
{
//first row is created at same Y position as
//SwarmManager
Instantiate(Alienl,Vector3(-15+(3*1),
transform.position.y, transform.position.z),
transform.rotation);

Instantiate(Alien2,Vector3(-15+(3*1),
transform.position.y-3, transform.position.z),
transform.rotation);

Instantiate(Alien3,Vector3(-15+(3*1),
transform.position.y-6, transform.position.z),

transform.rotation);

Instantiate(Alien4,Vector3(-15+(3*1),
transform.position.y-9, transform.position.z),

transform.rotation);

b
b

6. Add the script to the SwarmManager game object in the scene and then drag
the four aliens prefabs in the exposed GameObject variables, as shown in

the following screenshot:

V] |Gi2mn5"l o All

| Create 'i (or Al

£3 Project =

» (3 3DModels

PE_

¥ [E Materials

D green

D InvadersMateal
D red

D white

|| ¥ 3 Prefabs

(g alien1

[alienz

[Alien3

[Aliend

[l alienBdllet
[PLBUllet
[Piship

A :] i
Directional light i oyl Transform al #
Main Camera Position
PIShip X [-18 | G [z (15 |

| SwarmManager |[ETSSRP
x [0 RAE |z [o n

Scale

X1 [¥ [2 =l i
B refa bS On ¥ || Control Swarm (Script) 3,
Script ControlSwarm @
Alien 1 Alienl @
exposed /% -
Alien 3 Alien3 <]
" Alien 4 Aliena @

Now launch your project to check that the aliens are correctly spawned and their
position is centered with respect to the player's ship and the camera. If needed,
tweak the SwarmManager position and the numerical values inside the for {}
cycle until you get a setup you are satisfied with.

Next we take care that the swarm moves according to the snake-like moving
pattern we described at the beginning of this tutorial. Things could become a
little more complex here, so stick with us. We would also like to state here that
there is no single way to code things while working with videogames, though
some ways are better than other. What we suggest here is the way we consider
good enough for the goal of this tutorial, and those of you who are proficient
with programming could find better ways to achieve the same result. We
strongly recommend you to always try and find other ways that work better for
you whenever it's possible.

To have the aliens change direction as they get close to the screen bounds, we
will use two game objects positioned at the right and left sides of the swarm. The
first alien that collides with any of the bounds will make the entire swarm
change its direction and also lower their height with regards to the player's ship.

1. Create a Cube GameObject and name it LeftBound. Put it at coordinates
X=-20, Y=5, Z=15 and set its scale to X=1, Y=100, Z=8. Also check the Is
Trigger option in its Box Collider component in the Inspector panel as
shown in the following screenshot:

> (11

«= | = Hierarchy . =

D | | Gizmns‘i '.{}.:F\“

| 5 | 1 N
) || | Create 7| (orAll)

l Layers v I [4 S!:?I.it - |]

© Inspector 1 o=
| [] static =

| LeftBound

Directional light

Tag | levelBound | Layer | Default a

¥ [Prefabs
RS

Leaaiad Prefab | Select | Revert | Apply |
Main Camera ¥ . Transform [%,
PIShip Position
SwarmManager x i'zﬂ] Y L5] z 15
Rotation
x [0 | ¥ [o 1z o
Scale
20l T | vy 100 |z (s |
¥ i Cube (Mesh Filter) i+,
Mesh H cube @
¥ i [Box Collider [%
Is Trigger
Material |None (Phvsic Mate| @
Center
xo IvypD Jz[0
_ Size
) & - - X1 | ¥ [1 |z [1 |
M ¥ @i [Mesh Renderer G #.
-!.-.—CE;;;; ?vlhll || cast shadows o
L HEES Receiye Shadows [
L ¥ Materials
¥ [Materials Zize 1
Q@ green : Element 0 Q) Default-Diffuse @
@ InvadersMaterial Use Light Probes 0l
D red
D white

e We also need to use a tag to check the collisions of the aliens with the bounds,
so it is time to provide a brief explanation about what tags are. As usual, we
suggest you to refer to the Unity documentation to delve deeper into this topic.

e As the name suggests, tags are labels that can be attached to game objects to
identify them when specific events occur. In our case, we know that the aliens
will be subjected to at least two types of collisions: collisions with the player's
bullets and collisions with the level bounds. Unity allows the use of tags to
distinguish between these two different events.
e To create a Tag click on the Untagged button in the top section of the
Inspector panel as shown in the following screenshot and from the drop-down

menu, select Add Tag.

= Hierarchy O Inspector

—) | m— R] Ostatic +
Directional light Tag | Untagged Layer | Default]
LeftBound IMuIti | T
Main Camera Ple | v Untagged
PIShip YA Respawn *,
RightBound I Position Frh
SwarmManager){ = oot :l

Rotatior :

% E MainCamera :
Scale Player

oo E GameController :]
¥ oo Enemies &,

e levelBound L
Y @ #*
Is Tri'gg Add Tag...
Material one vsic Mate] ©
Center

¥ [o | ¥ [0 | 2o
Size

e Find the first empty entry in the Tag Manager panel that opens up and name
it levelBound.

* Well done, you've created a tag to be used in our script files to check
collisions between the aliens and the level bounds we put in the scene.

| Layers - | [4 split =
= m = © Inspector | i
B B .| o Al ~ .
LEragme | AX = .~ TagManager 2] #%
Directional light oy
LeftBound
Main Camera ¥ Tags
FlShip Size 3
RightBound Element 0 Enemies
SwarmManager e i

Element 2
Builtin Layer 0
Builtin Layer 1
Builtin Layer 2
Builtin Layer 3
Builtin Layer 4
Builtin Layer 5
Builtin Layer &
Builtin Layer 7
User Layer 8
User Layer 9
User Layer 10
User Layer 11

Default
TransparentFx
Ignore Raycast

Water

e To add the tag to the LeftBound game object, select it and in the Tag drop-

down menu, you should now be able to select the newly created levelBound tag.

e To complete this part of the tutorial, we need a second bound to be added to

the Scene. With the LeftBound game object selected, press Ctrl + D to duplicate
it. Name the newly-created game object RightBound and set its X coordinate to

20, then add the levelBound tag to RightBound too.

The following screenshot shows a reference of what you should have in your

scene by now:

It's now time to make the swarm move. Open the ControlSwarm script.

1. In the upper section of the script, where we declared the alien GameoObjects,
add the following lines to create new variables:

//this is an array to store the instances of the aliens
//that are part of the swarm
static var enemyList=new Array();

//we use this boolean to check the actual direction of the
//swarm
var goRight:boolean;

//with this int value we define the horizontal speed of the
//swarm
var vel:int;

//we use this boolean to control the collision of the
//aliens with the Bounds
static var bCollide:boolean;

e Now enter the start() function and add the missing lines:

function Start ()

//we want 11 aliens per row

for(var 1=0;i<11;i++)

{

//first row is created at same Y position as
//SwarmManager
Instantiate(Alienl1,Vector3(-15+(3*1),
transform.position.y, transform.position.z),
transform.rotation);

Instantiate(Alien2,Vector3(-15+(3*1),

transform.position.y-3, transform.position.z),
transform.rotation);

Instantiate(Alien3,Vector3(-15+(3*1),

transform.position.y-6, transform.position.z),
transform.rotation);

Instantiate(Alien4,Vector3(-15+(3*1),

}

transform.position.y-9, transform.position.z),
transform.rotation);

}

//this line fills the array enemyList with aliens tagged
//"Enemies"
enemyList=GameObject.FindGameObjectsWithTag("Enemies");

//the swarm starts moving right
goRight=true;

//tweak the swarm speed according to your tastes
vel=4;

//no collision when the game starts
bCollide=false;

* Now we take care of having the swarm move. Movement is defined by a
function called moveEnemies(), which is called the first time in 0.5 seconds after
the game starts and then every 0.25 seconds by another instruction called
InvokeRepeating(). You can tweak these values if you like.

//this instruction calls the moveEnemies functions at a

//given pace

InvokeRepeating("moveEnemies", 0.5,0.25);

//we move the swarm left or right at speed defined by vel

tunction moveEnemies()

{
if(goRight)
{
for(var myEnemy:GameObject in enemyList)
{
if(myEnemy)
{
myEnemy.transform.Translate(Vector3(vel, 0,0));
}
3
}
if(!goRight)
{
for(var myEnemy:GameObject in enemyList)
{
if (myEnemy)
{
myEnemy. transform.Translate(Vector3
(-vel,@,@));
}
3
}
}

e Finally, in the Update () function we check if a collision with the 1evelBound
tag occurred to change the movement direction of the swarm and lower their
height with regards to the player's ship.

function Update () {
if(bCollide)
{
goRight=!goRight;

for(var myEnemy:GameObject in enemyList)

{
if(myEnemy)
{
myEnemy.transform.Translate(Vector3 (0,-4,0));
}
3

bCollide=false;

To have the script work, we need to perform some operations.

1. First of all we need to tag the Aliens prefab as enemies. Add a tag named
Enemies to the Tag Manager panel as we did for 1evelBound and set it for
the four Alien prefabs.

2. Then we need to program the alien instances so that they alert the
SwarmManager game object whenever they collide with 1levelBound. As you
may remember, we created the SwarmManager game object as an external
component of the swarm itself; therefore we now need to add another script
to our Script folder.

