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Preface to the Second Edition

Since the publication of the first edition, the requirements for the design of concrete
structures have gone through a number of changes as reflected in the American
Concrete Institute, ACI 318 publication. The latest revision of the Code was
published in 2014 and represents the state-of-the-art of the current knowledge in
concrete and reinforced concrete design. This revision, ACI 318-14, forms the basis
of the second edition of this textbook.

The book retains the features that made it well received by students, instructors,
and practitioners alike. The popular step-by-step approach of problem solving,
augmented by flowcharts and supported by numerical solutions, clearly describes
the processes that need to be followed to provide safe and economical designs of
reinforced concrete components. The self-experiments included at the end of the
chapters help students better understand the behavior of concrete structures through
the construction and testing of scaled models.

To make the book more useful to students in Construction Engineering pro-
grams, a new chapter (Chapter 8) on formworks for monolithic concrete construc-
tion has been added. This chapter covers the fundamentals of formwork and shoring
design, and detailed step-by-step solutions of numerical problems along with
mathematical formulae and tables to help students and practitioners to design
these temporary structures. In addition, to provide more visual clarifications of
the topics discussed in the book, a new appendix (Appendix B) is added, which
includes color images of various stages of concrete construction and completed
buildings.

We gratefully acknowledge the support of the following individuals and orga-
nizations by providing images that are used in the book: Professor Jack Davis, Dean
of Virginia Tech College of Architecture and Urban Studies, Ms. Kathe Hooper
from the American Society for Testing and Materials, Mr. Charles James from the
National Information Service for Earthquake Engineering, Ms. Angela Matthews
from the American Concrete Institute, Ms. Gwen Wang from the Portland Cement
Association, and Mr. Doug Peters, PE, President of Christman Constructors, Inc.
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We also owe special thanks to the following individuals: Mr. Nadir Makhlouf, a
partner of Robert Darvas Associates, PC, for his great help in preparing the graphics
work for Chapter 8, Mr. Xiaoyao Wang, Mr. Hasheem Halim, and Mr. Sriram
Sankaranarayanan, students at Virginia Tech schools of architecture and engineer-
ing, for their efforts on updating the book and the solutions manual.

The authors would like to express their thanks to Springer International Pub-
lishing AG Switzerland, in particular Mr. Michael Luby, senior publishing editor,
and Mr. Brian Halm, project coordinator for helping us bring this second edition to
publication.

Mehdi Setareh Blacksburg, VA
Robert Darvas Ann Arbor, MI
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Preface to the First Edition

The intended audience of this book is architectural engineering, undergraduate civil
engineering, building construction, and architecture students. The manuscript com-
plies with the provisions of the ACI Code 318-05. The easy to follow style of the
text makes it valuable to engineering and nonengineering students. Furthermore,
educators and practitioners interested in the analysis and design of concrete struc-
tures based on the latest ACI Code provisions may also benefit from it.

Chapter 1 covers the topic of concrete technology. It discusses the most impor-
tant properties of the main components of reinforced concrete. This technology is
essential for both architecture and engineering students.

Chapter 2 discusses the analysis and design of rectangular beams and one-way
slabs, including a complete treatment of the Unified Design Method as recommended
by the ACI 318-05. Several examples demonstrate the provisions of the latest
changes in the ACI Code. It is written to benefit architecture and engineering students
as well. Depending on the main objectives of the course and class time constraints,
the instructor can select the specific topics and their details to be included for the
intended audience.

Chapter 3 “Special Topics in Flexure” covers T-beams, doubly reinforced
beams, and a discussion of the deflection of reinforced concrete beams and slabs.
These topics are more complex, but indispensable in the design of concrete struc-
tures. The detailed technical information presented is essential for engineering
students. We recommend that only a brief discussion of each topic be used in
courses for architecture students.

Chapter 4 “Shear in Reinforced Concrete Beams” covers the design of shear
reinforcements in reinforced concrete beams. We consider this chapter to be
important in both engineering and architecture courses. The depth of coverage
may be left to the discretion of the instructor.

Chapter 5 covers the analysis and design of reinforced concrete columns.
It includes a complete treatment of “short” columns with small and large eccen-
tricities. Because most reinforced concrete columns are short and a complete
treatment of slender columns is usually only covered in advanced engineering

ix


http://dx.doi.org/10.1007/978-3-319-24115-9_5
http://dx.doi.org/10.1007/978-3-319-24115-9_4
http://dx.doi.org/10.1007/978-3-319-24115-9_3
http://dx.doi.org/10.1007/978-3-319-24115-9_2
http://dx.doi.org/10.1007/978-3-319-24115-9_1

X Preface to the First Edition

courses, we decided to cover that topic generally. We recommend this chapter be
covered in engineering and architecture courses.

Chapter 6 is a treatise on the different floor systems typically used in reinforced
concrete buildings. A simplified approach appropriate for both architecture and
engineering students is used.

Chapter 7 discusses foundations and earth-retaining walls. The chapter starts
with a background on some aspects of soil mechanics and geotechnical investiga-
tions for building design. These topics are not usually covered in reinforced
concrete structures textbooks. However, we are aware that many engineering
students do not take a soil mechanics course as a prerequisite for a reinforced
concrete class. Furthermore, soil mechanics and foundations courses are
unavailable in nearly all architecture curriculums. The treatment of the subjects
of foundations and earth-retaining walls are well-suited for both architecture and
engineering students.

Chapter 8 is an introduction to prestressed concrete for both architecture and
engineering students.

Chapter 9 discusses the use of the SI System in reinforced concrete design and
construction. We decided against the use of the equivalent SI System within the
main body of the book, as is done in many other textbooks. We felt that this resulted
in a clearer text. Several examples on different topics covered in other chapters are
again presented using the equivalent SI System.

Two unique features of this book are the “self-experiments” and an accompa-
nying CD with images of concrete structures. From our experience we know that
some engineering students and nearly all architecture students do not have access to
a testing laboratory. Therefore, we included these simple-to-do sets of experiments
that students can perform to learn about reinforced concrete from their own
experiences. We believe these experiments may also help students gain a better
understanding of concrete as a building material. The accompanying CD has a
number of high-quality images of reinforced concrete structures, so that students
can develop an appreciation of the potential this building material offers.

There are numerous problems at the ends of each chapter to be used as home-
work assignments. A complete Instructor’s Solutions Manual is available upon
request.

A step-by-step approach was adopted throughout the text. Most of the pro-
cedures for design or analysis are summarized in flowcharts, where all steps are
numbered, and the example solutions follow these steps. In our experience this
approach helps students try to follow the numerical solutions of various problems.

We would like to thank Professors Jay Stoeckel, Jack Davis, and Mr. Gerry
Martin from the Ceco Concrete Construction, LLC, for providing some of the
images in the accompanying CD-ROM. The continued educational support by the
Northeast Cement Shippers Association, and in particular Kim Frankin, is greatly
appreciated. We are also grateful to students at the School of Architecture + Design
of Virginia Tech for their help and comments during the development of this book,
in particular Mr. Amir Abu-Jaber for his assistance in typing and editing the
manuscript and the solutions manual.
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Finally, we wish to thank the Pearson Education editorial and production staff
for their support and assistance. Many thanks to Bret Workman, who did a great job
with text editing. In particular, the assistance of Penny Walker from Techbooks is
greatly appreciated.

Mehdi Setareh Blacksburg, VA
Robert Darvas Ann Arbor, MI
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Chapter 1
Reinforced Concrete Technology

1.1 Introduction

Concrete and reinforced concrete are extremely versatile building materials.
Concrete, which essentially is a man-made stone, can take virtually any shape
and form the designer envisions. Because concrete is like a heavy liquid when
produced, it is poured into a mold and, when hardened, will take the shape of the
pre-built form.

The skillful use of reinforced concrete opens unlimited vistas for the designer.
Working with reinforced concrete is an experience in sculpting. Any sculptor
working on the creation of an art object must be fully familiar with the possibilities
and limitations of the material be it clay, metal, glass, or something else. Likewise,
the designer must be fully cognizant of the nature of reinforced concrete. How
is it made? How does it work? How will it serve in different environments?
Figures B1.1 and B1.2 in the Appendix B demonstrate the visual and artistic
importance of reinforced concrete as a building material.

Reinforced concrete is not a homogeneous material. It is a combination of two
materials: concrete and reinforcing, which is most often steel. Concrete, while
strong in compression, is relatively weak in tension. This weakness in tension
must be corrected by adding steel reinforcing. The successful combination of
these two distinctly different materials into one successful hybrid makes reinforced
concrete the most widely used building and structural material in the world.

To gain a better understanding of the complexity underlying the construction of
a reinforced concrete structure, consider Figure 1.1, which outlines the process and
the “players” involved. Of course there are many more players (like those who
manufacture materials such as cement, steel reinforcing rods, timber products used
in form making, and so on) but their inclusion would unnecessarily complicate an
already intricate web of involvements.

© Springer International Publishing Switzerland 2017 1
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Figure 1.1 Concrete construction overview

1.2 The ACI Code

The rules and regulations governing any construction in the United States are set by
different model codes. The rules of a model code become the law in a given
municipality when the legislative body (state legislature, city council, etc.) adopts
them as the governing standard for building construction under its jurisdiction.
There are many model codes, among them the Uniform Building Code (UBC) and
the International Building Code (IBC). The UBC is traditionally used in the western
states of the United States. The IBC first appeared in the year 2000 and is a joint
effort of the BOCA (Building Officials and Code Administrators), the ICBO
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(International Conference of Building Officials), and the SBCCI (Southern Building
Code Conference International).

For the design of reinforced concrete structures, these model codes usually adapt
the requirements set forth by the American Concrete Institute (ACI), headquartered
in Farmington Hills, Michigan. Engineers, architects, concrete producers, contrac-
tors, chemists, and cement manufacturers from all over the world belong to this
organization, but membership is available to anyone wishing to join. Student
membership is also available.

There are several hundred technical committees within the ACI that deal with
any aspects of producing and designing with concrete. These technical committees
collect the vast existing (and continually forthcoming) research information and
publish it in the ACI Journal as recommended standards. The updated collection of
standards are also published every other year or so in a large six-volume set, The
ACI Manual of Standard Practice.

One of the committees (ACI Committee 318) compiles and publishes a docu-
ment, Building Code Requirements for Structural Concrete, that contains the most
up-to-date rules recommended by the collective knowledge in the Institute. In the
past a new updated edition was published about every 6 or 7 years. Now the
Institute appears to have adopted a 3-year cycle to update the Code and incorporate
the latest and best available research information. The latest edition, ACI 318-14,
appeared in 2014. This book has already been updated to contain the latest changes
in the Code. Proposed changes in any new edition are first published in the ACI
Journal for review and comments from the membership; then the final revised
document is submitted to the Institute’s membership for approval. Upon approval, it
becomes an ACI Standard that governs the design of concrete and reinforced
concrete structures.

1.3 Concrete Ingredients

Concrete is a mixture composed of a filler material (aggregate) bound together by a
hardened paste. One might call it man-made stone. The hardened paste is the result
of a chemical reaction, called hydration, between cement and water. In addition,
admixtures—various chemicals, usually in liquid form—are often used to impart
desirable qualities to the freshly mixed or hardened concrete. The paste fills the
voids between the aggregate particles, gravel or crushed stone and sand, and binds
them together. The aggregate size distribution is carefully controlled to minimize
the resulting voids that must be filled with the paste. Minimizing the amount of
paste helps to minimize the amount of cement, which is the most expensive
ingredient of the mixture, because it requires a large amount of energy in its
manufacture. The usual proportion of the aggregate in normal-weight concrete is
about 6575 % by volume, while the paste makes up about 33-23 %. The remaining
volume is air.
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Figure 1.2 Concrete ingredients (Courtesy of Portland Cement Association)

Thus the four ingredients of concrete (see Figure 1.2) are (1) cement (i.e., the
binder); (2) fine and coarse aggregates, which fill the bulk of the volume; (3) water
and air; and (4) admixtures, which are used to impart certain desirable properties.
These ingredients, carefully proportioned, are combined in a mixer.

1.3.1 Portland Cement

Mankind has used natural cements since ancient times. The magnificent stone
structures built by the Romans all used finely ground cementitious materials
(pozzolans) in the mortar. Other materials may be used to bind aggregate particles
together (asphalts are used in making asphaltic concrete for road construction), but
in the making of structural concrete, hydraulic cements are used without exception.
Hydraulic cements harden by reacting with water. The most important hydraulic
cement is the one first made by an English mason, Joseph Aspdin, who received an
English patent in 1824 for the composition and the process. He called it portland
cement because the concrete made with the cement had the color of natural
limestone quarried on the Portland peninsula. Portland cement is a fine powdery
material, composed mainly of calcium silicates and aluminum silicates. The mate-
rials needed to make cement are found in virtually every part of the world:

1. Limestone, which provides calcium oxide (CaO)

2. Clays, shales, and so on, which supply silicon dioxide (SiO,) and aluminum
trioxide (Al,0O3)
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The materials are pulverized, mixed in the right proportions, then baked in a
rotary kiln at very high (about 2,300 °F) temperatures. The product from the kiln, a
glassy-looking ceramic, is called clinker. During the baking, chemical changes
occur in the original materials, which form four important compounds (among
others of somewhat lesser importance). These are dicalcium silicate, tricalcium
silicate, tricalcium aluminate, and tetracalcium aluminoferrite. The relative pro-
portions of these compounds influence the characteristics of different cements.

The clinker is then ground into a fine powder. The average size of the particles is
only 0.0004 in. This is just an average; there are many smaller size particles.
Actually there are about seven trillion particles per pound of cement. The particles’
combined surface area is about 2,000 ft*/Ib. Usually, small amounts of gypsum and
various other minerals are mixed with the ground clinker to adjust the setting time
of the cement or to impart some desirable properties to the final product. Different
types of cement are used for various jobs and conditions. For building structures in
most cases, Type I—normal portland cement, or Type III—high-early-strength
portland cement are used.

While the basic raw materials of cement (limestone, clay, shale, etc.) are
relatively cheap, the making of cement, chiefly the previously described baking
process, requires large amounts of energy (e.g., natural gas). Thus the cement is by
far the most expensive component of concrete. To save cement, other materials that
have hydraulic properties can be substituted for some part of the cement. Substitu-
tion of up to 35 % to 45 % by weight may be permitted. Fly ash, a by-product of
coal-fired power plants, and ground blast furnace slag are two such commonly used
substitutes.

1.3.2 Fine and Coarse Aggregates

Aggregates, such as the filler material, make up the bulk of the volume in concrete.
Thus it is important that the aggregates be of good quality, strong and resistant to
the environmental forces (physical and chemical) that will affect the concrete
throughout its intended life. Aggregates should not contain chemicals or materials
that might lead to the destruction of the inner structure of the concrete.

As mentioned before, approximately 65—75 % of the total volume of concrete is
aggregates. In a somewhat arbitrary way they are divided into two classes. The
particles that pass a #4 sieve, that is, less than 0.25 in. are called fine aggregates or
sand. Coarse aggregates—natural gravel or crushed stone—are particles that are
larger than 0.25 in. Aggregates are mostly dug or dredged from a pit, river, lake, or
seabed. They are also produced by crushing rocks (limestone, dolomite, etc.) and
boulders.

Producers usually wish to fill most of the volume with the cheaper ingredients,
that is, the aggregates, so they first carefully separate the different grain sizes (the
fine and the coarse), then mix them in desirable proportions. In the resulting particle
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distribution, the successively smaller particles fill the voids between the larger
parts. This is referred to as good gradation.

At a certain point however, the smallness of a fine aggregate particle becomes
deleterious to the quality. The cement paste must coat all the particles to bind them
together. The smaller the particle, the larger is its surface-to-volume ratio. Thus
particles less than 0.006 in. are undesirable. If necessary, aggregates are carefully
washed to rid them of adhered clay or mud particles.

On the other end of the scale, the maximum size of the coarse aggregate must be
controlled as well. The gravel in the concrete mix must pass between closely spaced
reinforcing bars, and the concrete must smoothly fill often-intricate forms. In
general, the maximum-size aggregate should be no larger than one-fifth of the
narrowest dimension of the concrete form. Furthermore, in building structures,
where the minimum allowable clear spacing between reinforcing bars is 1 in., the
maximum size of coarse aggregate particles is usually limited to about 3/4 in. in the
concrete mix.

The unit weight of concrete made with gravel (or crushed stone) and sand
aggregates varies between 140 and 150 pounds per cubic foot (pcf). In calculations
an average weight of 145 pcf is used for unreinforced concrete, while for the weight
of reinforced concrete structures a value of 150 pcf is used. The difference between
these two values tends to account for the greater unit weight of the embedded steel
reinforcement.

The last 50 years has also seen a growing development in the use of lightweight
aggregates. In concrete structures, because the self-weight of the structure is a much
larger component of the total loads than in steel or wood-framed structures, it is
often desirable to use lighter aggregates than gravel or stone. Concretes made with
lightweight aggregates also have better insulating properties. Most of these aggre-
gates are artificially produced. For structural purposes expanded shales and clays
are used almost exclusively. Their use enables the production of structural
(as opposed to insulating) concretes with only 110-115 pcf unit weight. Light-
weight structural concrete is more expensive than normal weight concrete, but its
lighter weight often reduces the overall cost of the structure.

1.3.3 Water and Air

Water Water is an important and necessary part of making concrete. The water used
to make concrete has to be free of chemicals and unwanted elements. In general, if
the water is drinkable, it can be used to make concrete, although some waters that
are not fit for drinking may also be suitable for concrete. Two important aspects
about the role of water in concrete need to be discussed: the hydration process and
the water/cementitious materials ratio.

The Hydration Process When water is mixed with cement, a chemical reaction
starts between them. This is called hydration, which creates the binding quality of
the paste. The two calcium silicates that make up about 75 % of portland cement
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react with water to form two new compounds: calcium hydroxide and the more
important calcium silicate hydrate. The latter compound first appears as a gel,
which later turns into a solid. The surface area of the calcium silicate hydrate is
enormous. Its crystals can be discerned only in a scanning electron microscope.
These crystals adhere to each other, as well as to the grains of sand and gravel,
cementing (gluing) all parts together.

The hydration process develops in three stages. These are setting, hardening, and
strength development. They all are related to the rate of reaction between the
cement and the water. This rate of reaction must be carefully determined and
regulated to allow sufficient time for the concrete to be transported, placed, and
finished. When the hydration advances to a certain stage of setting, the concrete
becomes difficult or impossible to handle. Thus the concrete must be placed and
consolidated in the forms, usually within 2 hours after batching (the mixing of
ingredients with the water). Temperature also has a major influence on the rate of
the hydration, so various chemical admixtures may be added to either retard or
accelerate the process.

From the age of about 2 hours to about 6-8 hours, the hardening stage takes
place. After hardening, one may step on the concrete without leaving an imprint on
the surface. The concrete is far from being strong at this stage, however. Thereafter
begins the third stage, that is, the strength development that is quite rapid in the
early days and gradually becomes slower.

Hydration continues throughout the life of a concrete structure as long as free
moisture is available to react with unhydrated parts of cement particles.

Water/Cementitious Materials Ratio The water/cementitious (w/cm) materials
ratio is of paramount importance. It greatly influences the quality of the paste,
hence the quality of the concrete. It is defined as the weight of the total water to the
weight of the cement (or cementitious products) in the mix. The total water must
also account for the water contained by moist aggregates. The free water adhering
to the aggregates can be significant, so it must be carefully determined, and the
weight of the additional water into the mix must be adjusted accordingly.

For complete hydration only an approximate w/cm ratio of 0.25 (25 Ib of water
for every 100 Ib of cementitious material) is needed. This is a theoretical value only.
Evaporation of water from the mix cannot be prevented, thus reducing the amount
available for the hydration process. Furthermore, concrete made with such a small
w/cm ratio is too dry and unworkable. More water (higher w/cm ratio) is needed to
produce a concrete that is workable. Therefore, a minimum w/cm ratio between
0.35 and 0.40 is usually required.

Workability is not a scientifically definable term. It refers to the ease of placing,
consolidating, and finishing fresh concrete. It is true that more water in the mix
tends to increase the workability, but excess water creates all sorts of problems.
Practically all desirable properties of concrete, such as strength and durability, are
adversely affected by high w/cm ratios.

To begin with, concrete with excess water has a tendency to segregate. When the
fresh concrete is too fluid the heavier particles (coarse aggregate) settle on the
bottom of the form, that is, they segregate from the ideal distribution of particles.
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Figure 1.3 Changes of concrete compressive strength with w/cm ratio and age

Then the excess water migrates to the surface in a process called bleeding,
producing a weak top layer. Large amounts of bleed water also make it difficult
to properly finish the top surface of floors. In the later stages of hardening and
strength gain, the excess water, that is, the water that was not used during hydration,
will evaporate from the concrete through tiny capillaries. This results in voids that
weaken the concrete. Figure 1.3 illustrates the dramatic strength loss with increas-
ing w/cm ratio while all other parameters, such as total cement content, are kept
constant in a given mix.

A balance must be struck between having too little water and an unworkable
mix, and having too much water that results in loss of strength and durability. Thus
an optimum water content must be used. Optimum water content is the minimum
amount necessary in a mix to maintain good workability. As will be discussed in the
section on admixtures, there are certain chemical compounds that, when added to
the fresh concrete, temporarily increase its fluidity. These are called water reducing
agents (plasticizers) or high-range water reducing agents (superplasticizers). The
former agents reduce the water requirement by 5—10 %, while the latter ones reduce
it by as much as 20-30 % without the loss of workability.

Air All concrete, even after the most careful consolidation, contains some air. Two
types of air may be present in a concrete mix: unwanted or “bad air,” and wanted or
“good air.” Bad air is basically large bubbles of air entrapped inside the mix. These
bubbles create discontinuity in the concrete’s texture and weaken its strength. Every
effort is made to minimize this type of air in hardened concrete. At the time of
placement the aim is to consolidate the concrete to the maximum possible density
and bring these unwanted air bubbles to the surface. Unfortunately, even with the
best consolidation efforts, these large air bubbles (well visible to the naked eye) get
stuck in the concrete by adhering to aggregates, reinforcing bars, and most often to
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the inner surface of the formwork, especially in columns and sides of deep beams.
There they become visible on the surface of the hardened concrete and are com-
monly referred to as “bug-holes.” In well-consolidated concrete, these may repre-
sent about 1 % or less of the total volume. Their presence is not a source of major
weakness.

The second type of air, good air, is deliberately introduced into the concrete.
This process is called air entrainment. Properly used air-entraining agents distribute
tiny (microscopic) air bubbles uniformly in the concrete. The size of the bubbles
ranges between 0.0004 and 0.004 in., in excess of three billion air bubbles per cubic
foot of concrete. The chemicals used to create them are added to the concrete using
special admixtures. Air-entrainment makes the concrete mix more workable (thus
requiring less water), slightly decreases the weight of the concrete, and, most
importantly, increases the durability of the concrete.

1.3.4 Admixtures

Admixtures are chemicals added to the concrete batch during mixing or just prior to
placement to enhance properties such as rate of setting, hydration, workability,
strength, and so on. Four main types of admixtures are discussed here.

Air-entraining Admixtures Air entraining agents are hydrophobic, that is, they
repel water. Thus a film (e.g., soap film) forms on the surface of the bubbles that
prevents them from collapsing or coalescing. The film also keeps water out of the
bubbles. These bubbles are finely dispersed throughout the concrete during mixing.
They do increase the workability of the concrete, but their most important role is to
increase concrete durability. Durability in this context refers to concrete’s resis-
tance to the destructive process of freeze and thaw cycles that occur in certain
climates.

Hardened concrete contains fine capillaries that enable moisture to penetrate. As
free water in moist concrete freezes, it expands. The expansion is significant. Ice
takes up about 9% more volume than unfrozen water. This expansion exerts
hydraulic pressure on the yet unfrozen water, which in turn exerts pressure on the
surrounding paste structure. If this pressure is too great for the tensile strength of
the paste to withstand, the paste structure will rupture and collapse to provide the
excess room needed for the ice. This creates more volume the next time around for
the penetrating water, thus even more room is needed to accommodate the
expanding ice. This cyclic phenomenon continues, resulting in scaling and crum-
bling of the concrete.

Entrained air voids act as relief reservoirs in the paste structure. The expanding
water in the capillaries can enter the storage space provided by these well-dispersed
tiny bubbles by overcoming the air pressure existing within the bubbles. On
thawing, the water, driven out by the compressed air, returns to the capillaries.

To impart proper freeze/thaw resistance to building structures the accepted range
is to have about 5—7 % entrained air in the hardened concrete volume. Air content of
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the freshly mixed concrete can be measured right at the job site prior to placement.
This ensures that the hardened concrete will have an appropriate amount of
entrained air. The actual air content can also be established on core samples
taken from the already hardened concrete. The two different tests may give
different results, because some air inevitably will be lost during placement and
consolidation.

Accelerating Admixtures (Accelerators) This admixture hastens the setting of
concrete by speeding up the hydration process, which in turn makes the concrete
gain strength faster, especially at an early age. Similar results may be obtained by
using Type III, or high-early-strength portland cement, by lowering the w/cm ratio,
or by curing the concrete at higher temperatures. Accelerators are traditionally used
in cold weather construction. Cement hydration is an exothermic process, that is, it
generates heat. The use of accelerators reduces the setting and hardening times. The
accelerated hydration produces a larger amount of heat, which helps to prevent the
concrete from freezing. In the past, calcium chloride was used as an accelerator, and
some products on the market still contain calcium chloride. This chemical, how-
ever, has many potentially dangerous side effects (e.g., chloride ions in the presence
of moisture enhance corrosion of the reinforcing), so its use is strongly discouraged.
Several, non-chloride—based and noncorrosive accelerators are available for use.

Superplasticizers This admixture reduces the water needed to create a flowing
concrete as well as the water that otherwise would be needed for proper workability.
The reduced w/cm ratio results in a higher strength concrete with the same amount
of cement. Superplasticizers are indispensable when concrete is pumped between
the point of discharge from the delivery truck and the point of placement. Normal
structural concrete is said to be workable when the slump is about 3 in. (see
Section 1.5.1 for the slump test that is used to check consistency and workability).
Such concrete is too stiff to flow through a 5-in. or 6-in. diameter hose. Adding a
superplasticizer will temporarily increase a 3 in. slump to 8 or 9 in.; thus the
concrete behaves like a liquid for a short time.

Retarding Admixtures (Retarders) As the name implies, retarders have an effect
opposite to that of accelerators. They slow down concrete hydration and increase
the setting time. Retarders are used for hot weather construction because the
hydration process is much faster at elevated temperatures. Their use enables
the contractor to place and finish the concrete before advancing hydration makes
the concrete difficult to handle. Retarders are also used to make exposed aggregate
elements in the precast concrete industry. A layer of retarder paste is smeared on the
inside of the form prior to the placement of the concrete. In about 12-24 hours
(depending on the curing technique used), the precast concrete element is removed
from the form and the retarder paste is washed away, exposing the surface of the
underlying aggregate structure. (Note: For additional information, refer to AC/
212.3R: Chemical Admixtures for Concrete, reported by ACI Committee 212.)
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1.4 Curing

Freshly placed concrete is consolidated to bring large entrapped air bubbles and
excess water to its surface. This is usually done by high-speed vibrators. The
vibrating action reduces the friction between the particles and makes the concrete
behave like a thick fluid. At the same time, entrapped air bubbles and excess water
are forced to rise to the surface. Vibrators are elongated cylinders with an unbal-
anced weight rotating inside at a high frequency. Vibrators are of different diam-
eters, from about 3/4 up to 6 in.; the most frequently used ones are 2 to 2—1/2 in. in
diameter. Frequencies may vary from 5,000 to 15,000 cycles per minute. Vibrators
should be rapidly lowered into the concrete and then slowly withdrawn for best
effect.

After the freshly placed concrete is finished, it is necessary to create the best
possible environment for the concrete to harden and gain strength. This process is
called curing. Hydration and strength gain will continue as long as unhydrated
cement particles and adequate moisture are present for the chemical reaction. Thus
the moisture in the concrete after the consolidation and finishing processes must
remain in the concrete. If the concrete dries out (i.e., the relative humidity inside
drops below 80 %), the hydration stops. Similarly, if the moisture in the concrete
freezes, the hydration will stop and the expansion of ice will destroy the paste
matrix, which is at its early stages of formation.

So the concrete should be kept moist and comfortably warm. Concrete is kept
moist by covering it to prevent evaporation from the surface, or sprinkling it several
times daily. Chemical curing compounds also are available. These are sprayed on
the concrete to form a film that prevents moisture from escaping.

In the wintertime, freshly placed concrete is covered with insulation blankets. It
is also a usual practice to enclose the space below the fresh concrete and heat the
space with propane space heaters. This process not only prevents the freshly placed
concrete from freezing but enhances the speed of the hydration. (Note: Detailed
information may be found in the ACI Standards, ACI 305—Hot Weather Concret-
ing and ACI 306—Cold Weather Concreting. These contain state-of-the-art recom-
mendations regarding the topics). Figures B1.3 and B1.4 in the Appendix B show
two different methods of concrete placement.

1.5 Testing Concrete

Testing of concrete aims (1) to ensure that it has the required properties called for in
the design documents and specifications, and (2) to determine the properties of
concrete in an existing structure.

Many tests can be performed to evaluate certain properties of fresh or hardened
concrete. The three most commonly used tests are as follows.
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1.5.1 Slump Test

The slump test measures the consistency and workability of concrete. This test is
performed on fresh concrete either as it is discharged from the truck (known as
testing at the point of delivery), or after it has been conveyed to the point of
placement. The distinction is sometimes important, for significant slump loss may
occur during conveyance. The device used in this test is a 12 in. high truncated
metal cone, 4 in. wide at the top and 8 in. wide at the base (see Figure 1.4a). The
method of sampling the fresh concrete, and of filling and consolidating the concrete
inside the slump cone is standardized in the ASTM (American Society for Testing
and Materials) C143 standard.

a k—4in.—f
12in.
f—-8in.—
b L/
Ruler

o

/
_ = Jk Slump
Slump cone

Settled concrete

N—)

Figure 1.4 (a) Slump cone. (b) Slump test
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Figure 1.5 Slump test (courtesy of Portland Cement Association)

The cone is filled with concrete in three equal-volume layers, and each layer is
consolidated within the cone by 25 strokes of a 5/8-in. diameter rod with a rounded
end. After the third layer is filled, the excess concrete is struck off with the steel rod,
and the cone is carefully lifted off. The cone is then placed upside down next to the
concrete, and the steel rod is placed across its top. The distance measured from the
bottom edge of the rod to the original center of the slumped concrete mass is the
slump (Figures 1.4b and 1.5). The slump recommended for good workability and an
acceptable w/cm ratio depends on the type of construction. The common range of
slump in building structures is 3—4 in. (unless superplasticizers are used).
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1.5.2 Cylinder Test

The most important property of hardened concrete is its compressive strength, f/.
This value refers to the cylinder compressive strength of the concrete at the age of
28 days and forms the basis of the design of a structure. In the United States
compressive strength of concrete is measured on 6 in. diameter by 12 in. high
cylinders. (Note: The sampling of the fresh concrete is governed by ASTM C172,
“Method of Sampling Freshly Mixed Concrete.” The making and curing of the
cylinders are governed by ASTM C31, “Practice for Making and Curing Concrete
Cylinder Test Specimens”.)

The architect or design engineer specifies the number of cylinders cast for
testing. Typically one set of cylinders is made from about every 50-100 yd® of
concrete, but not less than one set from each day’s pour. Usually three cylinders
comprise one set. After the concrete is hardened, the cylinders are transported to a
testing laboratory where they are placed in a curing chamber. The temperature
inside the curing chamber is kept at 72 °F (room temperature) with 100 % relative
humidity. These cylinders thus treated are called lab-cured cylinders. They indicate
how good the concrete mix was, not how good the concrete is in the structure, as the
contractor may not maintain ideal curing conditions on the site. To determine the
strength development of the concrete in the field, extra cylinders may be cast and
kept in the field to cure under the same conditions as those of the structure. These
are known as field-cured cylinders. Comparing the strength of field-cured cylinders
to that of lab-cured cylinders helps to determine how successful the contractor’s
efforts were in providing good curing.

The strength test is performed in accordance with ASTM C39, “Test Method for
Compressive Strength of Cylindrical Concrete Specimens.” Compression force is
applied to the prepared concrete cylinder by a hydraulic jack (Figures 1.6 and 1.7).
The load is increased progressively at a rate of 35 &= 5 psi (pounds per square inch)
per second until the concrete cylinder fails. The load required to break the cylinder
is noted, then divided by the cross-sectional area of the cylinder. The result gives
the breaking stress, or cylinder strength. A strength test is the average strength of
two cylinders cast from the same sample.

The acceptance of the concrete (from the strength point of view) is regulated by
the ACI Code. The strength of the concrete is considered satisfactory when:

= The arithmetic average of any three consecutive strength tests equals or exceeds
12, (i.e., the specified design strength)

» No individual strength test (the average of two cylinders) falls below f! by more
than 500 psi when f/ is 5,000 psi or less; or by more than 0.10 /! when f is more
than 5,000 psi

Often extra cylinders are cast and tested at an earlier age (7 days) to evaluate the
development of strength. Although different cements may gain strength at some-
what different rates depending on the relative proportions of the main chemical
compounds, the 28-day strength can be estimated by extrapolating early test data.
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Figure 1.6 Cylinder test

Figure 1.7 Cylinder test (Courtesy of Portland Cement Association)

The problem with the 28-day strength test is that if the results are unsatisfactory,
the remedy is usually difficult and expensive. In any major project, construction
progresses far in 28 days, often resulting in two or three additional floors. Thus,
removing the weak concrete and replacing it is rarely an option. The various
strengthening methods of the structure are generally very expensive. So it is of
paramount importance to have good quality control throughout the process from
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mixing (making sure that all the required ingredients are there in the right
proportions), to transporting, placing, finishing, and curing.

1.5.3 Core-Cylinder Test and In Situ Tests

Core-cylinder tests are used to evaluate the strength of the concrete in an existing
structure. The sample is obtained by coring the hardened concrete. The size of the
sample is typically 2 in. in diameter and 4 in. high, and its compressive strength is
determined in a manner similar to that for a normal cylinder test. Larger-diameter
and longer cylinders may be cored; however, the ratio of height to diameter should
preferably equal 2.

Nondestructive tests exist, that is, tests that do not require the removal of a
sample. The most popular is the rebound hammer test. This test uses a calibrated
spring-loaded device that shoots a rod against the concrete surface. A dial gage
measures the rebound that is correlated to the concrete’s modulus of elasticity, from
which an estimate of the compressive strength can be made.

1.6 Mechanical Behavior of Concrete

1.6.1 Concrete in Compression

Concrete is very strong in compression. In the United States, cylinder tests are used
to study the behavior of concrete in compression. In other parts of the world,
compression testing is typically done on 20-cm cube samples. Results obtained
from the two different tests are different for samples made of the same concrete.
This is due to the shape and proportions of the samples.

The deformation of the sample under load during testing may also be measured
to establish the stress-strain diagram. Axial compression stress is defined as the

force divided by the cross-sectional area (f = g) , which has units of psi (pounds

per square inch) or ksi (kips per square inch). In SI (International System) units, the
stress may be measured in KPa (kilopascal) or MPa (megapascal) units. Strain is the

deformation of a unit length of the member and is defined as (8 = A%) , where A/ is

the change in the length, and ¢ is the original length. Strain is a dimensionless
number, for example, inch/inch.

It must be emphasized that the cylinder test used to evaluate the strength of
concrete is only a representative sample and provides only an indicative and
correlative value of how the concrete may behave in the structure. The cylinder,
when tested, is free to expand laterally. The concrete in a structure may be confined
by its surrounding. A confined sample of concrete is much stronger. Note also that
the cylinder test determines the strength of the concrete under short-term loading.
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Research indicates that under long-term loading (e.g., within building structures),
the strength of the concrete is less than that exhibited by the cylinder testing.
Different concrete mixes exhibit not only different strengths, but very different
deformation characters. Figure 1.8 shows the stress-strain diagrams of typical
concrete mixes.
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Figure 1.8 Stress-strain diagram of concrete in compression

A study of the stress-strain curves leads to important observations. At small
strain levels there seems to be a straight-line relationship between strain and stress,
that is, concrete seems to follow Hooke’s law (stress is linearly proportional to
strain). This almost elastic relationship is valid up to about 30-50 % of the ultimate
strength. The relationship then starts to deviate from this reasonably assumed
straight line, that is, with increasing strain the stress grows, but at a slower rate.
The peak stress level in typical concretes used in construction occurs near a strain
value of 0.002. Then the stress in the cylinder starts to decrease with increasing
strain until an ultimate strain value is reached, at which point the sample fails. The
ultimate strain is different for different strength concrete mixes, as shown in
Figure 1.8. In general, weaker concrete has greater ultimate strain. Note that in
reinforced concrete design an ultimate useful strain of 0.003 is assumed. This will
be further discussed in following chapters where we deal with the design of
reinforced concrete members.

Most building projects utilize concrete with f; in the range of 3,000-6,000 psi.
The last couple of decades have seen the industrial development and utilization of
ultra-high-strength concretes. Concretes with 10,000 to 12,000 psi compressive
strength are routinely available from many suppliers, and even higher-strength
concretes, some exceeding 20,000 psi, can be manufactured. Ultra-high-strength
concretes are used mainly in columns of high-rise buildings.

The compressive strength of concrete, £/, varies with time. Figure 1.9 shows this
variation. Well cured concrete gains most of its potential compressive strength
within the first 28 days. After that, the strength gain proceeds at a much slower rate,
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Figure 1.9 Compressive strength versus time for concrete

although the hydration process between cement and water may continue in the
presence of available free water.

Modulus of Elasticity of Concrete In elastic materials (or materials that behave in
an elastic way up to a certain stress level), a definite linear relationship exists
between stress and strain. The coefficient in the relationship is called the modulus of
elasticity. The capital letter E is used to denote this modulus, and the relationship is
defined as stress = modulus of elasticity X strain.

The behavior of concrete, as described by the typical stress-strain curves in
Figure 1.8, is not this simple. The diagrams are not linear; thus, the E value (i.e., the
slope of the tangent to the curve at any point) is changing continuously. To simplify
the matter and establish a value that can be used in calculations, a substitute E value
is used. The E value used is the secant modulus, which is the slope of a line
connecting the point of zero stress and zero strain to the stress point of 0.45 f!
and its corresponding strain (Figure 1.10). By definition, this value is the modulus
of elasticity of concrete.

This value is different for different strength concretes: Stronger concretes have
greater E. Furthermore, concretes made with different aggregates (normal-weight
concrete, lightweight structural concrete, etc.) also exhibit different moduli of
elasticity.

The value for the modulus of elasticity is needed when calculating instantaneous
(also called elastic) deformations of structures under load, such as the deflection of
a beam. This is justified, for at stress levels that exist during normal use of
structures, the concrete responds in a quasi-elastic manner to short-term loads.
After studying the results of hundreds of tests and applying statistical analysis
(fitting a mean curve to the values), researchers have determined that Equation (1.1)
provides a reasonable approximation for the modulus of elasticity of concrete, E.
for w,. between 90 and 160 pcf (ACI Code, Equation 19.2.2.1.a).
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Figure 1.10 Concrete secant modulus
E. = 33w\ /f! (1.1)

where w.=the weight of the concrete in pounds per cubic foot and f/ =the
ultimate cylinder strength, or specified compressive strength of concrete in pounds
per square inch. The resulting unit for E.. is psi, and substitution into the equation
must be made using the units as defined.

Unreinforced normal-weight concrete is about 145 pcf. When w,. = 145 pcf is
substituted in Equation (1.1), the result, after rounding, is Equation (1.2) (ACI
Code, Equation 19.2.2.1.b):

E. = 57,000/f/ (1.2)

As discussed above, there are two ways of determining the modulus of elasticity:
(1) by testing, and (2) by using the approximate equation provided by the ACI
Code. Because the concrete that will go into the structure has not been made,
placed, and cured at the time of design, the designer is invariably forced to use the
accepted approximate equation.

Example 1.1 Find the modulus of elasticity of a concrete mix with the compres-
sion strength, f/ = 3,500psi. Assume the mix is lightweight structural concrete
with a unit weight of 110 pcf.

Solution The ACI approximate equation for E. is:
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E.=33wl/f!

Substituting w.= 110 pcf and f = 3,500 psi:

E. = 33(110)'°/3,500
E. = 2,252,356 psi

or
E. = 2,252ksi

1.6.2 Concrete in Tension

The strength of concrete in tension is only about 8-12% of its compressive
strength, f/, that is, it is a very weak material in tension. The ratio of tensile to
compressive strength is greater in low-compressive-strength concrete than it is in
high-compressive-strength concrete. In fact the tensile strength of concrete is
completely disregarded when designing reinforced concrete structures in flexure
(bending). It is somewhat cumbersome to make reliable concrete samples that could
be tested in pure tension, so substitute tests are often used. One such test determines
the tensile strength of the concrete in an unreinforced beam by testing it in flexure.
Because the tensile strength of concrete is much less than its compressive strength,
the beam will fail on the tension side of the cross-section. If we know the load, span,
and cross-section of the beam, we can calculate the maximum moment on the beam
and, consequently, the ultimate tensile stress at failure. This tensile stress value is
called the modulus of rupture, or f,.

From statistical analysis of data, an empirical formula (Equation (1.3)) evolved
and has been adopted by the ACI Code (ACI Code, Equation 19.2.3.1).

fr=150/f (1.3)

In this equation f; and £, are in psi units. (Substitution of f must be made in psi,
otherwise the formula will produce erroneous results). A is a modification factor to
adjust the equation when lightweight aggregates are used and varies depending on
the type of aggregates. A is equal to 0.75 for the “all-lightweight” concrete;
0.75-0.85 for the “fine blend-lightweight” concrete; 0.85 for the “sand-lightweight”
concrete; 0.85—-1.0 for “coarse blend sand-lightweight” concrete; and 1.0 for the
“normal weight” concrete. This formula is simple to use, but in most cases, it
overestimates the true tensile strength of a concrete element.
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Example 1.2 A test was performed to determine the modulus of rupture of a
concrete. A concrete beam 3 in. X 6 in. in cross-section and 9'-0" long was cast
and supported at the ends on masonry blocks. The beam was loaded at the one-third
points of the span with “concentrated” loads. The beam failed when it cracked on the
bottom face at a load of 150 1b at each location (which led to an immediate collapse).
The applied load and test setup is shown in Figure 1.11. The compressive strength of
the concrete was determined as 4,000 psi via a cylinder test. The concrete weight was
w. =150 pcf (normal weight). Calculate the modulus of rupture of the concrete
using (a) the results of the test, and (b) the ACI approximate equation.

P=1501Ib P =150 Ib

| |

I/éS'-O" | 3-0" | 3-0" IA
P=1501b P=1501b w = 18.75 Ib/ft
i aanm

Figure 1.11 Beam loading for Example 1.2

Solution

(a) Test Results The beam is subjected to two loads: its weight, and the two
concentrated loads as shown in Figure 1.11. The beam self-weight is a
uniformly distributed load, with a magnitude of

(3)(6)

w = (150) 1212)

= 18.75 Ib/ft

Conversion factor for in? to ft?

The maximum moment for the beam occurs at the midspan. The equations for
the maximum moments are as follows:

2
Mpax = W?(for the beam with uniform load)

Pl
M pax = ?(for the beam with concentrated loads)

wé* Pl
M[otzﬂ:?'i‘?

18.75(9)%  150(9
Mtotal: 8( ) + 3( )

Mot = 190 +450 = 640 ft-1b
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Figure 1.12 Internal forces and stresses for Example 1.2

Mo s the internal moment at the mid-span of the beam. This moment creates a set
of compression stresses at the top, and tensile stresses at the bottom of the beam as
shown in Figure 1.12. The maximum bending stress occurs at the top (compressive)
and the bottom (tensile) of the cross section. The equation for the maximum
bending stress is:

where ¢ is the distance from the neutral axis (where stress is zero) to the top or
bottom of the beam, / is the moment of inertia of the section about its neutral axis,
and S,, is the elastic section modulus. For a rectangular shape, S, is:

o

N m
6

Therefore,

(b) ACI Approximate Equation

A= 1.0 (normal weight concrete)

f.="1.50/f =17.5(1.0)4/4,000
f.=474psi
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1.7 Volume Changes in Concrete

Concrete is not an inert material, so its dimensions change in response to environ-
mental influences. The most important ones are temperature change, concrete
shrinkage, and concrete creep.

1.7.1 Temperature Change

Concrete, like most other materials, expands with rising temperature and contracts
with falling temperature. Suppose a concrete element with the length ¢ is restrained
at only one end (A) (see Figure 1.13a). Under an increase in temperature of AT
(degrees of Fahrenheit), the element expands and has an increase in length equal to
A/. This increase in the length can be calculated using Equation (1.4).

Al = aAT? (1.4)

where o is the coefficient of thermal expansion, which depends on the type of
material. For normal weight concrete, a is about 5.5 X 107 to 6 x 107 in./in./°F.

The length change caused by thermal expansion/contraction in a concrete
element can be calculated using Equation (1.4). For example, due to a 100 °F
temperature change, a 200-ft-long building will change its length Al =aAT(=
(6 x 107%)(100)(200 x 12) =1.44 in., a very significant length change indeed.

Now, if both ends of the concrete element (Figure 1.13b) are restrained, the
length cannot grow at any increase in temperature, and the restraint causes longi-
tudinal compression stresses.

a
A B .
SN/ NN/ SN N A N7 N7 N7 SN
Y4 Af»‘
b
N\
7
ADE— —KB
fe— —
S NN/ NN NN SN
Y4

Figure 1.13 Effects of temperature on concrete: (a) free to move, (b) restrained
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Because f = E.e and € = A¢/¢, Equation (1.5) can be used to calculate the
change in length in terms of the stress f.

AEZSK:LE (L.5)
E.
Combining Equations (1.4) and (1.5) yields Equation (1.6).
Lf = aATY
E.
f: E(;(XAT (16)

where E. is the modulus of elasticity of the material in psi (or ksi), and f is the
resulting stress in psi (or ksi) developed in the restrained element due to a change in
temperature equal to AT.

As shown by Equation (1.6), large stresses can build up if the length change is
restrained. The buckling of pavements often seen on hot days is the result of two
neighboring pavement slabs pressing each other (in the absence of a wide enough
expansion joint) while trying to expand. The buckling relieves the prevented
expansion. On the other hand, tensile stresses will build up when concrete tries to
shorten with dropping temperatures if the free contraction is somehow hindered.
For example, for an £/ = 4,000psi concrete:

f = E.aAT
£ = (57,000,/4,000) (6 x 1076)(1.0) = 21.6psi

for each degree of temperature change (AT =1 °F), if the length change is fully
prevented. If the concrete in the above example has an ultimate tensile strength of
7.54/4,000 = 474 psi, the theoretical value of the temperature drop that will crack
this concrete is only 474/21.6 =21.9 °F, a rather small temperature change.

Admittedly it is very rare that concrete is fully restrained against movement due
to temperature change. But the unsightly cracking of concrete structures all around
us provides ample testimony to the results of restrained volumetric changes.

The value of a for concrete is quite similar to that of steel (6.5 x 1076 in./in./°F).
Thus, the reinforcing steel inside the concrete will expand or contract at about the
same rate as the surrounding concrete, without significant stresses resulting from
expanding or contracting at a different rate. Aluminum, for example, has a coeffi-
cient of expansion roughly twice that of steel. Thus, the use of aluminum as
reinforcement for concrete is not a good idea; for when the temperature rises, the
aluminum rod expands at twice the rate of the surrounding concrete at the interface
between the two materials. The conflicting expansion rates cause all kinds of
“weird” stresses at the interface, breaking down the necessary bond between the
two materials.
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1.7.2 Concrete Shrinkage

Shrinkage means that the concrete becomes smaller in volume. There are many
causes of shrinkage, but the most significant contributor to this phenomenon is the
loss of water.

As previously discussed, more water is needed in a concrete mix than the cement
uses for hydration. Some of this excess water bleeds and evaporates during and
immediately following consolidation while the concrete is still plastic. The heavier
parts in the still-fluid concrete tend to settle, causing what is known as setting
shrinkage or plastic shrinkage. Reinforcing bars or large aggregates near the
surface obstruct the uniform settlement of the concrete, thus enhancing the forma-
tion of thin hairline cracks on the surface. These hairline cracks look like cobwebs:
lots of relatively short, thin cracks in all directions. Their depth is usually limited to
small fractions of an inch.

After the concrete hardens, it still contains free water in the capillaries and water
adsorbed on the surface of particles. As this water slowly evaporates, the concrete
continues to shrink, not unlike a sponge shrinks as it dries. This causes what is
known as drying shrinkage. The rate of the drying shrinkage is tied to the speed of
the evaporation, which in turn depends on the porosity of the concrete and the
environment, that is, temperature and relative humidity. Concrete in highly humid
climates shrinks less than corresponding concrete does in arid climates.

More than 90 % of the drying shrinkage happens within the first few weeks after
casting. Drying shrinkage, however, is partially reversible. Thus, if the concrete
gets soaked it swells, and when it dries out again it shrinks. If the drying shrinkage
could take place without any restraint whatsoever (a theoretical proposition rather
than what really occurs), no stress buildup would result. Because, however, free
shrinkage is usually restrained (i.e., something prevents the concrete from shorten-
ing in any direction), tensile stresses start to develop and build up. In moderate
climates the average dimensional change is about 300 millionths (300 x 107 in./
in.). Compared to the length change due to a decrease in temperature, the effect of
the average shrinkage value is similar to that of a 50 °F temperature drop. If the
developing tensile stress is greater than the tensile strength of the concrete at any
point, the concrete will crack. The crack should be thought of as a relief from
tension caused by the prevention of free movement.

An example is a long wall that has been cast on top of its footing. The footing has
already cured and hardened. When the wall tries to shrink, the footing restrains its
bottom edge from moving. The top of the wall, however, is free to shrink length-
wise. Thus, a tug of war results between the top and the bottom of the wall, resulting
in one or more cracks with diminishing width from top to bottom (Figure 1.14a).

Another example is a floor that is cast over walls placed earlier, thus hardened.
As the floor shrinks and tries to change its long dimensions, it cannot because the
walls restrain it. The buildup of tensile stresses results in cracks, especially in the
corners, where the edges of the slab try to move in two different directions. The
relief comes as diagonal cracks in the corners (Figure 1.14b).
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Figure 1.14 Shrinkage cracks: (a) Concrete wall; (b) Concrete floor
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Plastic shrinkage cracks are characterized as random surface cracks, that is, they
do not penetrate the full thickness of the concrete element. Drying shrinkage cracks,
on the other hand, are usually full depth and quite wide (1/8 in. or more is not
unusual).

The mitigation of the effects of shrinkage requires good design and construction
practices. The following actions help to minimize cracking in slabs and walls due to
shrinkage:

= Use the minimum amount of water in the concrete mix. The concrete should
have not only the smallest w/cm ratio, but also the smallest amount of water in
absolute terms. This also means using the smallest amount of cement necessary
to achieve the desired concrete strength, because more cement introduces more
excess water in the mix. Such a tactic is also good for keeping costs down.

= Use good curing technique. Moist curing helps keep the excess water from
evaporating too soon (i.e., before the concrete has a chance to develop its tensile
strength).

= Limit the size of the pour to about 60-80 ft maximum length in any direction.
The construction is broken up into segments by the use of construction joints
(Figure 1.15a). If the second pour is 3—4 days after the first pour, some
shrinkage has already taken place in the first pour. On some projects the pouring
sequence may follow a checkerboard pattern. Other construction techniques
leave a gap between two neighboring pours (12-24 in.) that is filled in when the
larger pours have undergone most of their shrinkage.

= Provide reinforcing steel (shrinkage reinforcement). Because steel bars are
bonded to the concrete, they restrain and limit the change of length of the
concrete.

= Use shrinkage compensating cement (Type K). This particular cement type
expands during the early stages of hydration, before any drying shrinkage
occurs due to moisture loss. Reinforcing is also provided in both directions in
a wall or a slab, and the expansion of the concrete at the early stage of hardening
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Figure 1.15 (a) Construction joint, (b) expansion joint, (¢) control joint

induces tension in the steel (i.e., the expanding concrete tries to elongate the
reinforcing bars). If we recall Newton’s law on action and opposite and equal
reaction, it is easy to understand that the steel in turn will compress the concrete.
When shrinkage sets in and causes tension in the concrete, it first will have to
overcome the precompression in the concrete. Thus, the forces will either
completely cancel each other out, or at least the resulting tensile stresses will
be greatly reduced.

= Provide expansion/contraction or control joints (Figure 1.15b, c, respectively).
At an expansion joint the longitudinal reinforcing is interrupted. The joint is filled
with an elastomeric material that can be compressed when the concrete expands,
and permits the free movement of the two parts relative to each other when the
concrete shrinks. A key-way (or a dowel that is greased on one side of the joint to
prevent bonding) forces the two parts to stay together in the out-of-plane sense
while still allowing them to move freely longitudinally. This prevents one side
from moving higher or lower than the other and thus creating a trip hazard or a
step. The role of the control joint is different. A weakening groove, usually 1/8 in.
wide and about one-fourth to one-fifth of the slab thickness, is either tooled into the
freshly finished concrete, or cut with a saw into the concrete as soon as it hardens
enough so as not to leave an imprint on the surface. This allows the shrinking
concrete to crack along that straight line where the section is weakened. Control
joints essentially locate shrinkage cracks along predetermined paths instead of
letting them naturally meander all over the slab or wall.

1.7.3 Creep of Concrete

A structure deforms when it is subjected to loads. For example, beams and slabs
deflect, columns become shorter, and so on. For every stress level, there is a
corresponding strain. Strain is nothing else than the deformation of a unit length
of the material.
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Concrete structural elements experience two types of deformations under loads:
(1) instantaneous or elastic deformation, and (2) long-term deformation, or creep.

Instantaneous deformations occur as soon as the member is subjected to load.
This is similar to what happens in other construction materials such as steel.

Creep, on the other hand, is the gradual long-term deformation of concrete under
a sustained load. Nearly 75 % of the total creep happens during the first year, and
the total creep can be two to three times the instantaneous deformation
(Figure 1.16).

Creep (long-term deformation) Instantaneous deformation

Figure 1.16 Instantaneous and long-term deformation in a concrete beam

The causes of creep are complex. Interestingly, one contributor is the loss of
adsorbed water. In drying shrinkage the loss occurs due to the lower relative
humidity of the ambient atmosphere, and this loss leads to the shrinkage. In the
case of creep, the sustained compression on the concrete squeezes some of the
moisture out of the concrete. This in turn lets the solids consolidate even more.

The second major cause of creep is thought to be microfracturing in the hardened
paste around sharp edges of aggregates under the effect of compression.

Creep deformations can be very significant. They are caused mainly by dead
loads or sustained loads, because the self weight and some permanently attached
superimposed dead loads are dominant in most concrete structures, whereas the
transitory (live) loads are less significant. Creep could account for an additional
100-300 % of the instantaneous deformations. Thus, a beam’s original deflection of
1 in. may grow to anywhere between 2 and 4 in. If this additional deformation is not
accounted for in the detailing of attached items, such as partitions, it may cause
serious distress in them.

1.8 Reinforcing Steel

Reinforcing steel is used to overcome the weakness of concrete in tension. The role
of the reinforcing is to resist the tension in structures. Thus, a hybrid structural
composite called reinforced concrete is created, where each material does the work
it is well suited for. Concrete takes care of the compression, while the steel takes
care of the tension.
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1.8.1 Behavior of Steel Under Stress

To better understand the material that will be discussed in the following chapters,
we review the behavior of steel under stress. This review will also help to famil-
iarize the reader with the terminology that will be used later.

Consider Figure 1.17, which is a typical stress-strain diagram for steel in tension.
There are four distinct zones in the stress-strain diagram for steel. First is the
elastic zone, where steel under stress will go back to its original length if it is
released. In this zone the stress in the material is linearly proportional to the strain.
(Robert Hooke formulated this relationship, so we refer to it as Hooke ’s law. Hooke
worked with Christopher Wren on the construction of St. Paul’s Cathedral in
London, England.) When steel is pulled beyond the elastic zone (elastic or propor-
tional limit) it yields. Yielding is an elongation of the steel with no appreciable
change in stress. The onset of yielding (elastic or proportional limit) is the begin-
ning of the plastic zone. When the steel is pulled beyond the proportional limit it
will not return to its original length, but remain permanently deformed.

The stress at which steel yields is called yield stress and it is noted as f,. The
corresponding strain is called yield strain or e,. By the time yielding ends, the
corresponding strain is about eight to ten times the strain at the proportional limit.
After yielding, the steel’s stress/strain curve starts to “climb again” in a curvilinear
mode until it reaches a plateau called the ultimate strength (f,). This curvilinear
zone of the stress/strain curve is called strain hardening.
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Figure 1.17 Stress-strain diagram for steel
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Another important mechanical property of steel is its modulus of elasticity (Ey).
For steel the modulus of elasticity corresponds to the slope of the stress-strain
diagram in the elastic zone (see Figure 1.17). E is about 29,000 ksi.

Three forms of reinforcements are commonly used in concrete structures:
(1) steel bars, (2) welded wire reinforcements (WWR), and (3) prestressing steel.
(A fourth is short steel, glass, or plastic fibers mixed into the fresh concrete. Bars
manufactured from advanced composite materials, such as fiberglass and carbon
fibers, are also used in special cases. Discussion of these reinforcing methods,
however, falls beyond the scope of this text).

1. Steel Bars Modern reinforcing bars are round, rolled sections. In the past, square
bars were also used and may be encountered in old buildings built before World
War I or shortly thereafter.

Round reinforcing steel comes in two different variations: deformed and plain.

Deformed bars have a pattern of ribs, or deformation, rolled on them. These
deformations provide better relative slip resistance between the steel bar and
concrete. In addition to the chemical bond that exists between the cement paste
and the steel surface, these ridges provide a mechanical anchorage as well. Fig-
ure 1.18 shows a few examples of deformed bars. The ACI Code mandates the use
of deformed bars in all new reinforced concrete structures.

———— - Q -
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Figure 1.18 Examples of deformed bars

Plain bars do not have any deformations and rely on surface bonding only to
prevent relative slippage. These are no longer in use, although they may be
encountered in old structures.