3. Create a new JavaScript file, name it BoundCollision and open it in
MonoDevelop. Add the following lines to the script; a variable declaration
and the onTriggerEnter () function to actually check the collisions
between the Aliens and the Bounds:

//this variable is used to access the bCollide variable in
//the ControlSwarm script
var mySwarm:GameObject;

function Start () {

}
function Update () {
}
function OnTriggerEnter(other:Collider)
{
if(other.gameObject.tag=="1levelBound")
{
//we access the bCollide variable in the
//ControlSwarm script
var scriptFile: ControlSwarm =
mySwarm.GetComponent("ControlSwarm");
scriptFile.bCollide=true;
}
}

e Add this script to all four Alien prefabs in the Project panel.

e To have this script work we need to Perform a last operation, though. We need
to make another Prefab out of the SwarmManager game object.

o Create a new Prefab in the Project panel, name it SwarmManager and then
drag the SwarmManager game object from the Hierarchy panel into the

SwarmManager Prefab in the Project panel. Use the following screenshot as a

reference:

ger

LeftBound

Main Camera My Swarm
FIship

RightBound Imported Obj
SwarmManager #pragma strict

3 Project _T

=

| Create ~| (o QN

» 3 3DModel

BEE_

» 3 Material

¥ (3 Prefabs
[l alien
[alien
[alien
[Alien
[Aliendllet
L PLEUIIE
i PIshi

i SwarmManager

¥ Scenes
tut_01

P Ld Scripts

var mySwarm:

function Start (

}
function Update
}
function OnTrig
{
if{other.gam
Debug.Lo

var
scriptFile: Contr

ponent{"Contro
scriptFile.i
+

r

o The last operation is to drag the SwarmManager prefab we just created into the
My Swarm variable of the Bound Collision (Script) we added to each Alien

prefab, as shown in the following screenshot:

Center

e prefab I tﬁn .00980/| Y [0.19734] Z 1.5 |

8.95297! ¥ [B.96202| Z |3 1

posed Varl mri?uund Collision (Script) G %

. BoundCollisiom

My Swarm SwarmManager @

; =
i Create'l (o All =
b 1 3DModels
o
b [Materials
¥ [Prefabs
L @alens
i Alienz
(1l Alien3
[l Aliend
(1l AlienBullet
(i) PLEullet
[l PIShip
[:ﬁ SwarmManager
¥ [Scenes

«Qtut_o1

L e

e Remember to repeat this last operation for all Alien prefabs we have in the
Project panel.

Everything is ready now to test the behavior of the alien swarm. Launch the
project and check that the swarm actually starts moving right and upon colliding
with the bounds, invert its direction and lowers its height.

Very well done! The fundamentals of our prototype are set now. In the next
section we will take care of the firing stuff.

Firing
First of all we want to make the player's ship fire against the aliens of the swarm.

We already have a prefab representing the bullets fired by the player's ship, so
we actually just need to have them spawned from the ship as the player presses
the spacebar. Obviously, this action can be bound to any other key of choice.

1. Create a new JavaScript in the Scripts folder, name it ControlPLBullet
and open it in MonoDevelop.

2. This script contains instructions for the Update () function and the
onTriggerEnter () function to check for collisions between the bullet and
the aliens, their bullets and the barriers positioned between the player's ship
and the swarm.

3. The update() function takes care of making the bullet move up and
eventually destroys it in case nothing is hit, so that the player can shoot
again. The following code is to be typed into the Update () function:

function Update () {

//move bullet up once created 2 pixels\frame
transform.Translate(Vector3(0,2,0));

//Y=100 defines upper screen limit
if(transform.position.y>100)

{
//destroy bullet as it goes outside the upper
//screen limit
Destroy(gameObject);
//once the bullet is destroyed, allow the player
//to shoot again
ControlShip.canShoot=true;

}

}

e Inthe onTriggerEnter () function we check what the bullet collides with and
then destroy both:

function OnTriggerEnter(other:Collider)

{
//the bullet collides with aliens

if(other.gameObject.tag=="Enemies"){

Destroy(gameObject);

Destraov(inther _nameNhiect):

vvvvvv AR R I N A 4

//once the bullet is destroyed, allow the player
//to shoot again
ControlShip.canShoot=true;

}

//the bullet collides with barriers: destroy bullet and
//a piece of the barrier
if(other.gameObject.tag=="BarrierBrick"){
Destroy(gameObject);
Destroy(other.gameObject);

//once the bullet is destroyed, allow the player
//to shoot again
ControlShip.canShoot=true;

}
o Save the script and drag it onto the PLBullet Prefab.

If you test the project now, you should have the player's ship firing and the bullet
move up, until it collides with an alien or gets out of the top boundary of the
screen. You should also notice that you won't be able to shoot again until the last
bullet is destroyed. In the Update() function you can also tweak the speed of the
bullet as it goes up and the height it gets destroyed at, if it doesn't collide with
anything.

Having the aliens shoot at the player's ship can be achieved in many different
ways. For the sake of this tutorial we will show a very straightforward method,
simply based on probabilities. We basically call a function every five seconds
and with each call, we set a probability that each alien in the swarm fires a bullet
against the player's ship.

The actions of the aliens' bullets, movements, and collision detection are
basically handled the same way we did for the player's bullets, with a script
attached to the bullet itself.

1. So create a new JavaScript in the Scripts folder, name it Alienshoot and
add the following code. You should now be used to the kind of actions
expressed by the instructions of the script.

#pragma strict

//this var instantiates the hiillet nrefah

—rra R L T SR R D i

var itsBullet:Rigidbody;
function Start () {

}

function Update () {

}

//repeat firing check every 5 secs
InvokeRepeating("shouldFire", 3,5);

function shouldFire()

{
//assign a random value between 0 and 1 to p
var p:float=Random.value;
//change p that alien fires
if(p>0.85)
{
doFire();
}
}

//this function instantiates an alien bullet
function doFire()

{
Instantiate(itsBullet, transform.position,
transform.rotation);

}

. To have the AlienBullet prefab work properly, we first need to modify it
by adding a Rigidbody component, so that it can detect collisions with the
barriers and the player's ship. In fact we declared the bullet variable as
Rigidbody in the script. Select it in the Project panel and add the
Rigidbody component as shown in the following screenshot:

P

iayes - J{aseie -]

TESE

Lo, o e 5 PO, R
#Scene | &) ' R .. I 0 inzpector
Tstured 3 " Figidbody red = | RGE Ly 5
Character Cantroller
LeftBound 2033
Ban Collider Main Camera
ol
Sphese Collider i S ,ﬂﬁi‘f
Capsule Collides SwarmManager T Teigger
Meeh Colidfs Material [None (Phusic M2 ©
Wheel Collider Canter
Termain Collider * [5.96046 ¥ (0 Z 89068
Radus 0,5000001
Interactive Cloth Heaght 2
Skinned Cloth Directicn [Asis |
Wik 7wl M rtesh Renderer de
Cast Shadans [
st feceive Shadame [
Feced Joint ¥ Materisls
e size 1
ving Joint i
o . | Elemant 0 @ white: (]
Character Joint ene | o Unktiaht pckas L1
Configurable Joint s : B = LME Ll =
i b z : white Qe
lpmes - 2 f r Shades | Diffuss v

= [Main Colar
14 Bound Base [RGB}
[manageswarm = e

]

Preview

[z BoundCallision
[CantralPLE et
11 Gantralshin

| ContralSwarm

e Then attach the script to each Alien prefab in the Prefabs folder of the
Project panel and drag, for each Alien prefab, the AlienBullet prefab into the
exposed variable of the script. Refer to the following screenshot to be sure
you've done things right and check that the Is Kinematic option of the
Rigidbody component is flagged, while the Use Gravity is not, as usual.

Angular Drag |0.05

se Gravity L

Is Kinematic [»]

Interpolate IHone

Collision Detection | Discrete s

b Constraints
b [¥ Box Collider gl =,

: = b || Bound Collision (Script) [#
3 Project | -= ¥ [| & Alien Shoot (Script) #,
| Create - | (ar All |l seript l:] Alienshoot ©
b 3 3DModels Alien Bullet & AlienBullet (R e

[

b 3 Materials
¥ (23 Prefabs
i Alieni
[d alienz
[l Alien3
[Aliend Tiling

S AlienBullet 7 =
Preview
PLEullet
Ld PIShip
id SwarmManager

b S Srenes

whi *
ader | Diffuse T |

[]2

in Colar
Base (RGB)

The next step is to provide the bullets fired by aliens with a behavior, since, as it
is, the AlienBullet prefab doesn't do very much. In the next step we need to
program the behavior of the bullets fired by aliens.

1. Create another script with name controlAlienBullet. The script is mostly
like the one controlling the PLBullet prefab, with the difference that it
moves in the opposite way, from top to bottom of the screen. This time we
also check collisions with the player's ship rather than aliens and with the
barriers, which we will discuss in more detail in the next chapter.

2. Finally, we need to manage the consequence of the bullet hitting the
player's ship. We will take care of this in another section of this tutorial,
when we discuss the final touches to be added to the prototype. For now,
we are fine with a simple log message telling that the game is over!

3. The following code is to be put in the ControlAlienBullet script:

function Start () {

}

function Update () {

//this bullet move down
transform.Translate(Vector3(0,-2,0));

//destroy bullet below this height
if(transform.position.y<-30)

{
Destroy(gameObject);
}
}
function OnTriggerEnter(other:Collider)
{
//check collision with player's ship
if(other.gameObject.tag=="PlayerShip")
{
Destroy(gameObject);
Destroy(other.gameObject);
//we will improve this later
Debug.Log("Game Over");
}
//check collisions with barriers
if(other.gameObject.tag=="BarrierBrick"){
Destroy(gameObject);
Destroy(other.gameObject);
}
}

* You may notice that the collision between the alien bullet and the player's ship
is dependent on the player's ship being tagged as "Playership". We thus need to
add this tag into the Tag Manager panel and then add the tag to the PLShip
prefab. You shouldn't have problems doing this by now.

e We also need the PLShip Prefab to be added with a BoxCollider component
with the Is Trigger flag checked in order to have the collisions with the bullet
being detected. The following screenshot should help you do that:

it Assets G_Mneoby_ect Component | Temain
i . = roreram - - (- . .P:'[.;\s-p-e.&.m TR
- x[oz 1v[oz lzpz I~

Effects [
Physics » Rigidbody T
Navigatian » Character Controlier Srwsional Rt
LeftBaund T 5 Box 002 (Mesh Filter) [9.
Audie e . Wil Hesh B Boxnnz
Réndeiing b — ! PlShin » mi 4 Mesh Renderer
Sphere Collider i R e e~y |
Miscelaneous » RightBma + (0 [+ Animation Qe
Capsule Collider SwarmManager Animatian Nane [Ammationd
Mesh Collider L * Animatians
" Play Automatically o
Wheel Coll
o ol "_1“ Animate Physics (]
Terrain Collider | Culing Type Almays Animate ¥
: ¥ L1 control ship (script) L &,
Interactive Cloth Script | ControlShip @

Scripts

Skanned Clath My Bullet & PLBullet (Rigio

Cloth Renderer ¥ L Box Collider (VL%
1 Tri ™

EMIOE A0 Matera Nene (Phvsic M ©

Freed Joint Cartar

Spring Joint ¥ [-0.6408: ¥ [D.48648) Z 1.5

Character Joint ene E - Size

Confguesbile Joint e ' I us = | (AT \ o x[i5220 v 685168 2 3

graen (N
Shaser | Diffuss -

Main Colar e
Base (RGB)

|11 Boundcallision
|1} CantralalienBullet
1] CantralPLBullet
|11 CantralShip
11 CantralSwarm

* S Textures

e Add the controlAlienBullet script to the AlienBullet Prefab and if you test
the project now, you should have the aliens randomly fire at the player. Check
that the player's ship is destroyed and the Game Over log is correctly displayed
upon collision between the alien bullet and the player's ship.

e Also remember that you can tweak the firing rate of the aliens by modifying
the InvokeRepeating instruction or the probability that the doFire() function is
called in the AlienShoot script.

This ends the second part of the tutorial, where we added the basic functionality
to our Space Invaders prototype. Right now, in the Scripts folder of the Project
panel you should have the following scripts:

e AlienShoot

© BoundCollision
ControlAlienBullet
ControlPLBullet
ControlShip
ControlSwarm

O O O O

The Prefabs folder should contain the following prefabs:

Alieni
Alien2
Alien3
Alien4
AlienBullet
PLBullet
PLShip
SwarmManager

Finally, the Tag Manager panel should handle the following tags:

® Enemies
e JevelBound
e PlayerShip

Well done! In the next and final part of the tutorial we will add the final touches:
GUI, the barriers, a Game Over event, and some audio.

Summary

In this chapter we covered the prototyping process, the types of prototypes, the
tools for prototyping, and the dos and don'ts of prototyping. We also provided
part 2 of our prototyping tutorial with Unity 3D.

In the next chapter, we discuss how to fine tune and polish up a prototype to
achieve a final product, ready for publication.

Chapter 10. Balancing, Tuning, and
Polishing Mobile Games

When a game comes to the final steps of its development, all efforts should be
directed towards adjusting the small details, which make a difference between a
good game and a great one. The competition is high in this industry and no game
can make its way against its competitors if it is less than perfect.

Making a game perfect can have several, and often subjective, meanings. As
games are interactive media they can only be perfect inside the space defined by
their interactions with the players. This means that a game can never be great by
itself, but it can only be great in the perception that gamers have of it.

Basically games should meet the players' expectations at several levels; they
should run smoothly, be fun to play, provide a reasonable amount of gameplay,
and make players feel at ease with the game controls/interface, among others.

Each of these topics falls into a different category of actions, or set of actions
that you as game developers, should perform to achieve an optimal result with
your game. In this chapter we will talk about balancing, tuning, and polishing
(mainly), explaining the aim of each and the best practices to perform them
efficiently.

We also in this chapter finally top off the Unity tutorial, by adding the final
touches to improve the gameplay provide an interface and offer better aesthetics.
This will lead us to a better polished game, which is the aim of this chapter.

Balancing

Balancing has mainly to do with the longevity (longevity represents how long a
game is played by a player in his life) of a title, as it affects the quality of the
interaction between the player and the game he is playing.

Let's think of games as dynamic systems. As with any system, games must have
some kind of equilibrium state that allows the system itself to perpetuate. In our
metaphor, the longer the equilibrium is kept, the better the longevity of a game.

Now let's consider the players' actions as disturbances to the state of equilibrium
the system is in at any given time. If the system of our game doesn't react
properly to the players' actions, for example, it over or under reacts, the
equilibrium state of the game collapses, thus ruining the gameplay experience.

In a First Person Shooter (FPS) the player usually controls a character that can
sustain much more damage than the average enemy he faces, which is an
example of an unbalanced condition. To balance the improved resistance of the
player's character, FPSs are provided with tons of enemies for the player to kill.
If a FPS had just one single weak enemy, it wouldn't be so much fun to play.

On the other hand, if the enemies were as tough as the player's character, it
wouldn't be very fair for the player to have so many against him.

In a sports game where two teams compete, each team has the same number of
players so it is not by chance that sending off a team member is considered a
strong penalization for the team sustaining it.

In the following section we provide an explanation for all the most important
techniques used in game development to balance games.

Symmetry

The competition between two teams of players in sports can help us describe the
most basic technique to balance games, which is called symmetry. Symmetry
means that each side (or team) starts with the exact same amount of resources.
Competitive games always require some kind of symmetry, though there can be
cases where total symmetry cannot be achieved, as happens with turn-based
games, such as Chess and Tic-Tac-Toe, as one player will always have the
advantage of the first move.

Randomization

This is another very basic technique commonly used in board and card games
that consist of letting a random process be in charge of determining the initial
gaming conditions. Since a random process can only lead to fairness in the long
run, through several repetitions of the experience, it is good practice to use
methods to overcome the initial frustration this technique can lead to. One is to
make each game session short enough so that multiple attempts can be made in a
single play session. Another is to give the player the possibility to set the range
of random results through optimization, as is the case with building up your deck
in the game Magic: The Gathering.

Feedback loops

A more advanced technique to balance a game is by making it more demanding
for the successful player. Real-time Strategy (RTS) games achieve that by
asking players to pay an upkeep cost for the units they control so that the largest
armies require the higher cost to be paid. In Mario Kart the leading player
always gets the worst power-ups and his top speed is diminished, while his
opponents become a bit faster, a feature commonly known as "the rubber band
effect".

In other words, feedback loops allow automatic balancing by weakening the
leading player and providing small advantages to those who are losing.

Game director

An even more advanced technique is to have the game's Artificial Intelligence
(AI) take control of adjusting the game difficulty based on the players'
performance. The game Left4Dead by Valve offers an excellent example of such
a technique, as the players advance in the game, the so called Al director gathers
statistics with regards to their performance and sets enemy spawn points, enemy
population, and items accordingly to keep the game optimally balanced for each
player. It even controls the music scores, creating interesting, distinctive mixes
for each player in the party.

Statistics

Further advice we would like to offer on the matter of game balancing is to use
statistics whenever you can. The mathematical analysis of data gathered from
game sessions could really help you understand what happened and identify
unbalanced areas of your game, if any, to make the appropriate corrections.

As you can understand by now, game balancing is both a crucial and thorny
activity, which requires several aspects to be considered at the same time. Do it
wrong and your game system will be easily broken by players, as they are very
smart at finding dominant strategies and dark areas that destroy the playability of
your title.

Play testing is the key for optimal game balancing. While scheduling your
project, allocate a proper amount of time with your testers to check that no
element of your game is ineffective or undesirable and undermines the game rule
set.

Tuning

Tuning a game involves a series of activities, which are related to balancing, but
with a distinctive aim. Tuning has to do with making a game fun to play from
beginning to its end, possibly for players at the most different skill levels
(though it is true that few games specially aim towards very skilled players,
sometimes).

With this last subject we enter a very dark area of games design in general and
videogame design in particular because we get to the point of defining what is
fun. Unfortunately, a definition of fun would require an entire book for itself, so
we suggest you to refer to this very interesting Gamasutra article to begin your
research into the topic of fun in Videogames found at
http://www.gamasutra.com/view/feature/173545/fun_is_boring.php.

Sid Meyer, the founder of MicroProse and designer of several popular strategy
games like the Civilization series (http://en.wikipedia.org/wiki/Sid _Meyer) once
said that games can be described as a series of interesting choices. From such a
perspective, tuning a game means that a game designer should keep the choices
available to his players interesting throughout the entire game.

Let's now switch to another industry veteran, Raph Koster, designer of Ultima
Online and author of a book A Theory of Fun for Game Design, by Paraglyph
Press, we suggest you to read. In Raph Koster's opinion, play has to do with
learning, which means that games keep being interesting to players as long as
they keep learning while playing.