Different grades of steel are used, typically made from either new steel, scrap
metal, or a mixture of both. Grades of steel represent their guaranteed minimum
yield stress in ksi units. For example, Grade 60 steel refers to reinforcing steel with
a guaranteed minimum yield stress of f, =60 ksi. ACI Section 20.2.1.3 provides
the various types of steel that are used for the production of deformed bars.
Table Al.1 in Appendix A lists the different types of steel used as reinforcing
bars along with their mechanical properties. Each type of steel in Table A1.1 has an
ASTM designation such as A615. Different types of steel in Table Al.1 are:

= Carbon steel (A615)—This is the most common type. (Type S steel).
= Low-alloy steel (A706)—This type of steel provides enhanced weldability.
(Type W steel).


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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= Stainless steel (A955)—This type of steel has application where high corrosion
resistance or controlled magnetic permeability is required. Their property
requirements are the same as those for carbon steel. (Type SS steel).

= Rail steel (A996)—This is made of recycled railroad track. (Type R steel).

= Axle steel (A996)—Similar to rail steel, but made from axle as scrap metal.
(Type A steel).

= Low-carbon chromium steel (A1035)—This is a high-strength material that is
permitted for use as transverse reinforcement in special earthquake-resistant
structural systems and spirals in columns. (Type CS steel).

Of all these reinforcing steels, most construction uses A615 Grade 60 (carbon)
steel. Grades 75 and 80 are sometimes used in columns. Grades 100 and 120 are
mainly used for transverse reinforcements of structures in seismic prone regions.
Grade 50 has not been around for quite a while. Grade 40 is almost never used, for it
has only two-thirds of the strength of Grade 60 steel, and its cost in place per b is
the same.

Bar Sizes Steel bars are made in different sizes. Bar size, in general, represents the
diameter of the steel bar in inches. From #3 to #8 (#1 or #2 bars do not exist), each
number represents the diameter of a bar in fractions of 1/8 in. For example, #3 bar
means that the diameter of the bar is 3/8 in., and #8 is 8/8 in. =1 in. diameter.

The heavier (larger-diameter) #9, #10, and #11 bars do not precisely follow the
1/8 in. rule, but they are close.

In addition, there are #14 and #18 bars, which are very large, heavy bars. They
are used mostly in large columns in high-rise construction and are available on
special order.

Table Al.2 includes the diameters and areas of the available steel bars.

Identification of Steel Bars Steel bars used in concrete construction have special
identification marks rolled on them. These marks provide information such as where
the bars were produced, the bar size, type of steel, and their grade (see Figure 1.19).

)
H Initial of producer mill
B
10 Barsize o ag15
) W: A706
s ) Steel SS: A955
type R: A996
A: A996
) CS: A1035
60 Grade of steel

Figure 1.19 Identification marks for steel reinforcement
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Epoxy-Coated Bars The highly alkaline environment that the concrete provides for
the embedded reinforcing usually protects it from corrosion. Some structures,
however, such as bridge decks, parking structures, coastal structures, and so on
are often exposed to moisture containing chloride salts. The deicing salts (road
salts) that are used on roads and bridges, and carried into parking structures by the
automobiles, contain large amounts of soluble chlorides. When such solutions get
into contact with the reinforcing, the result is corrosion (oxidization or rusting) of
the steel.

The rust (ferrous oxide) grows to about eight to tenfold the volume of the
original steel. Thus, as the rust tries to create “elbow room” for itself, the internal
pressure starts to crack, split, and spall the concrete around it. This in turn provides
more access to the dangerous chloride-laden moisture.

One way to protect reinforcing in this kind of environment is the use of epoxy-
coated bars. Epoxy resin is an excellent adhesive and protects the steel from
chloride attacks. A note of caution is in order, however: Such bars must be handled
carefully to prevent nicks or cracks in the coating. Such places are especially
attractive to chloride ions and often become nodes of violent and rapid corrosion
in the reinforcement.

2. Welded Wire Reinforcements (WWR) In certain situations it is more econom-
ical to use welded wire reinforcements (WWR) in lieu of a series of small-diameter
bars. WWR are thin wires spaced at certain distances in two orthogonal directions
and fabricated in either large sheets, or in long rolls in the case of light-gage wires.
They are welded together at intersection points, usually by the electric resistance
welding method. The chief advantage of using WWR is the labor saving. Individual
reinforcing bars are placed one by one and are secured by tying them together at
every intersection. This ensures that they will remain at the desired location
throughout the concrete placement, consolidation, and finishing process.

WWR are available in commonly standardized wire sizes and spacing. Table 1.1
lists some of the commonly used styles of WWR. The standard designation of the
reinforcement represents the spacing and the wire sizes. In the modern designation
system the W-number represents the approximate cross-sectional area of the wire in
multiples of 0.01 in.2. Thus, the cross-sectional area of a W4.0 wire is about
0.04 in.>. As an example, 6 x 12— W4.0 x W2.5 represents wires with cross-
sectional areas of 0.04 and 0.025 in.” in a rectangular grid of 6 in. x 12 in. as
shown in Figure 1.20.

Table 1.1 Some commonly Steel area (in.zlft)

stgcked styles of welded wire Reinforcement designation | Longitudinal | Transverse

reinforcements
6x6—-—WI14x W14 0.028 0.028
4x12—W2.9 xW2.5 0.087 0.025
6x6—W25xW2.5 0.050 0.050
4x4-W14xW14 0.042 0.042
6x6—W2.9x W29 0.058 0.058
6x6—W4.0x W4.0 0.080 0.080
4 x4 —W4.0 x W4.0 0.120 0.120
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Figure 1.20 6 x 12 — W4.0 x W2.1

3. Prestressing Steel When we discussed the mechanical properties of concrete, we
noted that the tensile strength of concrete is small. Early users of reinforced
concrete soon realized that if compressive stresses were induced into regions
where the loads (dead and live) caused tension, this tension would have to over-
come the pre-existing compressive stresses before inducing tensile stresses that
could result in cracking or failure. Hence the concept of prestressing was
developed.

Two different techniques are used to achieve prestressing. One is known as
pretensioning, the other is posttensioning. (These will be discussed in detail in
Chapter 9).

A much stronger steel product than ordinary reinforcing steels is needed for
prestressing purposes. Most of the time, seven-wire strands are used (six wires
wrapped around a core wire in a helical form; see Figure 1.21). The wires are cold-
drawn (i.e., the wires are pulled through a series of smaller and smaller round
openings without any preheating). The cold working increases the toughness and
the strength of the steel. Because the wires are stretched way beyond yield during
manufacturing, the strands manufactured from them have no yield levels compa-
rable to those of ordinary reinforcing bars. The most commonly used prestressing
strands have a nominal ultimate strength of 270 ksi.

A

A-A pou

Figure 1.21 Seven-wire strand for prestressing
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Some special applications use either smooth or deformed prestressing bars of
varying diameters from 3/4 to 2—1/2 in. These are available with ultimate strengths
of up to 160 ksi.

Problems

1.1.
1.2.

1.3.
14.
1.5.
1.6.

1.7.

1.8.

1.9.

1.10.

What is hydration in concrete?

What is the significance of compression strength of concrete, and how is it
measured?

What are the applications of air-entraining admixtures?

What is the modulus of elasticity of concrete (E,.) and how is it determined?
Define the modulus of rupture, f,, for concrete.

What are the differences between deformed bars and welded wire
reinforcements?

Draw the bending moment and shear force diagrams for a 12 in. x 24 in.
concrete beam made of lightweight concrete with the unit weight of 110 pcf,
subjected to a uniformly distributed load of 1.0 kip/ft. Assume the beam is
simply supported and has a 10/-0" span.

Determine the modulus of elasticity, E.., and the modulus of rupture, f,, for a
normal-weight concrete (w.=145 pcf) with a specified compressive
strength, £/, of 3,500 psi.

Determine the maximum concentrated load that can be applied at the center
of a 6 in. X 6 in. simply-supported plain concrete beam before it cracks in
tension. The beam has a 6'-0” span and is constructed of sand-lightweight
concrete with a unit weight of 120 pcf. The specified compressive strength is
3,000 psi. Use the ACI Code recommended value for the modulus of rupture.
Determine the maximum span for an 8 in. X 12 in. simply-supported plain
concrete beam constructed of normal-weight concrete and loaded by a uni-
formly distributed load of 2 kip/ft just before it fails. The specified compres-
sive strength of the concrete is 4,000 psi. Use the ACI Code-recommended
value for the modulus of rupture.

Self-Experiments

In the self-experiments of this chapter, you learn about the different aspects of
making concrete by using simple tools.

Experiment 1 (Making a Concrete Sample)
The following materials are needed:

1. Three 20-oz empty tin cans (cylinder shape)

2. Three large bowls

3. Cement (can be obtained from a local hardware store)
4. Sand and gravel
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5. Tap water
6. A 3/8 or 1/2 in. diameter wood dowel, about 12—15 in. long

Make three samples: (1) cement sample, (2) concrete with a w/cm ratio of 1.0,
and (3) concrete with a w/cm ratio of 0.5.

1. Cement Sample
Pour 10 oz of cement with 6 oz of water into a bowl and mix them thoroughly.
Note how much effort is used to mix the cement with water. Then place the mix
in can number 1. Consolidate the mix in the can by prodding it with the dowel
about 12—15 times.

2. w/cm = 1.0 Concrete Sample
Pour 3 oz of cement, 10 oz of sand, 10 oz of gravel, and 3 oz of water into a bowl,
and mix them thoroughly. Again note how much effort is needed to mix the
materials. Then place the concrete in can number 2. Consolidate the mix in the
can by prodding it with the dowel about 12—15 times.

3. w/cm = 0.5 Concrete
Pour 4 oz of cement, 10 oz of sand, 10 oz of gravel, and 2 oz of water into a bowl,
and mix them thoroughly. As in the first two cases, pay attention to the amount of
effort needed to make the mix. Then place the concrete in can number 3. Con-
solidate the mix in the can by prodding it with the dowel about 12—15 times.

Leave the three samples for approximately 6 hours at room temperature. Check
them every 6 hours for 3 days. Record any observations. Answer the following
questions:

=  Which mix was easiest to make (i.e., which one was most workable)?
= Which mix resulted in the most bleeding?
=  Was any sign of hydration observed?

At the end of the 3 days cut the tin cans to completely expose the samples.
Answer the following questions:

=  What are the differences in the textures of the three samples?
= Which sample has the most uniformity of material?



Chapter 2
Rectangular Beams and One-Way Slabs

2.1 Introduction

This chapter covers the analysis (checking the strength) and the design (sizing the
concrete and steel) of reinforced concrete beams and slabs that span primarily
one way.

The previous chapter emphasized that concrete is very weak in tension, but
strong in compression. As a result, reinforcements are used to supply tensile
strength in concrete members (most commonly in the form of round reinforcing
bars or rebars). Like any other building system, reinforced concrete structures have
advantages and disadvantages.

2.2 Advantages of Reinforced Concrete

1. Can be cast into any shape This is the main advantage of reinforced concrete
compared to other building materials. Concrete members can be made into any
desired shape by using forms. Figure B2.1 in Appendix B shows the pleasing
exterior of a reinforced concrete building.

2. Has great resistance to fire and water Concrete loses its structural integrity
much more slowly than wood or steel when subjected to high temperature. In
fact, concrete is often used as fireproofing material. Concrete also better resists
exposure to water, does not corrode like steel, and does not lose strength as wood
does. Certain chemicals in water, however, can harm concrete.

3. Is a low-maintenance material Concrete does not corrode, so it does not need to
be painted and regularly maintained when exposed in the environment.

4. Has very long service life Reinforced concrete structures that are well designed
and built last a very long time.

© Springer International Publishing Switzerland 2017 37
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2.3 Disadvantages of Reinforced Concrete

1. Has very low tensile strength Concrete has a very low tensile strength in
comparison to its compressive strength. Consequently, reinforcing steel bars
are needed to counteract the development of tensions in concrete structures.

2. Requires shoring and forms This is a major disadvantage of concrete because it
raises the cost of concrete structures, especially in countries such as the United
States where labor costs are high. Shoring and formwork often constitute more
than half the total cost of the structure.

3. Has variations in properties The mechanical and physical properties of concrete
are sensitive and require careful proportioning, mixing, curing, and so
on. Eliminating large variation in these properties demands carefully monitored
procedures.

4. Results in heavy structural members Reinforced concrete structures are heavier
than similar steel or wood structures. This results in larger building dead loads,
which in turn result in larger foundations. Concrete structures are also more
sensitive to differential settlements. Thus, concrete structures require relatively
good soil conditions.

2.4 On the Nature of the Design Process

Before attending to the main topic of this chapter, which is the analysis and design
of bending members, a discussion on the concept of design is appropriate.

Ask ten people about the meaning of the word “design” and you probably will
get ten different answers. Design also has very different meanings to architects and
to engineers. And to top it all off, design is often viewed as synonymous with sizing
of members. So we hope that readers will forgive the rather loose usage of the term
design.

Structural design of reinforced concrete structures is an iterative process. It
begins with the layout of the structure or, in other words, with the selection of the
structural system. Any practitioner will admit that this initial step is by far the
hardest part of the process. It requires the designer to come up with a synthesized
whole for the building, laying out all the component elements (columns, girders,
beams (or joists), and slabs). Furthermore, the designer must also estimate the sizes
of the elements within the space in order to go to the next step, that is, to analysis.

The flowchart of Figure 2.1 presents a somewhat simplified picture of the
process. Oddly enough, it begins with a step in synthesis, or the conception of the
structure. This step is nonmathematical, for the aim of the study at this point is to
look at what the building structure should do. What spaces are required? What is the
minimum column spacing required to fit the architectural program?

But before we reach the part designated as “Analysis” or “Design,” we must
complete another exercise: identifying the loads that the structure may be subjected
to in its life span.
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—>| Structure is conceived I‘

Input:
* Functional requirements (space layout, column spacing, etc.)
* Aesthetic requirements

Loads

* Self-weight

* Superimposed dead loads [floor finishes (or roofing and
Analysis insulation as appropriate), partitions, ceilings, suspended

mechanical and electrical equipment]
¢ Live loads (building code requirements)

* Economy

 Serviceability (short- and long-term deflections)
* Durability requirements

« Fire rating requirements

Y

<—| Sizing of all individual elements

Figure 2.1 The iterative nature of structural design

Loads generally fall into two major categories: gravity loads and lateral loads.
Gravity loads are further divided into two major groups: dead loads and live
loads. One can only guess how this nomenclature came into usage. Perhaps
people originally identified loads that were stationary as “dead,” and loads that
moved as “live.” Today, we make a somewhat different distinction between these
two loads. Dead loads are those that remain permanently attached to the structure,
while other loads that are transitory in nature are referred to as live loads. Thus,
furniture and stored items as well as loads from people’s activities are in the latter
category. For example, most of the weight in a library’s stack area is from the
stored books with only a very small part of the floor loads coming from the
visitors; nevertheless, the stacks and the books are considered live loads. In
addition, environmental effects such as moisture or temperature changes may
create stresses in the structure, so they also may be loosely defined as loads that
the structure must safely withstand.

Before any meaningful analysis can be performed to calculate and appropriately
size any component element within a structure, designers must establish the
loads that such an element can safely support, or at least must reasonably
approximate them.

In a concrete structure, the self-weight is a very significant part of the dead loads.
Because self-weight depends on the size of the particular member, a reasonable
estimate must be made on the size. After the designer estimates the size, he or she
can calculate the loads from the self-weight, assuming that reinforced concrete
weighs about 150 1b/ft’. At this point we do not want to tax the student’s attention
with detailed discussion on the selection of an appropriately sized beam or slab, and
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all of the reasons thereof. This subject will be discussed later in this chapter. In any
case, if during the design process the designer determines that an initial estimate of
the member’s size, and thus the self-weight, was significantly in error, he or she has
to re-analyze the member, taking into account the newly adjusted size; thus, the
iterative nature of the design and sizing.

Superimposed dead loads (SDL) are somewhat ambiguous. Often these items
and their precise location in space are not completely known at this stage of the
design (see Figure 2.1). Partition layouts have not been decided yet, or may change
in the future. Ductwork, piping, and light fixtures may go anywhere. So the designer
is forced to make a blanket estimate on these. Most practitioners estimate that the
combination of these items will exert about 15-20 Ib/ft* of floor area. (The only
areas that need more careful attention are those where some special flooring, such as
stone or terrazzo, is planned. These items exert about 12—13 Ib/ft?/in. thickness.
Thus, a 2 in. terrazzo flooring weighs about 25 psf.)

Live loads (LL) are prescribed by building codes for the particular usage of a
space. These loads are listed as uniformly distributed minimum loads and represent
the current professional wisdom. Because live loads are not uniformly distributed
except in very isolated cases, they have very little, if anything, to do with the real
loads that may occur on structures. Actual surveys show that total loads, uniformly
averaged out over the whole floor area, amount to only about 15-20 % of the codes’
mandated minimums in spaces like hotels, residential buildings, and offices. These
minimums, however, represent a statistical probability of the loads that the structure
may experience in a projected lifetime of 50 or 100 years. Furthermore, these code-
prescribed live loads also try to account for the dynamic nature of many loads by
treating them as equivalent static loads.

This discussion of loads should suffice to show that any calculation made during
the load analysis phase will contain unavoidable inaccuracies and uncertainties.
These errors are inevitable no matter how carefully the designer tries to evaluate the
currently envisioned, but essentially future loads.

Example 2.1 In this simple floor plan, beams 12 in. wide and 20 in. deep are
spanning 30 ft. The beams are located 9'—0" center to center. A 5-in. thick slab
spans from beam to beam. (See Figure 2.2.) The floor structure will be used in a
general office building, thus (per Code) the minimum uniformly distributed live
load is 50 Ib/ft*. Calculate the dead and live loads that one interior beam has to
carry. Assume 20 psf for the superimposed dead load for the partitions, mechanical
and electrical systems, and so on.

Solution The beams are 9 ft apart, so each beam is assumed to be responsible for
the loads that occur 4.5 ft from either side of the beam’s centerline. Thus, each
linear foot of beam will support loads from 9 ft* of floor in addition to the weight of
the stem.
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Figure 2.2 Floor plan and section

Loads from the slab:

5 in. slab self-weight (5/12) x 150 62.5 pst
Superimposed dead loads, estimated 20.0 psf
Total dead load on slab 82.5 psf
Dead loads on beam from slab: 9 ft x 82.5 = 742.5 1b/ft
Volume of stem per foot: (12 x 15)/144 x 1 ft=1.25 ft3/ft of beam

Weight of stem: 1.25 x 150 = 187.5 Ib/ft
TOTAL DEAD LOADS: wp = 930 Ib/ft

In addition, the beam will support live loads from 9 ft* of floor area on each
linear foot of beam. Thus:

TOTAL LIVE LOADS: w; =9 x 50 psf =450 Ib/ft

Summary: See Figure 2.3.

— w, = 450 lb/ft
«— wp = 930 Ib/ft

| 30'-0" |

Figure 2.3 Floor beam

2.5 Live Load Reduction Factors

We complete this discussion of loads by dealing with the concept of live load
reduction factors. These are derived from statistical analyses of the probability of
having the maximum amount of live loads everywhere on a floor of a building.
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Figure 2.4 Influence areas for different structural members

Studies indicate that the larger the floor area that contributes loads to a particular
member, the less likely it is that every square foot of that area will bear the
maximum amount of live loads.

Different codes deal with this concept somewhat differently. Some codes relate
the live load reduction to the tributary area (A7), or the area directly loading the
particular element under investigation. Other codes relate the live load reduction to
the so-called influence area (A;), the area in which a part, however small, of any
load may contribute to the loading of a particular element under investigation. In
other words, the influence area for a structural member is the part of the building
structure that may fail if that member is removed.

As an example consider Figure 2.4, which shows the floor framing plan for
a reinforced concrete building. To determine the influence area for beam B-1,
assume that this beam is removed. This will cause the slabs supported by B-1 to
fail. As a result, the influence area for B-1 is (A;)g.;, the area between column
lines 1, 2, A, and B. Following this logic, if we remove girder G-1, the beams it
supports will fail, and consequently the slabs supported by the beams. Thus, the
area between column lines 1, 2, B, and D (A,)g.; will collapse. A similar study will
show that the influence area for column C-1 is the area between column lines
1,3,D, and F.

One variation of the live load reduction formula is given in Equation (2.1):

15
Leea = Lo <0.25 + \/—A_1> (2.1)

where

L..q = the reduced design live load per square foot of area supported by the member

Lo =the unreduced design live load per square foot of area supported by the
member

A; =the influence area of the member in square feet
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Equation (2.1) is applicable whenever A;>400 ft*>. The usage of live load
reduction is limited in that the reduction cannot exceed 50 % (L..q > 0.5Lg) for
members supporting one floor and cannot exceed 60 % (L,.q > 0.4 Ly) for members
supporting two or more floors. Live load reductions do not apply for live loads in
excess of 100 psf, except for members supporting two or more floors, in which case
the live load can only be reduced up to 20 %.

Example 2.2 For the interior beam of Example 2.1, determine the reduced
live loads.

Solution The influence area, A;, for the beam is:
A; =2 x 9 x 30 = 540ft*

Because this area is larger than 400 ft?, a reduced live load may be used in the
design of the beam. The reduced design live load is:

15
L =50]0.25 4 ——=| =50 x 0.895 = 44.8psf
[ \/540} P

Thus, the reduced design live load on this beam is:
wy = 44.8 x 9 = 4031b/ft

rather than the previously calculated load of 450 Ib/ft.

2.6 Continuity in Reinforced Concrete Construction

Many readers may have encountered only statically determined structural elements.
These are simply supported beams (with or without cantilevers at their ends),
cantilevers fixed at one end and free to move at the other, simple posts, and so
on. These elements are all characterized by needing only the equations representing
static equilibrium (}_H =0, >,V =0, > M = 0) to solve for the reactions.

A review of what “reactions” means may be needed here. A building element
does not exist in a stand-alone vacuum. It is connected to other elements. At a point
of connection the free relative displacement between the element under study and
the rest of the structure is denied. This denial of free movement results in the
transmission of a force (or moment) at the connection between the supporting and
the supported elements. Look at Figure 2.5a for example. Here a beam end is
supported on a wall. Elsewhere within the span the beam is free to deflect, or move
vertically. But this ability to displace vertically is denied at the place of the support.

Figures 2.5b, ¢ show the symbols of a hinge type of support and a roller. In the
hinge support, the two relative displacement components (vertical and horizontal)
are denied between the beam (the member under investigation) and the support
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d e

Figure 2.5 The meaning of the different support conditions: (a) wall supporting a beam (roller),
(b) a hinge support, (¢) a roller support, (d) wall supporting a beam (fixed), (e) a fixed support

Figure 2.6 Joist before and —1 End rotation
after deformation

below it. Thus, vertical and horizontal forces could be transmitted at the point
between the beam and the support. (The forces coming from the support to the
supported member are called reaction forces.) At a roller support (Figure 2.5¢) only
relative vertical displacement is denied; the beam could still freely roll horizontally
without resistance. Correspondingly only a vertical force could be transmitted
between the beam and the support. Figure 2.5d shows a beam end built into a
large mass. The beam end cannot move horizontally or vertically, and it cannot
rotate with respect to the mass. This condition is called fixity. The usual symbol of
fixity is shown in Figure 2.5e. In this condition, horizontal force, vertical force, and
a moment may be transmitted between the member and the support at that location.

All of these support conditions are quite familiar to students who have had a first
course in structures. These support conditions represent what may be called abso-
lute conditions: The displacement (vertical, horizontal, or rotational) is either freely
available, or completely denied. As will be pointed out later, there is an infinite
number of conditions in between, especially as related to rotations. Consider, for
example, a flexible joist supported by a wall or beam at its ends (Figure 2.6). The
mere supporting certainly precludes vertical displacement of the joist, thus a force
transfer occurs. An action force is transmitted from the joist to the wall or beam, and
an equal but opposite reaction force is transmitted from the supporting element to
the joist. As the joist deflects under load, its supported ends can rotate freely; thus,
the moments at the ends are zero.

Reinforced concrete construction is monolithic, which means that members are
intimately built together with neighboring members. Slabs are continuous over
supporting beams and girders; beams and girders are continuous over supporting
interior columns, and so on.

Figure 2.7 illustrates the point. The slab in the beam and slab structure is
continuous in both horizontal directions over the beams. The beams are continuous
over other beams or columns.

A simple problem is presented here to clarify the concept. Admittedly, this
problem does not occur in reinforced concrete structures, but it serves to illustrate
the concept. A continuous structural member is represented by an imaginary center
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Figure 2.7 Beam and slab floor framing
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Figure 2.8 Deformations and moments in a two-span beam
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line (see Figure 2.8). On this two-span beam, Span 2 is larger than Span 1. If the

loads are about the same, Span 2 will deflect more. Consequently this deflection

will try to force Span 1 to curve upward slightly near the center support to follow
Span 2. (The tangent to the deformation curve will rotate toward Span 2.) Study of
the deformation curve shows that the beam bends into an upward curvature, that is,
tension develops at the top of the beam, between the two points of inflection (where
the moment in the beam is zero), whereas elsewhere the beam bends downward,
resulting in tensions at the bottom. The moment diagram is shown below the
deformation line of the beam. The moments are referred to as positive when tension

is on the bottom, and negative when tension is on the top.
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The deformation line in Figure 2.8 shows that the longer span (Span 2) will force
the beam to rotate toward itself at the center support. The resistance against this
rotation comes from the bending stiffness of the member in Span 1. Stiffness is the
ability of a member to resist deformation. There are several different types of
stiffness, such as flexural, shear, axial, and torsional. Each type refers to a specific
ability to resist a certain type of deformation. The greater the stiffness, the more is
the effort required to bring about the specific deformation.

The flexural stiffness of a member is linearly related to the moment of inertia, /,
which is a cross-sectional property, and to the modulus of elasticity, E, the ease of

extendibility or compressibility of the material; and is inversely related to the

EI
length, ¢, of the member. Thus, if K represents the flexural stiffness, K = k7,

where k is a numerical constant that depends on the support conditions of the other
end of the member.

In the simple beam shown in Figure 2.8, if the flexural stiffness of Span 1 is
infinitely large, it will resist any attempt by Span 2 to rotate the section over the
center support toward itself. Hence the condition for Span 2 will approach that of
full fixity at its left end. On the other hand, if the stiffness of Span 1 is very small, it
will offer very little resistance against the efforts of Span 2 to rotate freely at the
center support. Thus, as far as Span 2 is concerned, such a condition might be a
“simple support,” regardless of the continuity.

2.7 Propagation of Internal Forces

The free-body diagrams that resulted from the continuity are shown in Figure 2.9.
Double subscripts identify the locations of shears and moments. Thus, if the first
span is from a to b then V,;, represents the shear in that span at end a, and so on.

The two-span continuous beam is dissected to show the propagation of loads and
moments. Each “cut” shows every force and every moment as they act on the part
under consideration. For example, My, is shown as a clockwise arrow on Span
1, whereas it is shown as a counterclockwise arrow on the small part over the
b support. These are two manifestations of the same moment, a concept well known
from Newtonian physics (action and reaction). Similarly, Vy, is shown at the same
cut as an upward force on Span 1 that comes from the support to the beam, as well
as a downward force that comes from the beam to the support.
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Figure 2.9 Propagation of internal forces on a two-span beam
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Figure 2.10 Deformations of a three-bay and three-story monolithic structure

Consider now the following self-evident statement: When a structure is in
equilibrium, every part must be in equilibrium. Thus the well known equilibrium
conditions of ) _H =0, >V = 0,and Y M = 0 apply for each individual part that
is arbitrarily cut out of the structure. For example, the reaction force on the left-
hand support, R,, must equal the shear force, V,y, transferred by the beam to that
support. If we consider that Y, M = 0on the same piece, we conclude that M, must
equal zero, for there is no other moment on the piece to maintain equilibrium. On
the small piece just above the b support, the reaction force from the support R, must
equal the sum of Vi, and Vy.. Note also that My, = My, in order to satisfy equilib-
rium conditions.

Figure 2.10 shows a three-story-high, three-bay-wide reinforced concrete frame
with all the joints numbered. The two outer bays are shown as somewhat wider than
the inner bay. Thus, when they are all loaded in an approximately uniform way,
the larger spans will try to rotate the ends of the inner bay (between column lines
B and C) toward themselves. Thus, the joints on line B will rotate counterclockwise,
and the joints on line C will rotate clockwise. At the exterior ends, the loads on
the beams will rotate the joints on line A clockwise, and the joints on line D
counterclockwise.

From the study of the deformation lines, we can draw some important general
conclusions. The beams will have two curvature reversals (inflection points or
points of counterflexure). They curve downward in their midspans, resulting in
tensions at the bottom (positive moment region). They will curve upward near their
ends, resulting in tensions at the top (negative moment region).
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Figure 2.11 The propagation of forces and moments between beams and columns

The columns on the two upper floors, due to the forced rotations of their ends,
will bend into a double curve (S curve). Depending on the amount of fixity available
at the footing level, the lower columns will bend either into a double curve when the
fixity at the base is significant, or into a single curve when the resistance against
rotation at the base approaches that of a hinge.

Figure 2.11 shows free-body diagrams for part of the frame. Again > H =0,
>V =0,and> M =0 apply for each individual part. Thus, the axial force in
beam 13-14 must equal the shear at the top of column 9—13 for Node 13 to be in
equilibrium. The axial force in the column equals the shear at the left end of beam
13—14. And the moment at the end of column 9—13 must maintain equilibrium with
the moment at the left end of beam 13—14. Mathematically:

ForZH =0 Vizo—Pi31a=0
FOI‘Z V=0 P13_9 — V13_14 =0
FOI‘ZM:O M13_14—M13_9:0

The reader may want to study and write out the equilibrium equations for other free-
body parts.
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2.8 On the “Fickleness” of Live Loads

As stated earlier, loads permanently attached to the structure are referred to as dead
loads, and transitory loads are referred to as live loads. The nature of live loads is
that sometimes they are there and sometimes they are not, so it is entirely possible
that the live loads are fully present in one bay, while completely missing in other
bays. Figures 2.12a—d show the effects of loading one span at a time on a four-bay
continuous beam. In each case the deformation and the moment diagram are shown
schematically under different /ive loading conditions. Deformations are shown as
dashed lines.