Having this in mind, we can now begin defining what tuning a game means. A
well-tuned game is the one that is fun to play from beginning to end, and a game
that engages players according to the improvement of their gaming skills as they
play. A game that perpetuates on the delicate equilibrium between punishment
and reward, if success is too easy, your players will get bored soon and quit
playing. On the other hand, if the game is too hard they will curse the designer
and quit playing.

http://www.gamasutra.com/view/feature/173545/fun_is_boring.php
http://en.wikipedia.org/wiki/Sid_Meyer

Tuning strategies

Which are the key strategies we can make use of to effectively tune games?

Generalization is one. Design your games so that the core mechanics are
controlled by general rules that don't change with regard to specific game entities
or situations. Tuning each game mechanic separately will very likely lead you to
balancing issues, while if the same game rules are consistent throughout the
entire game it will be easier to make the fine adjustments required, offering the
players that optimal level of engagement.

Keeping code separated from data is another strategy to help you efficiently tune
a game. By putting the statistics regarding the game entities parameter in a
separate file, designers and testers are able to make changes to those values
during play testing without affecting the game itself or creating new bugs, thus
saving coding time and coders' patience.

Now that we have described the main fine tuning strategies, we can offer some
of the best practices to do it efficiently, since tuning can be a very time-
consuming activity if you don't use a structured approach.

The following is the approach to user interface design:

¢ One value at a time: While editing parameters values, always change one
at a time, so that you can test the effect of that specific modification and
nothing else. By modifying several parameters at once you can easily lose
track of what caused what, with the result that you cannot identify the very
reason of the issue you desire to solve.

e Try extreme values first: Go for big adjustments, not small ones. By
doubling or halving values you can easily verify the effects of a specific
parameter, while subtle modifications may produce changes that are hard to
notice. Begin with big adjustments and then progressively reduce their
entity as you make reiterated tests, until you get to the ideal value you are
searching for.

¢ Record your actions: Keep records of the adjustments you make. As you
delve deeper into the tuning process, you can easily forget what you did in
the previous step. Keeping track of your actions will help you understand
what you are doing and allow you to get back to former values, if you find
out that those values produced better results. This is a significant benefit of

using a source code tracking app to manage your changes; they are
automatically entered into the change log. A list of revision control apps
can be found at

http://en.wikipedia.org/wiki/Comparison_of_revision_control_software.

http://en.wikipedia.org/wiki/Comparison_of_revision_control_software

Difficulty settings

Another aspect to mention regarding game balancing and tuning concerns the
difficulty settings of your game. Most games offer the opportunity to choose the
degree of difficulty at which to play the game. This is a key element of any game
because it has to do with the degree of gratification that your players will get
from playing, and hopefully beating, your game. As personal satisfaction is a
highly subjective matter, it can be pretty hard to decide which settings better fit
the needs of a specific player.

It is also very important to consider that different game genres and platforms
target different audiences. First Person Shooters mainly target hardcore gamers,
who expect to be highly challenged by games. On the other hand, the average
mobile audience is usually a casual one, so they expect the game to be pretty
forgiving and rarely punishing at all.

While setting the difficulty curve of a game, always keep in mind the audience
you are targeting and the time you want them to invest in your game. Have
different categories of testers play it at different difficulty settings. If you
succeed in adjusting your game variables to different audiences, you can exploit
the advantage of addressing a broader audience for your game, increasing its
potential revenues.

The following general list displays the most common parameters which affect
the difficulty of a title:

Enemy number

Enemy accuracy

Enemy rate of fire
Enemy toughness
Enemy speed

Player's health

Player's speed

Weapons range
Weapon reload time
Frequency of power-ups
Time limits to complete levels
In-game hints
Navigation directions

Consequence of player's death
Restart level from beginning
Restart from last checkpoint
Power-ups are lost/are kept

Global difficulty

Finally, once you feel you have a decent balance of the preceding list, add a
master adjustment factor that allows dialing the universal difficulty up or down.
This is separate from and affects the difficulty settings the player has control
over.

It will also allow you as the game designer to fine tune the entire gameplay
experience. Is the game too short? Crank up the difficulty a notch or two, then
test again. Is it too long for a mobile game? Reduce the global difficulty and try
again.

We used this method while play testing Faceball 2000 for the original Game
Boy. At one point we had play testers falling out of their chairs, trying to get
around a corner to avoid a shot. Another time one of our coders got so angry, he
threw the Game Boy into a mirror. We then knew we had the perfect balance.

Unity 3D tutorial — part 3

For the final part of our tutorial, we are going to set the final touches to the
Space Invaders prototype. The barriers which protect the player's ship, a game
won/game lost event, the GUI, the audio, and some particle effects to improve
the overall appeal of the game.

The barriers

We will create destructible barriers by assembling a number of small cubes in
the shape of the barriers of the original Space Invaders.

1. Add a Cube to the game scene and size it as you see fit (we suggest you not
to scale it too small or you may face problems with collision detection).
Now create a new prefab in the Prefab folder and drag the cube from the
scene into the newly created prefab. Name it Brick and make it green like
the player's ship.

2. Now we need to create several instances of this prefab to shape the barrier.
You can do that by selecting the Brick in the Hierarchy panel and pressing

Ctrl + D to duplicate it. Then position each duplicated Brick to create a

shape like the one shown in the following screenshot:

A
\

al

o The next step is to create a prefab for the complete barrier too. First add an
empty GameObject to the scene by selecting GameObject | Create Empty
from the main menu bar as shown in the following screenshot. The newly
created empty GameObject will be added to the Hierarchy panel.

E(Unity - tut 02.unity - Spacelnvaders_proto_book - PC and Mac Standalone™
File Edit Assets Component Terrain - Window Help
Create Empty Ctrl+Shift+N
Create Other r

| Testured Sl et Gizrmos 7|

Move To View Ctrl+Alt+F
Align With View Ctrl+Shift+F
Align View to Selected

Scene
| Textured = | - | 2| i | < | Gizmos * |

o Select all the Brick instances in the Hierarchy panel and drag them into the
GameODbject from the Hierarchy panel. Refer to the following screenshot to be
sure you are doing the right thing:

l ﬂ' Inspector

| M BarChunk | L static ~
Tag | Untagged # | Layer | Default 3|

Multiple | Instance Management Disabled |
¥ . Transform g
Position

= = — | Z [34.56734]
| Rotation
¥ [0 o [z o |
Scale
X [0.75 | ¥ [0.75 | 2z [0.75 |
¥ i Cube (Mesh Filter) #*
! # Scene Mesh B cube @
S. Lesturad ¥ g ¥ Box Collider iy
Is Trigger]
Directional light Material

Game0bject Cernter
LeftBound X|0 |Y|0 JZ|0 |
Main Camera i -

il Size

X1 R |21 |

o taﬂ Mesh Renderer *,
= e Shadows

Receive Shadows E

« (A :

P Utenals

N ize 1
:ﬁgreen | i red

’ Element 0 @
gln:adersMaterlal Rt it s O
re
@ white red [=,

. Now create a new prefab in the Prefab folder of the Project panel and name it
Barrier, then drag the GameObject containing the Brick instances into it.

* You can now delete the GameObject with the Brick instances from the scene
and put the Barrier prefab in its place. You actually need four barriers on top of
the player's ship, as shown in the following screenshot. Please ensure that the
barriers are positioned at the same Z value of both the player's ship and the
aliens in the swarm.

o The last step is to tag the Brick instances as BarrierBrick and to flag the Is
Trigger option on their Box Collider component so that they can be affected by
the collisions with both the player's and aliens' bullets. You should remember
how to create a new tag and how to assign it to a prefab, but in case you don't
remember, please refer the following screenshot:

Builtin Layer 1
Builtin Layer 2
Builtin Layer 3
Builtin Layer 4
Builtin Layer 5
Builtin Layer &
Builtin Layer 7
User Layer 8

User Layer 9

User Layer 10

I Layers -] I 4 Split - I
| = Hierarchy | ~¢§.'_ © Inspector g_.*g
| Create 7| (ar Al 2 _ TagManager =,
b Barrier g
b Barrier
b Barrier ¥ Tags
b Barrier Size 3
Directional light Element 0 Enemies
LeftBound Element 1 levelBound
Main Camera Element 2 Playership
PIShip R B arrierricd |
RightBound Element 4 S —
SwarmManager Builtin Layer 0 Default

TransparentFx
Ignore Raycast

Water

Now test your game. Both the player's and aliens' bullets should destroy a piece
of the barriers upon collision.

The player's ship reprise

We need to go back to the player's ship to prevent it from moving outside of the
game area boundaries. This is easy to achieve. We simply add an X coordinate
position check of the ship itself before allowing the player to move left or right.

Modify the Update() function in the ControlShip script as shown in the
following code:

function Update () {

//1is the player pressing right button and the ship can move
//right
//tweak the x reference value as needed
if(Input.GetKey("right") && transform.position.x<25)
{
//ship move right
transform.Translate(Vector3(1,0,0));

}

//1is the player pressing left button and the ship can move left
//tweak the x reference value as needed
if(Input.GetKey("left") && transform.position.x>-25)
{
//ship move left
transform.Translate(Vector3(-1,0,0));

}

//1is player pressing the fire button (spacebar)
if(Input.GetKeyDown("space") && canShoot)
{
//create the bullet
Instantiate(myBullet, transform.position, transform.rotation);
//player can't fire for a while
canShoot=false;

Refining the details

In this section we are going to add some fine details to the prototype to make it
more appealing. We just cover here a few examples of things that can be done to
improve our project and many more you can think of yourself. We strongly
encourage you to do so! You may prefer the level boundaries not to be displayed
in the game area while the game plays. This can be done by adding a
NotToRender layer in the Layer Manager panel, putting the left and right
game boundaries on such layer and forcing the Main Camera not to render that
layer.

1. First we add the new Layer. With any of the bounds selected in the
Hierarchy, click on the Layer button and select Add Layer, as shown in
the following screenshot, where we have selected LeftBound:

[Layers - Jl 4 split - J
] : _| = Hierarchy | -= | © Inspector =
s ol 5 | @i - bl e -| o= S I r %
+| | R@EB || 6 | md | <) || Gizmos = || | Create v | (G Al ™ [LeftBound | [static
¥ Barrier . Tag | levelBound $ | Layer| 3|
BarBrick e et
BarBrick f Default | Apply |
BarBrick “I TransparentFX #,
BarBr?ck Ignore Raycast
BarBrick Z (15
BarBrick Water
BarBrick
BarBrick Hdd Layer... =i |
» Barrier Scare
W Barrier X1 | Y -1l00 | 2 |8
K B..arrielr : ¥ il Cube (Mesh Filter) *
Directional light Mesh B cube o)
- ¥ [[Box Collid [#
Main Camera I TE et E . i
Plship 5 r|gger :
RightBound Material |Mone (Phvsic Matel @
SwarmManager Center
|0 | ¥ o [2|0
Size
. - X [1 | ¥ 1 | ,
3 Project L = 3
ralest L =y = ¥ Mesh Renderer g #*.
| Ereate +| (G Al
___h . Cast Shadows
bﬁ— . : Receive Shadows
F [Materials ¥ Materials
¥ (3 Prefabs Size 1
LTI.J Al?enl Element 0 @ Default-Diffuse @
L? Al!enz Use Light Probes -
[Alien3
[aliend
[AlienBullet
- | L |

e To begin with, name the first free User Layer slot available in the list, which
opens as NotToRender as shown in the following screenshot:

= Hierarchy }

| Crams | G

¥ Barrier
BarBrick
BarBrick
BarBrick
BarBrick
BarBrick
BarBrick
BarBrick
BarBrick
b Barrier
» Barrier
P Barrier
Directional light
LeftBound
Main Camera
PIShip
RightBound
SwarmManager

@ Project

| Create ~| (Er All

[—
> Materials
v Prefabs
[l Alienl
[alienz
[alien3
[g aliena
[g alienBullet

[f BarBrick
el Bariar

rs

—

Builtin Layer 0
Builtin Layer 1
Builtin Layer 2
Builtin Layer 3
Builtin Layer 4
Builtin Layer 5
Builtin Layer &
Builtin Layer 7

User Layer 9

User Layer 10
User Layer 11
User Layer 12
User Layer 13
User Layer 14
User Layer 15
User Layer 16
User Layer 17
User Layer 18
User Layer 19
User Layer 20
User Layer 21
User Layer 22
User Layer 23

{ Layers - k:f{ 4 Split - }
| @ Inspector | e
2l
) TagManager L
¥ Tags

Size 5

Element 0 Enemies

Element 1 levelBound

Element 2 Playership

Element 3 BarrierBrick

Element 4

Default
TransparentFx
Ignore Raycast

Water

User Layer 8 MotToR ender

o Next put both LeftBound and RightBound on the newly created layer, as
shown in the following screenshot:

o= = Hierarchy

- -| RGB

;

=|| 0| E <) | Gizmos * |

| create -| (oAl

¥ Barrier
BarBrick
BarBrick
BarBrick
BarBrick
BarBrick
BarBrick
BarBrick
BarBrick

b Barrier

P Barrier

P Barrier

Directional light

+ .| RGE

=|| ':l%':' =RE | Gizmns'___'

ain Camera
FlShip

I Layers

] [asoe -]

@ Inspector]

| L] static =

-
Tag | levelBound ¢ | Layer | MotToRend: |
M Defoult htDisabled |
j TransparentFX *
Ignore Raycast
| z [15 |
: Water - i
v MotToRender - Iﬁ
5 Add Layer...

S I ~Z |8 |
¥ i Cube (Mesh Filter) %,
Mesh B cube [o]
¥ g [+ Box Collider %,

Is Trigger

Material [Mone (Physic Mate| @
SwarmManager Center
% [0 | ¥ [0 lz[o |
Size
H[1 Jiisest |z [L |
- Cr::::??thvAII “=% @i M Mesh Renderer #,
| L F Cast Shadows
"— _ :.. Receive Shadows [
b L= Materials ¥ Materials
¥ [prefabs Size 1
g AI!"”l Element 0 @ Default-Diffuse ©
AI!EHZ Use Light Probes ™
[Alien3
[Aliend
(1) AlienBullet
(oM [e b

o The last step is to select the Main Camera in the Hierarchy panel, access its
Camera properties in the Inspector panel, click on the Culling Mask menu and
de-flag the NotToRender layer, which appears in the window that opens. Use
the following screenshot for reference:

[Layers - r”l 4 Split '_] |

= Hierarchy .'.'.il © Inspector | .=
U]l | create v| (B AT 2 [Main Camera | [] static =
¥ Barrier Tag | MainCamer$ | Layer | Default 4]
BarBrick
BarBrick ¥ .~ Transform o8
BarBrick Position
BarBrick % [0 | v [fo05 | z [[16.2713
BarBrick Rotation
BarBr!ck x [0 | |0 |z [o |
BarBrick Scal.e : L
BarBrick : o T
b Barrier ® 1 [¥ i1 21 |
» Barrier ¥ & ¥ Camera [
* Barrier Clear Flags | Skybox = |
oircionl ackoround N *
LEune Culling Mask | Mixed s |
Main Camera — 3 .
P'|.S p Nothing Perspective : |
RightBound Everything
SwarmManager . b 1
v Default
v TransparentFX | Far [1000 |
. v Ignore Raycast Rect
@ Project .—.\—I v Water ~! i L
| create - | (B AT | | H |1
> | MNotToRender ; '
» [Materials Do gy [zt il |
¥ £5 Prefabs Rendering Path | Use Player Settings s |
[Alien1 Target Texture |None (Render Text] @
@AHEHZ HDR -
Alien3
&3 Aiana ¥ (5§ ¥ GUILayer .
[AlienBullet ¥ §¥ Flare Layer Fy
Fodd oo e w B Cxoa. . o s s ICal

This way we told the game camera not to render anything we put on the
NotToRender layer. Since we put the left and right bounds on this layer, they
won't be displayed on screen. Launch your game now and check that these last
modifications we made work as expected.

Our prototype also needs a better deep-space background. We will make it with
a plane and a particle effect.

1. Add a Plane to the Scene, name it Background, paint it black with a
material (create one if you haven't already), scale it as needed and put it
right behind the game scene, as shown in the following screenshot:

* Now add a Particle System to the scene by navigating to GameObject |
Create Other | Particle System from the main menu bar.

‘=4 Unity - tut 03.unity - Spacelnvaders_proto_book - PC and Mac Standalone

File Edit Assets | GarmeObject | Compenent Terrain Window Help

O3 | Create Empty Ctrl+Shift+N '

> 1 »

ﬁ Scé-ne Create Other » Particle System | EE Scene.l
Textured | Carter On Children Camera I | Textured :l | RG
GUI Text
Make Parent GUI Texture
Clear Parent D Tedt

Apply Changes To Prefab

Break Prefab Instance Directional Light

Point Light
Move To View Ctrl+Alt+F Spotlight
Align With View Ctrl+Shift+F Area Light

Align View to Selected

Cube

Scene

Sphere
£ | Textured

Capsule
Cylinder

Plane
Cloth

Audio Reverb Zone

scene - —
Gizmos "| tq

Textured

+|| RB e Ragdall.

Tree

Wind Zone

e We begin by naming the Particle System as BackStars. Then we need to set
its properties according to our needs. Though we cannot provide a thorough
tutorial about particle system here, we will only tell you how to edit it with
regard to our Space Invaders prototype needs. Take the following suggestions
for what they are; you can obviously use different values if you like so.

e For this prototype we will put the particle system at the bottom of the game
scene, as we want particles to move bottom up. In our reference setup the
particle system is located at coordinates X=0, Y=-50, Z=15.

e Then we need to change the shape of the particle system from a Cone to a Box
by accessing its Shape properties in the Inspector panel. Refer to the following
screenshot:

[I TGO T

e We also need to set the Box dimension according to the game scene. The

following screenshot shows the dimensions we set for the particle system in our

game scene:

|l | Create | (arAl [BackStars | [static = | £
Pgoa e Tag [Untagged s | Layer [Defaul &)
‘BackStars
P Barrinr ¥ . Transform 3,
P Barrier Pasition
b Barrier % [-6.64607 Y [-48.088¢| Z [15.3925]
¥ Barrier Rotation
Directional light % [-a0 | ¥ [0 1z [0
LeftBound 5 i :
: Scale
Main Camera : : :
PIShip X1 [¥ 1 | B 5
RightBound v ‘W Particle System I =
SwarmManager Cpen Editor...
m_uuntm
T +
v Emission
v sh.E:'
Shape Box r
Sphere 3
1
HemiSphere 1
- Cone [
s PFOjECt'_— v Box A
|Create"! ar All time
> Mesh
¥ 3 Materials Color over Lifetime
D black Color by Speed
D areen ‘Size over Lifetime
D InvadersMaterial ‘Size by Speed
P red Rotation over Lifetime
D white Rotation by Spead
¥ 5 Prefabs Callisian |
[Alien1 v
[alienz
[alien3
[Aliend

2 Unity - PC aned Mac Star
Edit Assets GameObject Comporent Tewsin Windew Help

Y » Br
x T““ » Barrier
» Barmer
* Barrier
! Directicnal light = z[i
LeftBound
Main Camera - ——
Pishin I il 2z 175000
RightBound Particle System (VS
SwarmManager | Open Editor.. |

Textured T Al s % | | 40| Gamos =i (B AT

raE__
| v S Materials

@ black
@ areen
i InvadersMaterial
Dred
D white

¥ 55 Prefabs
L) Alient

Particle System Curves

Lyl SwarmManager
> 5 Scenes
¥ & Scripts
17 afienshaot
[zl BoundCallisian v
1| Chacks ouch v |

* Now access the Emission panel in the Inspector panel to increase the number
of particles created to 20, as shown in the following screenshot:

1| M 1-La.\fers - I 1 4 Si:.';li-t.