A study of the deformation lines and the moment diagrams of these four different
cases leads to the following conclusions:

1. The largest positive moments due to /ive loads in a given span occur when live
loads are on that span and on every second span on either side. This is known as a
checker-board pattern loading. See Figure 2.13a, b.

2. The largest negative moments due to /ive loads near a support occur when live
loads are on neighboring spans and on every other span on either side. See
Figure 2.13c—e.

Thus, on a continuous beam the number of live loading patterns that result in
maximum moment effects equals the number of supports. For example, in a four-
span beam with five supports, five different live loading patterns need to be
considered to find the possible absolute maximums in each of the positive and
negative moment zones.

These are only the moments that are due to the effects of the live loads. The
cases, shown in Figure 2.13a—e must be combined with the moments resulting from
the dead loads, that is, the loads that are permanently present on the structure,
whose effects are not variable. The combinations of the dead load moments and the
live load moments will result in a maximum possible moment at every location
along the beam. The live and dead loads, when plotted into a graph such as the one
shown in Figure 2.14, produce a diagram that represents all these combinations.
This is called the diagram of maximum moments or the moment envelope.

Two important points must be noted here. Figure 2.14 shows that in some
portions of each span, only positive moments occur, and in others, only negative
moments, regardless of the distribution of the live loads. There are portions of each
span, however, where either positive or negative moments may occur. This fact is
significant in that it affects how a continuous beam must be reinforced.

The second point is that so far we have assumed that the continuous beam is
similar to a mathematical line supported on knife-edge supports. The result of such
a simplified assumption is that the reactions appear as concentrated forces and the
moment diagram has a sharp peak (cusp) at those points. This result, however, is not
in conformance with the physical reality. Supports (columns) have a width over
which the reactions are distributed. This modifies the moment diagram within
the width of the support to something similar to the sketch shown in Figure 2.15.
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Figure 2.12 (a) The effects of live loads on span A-B. (b) The effects of live loads on span B-C.
(c) The effects of live loads on span C-D. (d) The effects of live loads on span D-E

The exact shape of the moment diagram at this location is quite immaterial, for both
theoretical studies and numerous test results clearly show that the critical negative
moments in the beam occur at the faces of the supports. (Refer to ACI Code,
Section 7.4.2.1 and Section 9.4.2.1)
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Figure 2.13 (a) Live loads in the first and third bays. Largest positive moments in first and
third spans. (b) Live loads in the second and fourth bays. Largest positive moments in second and
fourth spans. (c¢) Live loads in the first, second, and fourth bays. Largest negative moments
at second support. (d) Live loads in the second and third bays. Largest negative moment at
third support. (e) Live loads in the first, third, and fourth bays. Largest negative moment at
fourth support
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Figure 2.15 The true moments in beams at columns

2.9 The ACI Code Moment and Shear Coefficients

The complexities involved in the design of a very simple continuous beam may
seem quite bewildering. In practice, however, a vastly simplified procedure is
available in most cases.

Any moment along a span may be expressed as follows:

M, = coefficient - w, (2 (2.2)

where

w, is the intensity of the total factored load (see Section 2.10), or the load per unit
length. This variable should be evaluated and applied separately for each span
if the live loads are different in each one

¢, 1is the net (clear) span for positive moment or shear, or the average of adjacent
net (clear) spans for negative moment
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When certain conditions are satisfied, the ACI Code permits the use of approx-
imate moments and shears in the design of continuous beams and one-way slabs in
lieu of the detailed analysis for maximum moments outlined in the previous section.
Approximate moments and shears usually provide reasonable and sufficiently
conservative values for the design of these horizontal flexural elements.

ACI Code Section 6.5.1 requires the following conditions for the use of these
coefficients:

»  There are two or more spans The beam or slab is continuous; that is, the
approximation does not apply to a single span only.

= Spans are approximately equal, with the longer of two adjacent spans not
greater than the shorter by more than 20 % The larger span tends to pull the
shorter neighboring span upward if there are significant differences between
adjacent spans.

= Loads are uniformly distributed.

= Unit live load does not exceed three times the unit dead load This is usually the
case with reinforced concrete structures.

= Members are prismatic This means that the cross section is constant along the
length of the span.

The ACI Code design moments and shears are applicable when these precondi-
tions are satisfied. Table A2.1 and the accompanying figure list the coefficients for
the moments and shears according to the end conditions and number of spans. In the
authors’ experience, the ACI coefficients are somewhat more conservative than
values obtained from detailed computerized analysis; thus, their use will result in
additional safety for the structure.

In actual practice the use of simplified methods to find the design moments and
shears is in decline. Many proprietary computer programs are available that not
only help evaluate all the most critical loading combinations, but also aid in the
design of the required reinforcing. These programs require the sizes of the members
as input, for the analysis of an indeterminate structure. (The result, or the output,
depends on the relative stiffnesses of the members.) Thus, the application of these
coefficients is still very useful for obtaining quick results that can be used in
preliminary sizing of the members, which in turn enables the development of
input data for a more detailed computerized analysis.

2.10 The Concept of Strength Design

The first design theory of reinforced concrete, developed near the end of the
nineteenth century, simply borrowed its approach from the prevailing theory of
elasticity. The method assumed that reinforced concrete elements at usual actual
loads will have stress levels that might be considered to fall within the elastic zone.
Figure 1.8 indicates that concrete in compression may follow an approximately
linear stress/strain relationship as long as the stress level does not exceed 50 % of its
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ultimate strength level. Steel reinforcing behaves elastically below its yield point.
So the concept of working stress design (WSD) was not an unreasonable method-
ology, and the underlying calculation technique is still used when estimating
deformations (deflections) in structural elements. (See Section 3.3 for a more
detailed discussion.)

The WSD method, however, has many conceptual drawbacks. First and fore-
most, it does not account for differences between dead and live loads. Rather, it
simply lumps them together and assigns a “collective” margin of safety, regardless
of the origin of the load. Dead loads can be estimated much more accurately than
can live (transitory) loads; thus, logic dictates that the part of the load that comes
from dead loads could use a much smaller safety factor against failure. On the other
hand, the magnitude and the distribution of the live loads are much more uncertain.

Another, and equally important, drawback of the WSD method is that it inac-
curately assumes that concrete behaves in a linear fashion with increasing stress
levels. Merely knowing a stress level does not ensure a correct prediction of an
undesirable level of stress (i.e., failure), because steel has a linear stress response to
strain whereas concrete has a nonlinear one.

The third, and perhaps the most significant, drawback of the WSD method is that
it is unimportant to know the stress level in a structure at a given loading. What is
important is to know how much overload the structure can take before it fails.

Strength is needed to have a safe design, or adequate strength, so that the
structure does not fail whether the actually occurring loads were underestimated
or excess load is placed on the structure. Thus, load factors (i.e., values used to
magnify the actual loads [called working or service loads]), or moments or shears
therefrom, are used so as to create a demand on the strength. The concept of demand
states, for example, that the structure (or, more precisely, a given element under
investigation) must have an ultimate strength (i.e., before it fails) not less than those
given by Equation (2.3a) (ACI Code, Section 5.3.1).

U=14D
or U=12D+ 1.6L+ 0.5(L, or SorR)
or U=12D+1.6(L,orSorR)+ (1.0L or 0.5W)
or U=12D+1.0W +1.0L+0.5(L, or SorR) (2.3a)
or U=12D+1.0E+1.0L+0.2§
or U=09D+ 1.0W
or U=09D+1.0E

where

U =required (ultimate) strength

D =effect from dead loads

L = effect from live loads

W =effect from wind loads

E =effect from seismic (earthquake) loads
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L, = effect from roof live loads
S =effect from snow loads
R =effect from rain loads

The multipliers applied to the effects in the various load combinations are the
load factors. These guard against accidental overloading of the structure. They also
take account of the imprecision in establishing the magnitude, or the distribution, of
the loads. Thus, for example, greater load factors are assigned to live loads (or wind
loads, or earthquake loads) than to dead loads to account for greater uncertainty.

Also, dead loads sometimes actually help to counteract the effect of wind or
earthquake loads. For these conditions a more conservative approach is to presume
that calculated dead loads are somewhat less than assumed. Such a concept is
accounted for by the sixth and seventh load combinations in Equation (2.3a). These
load combinations can be simplified by combining all live loads as L and using the
larger load factor. In addition, for U = 1.4D to govern the design, the condition of
D > 8L must exist, which is not very probable in most cases. Therefore, the load
combination given below will be used for the member supporting floor loads
(Equation (2.3b)), and for members supporting roof loads only (Equation (2.3c))
throughout this book (these typically include slabs, beams and girders):

U=12D+1.6L (2.3b)
U=12D+16L, (2.3¢)

where D includes the effects from all the dead loads and L is due to all the live loads.
For members that support both floor and roof loads (neglecting the effects of wind
or earthquake loads), the governing load combination from Equation (2.3a) are
(these typically include columns and walls):

U=12D+16L+05L, (if L>1.83L,)
or (2.3d)
U=12D+16L, +1.0L (if L < 1.83L,)

The effects of fluid, F, lateral earth pressure, H, and forces due to restraint of
volume change and differential settlement, T, can also be incorporated in the load
combination with their corresponding load factors. Refer to ACI Section 5.3 for
details.

2.11 Design (Ultimate) Strength

The ultimate strength of a section within a structure (as discussed in detail later for
separate and combined cases of bending moment, shear, torsion, and axial load) is
calculated from the sizes (dimensions) of the section, the materials (steel and
concrete) employed, and the amount of reinforcing used. This calculation gives
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us the supply, or the resisting strength furnished by the section. In flexural design,
for example, this calculated quantity is designated as M,,, which is called nominal
moment strength or nominal resisting moment. Nominal strength is the calculated
strength, provided that everything goes according to plan; that is, the concrete is at
least as strong as assumed in the design, the dimensions of the beam, slab, or any
designed element is exactly as shown on the plans, the required reinforcing is
placed exactly where it was assumed in the calculations, and so on. But experience
shows that there is no such thing as perfectly executed plans, even in the best
circumstances. ACI 117-90, “Standard Tolerances for Concrete Construction and
Materials” lists tolerances that are reasonable to expect when good workmanship is
provided. Furthermore, the calculation processes employ simplified mathematical
models that should be considered as only reasonable approximations of reality. The
design methodology also tries to reflect the relative importance of different struc-
tural components. The failure of columns, for example, may result in collapse of an
entire building, but the failure of a beam typically causes only limited local damage.

In light of all these possible detrimental effects to the assumed strength, a
strength reduction factor (¢-factor), sometimes referred to as an under-strength
factor, is introduced to the above defined nominal strength. This factor accounts for
the fact that the section’s strength may be less than assumed in the analysis.

Thus, we arrive at the concept of useable strength (or supply), which is the
product of the nominal strength and the strength reduction factor.

Different ¢ factors are used for different types of effects. Equation (2.4) gives
some ¢ factors.

Flexure ¢ = 0.90
Shearandtorsion ¢ = 0.75 (2.4)

Axial compression (columns) ¢ = 0.65

Hence the ultimate strength design (USD) method can be stated as the following
inequality:

Demand < Supply
or required ultimate strength < useable design strength

or effects of loads < resisting capacity of member

And so for a beam subjected to gravity (dead and live) loads, for example,
Equations (2.5)—(2.8) represent this concept.

M, =12Mp + 1.6M; (2.3)
and

M, < OM, (2.6)
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Defining the design resisting moment, My, as

Mg = oM, (2.7)
the following must hold for the beam to be safe:

M, < Mg (2.8)

On the left side of Equation (2.8) is the demand. The demand depends only on
the span, the type of support (e.g., simply supported, cantilevered, etc.), and the
loads. All this information comes from the static analysis.

On the right side of Equation (2.8) stands the supplied strength of the section
(design resisting moment, My), which depends on the size and shape of the cross
section, the quality of the materials employed (f(.’ and fy), and the amount of
reinforcing furnished. Thus, the left side of the inequality is unique, but the right
side is undefined. An infinite number of different sizes, shapes, and reinforcing
combinations could satisfy a given problem. The only rule is that the supplied
useable strength be larger than (or at least equal to) the required strength.

Example 2.3 Assume that the beam in Example 2.1 is simply supported. Calculate
the required ultimate flexural strength (factored moment from the loads). Use the
permitted reduced live load.

Solution

Mp =930 x 30°/8 = 104,625 Ib-ft
M, =403 x 30%/8 = 45,3381b-ft

Thus:

M, =12 x 104,625+ 1.6 x 45,338 = 198,091 1b-ft (or 198.1kip-ft)

The same result could be obtained by using factored loads (the loads multiplied by
their respective load factors).

w, = 1.2 x 930 + 1.6 x 403 = 1,761 1b/ft = 1.761 kip/ft
and
M, =1.761 x 302/8 = 198.1 kip-ft

Notice that when finding factored loads from service or working loads, the
nature of the loads does not change; only their magnitudes are multiplied by the
corresponding load factors. If a service load is distributed, its factored value is also
distributed; if the service load is concentrated, its corresponding factored load is
also concentrated. The following example clarifies this point.



58 2 Rectangular Beams and One-Way Slabs
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Figure 2.16 Example 2.4 (service loads)
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Figure 2.17 Example 2.4 (factored loads)
Example 2.4 Determine factored loads for the beam shown in Figure 2.16.
Solution For the left half of the beam:

Wyl = 12WD + 16WL
war = 1.2 x 1.0+ 1.6 x 2.0 = 4.4kip/ft

For the right half of the beam:

Wy = 1.2WD+ 1.6WL
wpo=12x10+1.6x0=12kip/ft

The concentrated load is a live load only:

P,=12Pp+1.6P,
P,=12x041.6 x 10 = 16kip

The factored loads on the beam are shown in Figure 2.17.

2.12 Assumptions for the Flexural Design of Reinforced
Concrete Beams

To this point we have discussed the calculations for the left side of the design
Equation (2.8) (demand) in some detail. In this section we develop the right side of
the design equation. To establish the supply, or the ultimate flexural strength, of a
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Figure 2.18 Definition of symbols used in a rectangular beam section

reinforced concrete section, we must discuss the stages of stress that a reinforced
concrete section experiences before reaching failure. This discussion of these
different stages of stress under increasing bending moments will also illuminate
the assumptions made in developing expressions for calculating the ultimate
strength of the section. To keep the discussion simple, we will examine a beam
with a rectangular cross-section like the one shown in Figure 2.18.

The symbols in Figure 2.18 will be used throughout this book. They are the
standard ACI symbols used with reinforced concrete. Thus:

b = width of the section

h =the overall depth of a section

d =the effective depth of a section, or the depth from the centroid of the tension
reinforcement to the compression face

A =the sum of the cross-sectional areas of the reinforcing bars

Notice that the reinforcement is not placed at the very bottom of the beam. The
first and foremost reason for this placement is to provide corrosion protection to the
reinforcement. The inner environment of concrete is highly alkaline (high pH
value) and helps to protect the reinforcement. The concrete cover also provides
fire protection to the reinforcement. Furthermore, the concrete surrounds the
reinforcing steel, which enables intimate bonding and allows the concrete and the
steel, two individual materials, to work together. The required minimum concrete
cover is given in Section 20.6.1.3.1 of the ACI Code. For unexposed beams it is
1.5 in. to the stirrups. (The stirrups, usually made out of #3 or #4 bars, will be
discussed in Chapter 4.)

Figure 2.19 shows a simply supported beam that has a simple rectangular cross
section made of plain concrete (homogeneous material). This type of beam is
almost never used in an actual building, but it will give us insight into the behavior
of concrete beams.

The uniformly distributed load (Figure 2.19a) represents the self weight plus
some superimposed load. The slightly exaggerated deflected shape is shown in
Figure 2.19b, and the moment diagram in Figure 2.19c. Attention will be directed to
the section where the bending moment is the greatest. This location is where the
stresses and the strains are also the largest.
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Figure 2.19 Elastic bending

R —

Section Strains Stresses

Figure 2.20 Linear distribution of strains and stresses

Figure 2.20 shows the cross section of the beam and the distribution of strains
and stresses if the beam is unreinforced. Figure 2.21 illustrates the distribution of
the strains and stresses in a 3-D form. As long as the bending moments are
small, that is, the resulting tensile stresses at the bottom are less than the ultimate
tensile strength of the concrete, the section will behave as if it were made of a
homogeneous, quasi-elastic material. The bottom is in tension, and the top is in
compression.

Direct your attention to the strain diagram first. Strain represents changes in
length. The strain distribution is linear from bottom to top.

The farther up or down a point is from the imaginary center, the greater the strain
in the beam. The largest tensile strains are at the bottom, whereas the largest
compressive strains are at the top. There is a line across the section where the strain
is zero. This is called the neutral axis. The straight-line distribution of strains is
known as the Bernoulli—Navier hypothesis. This distribution is called a “hypoth-
esis” because it results not from mathematical derivation, but from careful mea-
surements made on countless tests of many different materials, including concrete.
The distribution of stresses is also linear when the material follows Hooke’s law, as
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Figure 2.21 3D representation of linear strain or stress distribution

Figure 2.22 The internal couple in homogeneous beams

steel does below the so-called proportional limit. Stresses are forces acting on a unit
area. Thus, it is possible to determine the resultant for these forces. The resultant,
which is a tensile (T) or compressive (C) force, is equal to the volume of the stress
block, For example, if the largest compressive stress is f.max, then the sum of all the
compressive forces is given by Equation (2.9).

AT UARY) (2.9)
Similarly, the sum of all tensile forces is given by Equation (2.10).
T =", funsn < (') % ] (2.10)

These resultants will be located at the centroid of the wedge-shaped stress blocks,
as shown in Figure 2.22. Equilibrium requires that these resultants be equal in
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magnitude, and together they form an internal couple. The internal couple is
equivalent to the bending moment at the section.

Example 2.5 For the beam of Figure 2.22, assume » =12 in., h=24 in. and
M ax = 38.4 kip-ft. Determine the bending stresses and the equivalent tensile and
compression forces acting on the section.

Solution The section modulus is:
S=bxh/6=1,152in?
Thus the maximum stresses are:
Fnax = Mimax /S = 38.4 x 12/1,152 = 0.400ksi
Then
C=T=1/2x[0.400 x (24/2) x 12] =28.8k

The moment arm between the maximum stresses is z=2 x 24/3 =16 in.
The moment equivalent of this couple is:

_460.8kip-in.

C =T =288 x16
X z Xz X 0

= 38.4kip-ft

which agrees with the given moment, M, = 38.4 kip-ft.

The concept of the internal couple will become a very important tool in consid-
ering a reinforced concrete beam. If the beam in Example 2.5 has enough tensile
strength to withstand the applied 0.400 ksi (400 psi) tensile stress, the beam will
not fail. As discussed earlier, concrete has a rather limited tensile strength. The
modulus of rupture, which was said to represent the ultimate tensile strength of
concrete in flexure, is given in Equation (1.3).

As mentioned previously, the modulus of rupture is a statistical average (with a
considerable coefficient of variation) that is empirically derived from many labo-
ratory tests. At increasing loads, a magnitude very soon is applied at which the
beam’s tensile strength is exhausted. At that point, somewhere near the maximum
moment, the beam will crack. Without reinforcement, the crack will instantly travel
upward and the beam will collapse, as shown in Figure 2.23.

In the following discussion the beam is assumed to have flexural reinforcement.
Such a beam is shown in Figure 2.24. As long as the tensile stresses in the concrete
at the bottom of the section are less than the modulus of rupture, there will be no

/I

Figure 2.23 Bending failure of an unreinforced concrete beam
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Figure 2.24 Strain and stress distribution of a reinforced concrete beam prior to cracking
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Figure 2.25 Strains and stresses after cracking

cracks. At the location of the reinforcing steel, the concrete and the steel have
identical strains. The steel is bonded to the concrete, thus they must deform
together. But the two different materials respond differently to deformation because
they have a different modulus of elasticity, so the stresses will be different. In this
particular case the stress in the steel will be much larger than that in the concrete.

For example, assume a concrete with £/ = 3,000 psi. Then E. = 57,000+/3,000
= 3,122,000 psi = 3,122ksi. The modulus of elasticity of the reinforcing steel is
E;=29,000 ksi. According to Hooke’s law the stress equals the product of the
modulus of elasticity and the strain. So it follows that the stress in the steel will be
about nine times higher (the ratio of the two moduli of elasticity values) than the
stress in the concrete in the immediate vicinity. This ratio is usually designated as
n=Ey/E. and is called the modular ratio.

The concrete cracks under increasing applied forces, and it is the reinforcement
that carries the tension across the crack. The crack travels up to a height, then stops
somewhere below the neutral axis as seen in Figure 2.25. The shaded area represents
the uncracked part of the section. Where the strains are still small near the neutral
axis, the concrete is still able to transfer some tensile stresses (albeit very small), even
in the cracked section; however, the amount of tensile force represented by the still
un-cracked tensile stress volume is so small that it is simply neglected.

Assuming, therefore, that the concrete does not carry any tension after cracking,
the bending moment in the section is transferred across from one side of the crack to
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Figure 2.26 The internal couple after cracking

the other via the tension in the steel and the compression in the concrete, as seen
in Figure 2.26. This assumption simplifies the development of an appropriate
formula for the internal couple. The tensile component of this couple is at the
centroid of the reinforcing steel, while the compressive component is at the centroid
of the wedge-shaped compression block. Comparing Figures 2.22 and 2.26 indi-
cates that the T force now is concentrated at the centroid of the reinforcing.

In Figure 2.26 the compression stress block is represented as a triangular wedge
shape. This representation is more or less accurate as long as the compressive
stresses in the concrete remain quite low. Figure 1.8 shows the generic shapes of
the stress-strain curve of concrete in compression, and the assumption of linear
distribution of stresses may be justified up to approximately 0.5f;.

As the applied loads increase, there is a corresponding increase in bending
moments throughout the beam. Thus, many more sections away from the location
of the maximum moment will develop tensile stresses that exceed the concrete’s
ultimate tensile strength, resulting in the development of more cracks. While
theoretically the spacing between cracks is very small, it does not happen that
way, because the formation of a crack relieves tensile strains in the concrete in its
immediate neighborhood. Initially the cracks are very fine hairline cracks, and a
magnifying glass may be needed to locate them. These hairline cracks do not
indicate that there is anything wrong with the beam: They occur naturally in
reinforced concrete beams subjected to flexure under normal working load condi-
tions. In fact, the reinforcement does not even do much work until after the concrete
has cracked.

As the bending moment at the section increases, the magnitude of T and C, the
tension and compression components of the internal couple, must also increase. In
the reinforcement this is simply reflected as an increase in stresses. Correspond-
ingly, the steel also will experience greater strains and elongation. As long as the
strains in the reinforcing are less than the yield strain, the relationship between
stresses and strains remains linear.

In the concrete, however, the increased compression strains result in a nonlinear
response of the stresses while maintaining the required increase in the volume of the
stress block. The concrete stress block becomes more and more bounded by a
curvilinear surface. Ultimately, the contour will resemble the one shown in
Figure 2.27. This diagram is the same as the ones shown in Figure 1.8, except the
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Figure 2.27 Typical curvilinear stress distribution in the concrete at ultimate strength

axes are reversed. At the origin, the strains and stresses are zero, just like on the
beam section at its neutral axis. At the top there is a strain value of 0.003, which is a
value selected by the ACI Code (somewhat arbitrarily) as the ultimate useful strain.
Somewhere between these two limits (in the neighborhood of 0.002) the peak stress
(the maximum compressive strength or simply compressive strength) occurs.
In calculations this value is designated as f; it is the specified compression strength
of the concrete, as already mentioned in Section 1.6.1.

On the tension side (i.e., at the reinforcement), Figure 1.17 shows the stress-strain
curve of the reinforcing steel, or the response of the steel to increasing strain values.
This curve clearly shows that the steel has significant residual strength even after it
has yielded, but this residual strength (the strength gained in the strain hardening
zone) is neglected. Thus, we assume that the stresses will linearly increase with
increasing strains up to yield, after which ever-increasing strains produce no
corresponding increase in stresses. Scientifically, this curve is known as a bilinear
stress-strain diagram, and the response of the steel as elasto-plastic behavior. Fig-
ure 2.28 shows the assumed stress-strain diagram for 40 and 60 ksi steel, respectively.

2.13 Different Failure Modes

As a first case assume that a beam has a relatively small amount of reinforcing steel.
Such a beam is shown in Figure 2.29. With increasing demand on the internal
couple the stresses in the steel will reach yield before the demand on the concrete
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Figure 2.28 Assumed bilinear stress-strain diagram of reinforcing steel
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Figure 2.29 Tension-controlled failure of a reinforced concrete beam

compression block reaches the ultimate concrete compressive strength. With
increasing elongation in the steel, still prior to yield, the cracks will become
wider and more visible. When the steel starts to yield (i.e., elongate rapidly), the
relatively narrow crack at the bottom opens up. This forms a wedge that shifts the
neutral axis upward, thus decreasing the area available for the compressive stress
block, until the concrete crushes on the compressive side as a secondary failure.
The primary cause of failure was due to the yielding of the reinforcement. In a
somewhat misleading way such sections are sometimes referred to as
underreinforced sections. This unfortunate expression implies that the section is
underreinforced as compared to the capacity of the compression part of the section.
(In Section 2.17 we will discover that the behavior of an under-reinforced section is
classified as tension-controlled or transition-controlled depending on the level of
tensile strain in the steel at the time of failure.)

As a second case consider a beam that has a relatively large amount of
reinforcing. For such a beam the steel will be able to develop the T part of the
internal couple without yielding. As demand on the compression stress block
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increases, however, the capacity to provide a sufficiently large volume of concrete
stresses will be exhausted, reaching the state shown in Figure 2.27. In such a case
the primary failure occurs in the concrete. These types of sections are referred to as
overreinforced, that is, the beam has more reinforcing in the section than what
could be used with the largest possible compressive stress block.

A casual observer may care little about what initiated the failure of the beam.
But the two modes of failure vastly differ. The first mode, in which the primary
failure happens due to the yielding of the reinforcing, is a ductile process and is
preceded by significant cracking, fairly large deflections, and similar warning signs.
The beam, in a way, tells you that something bad is about to happen.

In the second mode there are no such obvious signs of impending failure. The
reinforcement, in providing the tensile part of the internal couple, experiences
relatively low strains, so the few hairline cracks do not serve as warning signs.
Consequently when the failure occurs, it happens in a sudden, explosive way—the
concrete failure in compression is very abrupt.

Between these two different failure modes is a special case, known in the literature
as the balanced-failure condition. Balanced failure is a theoretical limit dividing the
underreinforced and overreinforced failure modes. We feel that this is an unfortunate
terminology, because the word balance (i.e., equilibrium) should not be used to
describe a failure mode that is anything but the maintenance of balance. We would
prefer to use the expression simultaneous failure. But whatever terminology is used,
it refers to the amount of reinforcement in a section that causes the concrete at
the compression side to fail at exactly the same time the steel begins to yield. So the
strain in the steel will be the yield strain, and the strain at the extreme edge of the
concrete will be 0.003. This balanced condition is depicted in Figure 2.30.

2.14 The Equivalent Stress Block

A quick look at Figure 2.27, or at its 3-D representation in Figure 2.31, should
convince anyone that it would be impractical to calculate the value of C by figuring
out the volume of the stress block. The calculation would require integral calculus,
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Figure 2.31 True stress distribution in the concrete at ultimate strength

even if there was an easy way to express the shape of the curve mathematically.
A reasonable approximation can be obtained by substituting a stress block whose
volume is about the same as the true stress volume enclosed in Figure 2.31, and
whose centroid is fairly close to that of the true stress volume. This is known as the
equivalent stress block, and is shown in Figure 2.32.

The relationship between the true stress block and the equivalent stress block has
been established by studying many concrete stress-strain curves. The simple rect-
angular block has been adopted for its simplicity and ease of calculation. If a
uniform stress value of 0.85f! is adopted, then only the relationship between the
depth of the equivalent stress block a and the distance of the neutral axis from the
top c is needed. This relationship is given in Equation (2.11).

a=pc (2.11)

To account for the somewhat different shapes of the stress-strain curves of different
strengths of (refer to Figure 1.8) concrete, B, is given by the ACI Code (Section
22.2.2.4.3) as follows:
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Figure 2.32 The equivalent stress block

B; =0.85 for concrete strength f! up to and including 4,000 psi. For strengths above
4,000 psi, Py shall be reduced at a rate of 0.05 for each 1,000 psi
of strength in excess of 4,000 psi, but f; shall not be taken less than 0.65

Equation (2.12) gives the expression to calculate p; for f/ > 4,000 psi.

1 4,000
B, = 0.85 — 0.05 (fc1076()> > 0.65 (2.12)

The equivalent stress block makes it extremely easy to manipulate the expression to
calculate the ultimate (design) resisting moment of a given section. The moment
arm of the internal couple, z, can be calculated using Equation (2.13).

a
=d—— 2.13
s=d-} 2.13)

The numerical value of the internal couple can be expressed in two different
ways, using the designation of M,, for the nominal resisting moment and My for the
design resisting moment. These moments can be calculated using Equations (2.14)
and (2.15), respectively.

M,=Tz or M,=Cz (2.14)

Mg = oM, = $Tz = §C:z (2.15)
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where

T=A,f, (the area of the reinforcing multiplied by the yield stress
of the steel)
C = 0.85f/ab (the volume of the equivalent stress block)

Equilibrium requires that T be equal to C, thus

Af, = 0.85f!ab (2.16)

Solving this equation for a gives Equation (2.17) for calculating the depth of the
equivalent stress block.

a= ASfy
~0.85f/b

(2.17)

Note that @ will increase as larger amounts of reinforcement, or reinforcing steel
with greater strength is used. On the other hand a will be smaller if a wider section,
or stronger concrete is used. Note, however, that a is independent of the depth of the
section.

2.15 The Steel Ratio (p)

Sometimes it is useful to express A as a fraction of the working cross section, which
is the product of the width b and the effective depth (or working depth) d. The term
steel percentage or, more accurately, steel ratio refers to the ratio between the area
of the reinforcing steel and the area of the working concrete section.

The steel ratio is calculated using Equation (2.18).

A,

=5 (2.18)

p

Note that p is a nondimensional number, area divided by area, so it is not a
percentage per se. But it can be made into a percentage by multiplying it by 100.
For example, assume the following beam data: b=12 in.,, /=24 in., A;=3
#6 bars =3 x 0.44 = 1.32 in.%, and #3 stirrups in the beam.

Then d=24 — 1.5 in. (concrete cover) —0.375 in. (diameter of the stirrup) —
0.75 in. (diameter of #6 bar)/2=21.75 in. Thus, the steel ratio is

A, 132
— A % 0.00506 (or 0.506 %).
P = b T 12(21.75) (or )
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2.16 The Balanced Steel Ratio

Section 2.13 discussed the two possible different failure modes of reinforced
concrete beams in bending. The theoretical dividing point between them, the
“balanced failure,” was also discussed. In this case the steel in the outermost
layer (if there is more than one layer) reaches its yield strain exactly when the
maximum compressive strain in the concrete reaches the 0.003 value. The strain
distribution at balanced failure resembles the one shown in Figure 2.33. In order to
cover the more general (although not so frequent) case of multilayer reinforcing in
the beam, a distinction is made between d, the working depth, and d,, the depth to
the outermost layer of reinforcing on the tension side. When there is only one layer
of reinforcement, d =d,.

From the similarity of the two triangles above and below the neutral axis,
¢p, the depth of the neutral axis at balanced failure can be expressed as a function
of d; and f;.

¢ _ 0.003 (2.19)
d[ — Cp S,y '
Solving for ¢,
0.0034;
=7 2.20
= 0.003 + e, (220)
because
_h S (2.21)

& = E. 7 29,000,000
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We can substitute and rearrange to obtain

87,000

= 2.22
87,000 +f, ' (2:22)

Cb

In these equations f is substituted in psi.
With this information the depth of the equivalent stress block at balanced failure
can be calculated using Equation (2.23).

Auf,

) 2.23
0.85f7h (223)

ap = Pycp =

where Ay, is the theoretical amount of reinforcing needed to cause a balanced
failure mode.

When ¢, from Equation (2.22) and A, =p,bd from Equation (2.18) are
substituted into Equation (2.23).

87,000d,  pybdf,

187,000 +f,  0.85f!b

the steel ratio for balanced failure, p;, can be calculated using Equation (2.24).

0.85f, 87,000 d,
Py = By )
J 87,000 +f, d

(2.24)

If d, = d, which means there is only one layer of reinforcing steel (by far the most
frequent case), then Equation (2.24) becomes Equation (2.25).

085/ 87,000
~f, 87,000 +f,

Py (2.25)

Note that the value of p, depends only on the selected materials (£ and f;) and is

. . . . d
independent of the size of the section. (The ratio j becomes necessary only when

there is more than one layer of reinforcement.)

2.17 Elaboration on the Net Tensile Strain in Steel (g,)

In an effort to generalize the approach for members subject to both bending and
axial compressive forces, the ACI Code strives to treat these combination cases
together. The different failure modes were discussed in Section 2.13. These modes
are distinguished by whether the primary failure is due to yielding of the steel or to
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crushing of the concrete. The former is called tension-controlled failure, and the
latter is compression-controlled failure. It was also previously noted that tension-
controlled failure results in highly desirable ductility, whereas compression-
controlled failure is abrupt and nonductile in nature. Unfortunately, as will be
discussed later in Chapter 5, the desire to have only ductile tension-controlled
failure modes cannot always be satisfied. But in flexural members, at least we can
control the failure behavior by using no more steel than an amount that ensures the
desirable ductility. In the past this was accomplished by limiting the reinforcement
ratio, p, to 75p, in flexural members. Since 2002 the ACI Code has adopted a new
approach that is a better integration of dealing with members subject to axial
stresses whether from flexure, or axial compression, or both. If ductile failure
mode cannot always be assured, then the use of a larger safety factor against a
nonductile type of failure is warranted. This larger safety factor is obtained by
regulating the ratio between the useful ultimate moment or design resisting moment
(Mg = $M,) and the nominal ultimate moment (M,,). This requires only an adjust-
ment in the ¢ (strength reduction) factor.

The ACI Code (Section 21.2.2) defines three different types of section behavior:
tension-controlled, compression-controlled, and a transition zone, which is the
zone between the tension- and the compression-controlled failure zones. Figure 2.34
shows a graphical representation of these zones, and defines and separates the three
regions. Theoretically the division between compression-controlled failure and
tension-controlled failure is where e,=g,. In other words, the section is
compression-controlled if the strain in the steel is less than the yield strain; and is
tension-controlled if the strain in the steel is greater than the yield strain when the
compression strain in the concrete reaches the limit of 0.003. For design purposes,
however, the ACI Code requires a safely assured tension-controlled section; thus, it
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Figure 2.35 Strain distribution and net tensile strain (g,) at behavior limits: (a) compression-
controlled sections; (b) tension-controlled sections; (¢) transition-controlled sections
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defines a section as tension-controlled only when the steel strain at ultimate strength
is greater than 0.005. Between the two limits, yield strain (g,,) and 0.005, the Code
defines a transition zone with lowered ¢ values.

Note that the ACI Code allows &, for flexural members to be as small as 0.004 at
ultimate strength. A somewhat diminished ¢ factor, however, is required in
conjunction.

It may be helpful here to repeat what was discussed in Section 2.13 in a
somewhat different format. Figure 2.35 defines graphically the behavior of
reinforced concrete sections.

1. A compression-controlled section is a reinforced concrete section in which the
strain in the concrete reaches 0.003 at ultimate strength, but the strain in the steel
(g,) is less than the yield strain (g;,). (See Figure 2.35a.) In other words, at the
ultimate strength of the member, the concrete compressive strain reaches 0.003
before the steel in tension yields. This condition results in a brittle or sudden
failure of beams and should be avoided. In reinforced concrete columns, how-
ever, a design based on compression-controlled failure behavior cannot be
avoided. As shown in Figure 2.34, ¢ = 0.65 is mandated for this case, which is
considerably less than the ¢ =0.90 that is used for tension-controlled sections.
The reasons for this additional factor of safety are: (1) compression-controlled
sections have less ductility; (2) these sections are more sensitive to variations
in concrete strength; and (3) the compression-controlled sections generally occur
in members that support larger loaded areas than do members with tension-
controlled sections.

2. A tension-controlled section is a reinforced concrete section in which the tensile
strain in steel (g,) is more than 0.005 when the compression strain in concrete
reaches 0.003 (see Figure 2.35b). In other words, when a section is tension-
controlled at ultimate strength, steel yields in tension well before the strain in the
concrete reaches 0.003. Flexural members with tension-controlled sections have
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3.

ductile behavior. As a result, these sections may give warning prior to failure by
excessive deflection or excessive cracking, or both. Not all tension-controlled
sections will give both types of warning, but most tension-controlled sections
should give at least one type of warning. Both types of warnings, excessive
deflection and cracking, are functions of the strain, particularly the strain on the
tension side. Because tensile strains are larger than compressive strains in
tension-controlled sections at failure, the ACI Code allows a larger ¢ factor
(0.90) for these types of members.

A transition-controlled section is a reinforced concrete section in which the net
tensile strain in the steel (g,) is between yield strain (g,,) and 0.005 when the
compression strain in the concrete reaches 0.003. (See Figure 2.35c.) Some
sections, such as those with a limited axial load and large bending moment,
may have net tensile strain in the extreme steel (g,) between these limits. These
sections are in a transition region between compression- and tension-controlled
sections. In Figure 2.34, the line AC represents the Code-defined relationship
between ¢ and e, in the transition-controlled zone. The value of ¢ in the
transition zone can be calculated using Equation (2.26).

q):Al +Bl & (226)

where the coefficients A; and B; may be expressed as

~0.00325 - 0.9 ¢,

A =

: 0.005 — &,
g 025

' 0.005 — ¢,

Table A2.2a in Appendix A lists the values for the coefficients A; and B, for
commonly used reinforcing steels.

2.18 The Location of the Neutral Axis and Limit Positions

Consider the strain diagram shown in Figure 2.36. The location of the neutral axis at
ultimate strength (c) depends upon the net tensile strain of the steel. Observe the
solid and the dotted lines. Because the strain at the compression face is constant
(0.003), ¢ becomes smaller as the steel strain increases. Using similar triangles of
the strains above and below the neutral axis, an expression can be derived to
calculate the depth of the neutral axis, c.

¢ 0.003
di—c & (2.27)
ceg = 0.003(d[ - C)
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Figure 2.36 Variation of the location of the neutral axis (c¢) with the tensile strain in steel (g,)

Solving Equation (2.27) for c:

0.003

=———4d 2.28
“70.003 +&" (228)
The ratio of c¢/d,, given in Equation (2.29), is often used to check if a section is
tension-controlled.

c 0.003
= 2.2
d; 0.003 4 ¢ (229)

Two values of €, are of special interest. The first one is €, = 0.004. This is the absolute
minimum steel strain permitted by the ACI Code for members in flexure. (Refer to
Figure 2.34 and ACI Code, Section 7.3.3.1 for one way slabs, and Section 9.3.3.1 for
beams). Substituting this €, value into Equation (2.29) gives us Equation (2.30).

30429 or c—0.429d, (2.30)
d[ 7
Equation (2.30) gives the lowest permissible value of the neutral axis depth. In
other words, this defines the largest permissible concrete area in compression
(¢ <0.4294d,).

The second value of interest is €, = 0.005. Solving Equation (2.29) for this case,
we obtain Equation (2.31) for the lowest location of the neutral axis depth for
tension-controlled sections.

c 0.003 3

e 9 2 375 —0.375d 231
4, 0.003 +0.005 8 or ¢ ’ (231)
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2.19 Relationship Between ¢ and d,/c

Equation (2.29) shows that the ratio of either c/d,, or its inverse, d,/c, are in direct
relationship with the steel tensile strain €,. Then it is possible to modify Figure 2.34
to show the ACI Code—prescribed strength reduction factor’s (the ¢ factor’s)
variation in terms of the d,/c ratio. (For convenience of graphing, the relationship
is shown in terms of d,/c.) Figure 2.37 expresses the changing ¢ values with respect
to the ratio d,/c. Note that the ratio d,/c, is the ratio of d/c at the balanced failure
point.

Table A2.2b in Appendix A of this text lists the values for the coefficients A, and B,
that describe the variations in ¢ values through the transition zone. The limiting ratios
between the depth of the member and the location of the neutral axis (d/c) and its
inverse at the balanced failure point (i.e., d,/c;, or c¢,/d,) are also included.

2.20 Limitations on the Steel Percentage (p) for Flexural
Members

With the help of Equations (2.30) and (2.31), the corresponding largest p values (i.e.,
the steel percentages that satisfy those limiting conditions) can be determined. For
g, =0.004 (lowest permitted steel strain value at ultimate strength of flexural mem-
bers), the maximum depth of the neutral axis is calculated using Equation (2.32).
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3
o = —d 2.32
C, 7 t ( )

The corresponding depth of the equivalent stress block (refer to Equations (2.11)
and (2.17)) is given by Equation (2.33).

As,maxf 3
Amax = 085ﬁ’by = ?ﬁldt (233)

where A; .« 1s the amount of reinforcing steel necessary to have g, = 0.004.
Substituting for A; nax = Pmax Pd in Equation (2.33), then rearranging, the largest
p value can be determined.

Pmaxldfy, 3
0n.1§5f’ y — 5[3141, (2.34)
flod,
=-(0.85)p, < - —
pmdx 7( )Blf)‘, d
or
7 d
pmax—0364ﬁ1}; d’ (2.35)

Equation (2.35) gives the maximum percentage of reinforcing steel permitted by
the ACI Code in flexural members, unless the capacity is augmented by the use of
compression reinforcing. (See more on that in Chapter 3.)
For sections with a single layer of reinforcing, d,/d = 1.0, Equation (2.35) is
simplified as indicated in Equation (2.36).
f/
Pmax = 0.364B,— (2.36)
5y

In a similar way, we can determine the value of p that will ensure an g, = 0.005,
the upper limit of p needed to ensure a tension-controlled (ductile) failure in beams
at their ultimate strength. Designate this value of p as p,.. After changing the right
side of Equation (2.34) accordingly (see Equations (2.30) and (2.31)), then the
value of p,. can be calculated using Equation (2.38) (or Equation (2.39) for the
special case of a section with only one layer of reinforcement).

pbdf, 3
o.tzCanf;? =ghidi (237)
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!
P = 0.31951? % (2.38)
y
f/
P = 0.319, ]7 (2.39)

y

Table A2.3 in Appendix A lists the values of p,.x and p,. for various grades of steel
(fy) and concrete strength (f/) combinations. The value of the strength reduction
factor (¢p) is shown in the right column of the table. This value varies when
Pre <P <Pmax» Or the beam’s failure mode is in the transition zone (see
Section 2.17). Table A2.3 indicates that not much is gained in terms of useable
moment capacity with the required reductions in the ¢ values and when the
reinforcing percentage is increased from p,. to pnax, especially when higher
strength steels are used.

2.21 Minimum Steel Ratio (pnin) for Reinforced
Concrete Beams

When a reinforced concrete beam, for architectural or other reasons, is relatively
large in cross section, or carries little load, the calculations may require only a very
small amount of reinforcing steel. Such a section, if accidentally overloaded, will
fail in a sudden, brittle manner. The reason is that the ultimate moment strength
provided by the reinforced section is actually less than the strength of the same
section without any reinforcing. Thus, the stress in the reinforcement will immedi-
ately reach yield at the first crack, causing the section to fail suddenly.

To ensure that reinforced beam’s ultimate strength is larger than that of
the unreinforced beam, Section 9.6.1.2 of the ACI Code requires a minimum
amount of flexural steel in reinforced concrete beams. This requirement is given
in Equation (2.40).

As, min —

3,/
—\f/fbd > 200, (2.40)
y y

This minimum amount of steel (A ,;,) provides enough reinforcement to ensure that
the moment strength of the reinforced concrete section is more than that of

an unreinforced concrete section, which can be calculated from its modulus of rupture.

200
In the past, the ACI Code required only an A min = f— bd. For concrete strength

y
greater than about 4,440 psi, however, this is not sufficient to ensure the desired aim;
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3F

y
expressed mathematically in terms of p.,;, (minimum steel ratio) as shown in

Equation (2.41).
3Vf! 2
Pmin = Max \/f:, 200 (2.41)
VA

bd rectifies this condition. Because A; min = pmin bd, Equation (2.40) may be

Table A2.4 in Appendix A provides values of p,;, for different grades of steel
and compressive strengths of concrete.

2.22 Analysis of Rectangular Reinforced Concrete Sections

Analysis of a section means finding the My = $pM,, value. This may be necessary
when checking an existing structure or element to determine if the strength pro-
vided by the section (supply) is sufficient to satisfy M, that is calculated from the
loads (demand). Finding My also makes it possible to calculate the maximum live
load that may be permitted on the element.

An analysis can be performed only when all parameters that influence the ultimate
strength of a section are known. There are five of these parameters, namely:

The dimensions of the section band d
The materials used in the beam f! andf,
The tensile reinforcement in the beam Ay

Next we show two methods for calculating the value of M.

2.22.1 Mg Calculation: Method I

This method closely follows the already discussed and established formulae.
Figure 2.38 shows the stress and strain distributions for a reinforced concrete
rectangular beam at ultimate strength. For the most general case, a beam section
with multilayer reinforcing is shown.

The resisting moment can be calculated from the internal couple and using
Equations (2.42)—(2.44).


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Figure 2.38 Stress and strain distributions on a reinforced concrete section
T:Asjg, C = O.SSfC/ba z=d—-a/2
(2.42)
M, =Tz =Af,(d—a/2)
M,=Cz= O.85ﬂba(d —a/2) (2.43)
Mg = dM, (2.44)

The calculation proceeds as follows:

A . .
Step 1. Calculate p = ﬁ and check if p > pyi, (from Table A2.4); if not, the

beam does not satisfy the minimum requirements of the ACI Code, and
its use for load carrying is not permitted. Determine whether p < py.x
(from Table A2.3); if not, the beam has too much reinforcing and does
not satisfy the latest ACI Code’s limitations. A practical solution for this
is to disregard the excessive amount of reinforcement, assume that the
section is in the transition zone, and continue the calculations with
the maximum permissible amount of reinforcing.
Step 2. Calculate the depth of the equivalent stress block from Equation (2.17):

a = Asf;,
~0.85f/b

Step 3. Calculate the location of the neutral axis from Equation (2.11):

c=—

B


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Step 4. Determine whether
c 3
<z
d — 8

If yes, the beam is in the tension-controlled failure zone; set ¢ =0.90 and

3 3
go directly to step 5. If not <i.e., 3 < dﬁ < ?>, the ¢ factor must be
t
adjusted accordingly. Therefore, calculate the reduced ¢:

B
b=A; —&-Tz(refer to Table A2.2b for A, and B;)
d

Step 5. Calculate Mg = M, = A, fy(d - %’) (refer to Equations (2.42) and

(2.44))
Figure 2.39 summarizes the analysis steps.

Find Mg for reinforced
concrete rectangular beams.

1.

As No B is i
) eam is illegal (p < ppin)
P=pg =~ Pmin per current ACI Code.

P < Pmax?

Yes

2. Af

No

Warning! p > ppax
Only the part of the reinforcing that
is equal to pa May be taken into
account in the nominal strength calculations.

Yes No l
¢ = 0.90 b= A2 + 22
d
5. a
Mg = d’Asfy (d— f)

Figure 2.39 Flowchart to calculate My (Method I)
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Example 2.6 Use Method I to determine the design resisting moment, Mg, of
the reinforced concrete beam section shown below. f! = 4ksi, and f, =40ksi.
The reinforcement is 3 #9 bars, A, =3.00 in2,

b=10in.

N

d=22in.
2060 -
Solution Using the steps of Figure 2.39:
Step 1. Find the steel ratio, p:
Ag 3
P=pd " Tox 2z 00136

From Table A2.4 — p_.. = 0.0050 < 0.0136 .. ok
From Table A2.3 — p_ .. =0.0310 > 0.0136 .. ok

Step 2. Calculate the depth of the compression zone, a:

Af, 3x40
T 085b  0.85x4x 10

= 3.53in.

a

Step 3. From the depth of the equivalent stress block, determine the location of the
neutral axis, c:

a 3.53
=—=——=4.15in.
7B, 085 i
Step 4. Determine whether the section is tension-controlled or is in the transition zone:
c 415
—=——=0.189 <0375 .. ok
Y < °

Therefore, the section is tension-controlled and the strength reduction
factor ¢ =0.90.
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Step 5. Calculate the resisting moment, Mg:

e aag(a-)

0.90 x 3 x 40<22—E

My = ) = 182 ft-kip

12

Example 2.7 Repeat Example 2.6 for f;, = 60 ksi, and f = 3ksi.

Solution
Step 1.
As
=—=0.0136
P~ ba
Table A2.4 — p,,, = 0.0033 < 0.0136 .. ok
Table A2.3 — p,.. = 0.0155 > 0.0136 .. ok
Step 2.
Asf, 3 % 60
= = = 7.06in.
70857 0.85x3 x 10 n
Step 3. a 7.06
=—=-—"—=2830in.
TP, 085 n
Step 4.
c 8.30
—=—=0.377>0.375
d, 22 o

.. Section is in the transition zone (although just barely).

Use Table A2.2b to determine A, and B,; then

0.25
=02 — =0.
¢ =0.233 4 0377 0.90

Step 5.

0.90 x 3 x 60(22—@

Mg = B = 249ft-kip



http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Example 2.8 Calculate My, for the reinforced concrete beam section shown below.
f,=60ksi, f/ = 4ksi, A,=7.62 in>.

} 12in. |

d=231.25in. d;=32.5in.

6#10

Solution
Step 1.
A 7.62
=—=——"——=0.0203
P~ hd " 123125
From Table A2.4 — p_.. = 0.0033 < 0.0203 .. ok
From Table A2.3 — p.... = 0.0207 > 0.0203 .. ok
Step 2.
Af, 7.62 x 60
= = = 11.211in.
TT085b 085 x4x 12 m
Step 3. a 121 o
¢c=—=——=13.19in.
B, 0.85
Step 4.
c 13.19
—=—-=04 .
4" 325 0.406 > 0.375

.. Section is in the transition zone. With the help of Table A2.2b:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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B, 0.25
¢ —Az—i-z— 0.233 —&—m— 0.85
d;
Step 5. 11.21

0.85 x 7.62 x 60 (31.25 -

Mg = ) = 831 kip-ft

12

2.22.2 Mg Calculation: Method I1

This method results in the development of design aid tables, which are more user-
friendly. The tables will also be useful when the aim is to design beam sections to
satisfy a given M, demand instead of analyzing.

The expressions for the components of the internal couple are

T =Af, C=085ba z=d—a/2

Because T'=C, the depth of the equivalent stress block is

a= Asfy
~0.85f/b

Substituting from Equation (2.18), A, = pbd. Equation (2.45) can be used to calcu-
late a.

y— pbdfy B pdfy
a 0.85fb o 0.851/

(2.45)

Substituting from Equation (2.11), a=pjc, ¢ can be determined using
Equation (2.46).

pdf,
Pre= 0.85};
(2.46)
c= pd
0.85//B,
or
c__® 4 (2.47)

d, 0.85(/p, d,

Equation (2.47) is usually the preferred equation to check if a section is tension-
controlled.
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If 3/8 < ¢/d, < 3/7 the strength reduction factor, ¢, must be adjusted accordingly.

B
b=A+7

d,

Substituting for ¢/d, from Equation (2.47), Equation (2.48) can be used to
calculate the adjusted strength reduction factor.

0.85/p, di

— A+ B
¢=A4; T d

(2.48)

Equation (2.48) provides the values of ¢ in the transition zone. In order to simplify
the equation, introduce a new steel ratio, p;:

As

pt:b_d,

(Note that d, =d and p, = p when the beam has only a single layer of steel.)

d
Substituting p = p,j Equation (2.48) can be rewritten as Equation (2.48a).

0.85p,

¢ =A4A+B,
prfy

(2.48a)

From Equation (2.43) (see also Figure 2.38):
Mg =0OM, = $Cz
My = $(0.85f ba) (d - g)

Substituting from Equation (2.45) for a:

pdfy \ [, _ P
0.85f, L.7f.

Mg = ¢ | 0.85¢'b

Rearranging and simplifying:

My = bd* |f1)pf)') (1 - 1";})] (2.49)

If the product in the bracket is designated as R (called the resistance coefficient,
which has units of stress, psi or ksi) as shown in Equation (2.50),
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R = ¢pf, (1 - 1'?%(() (2.50)

the expression for My is simplified to Equation (2.51).
My = bd*R (2.51)

It is clear from Equation (2.50) that R depends on the materials used (i.e., f/, f,
and the steel ratio (p) in the beam), but it is independent of the dimensions of the
section. Thus tables for R can be developed in terms of p for the various combina-
tions of materials. Values of R can be found from Tables A2.5 through A2.7. pmin
for beams are indicated on each table. Reinforcement ratio (p) values less than p,i,
may not be used in beams, but may be used in slabs and footings.

These tables were developed with R in psi. Using R in psi and beam dimensions
b and d in inches results in Ib-in. units for M. Because kip-ft are usually used in
moment calculations, appropriate conversions must be made between lb-in. and
kip-ft for the correct use of the tables.

Rlosi
My (fikip) = bin.(d in.)’ 2(1(’)5(;2)

The tables must be used with care, especially when large p values result in
the section being in the transition zone. The value of ¢ depends on f, £, p, and

d;
—, thus if
> thus i

p<pe—$=090
and if

0.85(/p, d
Pmax > P> P ¢:A2 +BZle

The values of p,. and py.x for common grades of steel and concrete strength are
listed in Table A2.3.

An important note here is that Tables A2.5 to A2.7 have been developed based
on p (i.e., beams with a single layer of reinforcement). If the beam has multiple
layers of reinforcement (p; # p), the R value must be modified by adjusting it to an
R’ value based on p,. This can be easily done by using Equation (2.51a).

_Yp

R/
¢

(2.51a)

The values of ¢, which are listed in Tables A2.5 to A2.7, correspond to the
values of p;,.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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The use of Method II for analysis of reinforced concrete beam sections involves
the following steps:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Determine whether p > pp,; if not, then the beam does not satisfy the
minimum requirements of the ACI Code and its use for load carrying is not
permitted.

Determine whether p < ppax; if not, the beam has too much reinforcing
and does not satisfy the latest ACI Code’s limitations. A practical solution
for this is to disregard the excessive amount of reinforcement, assume that
the section is in the transition zone, and continue the calculations with the
maximum permissible amount of reinforcing.

Use p, f! and f, to obtain R and ¢ values from the appropriate Tables A2.5
to A2.7. If the beam has a single layer of steel or ¢ =0.90, find My from
Step 3. Otherwise move to Step 4.

Calculate M, bd’R (b,d =in;R i; Mg = ft-kip)

alculate = ,d =in.;R = psi; M = ft-ki

e ME = 12,000 L P

For beams with multiple layers of reinforcement, calculate p, = —- and

bd,
obtain the corresponding strength reduction factor (¢’) from Tables A2.5 to
A2.7.

/
Calculate the modified value of the coefficient of resistance (R’ =R %)
bd*R’
Calculate My = .
alculate My 12,000

The flowchart for Method II is shown in Figure 2.40.

Method II has fewer steps to follow, so it is easier to use. Method I, however, is
more general as it does not require the use of design tables (which may not be
readily available) and it is adaptable to any grade of steel or compressive strength of
concrete, not just the ones listed in the tables.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Find Mg for reinforced concrete
rectangular beams (Method II).

2. Use p, 1, fz to find Rand ¢ from
Tables A2.5 through A2.7.

Beam has

2 Rectangular Beams and One-Way Slabs

p < pmin, beam is illegal per ACI Code.

P = pmax ONly the part of the reinforcing

that is equal to pp,ay, May be taken into
account in the nominal strength calculations.

No

single layer of
bars (d; = d)?

bd?R Yes

Mg = =0.90?
R~ 12,000 8 e
No

&

Y

4.

Ag ) ,
Use p;= b_d,to find ¢’ from

Tables A2.5 through A2.7.

_ ba®R’
R 12,000

Figure 2.40 Flowchart to calculate Mg using Method 11

Example 2.9 Solve Example 2.6 using Method II.

Solution

Step 1. From Example 2.6:

p=0.0136 > p;, = 0.0050 .. ok
From Table A2.3 — p... = 0.0310 > 0.0136 .. ok

Step 2. Using p=0.0136, f, =40 ksi, and f. = 4ksi, obtain the resistance coeffi-

cient, R, from Table A2.5b:

R =450psi, ¢ =0.90


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Step 3. Because the beam has a single layer of reinforcement:
_ bd’R 10 x 227 x 450

© 12,000 12,000

Mp = 182ft-k

Mg

which is the same as determined in Example 2.6.
Example 2.10 Solve Example 2.7 using Method 1II.
Solution
Step 1. From Example 2.7:

P = 0.0155 > p = 0.0136 > p,;, = 0.0033 .. ok
Step 2. p=0.0136, f! = 3ksi, and f, = 60 ksi. From Table A2.6a:

R =615psi, ¢$=0.90

Step 3.
_ bd’R
R =12,000
10 x 22% x 615
Mp=——""2_" "~ _ 248 ft-ki
R 12,000 P

which is about the same as the result determined in Example 2.7.
Example 2.11 Solve Example 2.8 using Method II.
Solution

Step 1. From Example 2.8:
p =0.0203 > 0.0033 .. ok

Because there are two layers of reinforcement, adjust py,.x using
Table A2.3:

—00207%—0020732—'5— 0.0215 > 0.0203 .. ok
pmax_ : d_ . 3125_ . . ..

Step 2. Use p, f,, and /! to obtain R from Table A2.6b.

0= 0.0203
f! = 4ksi — Table A2.6b — R = 825psi
£, = 60ksi b = 0.82

Step 3. Because the beam has two layers of reinforcement and ¢ is not equal to
0.90, determine p, and ¢’ and adjust the resistance coefficient, R:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Step 4.