= Hierarchy T == | @ Inspector 5
) || | Create -| (- All ' il B BackStars [] static =
Background Tag [Untagged | Layer [Defaulr |
T e
> ars ¥ .. Transform #*,
B Barrier Position
P Barrier % [0 | v [-1.9750¢ z [15 |
 Barrier Rotation
Directional light % [-50 | v o iz o |
LeftBnund Scal.e ' : i
Main Camera - . ;
PIShip X |1 S | £ 11.75000¢
RightBound ¥ ‘W Particle System i,
SwarmManager | Cpen Editar...
m BackStars
*
v Emission
Rate 20 ¥
me v
Bursts Time Particles
[+]
e v Shape
£3 Project | = Welocity over Lifetime
_iE'EitE ~| (arAll : b Limit Velocity over Lifetime
> _ - Force over Lifetime
Y Materials :ﬁ .cilir.:vtr'Lif_:f:irun
oblack Caolor by Speed
Qgreen Size gwer Lifetime
Q) InvadersMaterial Size by Speed
D red ‘Rotation over Lifetime
D white ‘Ratation by Speed
v & Prefabs Callision

» Next we want to change the direction in which the particles move, let's say, a
little bit to the left. You can achieve this by accessing the Velocity over

Lifetime property and editing its X value to -2, as shown in the following
screenshot:

¥ [Prefabs

v Rendarar

I Layers - l [4 Split
= | = Hierarchy I == | © Inspector |
) || | creater| (@rAl - ¥ [BackStars | [Static =
Background Tag | Untagged ¢ | Layer | Default #|
R ¥ .. Transform @ %,
b Barrier Position
b Barrier X0 i -1.9750E Z |15
¥ Barrier Rotation
Directional light w [Cag ¥ [0 1 2o
Leﬂ:Bound e i :
Main Camera ’
PIShip X1 ¥ |1 Z 1.75000:
RightBound v particle System #*,
SwarmManager [Open Editor., |
m BackStars
*
v Emission
¥ Shape
i Velocity over Hf!tiﬂ"ll _
i, L ¥ 0 Z0 ¥
Space Local A
Limit Welocity over Lifetima
L . Force ower Lifetime
3 Project .= Color ever Lifetime
| create | (o All) Color by Speed
h_ __ F | Size owver Lifetime
¥ [Materials - Size by Speed
@ black Rotation over Lifetime
agreen Rotation by Speed
@ InvadersMaterial Collision
D red Sub Emitters
awhite Texture Sheet Animation

Finally we edit the main Particle System panel and set the following values:

Duration=10.0
Start Lifetime=10
Start Speed=3
Start Size=0.5

Max Particles=1500

Remember that you can tweak these values as you prefer according to your
tastes, we strongly encourage you to do so, to understand how to manage particle

systems in Unity by experimenting with the values.

Refer to the following screenshot to check what we did:

| Gizmas ~| ar All

= | = Hierarchy —

& Inspector]

) || | Create 7| (ar Al Z [| BackStars [] static =
oo magaei) Loyer (Befut o
BackStars
TR ¥ ... Transform 4,
* Barrier Position
> Barrier X [11.5489] ¥ [-29.935¢| z (15 |
P Barrier Rotation
Directional light % g0 Ty [0 |z [0 |
LeftBaund S : =
Main Camera : e ’ !
PlShip #1 []1 | 2 1.75000
RightBound v ¥ Pparticle System @ %
SwarmManager Open Editor., |
m_ BachStars :
ul *
Cluration 10,00
Looping o
Prewarm O
Start Delay 4]
Start Lifetime 10 .
e ————————————————
Start Speed 2 o
 serm—
Start Size 0,5 bk
3 Project .— || Start Rotation 0 v
| create~| (@Al E Start Calor [1=
_;ﬁ & ||| Gravity Modifier o
¥ (3 Materials | Inherit Velacity a
D black Simulation Space Local ¥
D green Play On Awake v
@ InvadersMaterial Max Particles
@ red " Emission
@ white v Shape .
¥ (C3 Prefabs ¥ Welocity over Lifetime
l:ﬂ Al!enl 'Particle System Curves
(1l alienz
[fl Alien3

We now have a nice animated background for our prototype representing deep
space and stars. Test your game and check if you like it!

40

Adding a GUI

No game can be considered polished without some kind of Graphical User
Interface (GUI). For our Space Invaders prototype we just need few things like
the actual score, the hiscore, and messages to be displayed for game over/game
won events.

1. First we need a font to be used to display information on screen that will be
put into a GUI Skin, which is the entity that defines how a GUI looks and
behaves. We also need a single script file.

2. Create a Fonts folder in the Project panel and import a font of choice from
your standard fonts folder (for Windows users it is located in the directory
C:\Windows\Fonts); for our prototype we used the consola font.

3. To add the font you can right-click on the Fonts folder in the Project panel,
select Import New Asset... and then browse in your directories to pick the
font you chose, as shown in the following screenshot:

ene i ~ S - =
ured +| | REB $|| 2 | &2 |) || Gizmos v| @Al

1 Project e

| Create ~| (@Al i
- 3 30Models

o~

55N Create »
> EE Show in Explorer

L=

'8 omn

551 Delete

Import Mew Asset...

Import Package 4
Export Package...

Find References In Scene

Select Dependencies

Refresh Ctrl+R
Reimport

Reimport All

Sync MoncDevelop Project

o Now create another folder in the Project panel and name it GUI. Select the
folder and create a new GUI Skin inside it, as shown in the following

screenshot;

Scene 2 i T P T 1 o =
Textured % | RGB s | 0 | | i |Gizmn5"'|(Q'-°-|| B |

3 Project | .=
Create‘| (e All)]

Folder

i s lavascript

— C# Script .
e Boo Script
Shader

Prefab
Material
Animation
Cubemap
Lens Flare
Customn Font

Physic Material

«idlokin,

* Name the newly created GUI Skin as myGUI and select it in the Project panel.
» In the Inspector panel you should see a Font entry set to the default Arial
value. Click on the small button on the right to open a window that displays the
available fonts for your project. Here you should find the font we added before,
consola in our case. Select it. You can refer to the following screenshot to check
if you are doing it right:

[« spi

(] Inspectar

E| |
i

) myGUI

Cipen

consola

* Button
» Toggle

* Label

» Text Field
> Text Area

* Window

: H::Tizph‘t:nl Slider

orizontal Scrnilbqr Left Button
; Horizontal Scrollbar Right Button
G - 3:2:22: Sl
i ' Vertical Scrollbar Up Euttrm
| Vertical Scrollbar Down Button
b Scroll View
» Customn Styles
b Settings

consola (Fo

P-Prefabs

» Now create a new JavaScript file in the Script folder and name it
DisplayGUI.

» Inside the script we need to define a GUISkin variable for the project; add the
following lines to the top of the newly created script:

var myGUISkin : GUISkin;

o Save this script for now, we will add more lines later.

» The next step is to add a GameObject to the scene to attach the GUI script to.
Create an empty GameOQObject into the scene, name it GameMaster and add the
DisplayGUI script to it.

* Now drag the myGUI asset from the Project panel into the myGUI variable
inside the script, as shown in the following screenshot:

[Layers - J [4 Split - J

= | = Hierarchy | -= | © Inspector | B=
| Maximize on Play | Stats | Gizmos |~ || | Create” 'O'_-l:'-” g o [GameMaster [] Static =
Background Tag | Untagged $| Layer | Default |
BackStars 00— —
R ¥ .~ Transform G %
B Barrier Position
b Barrier ® 136.5356 ¥ -37.5302 | £ BB.60477
B Barrier Rotation
. Directional light %« o v o 7o
. GameMaster Scale
LeftBound
Main Camera ® 1 ¥l Z 1
PIShip ¥ || & Display GUI (Script) @
RightBound Script i DisplayGUI a
SwarmManager My GUISkin B mycuIl (GuIskiro

| asset
| variable of

Project | v;
Create | (o All
» 3 3DModels
PEE_
¥ 3 Fonts
» A consola
v B cur
B mycul
b Materials
» 3 Prefabs
» 3 Scenes

e Go back to the bisplayGUI script in MonoeDevelop script editor. We need to
define the onGUI function to put the code for our game interface. Add the
following lines to the script:

function OnGUI () {
GUI.skin=myGUISkin;
GUI.color = Color.white;

//pll score
GUI.Label (Rect (©, 5, 200, 40), "SCORE <1>");
GUI.Label (Rect (0, 20, 200, 40),
DisplayScore.Score.ToString());

//pl2 score, not implemented

GUI.Label (Rect (Screen.width-200, 5, 200, 40),
"SCORE <2>");

GUI.Label (Rect (Screen.width-200, 20, 200, 40),
IIOll);

//hiscore

GUI.Label (Rect ((Screen.width/2)-100, 5, 200,
40), "HISCORE");

GUI.Label (Rect ((Screen.width/2)-100, 20, 200,
40), DisplayScore.HiScore.ToString());

The numerical values to define the coordinates for the text to be displayed may
vary according to the setup of your project and your game window dimensions,
so tweak them as needed.