A 762
T bd, 12x325
From Table A2.6b — ¢’ =0.85

P, =0.0195

Step 5. Adjusted value of the resistance coefficient (R') is:

/

0.85
R =R~ =825 x —— = 855psi
b " 0.82 pst

bd*R’ 12 x 31.25% x 855

Step 6. My = -
PO MR = 15000 12,000

= 835ft-kip

This result is about the same as that from using Method I. The difference
is insignificant and is due to rounding errors in the calculations.

2.23 Selection of Appropriate Dimensions for Reinforced
Concrete Beams and One-Way Slabs

2.23.1 Selection of Depth

The selection of a beam’s depth is almost always a controversial issue. On the one
hand, the building designer wants to minimize the depth of the structure in order to
maximize the headroom without unduly increasing the height of the building. On
the other hand, structural elements that are too shallow lead to increased short- and
long-term deflections. These, in turn, may be detrimental to attached nonstructural
building elements. Excessive deflections of concrete structures may result in
cracked walls and partitions, non-functioning doors, and so on.

To guide in the design of well-functioning structures, the ACI Code (Sections
7.3.1.1 and 9.3.1.1) recommend a set of span/depth ratios, with the comment that
the designer does not have to calculate deflections (an involved and somewhat
uncertain process) if the utilized depth is at least equal to the values provided in ACI
Table 7.3.1.1 for one-way slabs, and Table 9.3.1.1 for beams. These values are
summarized graphically in Figures 2.41 and 2.42.

Note from Figures 2.41 and 2.42 that the recommended minimum depth for
simply supported beams is span/16, whereas for one-way slabs this value is span/20.
These types of support conditions are quite rare in monolithic reinforced concrete
construction, because in most cases either continuity or some other type of restraint
is available at the supports. If the member is continuous at both ends, /,,,;, = span/21
for beams and h,,;, = span/28 for one-way slabs. Finally, if the beam is continuous
at only one end, the minimum depth is span/18.5, and for one-way slabs is span/24.

A cautionary note is in order here. Span 2 (¢,) in Figures 2.41 and 2.42 is shown
as “Both ends continuous.” This assumption is valid only if the cantilever at the left
end of ¢, is long enough to develop a significant end moment. Experience shows
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hnin Ain = €/16

| ¢ |
1
Simply-supported

Bimin = €1/ Pnin = €2/ hnin = €3/21 henin = €4/18.5
ﬁl 7, ﬁl Z WI 7, / 7,
| g | & | t | 0 |
Cantilever Both ends continuous Both ends continuous One end continuous

Figure 2.41 Minimum depth requirements for reinforced concrete beams

l l h_T_ Pmin = €/2o

min
[ ] ® ® [ ] _L 7, 7,

I ¢ I

Simply-supported

hmin = €1/10 Pmin = €2/28 Pmin = €3/28 hrmin = €4/24

7z 7z 2z 7

I 2 | t A t

Cantilever Both ends continuous Both ends continuous  One end continuous

Figure 2.42 Minimum depth requirements for reinforced concrete one-way slabs

that when the cantilever length is at least £,/3, the span ¢, may safely be assumed as
“both ends continuous” from the point of view of satisfactory deflection control.

The values shown in Figures 2.41 and 2.42 are applicable only to normal-weight
concrete (w.= 145 1b/ft3) and Grade 60 reinforcement. For other conditions, the
ACI Code Section 7.3.1 recommends the following modifications:

(a) For lightweight concrete in the range of 90-115 pcf, the values in Figures 2.41
and 2.42 need to be multiplied by (1.65 — 0.005w,) where w,. = unit weight of
concrete in Ib/ft’. This factor should not be less than 1.09. For a typical
lightweight structural concrete, w.=115 pcf. Then the multiplier is
1.65 —0.005 x 115=1.075 < 1.09. Use a multiplier equal to 1.09.

(b) For f, other than 60,000 psi, the values obtained from Figures 2.41 and 2.42
shall be multiplied by:



94 2 Rectangular Beams and One-Way Slabs

f
(0.4 +1 oo,yooo) (2.52)

If the selected beam depth is less than the recommended £,,;,, the beam deflec-
tion has to be calculated and checked against the ACI Code requirements. There-
fore, if a beam does not satisfy the minimum depth requirements, it may still be
acceptable if computation of deflection proves it to be satisfactory.

2.23.2 Selection of Width

Minimum Bar Spacing in Reinforced Concrete Beams In Section 2.12 we
discussed the role of concrete cover over the reinforcement. Reinforcing bars also
need space between them to ensure adequate bond surface at their interface with the
concrete. The space should also be larger than the size of the largest aggregate
particle in the concrete.

Sections 25.2.1, 25.2.2 of the ACI Code require a minimum clear space for
single and multiple layers of bars as follows:

Minimum Space (Symin) for Single Layer of Bars The minimum space (sp,;,) for a
single layer of bars in beams (see Figure 2.43a) is the largest of the following: the
diameter of bar (d},), 1 in., and 4/3 of maximum size aggregate used in the concrete
mixture.

Mathematically:
Smin = max{d,, lin.,4/3 max. aggregate size}

Note that in most building structure applications (save for footings and founda-
tions) the usual concrete mix limits the size of the aggregate to % in. Thus, a 1 in.
minimum spacing satisfies the third of the spacing requirements.

S min

-

Figure 2.43 Minimum spacing between reinforcing bars: (a) single layer; (b) multiple layer



2.24 Crack Control in Reinforced Concrete Beams and One-Way Slabs 95

[ bmin |

Figure 2.44 Minimum beam width (bin)

Minimum Space for Multiple Layers of Bars Where reinforcement is placed in two
or more layers (see Figure 2.43b), bars in the upper layers shall be placed directly
above bars in the lower layer with clear distance between layers not less than 1 in. In
addition, the requirements of single-layer bars must also be satisfied.

Minimum Width (b)) of Reinforced Concrete Beams We use the minimum
required space between bars in a single layer to calculate the minimum beam
width needed to provide enough room for a specific number and size of bars. To
compute by, consider Figure 2.44. Usually #3 or #4 bars are used for stirrups.
Also, the minimum cover for bars in beams is 1.5 in. Therefore, we can calculate
bmin by adding the minimum required spaces and the bar diameters.

As an example, suppose that the beam in Figure 2.44 is reinforced with 4 #8 bars.
Assuming #4 stirrups, the minimum width for this beam is:

b.,=2x15in+ 2><% in. +4x1lin. + 3 x1lin.=111in.
T T T 0
Cover Stirrups Main bars s,

Note that s,,;, = 1 in. was used; this assumes that 4/3 of the maximum aggregate
size is less than or equal to 1 in. Table A2.8, based on the above example, shows
bmin for different numbers and sizes of bars in a single layer.

2.24 Crack Control in Reinforced Concrete Beams
and One-Way Slabs

It was previously mentioned that a reinforced concrete member will always crack
when subjected to bending. In fact, the reinforcing really starts working only after
the development of cracks. Nevertheless, designers try to minimize the size of the
cracks. Limitation of crack width is desirable for three main reasons: (1) appear-
ance; (2) limitation of corrosion of the reinforcement; and (3) water-tightness.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Laboratory experiments have shown that several parameters influence the width
and spacing of flexural cracks. The first is the concrete cover over the reinforcing.
The smaller the cover, the smaller the crack width will be. The cover cannot
be reduced beyond a certain limit, however, because a minimum cover is needed
for fire and corrosion protection. Thus, the Code requires a minimum cover
of 1.5 in. over the stirrups for interior beams, 2 in. for exposed exterior beams
(see Figure B2.2 in Appendix B) and %:in. for joists and slabs. The 1.5 in. cover
over the stirrups results in a cover of 1% in. to 2 in. over the main reinforcement.

The second important parameter is the maximum stress in the reinforcement
(directly related to the strain, or the elongation of the steel) at service load levels.
This value may be assumed to be roughly 0.66 f;. The higher the stress level is in the
steel, the wider the cracks are expected to be. Thus, using more reinforcing than
required to satisfy the ultimate strength capacity can reduce the width of cracks by
reducing the stresses (and strains) at working load levels. This is not an economical
choice, however. The same is true if steel with f, = 40,000 psi is used instead of
steel with f, = 60,000 psi. The section would need 50 % more steel, but the much
lower levels of stress at service load levels would help limit the crack width.

Another important parameter is the maximum spacing of the reinforcing bars.
For minimizing the width of cracks, placing more and smaller bars closer together is
preferable to placing a few large bars farther apart. The ACI Code (Sections 24.3.2,
and 24.3.3) limits the maximum spacing of the tensile reinforcement in beams and
one-way slabs. The empirical formula for maximum spacing, given in Equa-
tion (2.53), is based on the tensile stress in the steel and the concrete cover.

4 4
5= 15( 0;?00> —2.5¢, < 12( O}OOO> (2.53)

s

s

where s is the center-to-center spacing (in inches) of flexural tension reinforcement
nearest to the extreme tension face; f; is the calculated tensile stress (in psi) at
service load in steel or 2/3 f,; and c. is the least distance (in inches) from the surface
of the reinforcement to the tension face. Equation (2.53) cannot address the control
of cracking for all the different causes discussed.

If £, =60,000 ksi, the right side of Equation (2.53) is limited to 12 in. (since
fs=2/3 f,). The left side of the inequality relates the maximum spacing (s) to the
concrete cover (c.). To better comprehend Equation (2.53), consider Figure 2.45,
which shows the reinforcing bar with two different covers, ¢.; and c.,. If the
concrete cover is increased from c.; to ¢, and the crack width at the level of the
reinforcement (w,) is constant, the surface crack width increases from wy to w;.
Figure 2.45 clearly shows the relationship between surface crack width and amount
of concrete cover.

We can use the maximum spacing limitation (s) given by Equation (2.53) to
determine the maximum beam width (b,,,x) as a function of the number of bars
placed in the section. For example, for 4 #4 main bars, #4 stirrups, and
/3y =60,000 psi, the maximum permissible spacing of bars (s) is:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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a b
Fﬂﬂ FL’| /— Concrete surface

!

W, Cf

Ce2
Rebar
WS
(] \/ ]
V Rebar

Figure 2.45 Relationship between crack width and concrete cover

40,000 40,000
s=15 ’ —2.5¢c, <12 =
( A ) ( s )

N s

40,000 40,000
s=15(-— | —2.5(15+05) < 12 5
%5 % 60,000 % % 60,000

s = 10in. < 12in. — s = 10in.
and the maximum beam width (b,,,,) is:

b..=2x15in + 2x Yin. + } in.+3 x 10in. =34.5 in. = 34 in.
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Note that in the above calculation, s is the center-to-center distance of the
reinforcing bars. Therefore, only the diameter of one bar was used to determine
bmax- The last column of Table A2.8 lists b, for different sizes and numbers of
bars in a single layer. In practice, b,y is rarely a problem for beams; however, the
maximum spacing limitation is an important issue when designing reinforcing

layouts in slabs.

Table A2.9 shows the areas of reinforcing steel (A,) for different sizes and

numbers of bars.
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2.25 Design of Beams

The ultimate strength of a beam depends on five parameters. These are the materials
(fZ andfy), the dimensions of the section (b and ), and the amount of reinforcement
(Ay). The last three parameters may be expressed in the form of the steel ratio
p=A,/bd.

Whichever way these parameters are expressed, they are always five in number.
There is only one equation (or, more precisely, one inequality), however, that
expresses the problem:

Mu SMR

The left side of this inequality depends only on the applied loads. The right side
of the inequality, on the other hand, depends on all five of the variables listed above.
Thus, this problem has an infinite number of solutions. But if four out of the five
parameters are preselected or assumed, the inequality can be readily solved.

As an example, contemplate the following considerations. In a floor of a given
structure, it would be quite impractical to vary the quality of the concrete. Conse-
quently, every beam and slab of the floors of the structure is usually cast with the
same quality concrete (same f;) throughout. (In columns, the use of a different
quality concrete may be warranted; but even then all columns in a given floor level
would have the same concrete mix.) So preselecting the concrete quality for the
slabs and beams throughout a building is standard practice.

The same is true with the reinforcement. Labor is the dominant factor in the price
of the “in-place” reinforcing steel. And the basic cost per ton of reinforcing steel
with f, =40 ksi and f;, =60 ksi is very near the same, so there is no economic
incentive to use the former. In fact, 60 ksi steel provides 50 % more strength than
40 ksi steel, thus making it cheaper to use.

Of the three remaining variables, b (the width of the section), d (the working
depth of the section), and A, (the amount of reinforcement), two must still be
preselected in order to solve for the remaining unknown quantity. Generally
speaking, practitioners select a concrete section (b and %) and then solve for a
minimum required amount of reinforcement to satisfy the demanded factored
moment requirements. Often all beams have the same depth and width to enable
the contractor to reuse the forms. In other cases keeping the depth of all beams
uniform satisfies the minimum headroom requirement throughout the structure.

In general, two types of problems arise: (1) The beam’s sizes (b and /) are set
using the considerations stated above and the designer needs only to determine the
required area of steel (A;); this is by far the most common problem. (2) The beam’s
sizes (b and /) and area of steel (A,) are all unknown and determined by the designer
during the process; this problem is more academic than practical.

b, h = known, A; = unknown

The flowchart in Figure 2.46 shows the steps for the design process.
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Design of reinforced concrete

rectangular beams
(b, h = known, As = unknown) «———b———

1. Calculate maximum M,, (remember
to include beam self-weight in
the dead load). d

|

2 dassumed = W — ¥, y=25in. ;

|

8 12,000M,
R=—_"°
bd?

4. Use R, fy, and f; to find p from
Tables A2.5 through A2.7.

Stop!

> Need to
R > Rma’ increase
beam size.
No
” Yes
P < Pmin’ P = Pmin
No
5. As = pbd, then select bar size

and numbers from Table A2.9.

l

6.
Calculate yand find d = h—y.
No
d= dassumed
Yes
End

Figure 2.46 Flowchart for the design of reinforced concrete rectangular beams (b, # =known,

Ay =unknown)
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Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

2 Rectangular Beams and One-Way Slabs

Find the maximum factored bending moment, M,,.

Because the bar sizes are not yet known, assume the distance from the edge
of concrete in tension to the center of steel () is 2.5 in. This is a reasonable
assumption if the cover is 1.5 in., the stirrup diameter is 3/8 in. (#3) or "2 in.
(#4), the main reinforcement is #8 to #10 bars or smaller, and there is only
one layer of reinforcement.

Use the assumed value of d to calculate the required resistance
coefficient (R).

Mg = bd’R (refer to Equation (2.51))

If b and d are in inches, and R in psi, M, will need to be converted to
in.-1b from its usual ft-kip units.
_ bd’R
~ 12,000

R
Set Mu:MR:

bd’R
~ 12,000
~12,000M,
- bd?

M, = Mg

Use R, f,, and /! to determine p from Tables A2.5 to A2.7. If R is greater
than the maximum R value (R,,,) to be found in the tables, it means that the
selected sizes are too small and must be increased.

If the value obtained is less than p,,;,, it means that the beam sizes b and
h are larger than needed to carry the loads with minimum reinforcement.
This may happen when other considerations dictate the beam sizes. In this
case use p = ppyin from Table A2.4, because the beam must always have the
required minimum reinforcement.
Determine how much steel is needed and select bars using Table A2.9. It is
also helpful to use Table A2.8 here, because it lists how many of a certain
size of bar may be fitted into the selected b in a single layer.
Once the bar sizes are known, the exact effective depth (d) can be
calculated. If this depth is greater than what was assumed at the beginning
of process, the design will be conservative as it will have more moment
capacity than what was demanded. If the effective depth is less than the
assumed value (e.g., the section needs multiple layers of reinforcements),
then the process needs to be repeated with a new value of d. Insignificant
differences in the assumed and recalculated values in d (Iess than 3/8 in. in
slabs and 1/2 in. in beams) may be neglected and the reinforcing need not
be redesigned.

Note that having multiple layers of reinforcing bars may influence the
value of the strength reduction factor, ¢.
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Example 2.12 Figure 2.47a shows the partial framing plan of a beam-girder
reinforced concrete floor system. The slab is 6 in. thick, and is subjected to a
superimposed dead load of 30 psf. The floor live load is 100 psf. Beam B-2 has
a width of 12 in. (b=12 in.), and a total depth of 30 in. (including the slab
thickness). Determine the steel required at Section 1.1. Use the ACI Code coeffi-
cients to calculate moments. Assume that the beam end is integral with the column.
Use f! = 4ksi, f, =60 ksi, and assume that the unit weight of concrete is 150 pcf.
Stirrups are #3 bars.

Or - - e
15:0' | |1 i ::
| I I
R F——————— b= | Im————————— = — ==
F———————- Hp————————— | lIm————————————
150" : 1 Ul : : 12in. X 12 in. column
1 (B-2) rh ||/ (typical)
@—- ‘:::::::::H:::::::::”:::::::::::::
150"

T

< 6in. 4
1
#3 stirrup —p Z]in.

[—12in.—]
Section 1-1

Figure 2.47a Framing plan and section for Example 2.12

Solution

Step 1. Before calculating the moments at the selected location, we must determine
the floor loads:


http://dx.doi.org/10.1007/978-3-319-24115-9_1
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Weight of slab = 150 x (%) = 75psf

Superimposed dead load = 30psf
Total dead load = 105 psf

Live load = 100psf

The tributary width for beam B-2 is 15’~0"; therefore, the uniform dead
and live loads are:

Beam weight

12 24
105x15 O(lzxu)
w, = + =1.88 kip/ft
1,000 1,000
100 x 15 : i i
Wy = X — 1.5kip/ft Note : Reduction of live load

1,000 is neglected here.
w, = 12wp + 1.6w, = 1.2 x 1.88 + 1.6 x 1.5 = 4.65kip/ft

The beam’s clear span ¢, =30 ft — (0.5 ft+0.5 ft) =29 ft
Figure 2.47b shows the moments using the ACI coefficients from
Table A2.1 for an exterior beam. Because the problem requires designing
the reinforcement at Section 1.1:
w2 4.65(29)°

(M,) 0= 1o~ 9lftkip

Section to be designed

w2 . w, (2 w2
16 14 10
| ¢, |

Figure 2.47b Moments using the ACI coefficients (Example 2.12)

Step 2. Assuming the distance (y) from the edge of the beam in tension to the center
of tensile steel is 2.5 in.:
d=h—y=30in. — 2.5in. = 27.5in.
Step 3. The required resistance coefficient, R, is:

o 120000, _ 12,000 x 391

bd* 12(27.5)°
R =517psi



http://dx.doi.org/10.1007/978-3-319-24115-9_1
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Step 4.
R =517psi
f! = 4ksi — Table A2.6b — p =0.0106
Jy = 60ksi

Note that p=10.0106 corresponding to R =519 psi was conservatively
selected.

Table A2.4 — p;, =0.0033 < p=0.0106 .. ok
Step 5. Find the required amount of steel:
Ay = pbd = 0.0106(12)(27.5) = 3.50in.?

From Table A2.9 — Try 3 #10 (A, =3.81 in.?)

The reinforcement is placed at the top of the beam, because the moment
is negative at the section under investigation, which causes tension at the
top. Figure 2.47c shows a sketch of the beam.

Table A2.8 — by, = 10.5in. < 12in. < by = 24in. .. ok
Step 6. Check for the actual effective depth, d:

y=15in+¥ in. +'2%4=2.511n.

Cover Stirrup Bar diameter
d=h-y=30in.—2.51in.=27.49 in.~d =27.51in. ..ok

assumed

T
JT * 6in.
L3

‘ 3410 ‘ !

24 in.

[—12in.—>]

Figure 2.47c¢ Sketch of beam for Example 2.12

b, h, A, = unknown

There is still only one design equation, but the problem now is formulated
differently. It is somewhat more “contorted” than the previous one, for if the
designer does not like the results obtained with the assumed cross section and the


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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corresponding reinforcement, he or she can just change the width or the depth
(or both) and recalculate the reinforcement until satisfied with the design.

A first assumption may be an arbitrary selection of the steel ratio p. When ratios
close to the p,.x value are chosen, the amount of steel required creates a rather
congested layout, especially in the positive moment regions (steel is placed in the
bottom of the beam). On the other hand, an unnecessarily large concrete section
may result if the section’s moment requirement can be satisfied with p.,;,. Most
practical designs have steel ratios somewhere between py.x and pmin.

Generally speaking, if p is assumed to be about 0.6p,,x or less the beam
proportions will likely be such that excessive deflection will not be a problem.
Therefore, Table 2.1 is provided as an aid for the designer. In this table, pg.s was
calculated as 0.6p,,,.x as a starting point.

Table 2.1 Design steel ratio Pdes

(Paes) f, (psi) |f.=3,000psi |f., =4,000 psi |f, =5,000 psi
40,000 0.0139 0.0186 0.0218
60,000 0.0093 0.0124 0.0146
75,000 0.0074 0.0099 0.0116

Then the corresponding R value may be obtained from Tables A2.5 to A2.7.
The value bd* can be determined using M,:

M, = Rbd® — ba® =

R

Two unknowns remain, however: b and d. There are no ACI Code requirements on
the geometrical proportioning of beams. But it is more economical to design beams
as deep and narrow rather than wide and shallow sections. This means that the
effective depth, d, should be larger than the width, b. Generally speaking, the most
economical beam sections for spans up to 25 ft usually have a d/b ratio between 1.5
and 2.5. For longer spans, a d/b ratio of 3—4 may be more suitable. Economy for a
specific beam (or set of beams) is not the same as economy for the overall building.
In fact, sometimes it is more economical to design wide and shallow beam sections
due to the savings in the floor-to-floor height, even though this design will require
more reinforcing steel.

Figure 2.48 summarizes the steps of the design process:

Step 1. Find the factored loads and moments.

Step 2. Use f, and f! to select a pges value from Table 2.1. Then find the
corresponding R value from the appropriate design table (Tables A2.5
to A2.7).

Step 3. The formula for My is:

_ bd’R
~ 12,000
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Design of reinforced concrete
rectangular beams (b, h, Ag = unknown)

|1. Calculate maximum M,

|

2. Using f, and f. find pyes from Table 2.1,
and find R from Tables A2.5 through A2.7.

!

Find p from Tables
A2.5 through A2.7.

Select the size and number of bars
using Tables A2.8 and A2.9.

Add the moment 3., 12,000M, (M, = ft-kip)
! pg2 = U h
from weightto  le— R (b,d = inch)
M, l
Assume b = d/2, and solve
for band d.
8. _  12,000M, |
ba? 4 A, = pbd

!
9. A = pbd
Select the size and
number of bars using
Tables A2.8 and A2.9.

included ?

Beam weight

b

105

Figure 2.48 Flowchart for the design of reinforced concrete rectangular beams (b, #, A; = unknown)

and the design of the beam requires that My > M,,. For the most economical
case, M,, = Mg; therefore

Solving for bd*:

bd’R
12,000 "
12,000M,
bd* = ———!

Now we must preselect one dimension or the other: We either assume
b and solve for d, or the other way around. A third possibility is to assume a
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Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.
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certain proportion between d and b, for example, d/b = 2; then the problem
again becomes straightforward.

Use the values of b and d from above to find the required area of reinforce-
ment (Ay):

Ay = pbd

and select the size and number of bars using Tables A2.8 and A2.9.
Now find the beam’s total depth (%) using the effective depth (d) from Step
3 and size of bars:

h=d+y

Then round 4 up to the nearest 1 in.
Check the beam depth for expected deformation performance by comparing
it with h,,;, as recommended by the ACI Code (see Figure 2.41). If & < hyyip,
use hpy;y. In this case you may want to go back and recalculate A;.
Because the beam sizes were not known when the loads were calculated,
the beam’s self-weight could only be estimated. Experienced designers
usually use their own rule of thumb for this purpose. For example, some
engineers assume the beam’s self-weight to be about 10-20 % of the loads
it carries. Others estimate the total depth (%) to be roughly 6-8 % of the
span, and b= 0.54, and find a preliminary estimate for the beam’s weight.
But if we desire a more accurate value of the beam’s weight, we can
estimate it now and make corrections to the dead load and the total M,,.
Find a new R value:

12,0000,
R — 500(2) u
bd

and find the corresponding steel ratio (p) using Tables A2.5 to A2.7.
Find the required area of steel:

A, = pbd

and select the numbers and sizes of bars from Tables A2.8 and A2.9.

Example 2.13 Determine the required area of steel for a reinforced concrete
rectangular beam subject to a total factored moment, M, =400 ft-kip, that already
includes the estimated weight of the beam. f! = 4,000psi and f, = 60,000 psi and
use pges = 0.0124 from Table 2.1.

Solution

Step 1

M, = 400 ft-kip


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1

2.25 Design of Beams

Step 2

For f! = 4ksi, Jy = 60ksi and p =0.0124

using Table A2.6b — R = 596psi

Steps 3 and 4 Search now for the beam’s sizes:

bd?

_ 12,0000, 12,000 x 400

R

bd*> = 8,054in.3

596

107

There are an infinite number of solutions, that is, an infinite number of concrete
cross sections that will satisfy the design problem, even with the provision that
p=0.0124 (1.24 %). The table below lists a few solutions. Take your pick!

b 10 in. 12 in. 14 in. 16 in. 18 in. 20 in.

d 28.4 in. 26.0 in. 24.0 in. 22.5 in. 21.2in. | 20.1in.

Ay, required 3.52 in.2 3.87 in.2 4.17 in.? 4.46 in.” 473 in% | 4.98 in’
Ppractical 32 in. 30 in. 28 in. 26 in. 24 in. 24 in.

A couple of important observations must be made here. All of these sections
have approximately 1.24 % reinforcement, but the quantity of reinforcing grows as
the beam becomes wider and shallower. Furthermore, the concrete cross-sectional
area (and, consequently, the self-weight of the beam) also increase.

Another way to solve this same problem is to select a d/b ratio. For example,
suppose that after determining that

bd*> = 8,054in.>

the designer selects a d/b = 2.0 ratio. Then:

d
b=—
2
il(dz) L 8,054
2 T2
d = /2 x 8,054 = 25.3in.
b= % = ? = 12.651in. — Selectb = 13in.

h=253+2.5=27.8in. — Selecth = 28in.
Ay = pbd = 0.0124 x 12.65 x 25.3 = 3.97in.?
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Example 2.14 Use the floor framing plan and loadings of Example 2.12
(Figure 2.47a) to design the reinforced concrete rectangular beam along grid line
2. Assuming that the beam width »=12 in., determine the beam depth, %, and
required steel for the location of the maximum bending moment. Use ACI Code
coefficients for calculation of moments. Assume that the beam end is integral with
the column, f, =60 ksi, f! = 4ksi, and the unit weight of the concrete is 150 pcf.
The stirrups are #3 bars.

Solution

Step 1. Find the maximum ultimate moment, M,,.
From Example 2.12:

105 x 15

wp = ﬁ = 1.58 kip/ft (without the weight of the beam’s stem)
100 x 15

wp, = ﬁ = 1.5kip/ft (withoutthe use of live load reduction )

wy, = 12wp + 1.6w, = 1.2 x 1.58 + 1.6 x 1.5 = 4.3 kip /ft

11
0, =30ft — (s+5)=29ft
(3r3)=»

Using the ACI coefficients (Table A2.1) to calculate moments
(Figure 2.49a), we determine that the maximum bending moment for the
beam along line 2 is at the first interior column (negative moment):

w2 43(29)°

M, = 362 ft-ki
10 10 P
Step 2. From Table2.1 — f; = 4ksi, f, = 60 ksi — pges = 0.0124 From Table A2.6b
— R =596 psi
|
w,€,2 w, €2 w,€,2 w, €2 W, 6,2 w,€,2 !
16 14 10 11 16 11
| & T & y

Figure 2.49 (a) Moments using the ACI coefficients (Example 2.14)


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1

2.25 Design of Beams 109

Step 3. Determine the beam’s sizes:

~ 12,000M, 12,000 x 362
R 596
bd* =7,289in.3
b= 12in. — 124> = 7,289
d*> =607 — d = 24.7in.

bd*

Step 4. Calculate the required area of steel, and select the number and size of the
reinforcing bars:

Ay = pbd = (0.0124)(12)(24.7) = 3.68in.?
From Table A2.9 — Try 4#9 (A; = 4in.?)
Table A2.9 — by, = 12in. = 12in. .. ok
Table A2.9 — by = 34in. > 12in. .. ok

Step 5. Use the selected bar sizes and the effective depth (d) to calculate the total

beam depth (h):

1 3 1.128
y=1l-4+-+—=2.44
y=htgt— h
h=d+y=247+244 =27.14in.

This value is usually rounded up to the nearest 1 in. Thus:
h = 28in.

Step 6. Check to see if the beam depth is more than the recommended minimum for
deflection control. The case for the beam with one end continuous results in
the largest required depth (see Figure 2.41):

4 30 x 12 . . ]
hmin—m— 85 =19.5in. < 28in. .. ok

Step 7. Calculate the correct beam weight. The total beam depth is 28 in. The
concrete slab, however, is 6 in. thick; therefore, the beam depth (the stem)
below the slab is 28 in. — 6 in. =22 in.

12 22
ISO(E X1

St ight = > = 0.28kip/ft
em weig 1,000 ip/
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The total uniform dead load acting on the beam (wp):

wp = 1.58 + 0.28 = 1.86kip/ft
w, =12 x 186+ 1.6 x 1.5 = 4.63kip/ft

_ w2 4.63(29)°
(Mu) 10 10 390 ft-kip

Step 8.
R— 12,000M,

bd®
12,000 x 390
o 12(24.7)?
R = 639 psi

From Table A2.6b — p =0.0134 (this corresponds to R = 638 psi, which
is very close).
Step 9.

As = pbd = (0.0134)(12)(24.7) = 3.97 in.2
From Table A2.9 — Use4#9bars.

The selected reinforcement is the same as it was for the previous design
cycle. Figure 2.49b shows the sketch of the beam.

1(7 — %Iem_

4 #9

28 in.

[—12in.—]

Figure 2.49 (b) Final design of Example 2.14
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2.26 Slabs

Slabs or plates are very important components of reinforced concrete structures.
The elements we have studied until now, could be described abstractly by a line:
Bending of that line in a vertical plane by the loads described their behavior. These
elements are called linear elements, because one of their three dimensions, the
length, is much greater than the other two, i.e. the dimensions of the cross section.

Slabs (plates), on the other hand, cannot be described by a line. They have two
dimensions, length and width, that are significantly larger than the third one, the
thickness. Mathematically plates are described as planes. A mathematically exact
analysis of slabs is not provided here but a discussion of their behavior is in order.

A slab can bend in two directions, so its bent shape is described not by the shape
of a single line, but rather by the bent shape of a surface. A slab must carry the loads
to the supports, hence it will bend accordingly. The behavior of a slab depends on
the support conditions, that is, on how the designer chose to support it. The types of
supports are:

(a) Line supports (beams, girders, walls) Slabs that are supported by these types of
building elements are referred to as one- or two-way slabs. In this chapter we
discuss only one-way slabs, although an attempt is made to explain the
difference between one-way and two-way slabs. Chapter 6 discusses the
different types of two-way slabs used as floor systems.

(b) Point supports (columns, posts, suspension points, etc.) Slabs supported by
these types of supports are referred to as flat slabs or flat plates. We will
discuss these in more detail in Chapter 6.

(c) Continuous media (slabs on grade)

The simple sketch in Figure 2.50 illustrates the behavior of a one-way slab. The
beams that support the slab are poured together with the slab. Slabs are often not just
single span, as shown here, but continuous over several spans defined by the beams’
spacing. In the case of uniformly distributed loads, the most common for slabs (for it
is quite rare to place large concentrated loads on slabs), every one-foot-wide strip of
the slab is loaded identically; hence, the design is limited to only a one-foot-wide
strip and the selection of the reinforcing for that strip. Then it is assumed that all the

Figure 2.50 One-way slab behavior
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other strips behave the same ways, that is, they need the same amount of reinforcing.
Figure 2.50 also illustrates that if only one imaginary strip is loaded, the adjacent
slab strips will have to help. This is because it is impossible for a monolithic structure
to get the deformation diagram shown on the right of the figure.

Figures 2.51 and 2.52 show the framing plan of different reinforced concrete
floor/roof systems. In Figure 2.51a, slab S-1 is supported by the surrounding beams

Columns
a
-F __________ rr——— T T ——— H’ ___________ Tr-— T T T T T~ -
| 11 [ [ [
| 11 [l 11 11
| [ [ [ [
: : : : : : : : : Slabs
Y s B YT ypican
I i i i i
| 11 [ [ [
| __________L!_ __________ [ ___________!_L __________ | I__
R I S E— I — -
| 11 [l [ 11
| [ 11 [ [
: : : : : : : : : Beams
S S B B ypica
I i i i i
| 11 [ [ [
| __________LL __________ [ ___________LL __________ | I__
q: __________ rr-T- T T T T T T T H: ___________ L I -
| 11 11 [ I 11
| 11 [l [ 11
| [ 11 [ [
I i i i1 Girders ||
| i ' i1 (ypical) ]
b
_T L L
| I i
! (5-2) | (5-2) | (5-2) Columns
| / (typical)
' | |
| .
_T ________ _! _______ _.!_ _______ —
| | |
| (S-2) | (S-2) | (S-2)
| | |
| | |
B o — -

Figure 2.51 (a) Slabs in beam girder floor system; (b) flat plate slab
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Figure 2.52 Slab supported by walls

and girders. In Figure 2.51b slab S-2 is part of a flat plate floor system, in which
slabs are directly supported by columns. In Figure 2.52 slab S-3 is supported by two
parallel walls, which can be made of concrete or masonry.

2.27 Behavior of Reinforced Concrete Slabs Under Loads

Depending on the geometry and location of the supports, most slabs are divided into
two groups: one-way slabs, and two-way slabs.

One-way slabs bend mainly in one direction. If the supporting elements of the
slab are only two parallel members such as beams or walls, the slab is forced to
bend in a perpendicular direction. Figure 2.52 shows the plan view of a slab
supported by two parallel walls. Because every 1 ft wide strip can be considered
to be the same as all the others, only a single 1 ft wide strip of slab needs to be
considered in analysis and design.

The slab’s geometry is an important factor that affects its behavior under loads.
Figure 2.53a shows a slab supported by edge beams B-1 and B-2. Determining the
distribution of loads from the slab to the supporting beams can be simplified by
assuming that the load is transferred to the nearest beam. Such an assumption is
represented by drawing 45-degree lines from each slab corner. The enclosed areas
show the tributary loads to be carried by each beam. Beam B-1 will carry large
trapezoidal loads compared to the triangular loads that will be carried by beam B-2.
As the ratio of longer span (¢,) to shorter span (¢,) increases, B-1 carries more loads
than does B-2, that is, more loads are transferred in the shorter span of the slab.

/ /
In fact, if the ratio El is greater than or equal to 2.0 (Z > 2.0) , the load carried

S S

/
by B-2 is quite small, and it can be neglected altogether. Therefore, if /—é > 2.0,

)
the slab behaves as a one-way slab for all practical purposes, even though the slab is

supported on all four edges.
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B2 s
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[ | I R R
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Figure 2.53 (a) Slab (edge supported); (b) slab load distribution

To better understand this assumption, consider Figure 2.53b, in which two 1 ft
wide strips of slab in the long (¢) and short (s) directions are shown at midspan for
both. The load carried by the short 1 ft wide strip is w,, and the load carried by the
long 1 ft wide strip is w,. If we assume that the slab is simply-supported along all
edges, we can calculate the maximum mid-span deflections for the short (Ay) and
long (Ay) 1 ft wide strips from Equations (2.54) and (2.55).

Swil!

o= 2.54
384El (2:54)
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(2.55)

The two deflections must be equal. Thus, an expression may be developed that
relates the loads and spans, as shown in Equation (2.56).

A, = Ay
5w5£? B SW[K?
384El  384EI

wséf = WM‘;
wy 0 (@)4
wy N ‘gs B ‘€s

The assumption for one-way behavior is ¢,/¢; >2.0. If £,/¢,= 2.0 is substituted into
Equation (2.56), w; is equal to 16w,. Thus, the load transferred in the shorter
direction (wy) is 16 times larger than that transferred in the long direction (wy),
when £,/¢; > 2.0. Therefore, it is reasonable to assume that the loads are transferred
mainly in the shorter direction.

Despite all the foregoing reasoning, structural engineers often design slabs as
one-way slabs, even when the slabs’ proportions do not satisfy the ¢,/¢;>2.0
requirement. The reason is that the shrinkage and temperature reinforcing needed
in the long direction is usually quite enough to satisfy the small moment’s require-
ments. Figure B2.3 in Appendix B shows a one-way slab supported by reinforced
concrete beams. Design and analysis of floor systems with two-way slabs are
discussed in Chapter 6.

(2.56)

2.28 Reinforcement in One-Way Slabs

In general, two types of reinforcement are used in one-way slabs: main reinforce-
ment, and shrinkage and temperature reinforcement.

2.28.1 Main Reinforcement

The main reinforcement resists the bending moments. It is designed to act in the
direction of the one-way slab’s bending, which is along the shorter span length.
Figure 2.54 shows the main reinforcement in a one-way slab supported by two
parallel walls. The slab is assumed to be simply supported by the walls. In other
words, no moment is transferred from the slab to the walls. Because the bottom
portion of slab is in tension, the main reinforcement is placed in the bottom.


http://dx.doi.org/10.1007/978-3-319-24115-9_6
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Wall
—— S&T reinforcement
| ] —— S&T reinforcement
l s s s l — Main reinforcement
—— Main reinforcement - Cas - - |
| 10" | | ¢ |
Section B-B Section A-A

Figure 2.54 One-way slab reinforcement (simple span)

Similarly, the main reinforcement is placed in a continuous construction where
tension develops. For this case, as shown in Figure 2.55, the main reinforcement is
at the bottom of the slab in the midspan region (positive moment) and at the top of
the slab over the supports (negative moment). Typically, #4 bars or larger are used
as main reinforcement, #3 bars are susceptible to permanent distortion caused by
the construction crew walking over them. This is more critical for the top (negative
moment) bars as the slab effective depth (d) may be reduced.

2.28.2 Shrinkage and Temperature (S & T) Reinforcement

As discussed in Chapter 1, fresh concrete loses water and shrinks soon after
placement. In addition, variations in temperature cause the concrete to expand
and contract. These volume changes, when restrained, may result in cracking of
concrete, especially in the early stages of strength development. Reinforcing bars
are used to resist developing tensions in order to minimize cracks in concrete
caused by shrinkage and temperature changes. The main longitudinal reinforcement
in beams plays that role as well. Because the cross-sectional dimensions of beams
are relatively small and beams may freely change their cross-sectional dimensions


http://dx.doi.org/10.1007/978-3-319-24115-9_1
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a
S&T reinforcements Main reinforcements
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Py 'y ® ® Py 'y 'y ./.
Reinforcement distribution
b
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Vi 77
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Moment diagram for continuous slab

Figure 2.55 One-way slab reinforcement (continuous construction). (a) Reinforcement distribu-
tion. (b) Moment diagram for continuous slab (refer also to Figure 2.14)

without restraint, shrinkage and temperature reinforcement are not needed perpen-
dicular to the main bars.

This is not the case in reinforced concrete slabs. Slabs typically have large
dimensions in two directions, thus they need shrinkage and temperature reinforce-
ment, which is placed in the direction perpendicular to the main reinforcement.
Figures 2.54 and 2.55 show such reinforcement for simple-span one-way slabs and
continuous one-way slabs, respectively. In addition, temperature and shrinkage
reinforcement helps distribute concentrated loads to a wide zone transversely to
the one-way direction. (This is necessary in bridges, for example, to distribute large
wheel loads onto a much wider strip than the one directly affected by the concen-
trated load.)

2.28.3 Minimum Reinforcements for One-Way Slabs

As discussed above, two types of reinforcement are used in one-way slabs. The ACI
Code sets the following minimum reinforcement criteria for both the main and the
shrinkage and temperature reinforcements.
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Minimum Main Reinforcement The minimum main reinforcement for slabs is
equal to that required for shrinkage and temperature reinforcements (ACI Code,
Section 7.6.1):

Ay min = Ag(seT) (2.57)

In other words, if the calculated main reinforcement is less than that required for
shrinkage and temperature reinforcement, the designer must use at least the latter
amount.

Minimum Shrinkage and Temperature Reinforcement The ACI Code
(Section 7.6.1.1) requires shrinkage and temperature reinforcement based on the
grade of steel, as given in Equations (2.58)—(2.60).

For f, = 40 or S0ksi — Ayser) = 0.002bh (2.58)
For £, = 60ksi — Ayser) = 0.0018b/ (2.59)
0.0018 x 60
For f, > 60ksi — A,se1) = fixbh >0.0014bh  (2.60)
y

In Equations (2.58)—(2.60), b =12 in. (slab width), which corresponds to the width
of the 1 ft wide strip, / is the overall thickness of the slab in inches, and A &) is
the area of steel in square inches per foot of width.

Minimum Concrete Cover for the Reinforcement in Slabs A minimum concrete
cover is needed for the reinforcement to prevent various detrimental effects of
the environment on reinforcing bars. Concrete cover is always measured from the
closest concrete surface to the first layer of reinforcing. This is shown in Figure 2.56.
Section 20.6.1.3 of the ACI Code requires a minimum concrete cover of % in. for
#11 and smaller bars, and 1.5 in. for #14 and #18 bars, provided that the concrete
slab is not exposed to weather or not in contact with the ground.

® ® 9_|

Minimum concrete cover

Figure 2.56 Minimum cover for slabs
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Bar Spacing in Reinforced Concrete Slabs No specific minimum spacing of bars is
required in slabs other than what was already discussed for beams. For practical
reasons, however, bars are not placed closer than 34 in.

The ACI Code has different maximum spacing requirements for the main and
the shrinkage and temperature reinforcements. These are as follows:

Maximum Spacing of Main Reinforcement Bars ACI 318-14 has two sets of
requirements regarding maximum bar spacing for the main reinforcement in
one-way slabs: (1) Section 7.7.2.3 requires that the maximum spacing of bars be
limited to three times the slab thickness or 18 in., whichever is smaller; and
(2) Section 24.3.2 limits the maximum main reinforcement spacing (s) of
one-way slabs, as calculated by Equation (2.53), in order to control the width and
spacing of flexural cracks.

We can use the required minimum cover of 3/4 in. for one-way slabs
(c.=0.75 in.) and f,=2/3 f, =2/3 (60,000) =40,000 psi to determine the maxi-
mum spacing for f, = 60 ksi reinforcement. Substituting into Equation (2.53):

40,000 40,000
5= 15( )—2.5(0.75) < 12( >

40,000 40,000
s =13.1in. < 12in.
s = 12in.

Therefore, the maximum main reinforcement spacing with f, =60 ksi steel for
one-way slabs is given by Equation (2.61a).

Smax,main = mMin{3A, 12in.} (2.61a)

Similarly, when using f, = 40 ksi steel as main reinforcement, Equation (2.53) will
simplify to Equation (2.61b).

Smax,main = min{3%, 18in.} (2.61b)

Maximum Bar Spacing of Shrinkage and Temperature Reinforcement ACI Code,
Section 7.7.6.2.1 limits the spacing of the shrinkage and temperature reinforce-
ments to five times the slab thickness or, 18 in., whichever is smaller:

Smax, (s&T) = min{5h, 18in.} (2.62)

Minimum Thickness of Slab for Deflection Control The minimum recommended
thickness for one-way slabs required to adequately control excessive deflections is
based on Table 7.3.1.1 of the ACI Code, which is summarized graphically in
Figure 2.42. Lesser thicknesses are permitted if the designer can show through a
detailed deflection analysis that the Code’s serviceability requirements are met.
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2.29 Areas of Reinforcing Bars in Slabs

A 1 ft (12 in.) wide strip of slab is typically used for the analysis and design of
one-way slabs. Thus, it is advantageous to define the amount of steel in a 1 ft wide
strip as a function of the bar size and the spacing.

Table A2.10 lists spacing and bar sizes for slabs. The table provides the areas of
reinforcement averaged out to 1 ft width for different sizes and spacing of bars.
(One can interpolate for 72 in. spacing increments, if so desired.)

For example, with #5@8 in. o.c. (#5 bar at 8 in. on-center spacing), the table,
under #5 bars spaced at 8 in., provides the area of steel per foot of section 0.47 in.%.
In other words, 0.47 in.%/ft is equivalent to one #5 bar every 8 in.

Another example: If 0.50 in.” of reinforcement is required for a 1 ft wide strip of
a slab, the table offers several options, including #4@4 in. (A,=0.60 in.2),
#5@7 in. (A, =0.53 in.?), #6@ 10 in. (A, = 0.53 in.?), and so on.

2.30 Analysis of Reinforced Concrete One-Way Slabs

In general, one-way slabs and reinforced concrete beams are analyzed very simi-
larly. There are a few differences, however. These are listed below:

. For the analysis of one-way slabs, b is always 12 in.

. Slabs require a different amount of concrete cover over the reinforcement.

. Slabs require shrinkage and temperature reinforcement.

. The Code-specified minimum amounts of reinforcing steel for slabs and beams
are different.

5. Minimum required depth/span ratios for adequate control of deflection are

different.
6. Bar spacing requirements are different.

RO R S

Figure 2.57 summarizes the steps for the analysis of reinforced concrete one-way
slabs. They are as follows:
S

A
Step 1. Calculate the steel ratio, (p = bd> . Ay is the area of steel in a 1 ft wide strip

of slab from Table A2.10. Compare p with py,x from Table A2.3. The
maximum permitted steel ratio is the same for beams and slabs.

Step 2. Compare A, with A; ,;,, which is the minimum required area of steel for
the control of shrinkage and temperature-induced volumetric changes.
If Ay <A;min, the proportioning of steel and concrete is not acceptable
according to the current ACI Code and the slab’s use is illegal. If A; > A 1in,
however, then one of the following methods can be used to check the
adequacy of the slab:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Analysis of Reinforced
Concrete One-Way Slabs

Slab is illegal You may not legally use all
%fgggg,t the reinforcing in finding M.
3.
a= AS’;/ 3. Use p, fyand fito find R
0.85 fib from Tables A2.5 through A2.7.
(1) EITHER (2) OR
No Yes J
4 _ bd?R
5, b=0.90 A~ 12,000
¢ = A2 + Z
d
4. a
Mg = bA, (d — 5)
No Yes
Slab is not adequate to carry the |6' Check main reinforcement spacing. |
assumed live loads. Calculate
permissible reduced live l
loads from Mp, |7' Check shrinkage and temperature reinforcement. |

|

|8' Check slab thickness for deflection control.

END
Figure 2.57 Flowchart for the analysis of reinforced concrete one-way slabs

Method 1

Step 3. Calculate the depth of the compression zone:

a = 7ASJ§)
T 0.85f/b

Determine the location of the neutral axis (c):

c=—

B
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Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

2 Rectangular Beams and One-Way Slabs

c 3 L . :
If—< 3 the section is tension-controlled and ¢ = 0.90. Otherwise, the
t

section will be in the transition zone. Calculate the strength reduction

factor, ¢:

B
=4+
d,
A, and B, are listed in Table A2.2b.
Calculate the section’s resisting moment (Mg):

M =, (d-3)

(If A is in in.z, fy ksi, d and a in., then Mg will have kip-in. unit.
Divide the result by 12 to obtain My in the customary units of kip-ft).
Compare My with the maximum factored moment from the applied loads. If
My <M, the slab is not adequate to carry the assumed loads. Proceed to
calculate a new permissible live load that the slab may legally support. If
Mg > M, the section can take the assumed loads, but the reinforcing still
needs to be checked for conformance with other Code requirements.
Check spacing requirements. The maximum allowable spacing of main
reinforcement is min{3#, 12 in.}, or min{3A, 18 in.} for f, =60 ksi and
Jfy =40 ksi steel, respectively.

3in. < s <min{3A,12in.} for f, = 60ksi
3in. < s < min{3A,18in.} for fV = 40ksi

Check the amount and spacing of shrinkage and temperature reinforcement,
(Ay)s &1 (Refer to Equations (2.58)—(2.60).)

3in. < sser < min{5A, 18in.}

Check the thickness of the slab against the minimum thickness of one-way
slabs for desirable deformation control (see Figure 2.42).

min = £/20 for simply-supported slabs

h

hmin = £/10 for cantilevered slabs

hmin = £/28 for both ends continuous slabs
h

min = £/24 for one end continuous slabs

If the slab thickness is less than the above limits, calculate the deflection
and check it against the Code’s serviceability requirements.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Method Il
Steps 1 and 2 are the same as in Method 1.

Step 3 Use f,, /2, and the calculated steel ratio (p) to obtain the resistance coefficient,
R, from Tables A2.5 to A2.7.

Step 4 Use the R value to calculate the section’s resisting moment.

_ bd’R
" 12,000

R

R is in psi, b=12 in., and d in inches. My will be in units of ft-kip. Steps 5, 6,
7, and 8 are the same as in Method 1.

Example 2.15 Figure 2.58 shows a section through a reinforced concrete simply-
supported one-way slab of an existing building. The maximum moment from dead
loads, including the slab weight, is 3.0 (ft-kip)/ft, and that from live loads is 2.0
(ft-kip)/ft. Check the adequacy of the slab, including the shrinkage and temperature
reinforcements, using (a) Method I, and (b) Method II.

< < [6in
) i} hd

#5 @7 in. (main) #3 @12 in. (S&T)

Figure 2.58 Sketch of one-way slab for Example 2.15

Use a concrete cover of ¥%in., f/ = 3.0ksi, and f, =40.0 ksi.
Solution

Step 1. Check the reinforcement ratio in the slab:

/Diameter of #5 bars

5
_ 8 .
=—+=2=1.06 1n.
54 2

/’4
d=h-y=6in.—1.06 in.=4.94 in.

#5@ 7 in. (main reinforcement) — Table A2.10 — A;,=0.53 in.%/ft


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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A, 053
P=hd " 12404 000894
! = 3ksi — Table A2.3 — pax = 0.0232 > 0.00894 .".ok

fy=40 ksi
Step 2. Check the minimum area of main reinforcement. For slabs, this area is the

same as the requirement for shrinkage and temperature reinforcement:

Ay min = Aysar) = 0.002bh (jg, — 40 ksi)

Ag.min = (0.002)(12)(6) = 0.14in.2/ft
Ay=0.53in2/ft > 0.14in2/ft .. ok

(a) Method I
Step 3. Calculate the depth of the compression zone:

L Asfy 053 x40
- 0.85f/b 0.85x3x 12
a =0.69in.

The neutral axis is located at c:

a  0.69

427 081in.
‘=B 085 "
d,=d = 4.94in.
c 0.8l
CoT0 0164 <0375 . =0.90
4, 494 ¢

Step 4.
a
My = oM, = q)ASfy(d _ E)
0.69)

Mp = (0.9)(0.53)(40) ( 4.94 — ==

87.71in.-kip .
Mp=————="7.3ftk
R 2 /ft P

Step 5. Calculate the factored applied moment on the slab:

M,= 12Mp + 1.6M,
M,= 12 x 3.0 + 1.6 x 2.0 = 6.8ft-kip < 7.3ft-kip .. ok


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Step 6. Check the main reinforcement spacing:
3in. <s < min{3#, 18in.}
The main reinforcement is #5@ 7 in.:

3in. < 7in. < min{3 x 6in., 18in.}
3in. < 7in. < 18in. .. ok
Slab is ok.

Step 7. Check the shrinkage and temperature reinforcements:
Ayser) = 0.002bh = (0.002)(12)(6) = 0.14in.2 /ft

From Table A2.10 — #3@12in. — A, = 0.11in.2/ft < 0.14in.2/ft .. N.G.

Therefore, the shrinkage and temperature reinforcement in the slab
does not satisfy the current ACI Code’s minimum requirement.

(b) Method II

p=10.00894
Step 3. f! = 3ksi — Table A2.5a — R = 299 psi (by interpolation)
fy =40 ksi

Step 4. - bR

*7 12,000

(12)(4.94)*(299)
12,000
My = 7.3ft-kip

This value is the same as the resisting moment we calculated in
Step 4 using Method I. Steps 5, 6, and 7 are the same as those of
Method 1.

Example 2.16 Figure 2.59 shows the partial floor framing plan and section of a
reinforced concrete floor system. The weight of the ceiling and floor finishing is
5 psf, the mechanical and electrical systems are 5 psf, and the partitions are 15 psf.
The floor live load is 150 psf. The concrete is normal weight, f! = 4ksi, and
fy =060 ksi. Check the adequacy of slab S-1 in the exterior bay at (a) midspan,
and (b) over the interior supporting beam. Assume the slab is cast integrally with
the supporting beams and use ACI code coefficients to calculate moments. Use
% in. cover for the slab.
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Partial floor framing plan

#4 @ 8in. #4 @ 8in.
¢ ¢ |
[} m [} [} [} [} [} [} [} Q+ 6 In
'y —I . A
\\ #4 @ 10/in.
#3 @ 101in. 24in.
f—14in.—] f—14in.—]
f 12'-0in. |
Section A-A

Figure 2.59 Framing plan and section for Example 2.16

Solution
(a) Check the Slab at the Midspan

Step 1. The main reinforcement at the midspan (positive moment) is #4@
10 in.

#4@10in. — Table A2.10 — A, = 0.24in.%/ft
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4
_ 3 § .
yfz Efl.Oln.
d=h—y=6in. — lin. = Sin.
Ag 24
020 o040

P hd ~ (12)(5)
f! = 4ksi — Table A2.3 — p,,, = 0.0207 > 0.004 .. ok
f, = 60ksi

Step 2.

Ay min = Ayser) = 0.0018bh (Jg, _ 60ksi)

Ag.min = (0.0018)(12)(6) = 0.13in.% /ft
Ay =0.24in.2/ft > 0.13in.2/ft .. ok

Method II is followed for the rest of the solution, as it requires fewer

steps.
Step 3.
p = 0.0040
f! =4ksi — Table A2.6b — R = 208 psi
f, = 60ksi
Step 4.
P _ bd’R
*7 12,000
2
iy = (125008
12,000
Mp = 5.2ft-kip

Step 5. The slab’s dead and live loads are:

6
Weight of slab = 150 <E) = 75psf

Ceiling and the floor finishing = 5psf
Mechanical and electrical =  5Spsf
Partitions = 15psf

Total dead load = 100 psf
Total live load = 150psf
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The slab’s tributary width is 1'-0":

100 x 1

"D =500 0.10kip/ft
150 x 1

wr 1,000 0.15kip/ft

w,=12wp + 1.6w, = 1.2 x 0.10 + 1.6 x 0.15
w, = 0.36kip/ft
14in.

0, = 12ft — = 10.83ft

The maximum factored moment at the midspan of the exterior bay
of the slab is:

w,,(ﬁ
M, =="
(0.36)(10.83)?
e
M, = 3.0ftkip < Mg = 5.2ft-kip .. ok

U

Because My is much larger than M, the slab is overdesigned for
positive moment.

Step 6. Check the spacing requirements for the main reinforcement:

3in. <s < min{3#4, 12in.}
3in. < 10in. < min{3 x 6in., 12in.}
3in. < 10in. < 12in. .. ok

Step 7. Check shrinkage and temperature reinforcement:

Ayset) = 0.0018bh (fy = 60ksi)
Agsery = 0.0018(12)(6) = 0.13in.2 /ft
#3@10in. — Table A2.10 — A; = 0.13in.2/ft .. ok
Check the spacing of the shrinkage and temperature reinforcement:

3in. <s < min{5#4, 18in.}
3in. < 10in. < min{5 X 6in., 18in.}
3in. < 10in. < 18in. .. ok
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Step 8. For deflection control, the minimum recommended thickness (without
calculating deflections) for the one-end-continuous slab is:

. _ 6 12x12
"4 24
Slab is ok at mid-span.

=6in. = 6in. .. ok

(b) Check the Slab at Supports

Step 1. The main reinforcement at the supports (negative moment) is

#4@8 in.
#4@81in. — Table A2.10 — A, = 0.30in.2/ft
4
; o
y=3+5=10i
d=h—y=06in. — lin. = 5in.
A, 030

P=5d = 12)5) — 00

f! = 4ksi — Table A2.3 — p,,. = 0.0207 > 0.005 .. ok
f, = 60ksi

Step 2. Agmin = Aysar) = 0.0018bh (fy - 60ksi>

Ag.min = (0.0018)(12)(6) = 0.13in.2 /ft
Ay =0.30in.2/ft > 0.13in.2/ft .. ok

Step 3. p = 0.005
f! = 4ksi — Table A2.6b — R = 258 psi
f, = 60ksi
Step 4.
b _ bd’R
k= 12,000
Yo — (12)(5)*(258)
R 12,000

My = 6.5ft-kip



130 2 Rectangular Beams and One-Way Slabs

Step 5. The dead and live loads from part a are:

w, = 0.36kip/ft(from part a)
£, = 10.83ft(from part a)

The maximum factored moment at the first interior support for an
exterior bay of the slab is (Table A2.1):

_wll
“T10
~(0.36)(10.83)°
e 10
M, = 4.2ft-kip < Mg = 6.5ft-kip .. ok

Step 6. Check the spacing of the main reinforcement:

3in. <s <min{34, 12in.}
3in. < s <min{3 x 6in., 12in.}

3in. < 8in. < 12in. .. ok

The shrinkage and temperature reinforcement and the minimum
depth for deflection were checked in part a.
Slab is ok at the support.

2.31 Design of Reinforced Concrete One-Way Slabs

The design process of one-way slabs is similar to that of reinforced concrete
rectangular beams. Figure 2.60 summarizes the steps for the design of reinforced
concrete one-way slabs. They are as follows:

Step 1. Select the slab thickness. The slab thickness is generally based on the
minimum ACI requirements for deflection control (see Figure 2.42). This
is usually rounded up to the nearest 72 in. for slabs with 2 < 6 in. and to the
nearest 1 in. for those with 4> 6 in.

Step 2. Calculate the factored loads (w,), and then determine the maximum fac-
tored moment, M,,.

Step 3. Determine the slab’s effective depth, d. Because the bar sizes are not yet
known, assume #6 bars with 3/4 in. cover.

y = 1.12in.
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| Design of Reinforced Concrete One-Way Slabs |

|

|1- Select h,j, based on ACI requirements for deflection (Figure 2.42). |

A

—>|2- Find dead and live loads and calculate w, = 1.2wp + 1.6u,. |

|

| Find the maximum moment, M, |

l

|3- Calculate assumed effective depth (d), d = h — 1.12in. |

A

4'(/\// ftkip)— A 12,000M,
= - | —_— = —
u p ba?

b=12in.

I

|5- Use R, f,, and f,to find p from Tables A2.5 through A2.7.

—| Increase slab thickness.

No

7.

dactual = dassumed?