Now that we have correctly positioned our text on the screen it is time to have
the score updated during the gameplay; we will do that with a dedicated script.

1. Create a new JavaScript file and name it ManageScore. Open it with
MonoDevelop and create two static variables: one for the actual PL1 score
and one for the HiScore. The reason we declare these variables as static is
to allow the DisplayGUI script to access their values.

2. Inthe start () function, add the following lines to set the initial values of
Score and HiScore variables:

#pragma strict

static var Score:int;
static var HiScore:int;

function Start () {

Score=0;
HiScore=1000;
}
function Update () {
}

o Attach this file to the GameMaster game object to have the Score and
HiScore variables displayed on screen. Since we don't have a two player feature,
we will keep the PL2 score as a mere string placeholder. You can add such
feature as an exercise, if you want to.

» The next step is to have the score increase as the player destroys enemy aliens.
We can do that inside the ControlPLBullet script.

e Open it in MonoDevelop, get to the onTriggerEnter () function and add the
following line:

//add 50 points to score for each alien destroyed
DisplayScore.Score+=50;

o For the sake of clarity here is the updated onTriggerEnter () function of the
ControlPLBullet script:

//this function checks for collisions
function OnTriggerEnter(other:Collider)

{
//1if bullets collides with aliens, destroy both

if(other.gameObject.tag=="Enemies"){

Destroy(gameObject);
Destroy(other.gameObject);

//add 50 points to score for each alien destroyed
DisplayScore.Score+=50;

//once the bullet is destroyed, allow the player
//to shoot again
ControlShip.canShoot=true;

}

//1if bullet collides with barriers, destroy it and a
//piece of the barrier
if(other.gameObject.tag=="BarrierBrick"){

Destroy(gameObject);

Destroy(other.gameObject);

//once the bullet is destroyed, allow the player
//to shoot again

ControlShip.canShoot=true;

If you want to, you can improve the prototype by defining different amounts of
points for different enemy types, as it is with the original Space Invaders; you
can achieve that by adding more tags and assigning them to different enemy

types.

1. The last thing we want to do with the score is to update the HiScore
variable when the match ends, whether the player or the aliens win. We can

achieve it with the following simple line of code:

//update the Hiscore
if(DisplayScore.Score>DisplayScore.HiScore){

DisplayScore.HiScore=DisplayScore.Score;

}

e We need to add this line into two scripts. First in the OnTriggerEnter ()
function of the controlAlienBullet script, which handles the event of an
enemy bullet hitting the player and second in the Update () function of the
Controlswarm script, which handles the case of the entire swarm destroyed.

o This is the updated onTriggerEnter () function of the ControlAlienBullet
script:

function OnTriggerEnter(other:Collider)

{

//check collision with player's ship

if(other.gameObject.tag=="PlayerShip")

{
Destroy(gameObject);
Destroy(other.gameObject);
//player's ship destroyed, pause the game
Time.timeScale = 0;
Debug.Log("Game Over");
//update the hiscore
if(DisplayScore.Score>DisplayScore.HiScore){

DisplayScore.HiScore=DisplayScore.Score;

3

}

//check collisions with barriers
if(other.gameObject.tag=="BarrierBrick"){

Destroy(gameObject);
Destroy(other.gameObject);

3
o This is the updated Update() function of the ControlSwarm script:

function Update () {

if(bCollide)
{

goRight=!goRight;

for(var myEnemy:GameObject in enemyList)

{
if(myEnemy!=null)
{
myEnemy.transform.Translate(Vector3(0,-3,0));
}
3

bCollide=false;
}

//update the enemyList count
enemyList=GameObject.FindGameObjectsWithTag("Enemies");

//check when the count of aliens gets to O
if(enemyList.length==0)
{
//all aliens destroyed, pause the game and display
//a message
Time.timeScale = 0;
Debug.Log("You Won!");

//update the hiscore
if(DisplayScore.Score>DisplayScore.HiScore){

DisplayScore.HiScore=DisplayScore.Score;
3

We also want to display a message when the player destroys the alien swarm or
the player's ship is destroyed.

1. To do that we need to create a new GUISkin in the GUI folder and name it
something like GameEndGUI.

2. Then we define a font for this GUI; we suggest to choose something which
fits a large text size, like 48 points, for we want to display a message almost
screen-sized.

3. Now access the DisplayGUI script and add two variable declarations: a
GUISkin variable and String. This is the code we added at the top of the
script:

//new GUI Skin
var gameEndGUI: GUISkin;

//a static variable string to be accessed from another
//script
static var GameEnd:String="";

* We also need to add the following lines at the bottom of the onGuI () function
in the DisplayGUI script:

//set the second GUI and make it yellow
GUI.skin=gameEndGUI;
GUI.color=Color.yellow;

//game end message
GUI.Label (Rect ((Screen.width/2)-400, 200, 800, 100),
GameEnd) ;

* Now access the Controlswarm script and add the following line inside the
Update() function:

//Display a "you won" message
DisplayGUI.GameEnd="YOU DESTROYED THE ALIENS!";

o This is the updated Update() function of the ControlSwarm script:

function Update () {
if(bCollide)
{
goRight=!goRight;

for(var myEnemy:GameObject in enemyList)

{
if(myEnemy!=null)
{
myEnemy.transform.Translate(Vector3(0,-3,0));
}
3

bCollide=false;
}

//update the enemyList count
enemyList=GameObject.FindGameObjectsWithTag("Enemies");

//check when the count of aliens gets to O
if(enemyList.length==0)
{
//all aliens destroyed, pause the game and display
//a message

Time.timeScale = 0;

//we also want the ship to stop and prevent it
//shooting

ControlShip.canShoot=false;
ControlShip.shipSpeed=0;

//Display a "you won" message
DisplayGUI.GameEnd="YOU DESTROYED THE ALIENS!";

//update the hiscore
if(DisplayScore.Score>DisplayScore.HiScore){
DisplayScore.HiScore=DisplayScore.Score;

b
}

e To display a message for the player's ship being destroyed we put the same
command line into the onTriggerEnter () function of the ControlAlienBullet
script, with a different message. This is the updated onTriggerEnter () function
of the controlAlienBullet script:

function OnTriggerEnter(other:Collider)

{

//check collision with player's ship
if(other.gameObject.tag=="PlayerShip")

{
Destroy(gameObject);
Destroy(other.gameObject);
//player's ship destroyed, pause the game
Time.timeScale = 0;
//display a "You lose" message
DisplayGUI.GameEnd="THE ALIENS DESTROYED YOU!";
//update the hiscore
if(DisplayScore.Score>DisplayScore.HiScore){

DisplayScore.HiScore=DisplayScore.Score;

3

}

//check collisions with barriers
if(other.gameObject.tag=="BarrierBrick"){

Destroy(gameObject);
Destroy(other.gameObject);

}

e The player also loses if the aliens reach the bottom of the game area and touch
his ship. To keep things nice and clean, we create a new script to be attached to
the four alien prefabs, which we also use to destroy the barriers, should they be
touched by the aliens.

e Create a new script in the Script folder, name it CheckAliensTouch and add
the following command lines:

#pragma strict

function Start () {

}
function Update () {
}
function OnTriggerEnter(other:Collider)
{
if(other.gameObject.tag=="PlayerShip")
{
//player's ship touched by aliens, pause the game
//and display a message
Time.timeScale = 0;
//display a "You lose" message
DisplayGUI.GameEnd="THE ALIENS DESTROYED YOU!";
//update the hiscore
if(DisplayScore.Score>DisplayScore.HiScore){
DisplayScore.HiScore=DisplayScore.Score;
3
}
if(other.gameObject.tag=="BarrierBrick")
{
Destroy(other.gameObject);
}

This ends our section about the basics on developing GUIs using Unity. The next
step is to add some audio effects to our prototype.

Adding audio effects

For our prototype we will use only four audio effects (fx):

e One for the player's ship firing

¢ One for the aliens moving

e One for the when the aliens are destroyed, one for when the player's ship is
destroyed

Let's begin with the player's ship firing.

1. The first thing to do is to import our audio files into the project. Create a
new Audio folder in the Project panel and import your audio files of choice
as New Assets. For this prototype, we used audio clips taken from the site
http://www.classicgaming.cc/classics/spaceinvaders/sounds.php.

2. Next we need to add an AudioSource component to the PLShip prefab.
Select it from the Project panel and from the main menu, select
Component | Audio | Audio Source. The Audio Source component will

be added to the PLShip prefab.

= Unity

g

-

= : i = | m| O Inspector
Physics W = Tusturs d] TES 8 =| (= A G K] [+ Fishin [static = 4

Effects

e 1
3 RGR

...... v
Nawvigation Tag | Playershyt | Layer | Oefauk o
Audio Audio Listener . Rt T - Transform ("R
Rendering » Audio Source ! el B Fosition
Miscellancous 3 Audic Reverh Zone » Bamer % [0 2 [z0

: - : * Bamier Rotation
ik s d Dirwctional light %0 ¥ [0 z[o
GameMaster -
LeftBound —
Main Camera %102) C¥] 202
PlShip ¥ S Box 002 (Mesh Filter) L8,
RightBound Mesh BE Bax002 o

¥ i o Mesh Renderer (VES

Cast Shadaws o
Seceive Shadows [

¥ Materials

size 3
Element 0 Bgreen @

Use Light Probes]
7 L Amimation (7Y
imatian Nane (Animatioe

-

ulling Type Always Animate$

¥ | & Control Ship ﬁ_s‘rivt} e,
Seript | CentrsiShip ©

«i fastinvader1 My Bullet
sihinvaderkilled ax Collide
<l shoot
> Ep
» G Farts
»Ecul
» 3 Materials
¥ G Prefabs
1) Alienl
Ly alienz
1) Alien3
1) Aliend
Ly AlienBullet
1) BarBrick
> g Barrier
L1 PLBullet

1s Trigger

| Preview

Plshin

il SwarmManager
» 55 Scenes

3. Now drag the desired audio file into the Audio Clip slot of the Audio
Source component you added, in the Inspector panel. Refer to the
following screenshot for clues:

http://www.classicgaming.cc/classics/spaceinvaders/sounds.php

- — | = Hierarchy =] ® Inspector | %ﬁ
) | lugizines ,! (Er Al | o ,| ,."—x,_o‘,'q” mMaterial [None (Phvsic M& al
Background Center 4
BackStars X [-0.64087 ¥ (048648 Z [15 ||
b Barrier Size
Fosn x (15,2287 v [eg6l6s] z 3 |
:E::;::: ¥ }» ¥ Audio Source i #
Directianal light Audio Clip |4 shaot] o
GameMaster This is a 3D Sound. |
LeftBound
Main Camera O
PIShip O]
ZE::Bmo;::ager =
-

3D Sound Settings
» 2D Sound Settings

= green #*
Shader | Diffuse |

Main Color P

Base (RGB)

£ Project
| Create '| (arAll
» 3 3DModels
o
¥ (3 Audio

Tiling
x 1 o |

<1 shoot y 1
> & zip

» 3 Fonts

» G Gul

b (£ Materials

\w TS prefahs

» Since we want this clip to be played when the player's ship shoots, we will add
the requested code to play this audio file in the ControlShip script.

* Add the following line into the Update() function, inside the press spacebar
event:

//play shooting audio fx
audio.Play();

o This is the updated Update () function of the Controlship script:

function Update () {

//is the player pressing right button?
if(Input.GetKey("right") && transform.position.x<25)
{

//ship move right

transform.Translate(Vector3(shipSpeed, 0,0));

}
//is the player pressing left button?
if(Input.GetKey("left") && transform.position.x>-25)
{

//ship move left

trancfarm Tranclatal\lartnr2(_chinQnaoad AN NY):

CI AA11o1 VI 1l IIMIIQ.LML\/\ veuuLuil \J\i-Jll-LP\JrJ\/\/u’ \J, Ul},

}
//1s player pressing the fire button (spacebar)
if(Input.GetKeyDown('"space")&&canShoot)

{
//create the bullet

Instantiate(myBullet, transform.position, transform.rotation);
//player can't fire for a while
canShoot=false;
//play shooting audio fx
audio.Play();

}

» The same process applies to the other three audio clips we chose for this
project. Add an Audio Source component to a prefab and drag the desired audio
file into its Audio Source slot.

» For the aliens moving fx, we added the Audio Source component to the
SwarmManager prefab. Since all aliens move as a whole, we can simply play the
audio once for each step from the SwarmManager prefab.

* Add audio.Play() line into the MoveEnemies() function of the ControlSwarm
script. What follows is the updated MoveEnemies () function:

//we move the swarm left or right at speed defined by vel
function moveEnemies()

{

if(goRight)
{

for(var myEnemy:GameObject in enemyList)

{
if(myEnemy)

{

myEnemy.transform.Translate(Vector3(vel,0,0));
}
3
}
if(!goRight)
{

for(var myEnemy:GameObject in enemyList)

{
if(myEnemy!=null)
{
myEnemy.transform.Translate(Vector3(-vel, 0,0));
}

}

//play the aliens moving audio
audio.Play();

}

Adding sound fx to be played when the aliens and the player's ship are destroyed
poses a problem, which is interesting to discuss. The idea is to attach the audio
clip to the player's bullet so that we can play the clip when the bullet hits an
alien.

The problem is that since we destroy both the bullet and the alien upon collision,
we need to delay the destruction of the bullet until the audio clip is played;
otherwise no sound will be played because the bullets gets destroyed before the
audio clip is actually played.

There are many ways to avoid this problem, here is our solution.

1. Once you have attached the Audio Source component to the PLBullet
prefab and dragged the audio clip into the Audio Source slot, we can then
make some modifications to the ControlPLBullet script. This is the logic
we implemented.

2. When the bullet collides with an alien, we play the enemy destroyed audio
clip and destroy the alien enemy. We also disable the Collider component
attached to the bullet and put the bullet itself on the layer of assets not to be
rendered by the camera, so that the bullet disappears from the scene.

3. Finally, we set a Boolean variable to true, so that in the Update() function
we can check at every frame the value of the Boolean variable. If the
Boolean variable is set to true and the audio component attached to the
bullet is not playing, it means we can finally destroy the bullet.

4. This is the updated code lines of the ControlPLBullet script:

#pragma strict

//var used if the bullet must be destroyed in the Update()
//function

var bMustDestroy:boolean;

function Start () {

//set the initial boolean value to false
bMustDestroy=false;

}

function Update () {

}

//move bullet up once created 2 pixels\frame
transform.Translate(Vector3(0,2,0));

//Y=140 defines upper screen limit
if(transform.position.y>100)

{
//destroy bullet as it goes outside the upper
//screen limit
Destroy(gameObject);
//once the bullet is destroyed, allow the player
//to shoot again

ControlShip.canShoot=true;

}

//destroy bullet after audio is played
if(bMustDestroy && 'audio.isPlaying)

{
b

Destroy(gameObject);

//this function checks for collisions
function OnTriggerEnter(other:Collider)

{

//1if bullets collides with aliens, destroy both
if(other.gameObject.tag=="Enemies"){

//play the fx
audio.Play();

//destroy the alien
Destroy(other.gameObject);

//add 50 points to score for each alien destroyed
DisplayScore.Score+=50;

//once the bullet is destroyed, allow the player
//to shoot again
ControlShip.canShoot=true;

//disable collider and put the bullet on
//NotToRender layer
collider.enabled=false;

P N o ¥ PN T L Ly o I

ydiieuu Jec L. Ldyer =o;

//we destroy it once the fx is over in Update()
bMustDestroy=true;

}

//1if bullet collides with barriers, destroy it and a
//piece of the barrier
if(other.gameObject.tag=="BarrierBrick"){

Destroy(gameObject);

Destroy(other.gameObject);

//once the bullet is destroyed, allow the player
//to shoot again

ControlShip.canShoot=true;

You can apply a similar solution to the audio clip to be played when the player's
ship is destroyed, attaching the audio source to the AlienBullet prefab. Also,
remember to address the aliens themselves hitting the player's ship. Try to find a
solution yourself!

Particle system effects

The last touch is to add some particle system effects to be played when the aliens
and the player's ship get destroyed.

As we already showed how to create a particle system to our scene, we will just
provide here the values to be set within and the coding required for the particle
effect to be played.

1. Add a Particle System to the scene and edit it with the following reference
values:
o General:
Duration: 0.5
Start Lifetime: 0.5
Start Speed: 3
Start Size: 1
Looping: unflagged
Play on Awake: flagged
Emission:
Rate:15
Shape:
Shape: Sphere
Radius: 0.5
Emit from Shell: flagged

e We don't need much more than that for a prototype. Now create a new prefab
in the Prefab folder, name it AlienPS and drag the particle system from the
scene into this prefab, then delete the particle system from the scene.

e In the controlPLBullet script we need to declare a new variable to hold our
Alienps prefab. Add the following line at the top of the script:

0O 0O 0O 0O O 0O 0O 0O 0O 0o 0o o

//var used to store the alien destroyed PS
var AlienPS:Transform;

e Then in the onTriggerEnter () function add the following line beneath the
audio.Play() instruction:

//create ps here
Instantiat(AlienPS,
other.transform.position,other.transform.rotation);

e To complete the process, we add a very simple script to the AlienpPs prefab so

that after the particle effects have been played, we can destroy it.
e Create a new JavaScript file in the Script folder, name it DestroyPs and add
the following lines into it:

#pragma strict

var myPS:ParticleSystem;
function Start () {

}

function Update () {

if(!myPS.isPlaying)

{
//wait for the PS to finishing playing before
//destroying the PS
Destroy(gameObject);
}

}

e The last step is to add the script to the AlienpPs prefab and drag the AlienPS
prefab into the myPs variable of the script.

The same approach applies to the particle effect to be added to the player's ship,
in case it is destroyed. Now, you should be able to figure it out by yourself.

Unity 3D tutorial summary

This ends our tutorial about using Unity to develop games. In the first part of
Chapter 8, Mobile Game Engines, we set up a scene, in the second part of
Chapter 9, Prototyping, we defined the basic behaviors and put some coding into
the pot, while in this last part we added some details to make the game more
appealing to play.

Still, there is much you can add to turn this prototype i