Asmin = A
s,min 'S(S&T) Yes

Yes

A
—>| Select steel from Table A2.10.

| 8. Check maximum main bar spacing. |<—

|9- Design shrinkage and temperature reinforcements. |—>| End |

Figure 2.60 Flowchart for the design of reinforced concrete one-way slabs
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Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

2 Rectangular Beams and One-Way Slabs

Therefore, the assumed effective depth:
d=h-1.12in.

Determine the required resistance coefficient (R):

. 12,000M,,

R(psi) =—

b=12 in., and d is in inches. M,, is in ft-kip and R in psi.

Using R, f,, and S select p (steel ratio) from Tables A2.5 to A2.7. If the
value of R is more than the maximum value shown in these tables
(R > Rnax), the selected slab thickness is not adequate for the loads and
needs to be increased. (Note that in most cases this does not happen. The
required thickness for deflection control is usually more than what is
required to carry the loads.)

Ay = pbd

Check the minimum reinforcement requirement. The minimum area of
steel for the main reinforcement must not be less than that required for
shrinkage and temperature reinforcement:

Ax, min — AJ(S&T)

If Ay < Ag min, the slab requires only a small amount of reinforcing steel,
A,. Use at least Agpin, however. Select the bar size and spacing from
Table A2.10.

Check for actual depth (ducwa) based on the bar selected. If
actual < dassumeds €0 back to Step 4 and revise. Repeat if the difference is
too large (larger than 1/8 in. for slabs & <6 in. and 1/4 in. for 2> 6 in.).
Check bar spacing. The spacing of bars selected in Step 6 has to be checked
against the ACI Code requirements for maximum allowable spacing.
Design the shrinkage and temperature reinforcements according to the ACI
Code requirements.

Example 2.17 Design the one-way slab (S-1) of Example 2.16. Determine the
reinforcement at (a) the midspan and (b) the supports.

Solution

(a) Slab Design at the Midspan

Step 1.

Because S-1 is one end continuous, the minimum slab thickness (/;y,) is:

¢ 12 x 12 .
— = = 6in.
24 24

hmin =
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Step 2. Determine the loads on the slab:

Weight of slab = 150(6/12) = 75psf
Ceiling and floor finishing = Spsf
Mechanical and electrical =  Spsf

Partitions = 15psf

Total dead load = 100 psf
Total live load = 150psf

On a 1 ft wide strip

100 x 1
= = 0.10kip/ft
Wp 1,000 0.10kip/
150 x 1
= = 0.15kip/ft
wr 1,000 0.15kip/

wy, =12wp + 1.6w, = 1.2 x0.104+ 1.6 x 0.15

w, = 0.36kip/ft

in. 08310

l, = 121t —

The maximum factored moment at the midspan of S-1 (see Figure 2.61) is:

Wyl
M, =—Cn
" 14
~(0.36)(10.83)°
v 14
M, = 3.0ft-kip
|
_ Wuen2 + Wuen2 _ Wuen2 _ Wuen2 !
24 14 10 11

Figure 2.61 Design factored moments for slab S-1 of Example 2.17 using ACI Code coefficients
from Table A2.1
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Step 3. Assuming % in. cover, calculate the slab’s effective depth:

d=h—1.12in. = 6in. — 1.12in. = 4.88in.

Step 4. Calculate the required resistance coefficient, R:

12,000M,
R=—"5—
bd
12,000 x 3.0 .
R= 4X2 = 126 psi
(12)(4.88)
Step 5. Find p from Tables A2.5 through A2.7:
R = 126psi
f! = 4ksi — Table A2.6b — p = 0.0024
Jy = 60ksi

Therefore, the required area of main reinforcement (A;) is:

As; = pbd = (0.0024)(12)(4.88)
Ay = 0.14in.2 /ft
Step 6. The minimum amount of reinforcement for slabs cannot be less than the
required shrinkage and temperature reinforcement steel:
As,min = Ag(set) = 0.0018bh for f = 60ksi
Ag.min = (0.0018)(12)(6) = 0.13in.2/ft < 0.14in.2/ft .. ok
Ay = 0.14in.2 /ft
From Table A2.10 — select#4@17in. (A, = 0.14in.2 /ft)
Note that according to Section 2.28, the smallest size bar for main

reinforcement is #4.
Step 7. Check for the actual effective depth.

o] &~

dactual = 6 — = 5.0in. > dygumed = 4.88in. .. ok

BN

Step 8. Check the main reinforcement spacing, s, (f, = 60 ksi).

3in. <s < min{3#4, 12in.}
3in. < 17in. < min{3 X 6in., 12in.}
3in. < 17in. < 12in. .. N.G.
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Therefore:
Use #4@ 12 in. for the main reinforcement at the midspan.
Step 9. Calculate the required shrinkage and temperature reinforcement.

Agset) = 0.0018bh = 0.13in.2 /ft
From Table A2.10 — use #3@10in.

The shrinkage and temperature reinforcement spacing (s) has to be
within the following range:

3in. <s < min{5A, 18in.}
3in. < 10in. < min{5 x 6in., 18in.}
3in. < 10in. < 18in. .. ok

Therefore,
Use #3@10 in. for the shrinkage and temperature reinforcement.

(b) Slab Design at the Supports
Step 1. From Step 1 of part a:

Hmin = 61n.

Step 2. The factored uniformly distributed load on the slab (w,) from Step 2 of part
ais:

w, = 0.36kip/ft
and the clear span (£,,) is:

4, =10.83ft
From Figure 2.61, the moments at the exterior and interior supports are:

w2 (0.36)(10.83)°

= 1.76ft-kip (exterior support)

“ 24 24
L2 (0.36)(10.83)?
M, = Wl O" = ( )i 0 ) = 4.22ft-kip (interior support)

Step 3.
Assume d =h —1.12in. =6 — 1.12 = 4.88in.
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Step 4.
12,000M, 12,000 x 1.76 . .
R= = . 5— = 74 psi (exterior support)
bd (12)(4.88)
12,000M, 12,000 x 4.22 C e
R= — = < 5— = 177psi (interior support)
bd (12)(4.88)
Step 5.
R = T4psi
For exterior support] f! = 4ksi — Table A2.6b — p.,, = 0.0014
f, = 60ksi
R = 177psi
For interior support { f! = 4ksi — Table A2.6b — p;,, = 0.0034
f, = 60ksi
Therefore:

(A)oy, = pbd = (0.0014)(12)(4.88) = 0.082in.2/ft
(As)y, = pbd = (0.0034)(12)(4.88) = 0.20in.2/ft

Step 6. From Step 6 of part a:

A‘Y, min — AS(S&T) = 013 in.2/ft
(Ay). = 0.082in2/ft < 0.13in2/ft .. N.G.

Therefore, use

(Ay)ey, = 0.13in.2/ft

(Ay)i. = 0.20in.2/ft > 0.13in.2/ft .. ok

From Table A2.10 — Try#4@ 12in. (exterior supports)
(A)y, = 0.20in.2/ft

From Table A2.10 — Try#4@ 12in. (interior supports)

Step 7. This is the same as in part a.
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Step 8. Check the main reinforcement spacing:

3in. < s < min{34, 12in.}
3in. < s <min{3 x 6in., 12in.}
3in. < s < 12in.
Sint, = Sext. = 12in. = 12in. .. ok
Use #4@12in. for the exterior and interior supports.

Step 9. The shrinkage and temperature reinforcement was designed in part a.
Figure 2.62 shows the slab as designed.

#4 @ 12in. #4 @ 12in.

\ /

@
I: 1
—#3 @ 10 in. |—#4 @ 12in.

I 12|_0|| I

Figure 2.62 Slab S-1 designed in Example 2.17

Problems

In the following problems, unless noted otherwise, use normal weight concrete with
a unit weight of 150 pcf, 1.5 in. for beam clear concrete cover, and 0.75 in. for slab
clear concrete cover.

2.1 Consider a section with a width (b) of 14 in. and reinforced with 4 #9 bars in
a single layer. f! =4,000psi, and f, =60,000 psi. Determine the moment
capacity of the section, Mg, using Method I or II, for the following cases:

(a) d=28in.
(b) d=32in.
(¢) d=36in.
(d) d=40in.

Show the changes in My with respect to the section’s effective depth.
Calculate the percentages of increase in My versus d.
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2.2

2.3

24

2.5

2.6
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Consider a rectangular reinforced concrete beam with an effective depth of
36 in. reinforced with 4 #9 bars. f/ = 4,000psi, and /= 60,000 psi. Determine
Mp using Method I or II for the following cases:

(a) b=141in.
(b) b=161in.
(¢c) b=18in.
(d) b=20in.

Show the variation in My with b. For each case calculate the percentage of
increase in My versus b.
Consider a reinforced concrete beam with a width () of 14 in. and an effective
depth (d) equal to 36 in. f! =4,000psi, and f, =60,000 psi. Determine the
moment capacity of this beam, My, for the following reinforcements:

(a) 4 #6 bars
(b) 4 #7 bars
(c) 4 #8 bars
(d) 4 #9 bars

Show the variation of My with respect to the area of reinforcements (A;). For
each case calculate the percentage of increase in My versus Aj.
Consider a reinforced concrete beam with a width (b) of 14 in., and an effective
depth (d) of 36 in. reinforced with 4 #8 bars. Use f,, = 60,000 psi. Determine the
moment capacity, M, of this beam for the following cases:

(@ f = 3,000psi
(b) £ =4,000psi
(©) f/ =5,000psi

Rework Problem 2.4 for f/ =4,000psi and for the following steel yield
strengths:

(@) f,=40,000 psi
(b) f,=60,000 psi
© f,=75000 psi

Determine the useful moment strength of the section shown below in accor-
dance with the ACI Code. Use f! = 4,000 psi, f,=160,000 psi, and #3 stirrups
and follow Method II in the calculations.

0

121in. 8#9

f 32in. |
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2.7 The rectangular reinforced concrete beam shown below is subjected to a dead
load moment of 180 ft-kip and live load moment of 90 ft-kip. Determine
whether the beam is adequate for moment capacity. f! = 4,000psi, and
fy=160,000 psi. The stirrups are #3 bars.

f~12in.-|

M M

2.8 The beam below supports 500 Ib/ft service dead loads and 600 Ib/ft service live
loads in addition to its self-weight. Calculate the maximum simply-supported
span (¢ =?) for the beam. Use Method II in the calculations. Use f, = 5,000 psi
and f, = 60,000 psi.

15.5in.

3 #8

f—12in.—]

3 25in.

2.9 A rectangular beam carries uniformly distributed service (unfactored) dead
loads of 3.0 kip/ft, including its own self-weight and 1.5 kip/ft service live
loads. Based on the beam’s moment capacity, calculate the largest factored
concentrated loads, P, that may be placed as shown on the span in addition to
the given distributed loads. The beam width is 18 in., and has a total depth of
30 in. with 5 #11 bars. Use f = 5,000 psi, fy=160,000 psi, and #3 stirrups.

Py Py

ﬁllIIIIIIIIIIIIIIMIIIIIIIIIIIIIIIIMIIIIIIIIIIIIIIIIZ
f—8-0" —}—8-0"—}—8-0"—]
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2.10 The beam shown below is part of a beam-girder floor system. It is subjected to
a superimposed dead load of 4.0 kip/ft (excluding the beam weight) and a
live load of 2.0 kip/ft. Check the adequacy of this beam. Use f, = 4,000 psi,
fy=060,000 psi, and #3 stirrups. Assume knife edge type supports at the
centers of the walls.

wp = 4.0kip/it
w, = 2.0kip/ft [ A B
/
I A S N S S S N S T R S T T
1 1 1 1 1 1 1 1 i 1
Ly A Ls
. 5-8" 18in| 18in| 5-3" |
. 210" |
f—12in.— f—12in.—]
E4#9
24 in. 24in.
3#10
e e | e o & |
A-A B-B

Note: Check both sections A-A and B-B. Neglect the reinforcement in the
bottom of the beam at section A-A.

2.11 Determine the moment capacity, Mg, of the reinforced concrete section
shown below if subjected to a negative moment. The stirrups are #3 bars.
Use f! = 4,000psi and f, = 60,000 psi.
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4 #10

28 in.

f——13 in.—]

2.12 The figure below shows the cross section of a floor system consisting of a
reinforced concrete beam supporting precast concrete planks. The beam span
is 20'-0” with 16'-0" spacing. Calculate the maximum service live load per
square foot of floor area. Use f! = 4,000psi and f, = 60,000 psi. The unit
weight of lightweight (LW) concrete used is 108 pcf. Assume the beam is
simply-supported.

/— Floor finish, 2 psf

| | \— 2 in. concrete topping at 108 pcf

\— 8in. deep X 24 in. wide precast
concrete planks at 110 Ib/ft

24 in.

3#9

f—12in.—]

2.13 The 16 in. x 27 in. rectangular reinforced concrete beam shown below is
reinforced with 4 #10 bars in the positive moment region and 3 #11 bars in
the negative moment region. Determine the maximum factored uniformly
distributed load, w,, for this beam. Stirrups are #4, f! = 5,000psi, and
£, =160,000 psi.
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WU
BT AR AR
Z\

| 28'-0" l—12-0"—|

2.14 The beam of Problem 2.11 is part of a beam-girder floor system shown below
(beam B-1). The floor slab is 6 in. thick concrete, and the weight of the
mechanical/electrical systems is 5 psf. Assume 15 psf for partition loads,
and miscellaneous dead loads of 5 psf. What is the maximum allowable live
load for this floor? Consider only the negative moment capacity of the section.
(Note: Use the ACI moment coefficients. Live load is not to be reduced.)

[ 2 LN  ttataias ettty
14in. X 14in. —/‘!|-101_0|| | 10-0" | 10'-0" | 10'-0" | 'J
Columns (typical) [ I I I

2.15 Calculate the required areas of reinforcement for the following beams. Use
f! =4,000psi and f, = 60,000 psi.

(a b=10in., d=20 in., M,, =200 ft-kip
(b) b=12in., d=24 in., M, =300 ft-kip
(¢) b=18in., d=36in., M, =500 ft-kip
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2.16 Design a rectangular reinforced concrete beam subjected to a factored load
moment, M, =250 ft-kip. The architect has specified width »=10 in. and
total depth #=24 in. Use f = 4,000 psi, f, = 60,000 psi, and #3 stirrups.

2.17 Redesign the beam in Problem 2.16, assuming that the clear height for the
building requires the total beam depth to be limited to 20 in. Determine the
beam width (b) and the area of steel (Ay) in such a way that the section will be
in the tension-controlled failure zone.

2.18 Design a rectangular beam for M,=300 kip-ft. Use f/ = 3,000psi,
fy=060,000 psi, and #3 stirrups. Size the beam for p=0.01 and b/d=0.5
(approximate). Do not consider the beam’s self-weight.

2.19 The 16 in. x 27 in. rectangular reinforced concrete beam shown below is
subjected to concentrated loads of Pp=12.0 kip and P, =8.0 kip. The
uniformly distributed dead load, wp, is 1.6 kip/ft (including the beam’s self-
weight), and the live load, w;, is 1.0 kip/ft. Determine the required reinforce-
ments. Sketch the section and show the selected bars. Use ! = 5,000 psi and
f3,=160,000 psi.

P P

w
LTI T TP
k—g-0" | 8-0" | 8-0"

2.20 An artist is designing a sculpture that is to be supported by a rectangular
reinforced concrete beam. The sculpture’s weight is estimated to be 400 1b/ft
(assumed as a live load). The beam section must be limited to » =8 in. and
h =12 in. The artist wants to make his sculpture as long as possible. What is
the maximum possible length of this cantilever beam without the use of
compression reinforcement? Use f; = 4,000psi, f,=60,000 psi, and #3
stirrups.

2.21 A 14 in. X 24 in. rectangular precast reinforced concrete beam supports a
factored uniform load, w,=4.0 kip/ft, including the beam’s self-weight.
Determine the reinforcements required at the supports and the midspan. Use
f! =4,000psi and f, = 60,000 psi.

wy = 4.0 kip/ft
||||||||||IEI||||||||||||||||||||||||||||||E|||||||||||

k120" 3010 120"
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2.22 An 8 in. thick simply-supported reinforced concrete one-way slab is subjected
to a live load of 150 psf. It has a 12 ft span and is reinforced with #4@8 in.
as the main reinforcement and #4@12 in. as shrinkage and temperature
reinforcement. Determine whether the slab is adequate. Use f! = 4,000 psi
and f, = 60,000 psi.

2.23 A 5 in.-thick simply-supported reinforced concrete one-way slab is part of a
roof system. It is supported by two masonry block walls, as shown below.
Assume a superimposed dead load (roofing, insulation, ceiling, etc.) of 15 psf
and a roof snow load of 30 psf. Check the adequacy of the slab, including the
required shrinkage and temperature reinforcement. Use f! = 4,000psi and
fy=060,000 psi. The bearing length of the slab on the wall is 6 in.

#4 @9in. #4 @ 12in.

\ /
6in.| Y \ Py KA Y Y Y s Y Y 6in.

= e
10'-0"
_+_ _+_
12in. 12in.

2.24 The figures below show the framing plan and section of a reinforced concrete
floor system. The weight of the ceiling and floor finishing is 5 psf, that of the
mechanical and electrical systems is 5 psf, and the weight of the partitions is
20 psf. The floor live load is 80 psf. The 6 in.-thick slab exterior bay (S-1) is
reinforced with #6@9 in. as the main reinforcement at the midspan and #4@
12 in. for the shrinkage and temperature reinforcement. Check the adequacy
of the slab. Use the ACI moment coefficients. Use f/=4,000psi and
/3= 160,000 psi.
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|—>A

25'.0"

250"

(8-1)

Ly s

(S-2)

12in. X 12 in. column (typical)

Framing Plan

6 in.

30in.

| 12Iin.

10'-0"

12Iin.

Section A-A
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2.25 Design a 6 in.-thick one-way slab for a factored moment, M, = 10 ft-kip. Use
f! =4,000psi and f, = 60,000 psi.

2.26 Find the reinforcements for the midspan and supports for an interior 6 in.-thick
slab (S-2) of the floor of Problem 2.24. Sketch the slab and show the
reinforcements including the shrinkage and temperature reinforcement steel.

Self-Experiments

The main objective of these self-experiments is to understand the behavior of beams
in bending (tension and compression) and changes in concrete strength with time,
finding the modulus of rupture, and understanding the behavior of reinforced
concrete beams under loading. The other objective is to understand the different
aspects of concrete slabs. Remember to include all the details of the tests (sizes,
time of day concrete was poured, amounts of water/cement/aggregate, problems
encountered, etc.) with images showing the steps (making concrete, placing,
forming, performing tests, etc.).

Experiment 1

In this experiment you learn about the behavior of beams in bending. Obtain a
rectangular-shaped piece of Styrofoam with the proportions of a beam. Make slots
on the top and bottom of the beam, as shown in Figure SE 2.1.

P

l_ Slot

Figure SE 2.1 Styrofoam beam with slots

Place the beam on two supports and add a load at the center as shown in Figure SE
2.1. Answer the following questions:

1. What happened to the slots at the top and bottom of the beam?
2. Did the slots stay straight after adding the load?
3. Any other observations?

Experiment 2

You must start and perform Experiments 2 and 3 at the same time. In this
experiment, you find the modulus of rupture for a plain concrete beam and learn
about concrete curing and gaining strength with time.

For this experiment you will build four beams using concrete with w/cm
ratio =0.5. Size the beams as you wish, but do not make them excessively small
or large (for practical reasons). After forming the beams (you can use cardboard or
wood for your forms, depending on the beam size), spray water on two of the beams
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while keeping the other two dry. Keep your concrete beams indoors, as the concrete
may freeze and stop the hydration process. After 2 days, test two of your test
beams (one kept dry and one kept wet) by placing loads on them, as shown in
Figure SE 2.2.

T
€— T

Figure SE 2.2 Plain concrete beam test.

Increase the loads until the beams fail. Record the loads at which the two
specimens fail.

After seven days, repeat the tests with the remaining two beams and record the
loads at which they fail.

Experiment 3
In this experiment, you will learn about the importance of reinforcing steel in
concrete beams and compare the results with those of Experiment 2.

When you pour the four plain concrete beams for Experiment 2, build two
reinforced concrete beams with the same dimensions as those of the plain concrete
beams. You can use steel wires for the reinforcement (depending on your beam
size). Place these wires on only one side of the beam (singly-reinforced beam).

After 2 days, place one of the beams on two supports and apply loads as shown in
Figure SE 2.3a. Increase the load, and record your observations.

€= ©
| O

Figure SE 2.3a Reinforced concrete beam test 1

Repeat this test for the remaining reinforced concrete beam after seven days.
(Perform these tests at the same time as Experiment 2.) DO NOT TRY TO FAIL
THE REINFORCED CONCRETE BEAMS! Turn the beams upside down
(Figure SE 2.3b) and repeat the tests. Add loads until the beams fail. Record
your observations.
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T
€— T

Figure SE 2.3b Reinforced concrete beam test 2

Answer the following questions regarding Experiments 2 and 3:

. Which of the samples (dry or wet) had more strength? Why?

. Was the 7-day-old sample stronger than the 2-day-old one? Why?

. Find the modulus of rupture for the 7-day-old plain concrete beams.

. How did the reinforcement affect the concrete beam strength?

. What happened when you turned the beam upside down and tested it?

N AW N =

Experiment 4
This experiment demonstrates the behavior of one-way and two-way slabs, and the
reinforcing of one-way slabs.

Test 1

Use two Styrofoam pieces to represent one-way and two-way slabs. For the
two-way slab, cut the Styrofoam into a square piece, and for the one-way slab
make it such that length/width > 2. Place the square Styrofoam on two parallel
supports and apply a load as shown in Figure SE 2.4a. Support the same model on
four edges and repeat the test as shown Figure SE 2.4b. Make notes on how the two
models deform and their differences.

a b

Y/ /A

[TT1T (1111

Figure SE 2.4 Slabs under loads: (a) two parallel supports; (b) supports along all edges
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Test 2
Repeat Test 1 using the one-way slab model. Record your observations.

Experiment 5
This experiment deals with the reinforcement in slabs.

Cast two slab models with a thickness of approximately 1 in. and a width of at
least 12 in. Make one from plain concrete and the other from concrete reinforced
with a grid of thin wires (provide about % in. cover).

One week after making the samples, compare the two slabs in terms of crack
formation. Which one has more surface cracks?



Chapter 3
Special Topics in Flexure

3.1 T-beams

3.1.1 Introduction

In cast-in-place reinforced concrete systems, the concrete for beams and slabs is
poured at the same time. As a result, a monolithic system is obtained, that is, beams
and slabs working together to carry the loads.

There are several different types of reinforced concrete floor systems, as we will
discuss in detail later in Chapter 6. Here we will use a beam-girder floor system to
study T-beams. Figure 3.1 shows the floor framing plan and the section of a typical
beam-girder floor system. The floor beams (B-1) support the one-way slab (S-1).

The slab transfers the load to the beams (B-1); then the girders (G-1) carry the
loads from the beams. The girders are supported by columns (C-1). Because the
one-way slab is continuously supported by the beams, the load on the beams is a
uniformly distributed load. The girders, however, support the beams at their ends,
so the loads on the girders are concentrated. Thus, the flow of the gravity loads is
from the slab to the beams, from the beams to the girders, from the girders to the
columns, from the columns to the footings, and from the footings to the ground.

In cast-in-place concrete construction, concrete is poured in the forms after the
form-work is built and the rebars are placed, creating a monolithic system of slabs,
beams, and girders. There is no physical separation between beams and slabs as in
steel construction. So when a beam bends, part of the slab attached to the beam
works with the beam and helps the beam carry the load. At the midspan the top part
of the beam is in compression. As a result the slab, which is attached to the top of
the beam, is subjected to compression stress. But at the support, the top portion of
beam, including the neighboring slab, is in tension. Therefore, the slab does not
help carry the beam load because the concrete does not take any tensile stresses.

Figure 3.2 shows cross sections and moments for a typical beam (B-1). At the
midspan the moment is positive, so steel reinforcement is needed at the bottom of
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Figure 3.1 Beam-girder floor system. (a) Typical floor framing plan. (b) Section A-A

the beam (A). In this case the concrete slab and part of the beam web are in
compression. The shape of the compression zone looks like a T-shape, so it is called
a T-beam. Over the supports, however, there are negative moments. This requires
steel reinforcement at the top of the beam (AS_). In certain special cases, the ACI
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/ \ Moment diagram
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Figure 3.2 Beam behavior at midspan (T-beam) and over the support (rectangular beam)

Code requires part of the positive reinforcements (Aj’) to be extended over the
supports. In these cases reinforcing is used in the compression zone, resulting in a
doubly-reinforced beam (see Section 3.2).

3.1.2  Effective Flange Width (b;)

The attached slab zone of a T-beam is referred to as the flange of the beam. The
portion below the flange is called the web. How much of the slab width acts as part
of the beam is a rather complex matter. It depends on many parameters that define
how much of a slab’s width is “dragged” into compression by the beam. The
phenomenon that dissipates the compression in the slab that lies farther away
from the beam’s web is known as “shear lag.”

The ACI Code simplifies the matter by defining an effective flange width (bg),
in which the stresses due to bending are assumed to be uniform. Figure 3.3, which
shows the floor framing plan and a section through the midspan of a reinforced
concrete floor system, also shows the effective width for an edge beam and for an
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Figure 3.3 Effective flange widths for T- and L-beams. (a) Plan. (b) Section A-A

interior beam. The edge beam is called an L-beam because the compression zone
has an L shape. The interior beam is a T-beam. The beams clear span is ,,, and their
clear distance between adjacent webs is designated by s,. The slab or flange
thickness is designated by Ay.

The effective flange widths of T- and L-beams are based on Sections 6.3.2.1 of
the ACI Code and are given in Equations (3.1) and (3.2).

a. b.g for T-beams:

én
begr < min{bw b+ 16y by + sw} (3.1)
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b. b.s for L-beams:

E, y
bett < min{bw + 15w + 6l by + %} (3.2)

3.1.3 Minimum Steel for T-beams

The minimum amount of steel for a T-beam is the same as that for a rectangular
beam having working dimensions of b,, (width of web) and d. Equation (3.3) gives
the minimum amount of steel required.

3 /f!
Ajg min = Max \/fT b,d, @bwd (3.3)
fy fy

Equation (3.4) gives the requirement in terms of minimum steel ratio.

Prmin = max{3}/f7, 2]02} (3.4)
y y

Table A2.4 lists the values for pp,,.
The compression zone in the negative moment regions (near the columns) is at
the bottom of the web, where there is no flange attached. The section, therefore, is

simply rectangular. The analysis and design of these sections were discussed in
Chapter 2.

3.1.4 Analysis of T-beams

The behavior of the T-beam (or L-beam) depends on the shape of the compression
zone. The depth of the equivalent stress block (a) may be above or below the bottom
of the flange, depending on the proportioning of the beam and the slab and the
amount of reinforcement used. Figure 3.4a, b show these two cases, respectively.

When the neutral axis is within the flange’s depth, the T-beam (or L-beam) acts
like a wide rectangular beam with a rectangular compression zone of size beg X a.
In the rare cases when a small b is coupled with relatively large positive moments,
the begr X Iy zone is not adequate to develop the compression part of the internal
couple. Then a part of the web becomes in compression to aid the compression
zone. The analysis and design of such beams are somewhat different from those of
rectangular beams (Figure 3.5).

Thus, two slightly different sets of procedures are used for the analysis of
T- (or L-) beams based on the shape of the compression zone. The flowchart in
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pe— | ¢ | R |

by by

Figure 3.4 Different types of T-beams. (a) T-beam with compression zone in the flange. (b)
T-beam with compression zone in the web

a b

|
bt |

by

Figure 3.5 T-beam with neutral axis below the flange. (a) Assumed area of compression zone at
ultimate moment. (b) y is the location of the centroid of the compression zone at ultimate moment

Figure 3.6 summarizes the different steps of analysis of T- (or L-) beams. They are
as follows:

Step 1. Calculate the effective flange width (beg).

Step 2. Check the minimum area of steel Ay, or the minimum steel ratio from
Table A2.4. Note if the areas of reinforcing satisfy the current ACI Code’s
requirements.

Step 3. Assume that the steel yields in tension before the concrete crushes in
compression (i.e., f;=f;). Then calculate the total tensile force, T:

T =Af,

Step 4. Calculate the compression force if the entire flange is in compression, Cy:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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]
1. Find byy:
ber= min{b,+ {0, b, +16h;, b, +5,,} (Tbeam)
. S
begi = mln{bw+1€—5:bw+ 6hy, bw+?w} (L-beam)

2 Find pynin, using Table A2.4

As,min = Pminbud

Reinforcing does not
satisfy minimum
requirements.

No
Yes

3. Assume fg= fy, and find tensile force, T:

T= Ad,

!

Case (a)

4. Calculate flange compression force, C;:

Cy = 0.85f,/ by

Yes

No

Case (b)
a> hy

ac< hy

!

5 A
~ begrd

5. Calculate a:

6. Use fy, f; and p
to find R from Tables
A2.5 through A2.7

Beam has more|No

than maximum
reinforcement.

o= A+

Beam has
single layer

cld;

Calculate p;, and
find ¢' from Tables
A2.5 through A2.7.

!

- Y
R= Ry

I

7.

R

2.
berid 12,000

Mg =

Figure 3.6 Analysis of T- and L-beams

Yes

6

8 Locate y:

Ay and

y= TA

z=d-y

Check beam depth
for deflection.

Beam is not
Adequate!




158

Case a:

Step 5.

Step 6.

Step 7.

Step 8.

Case b:
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Cy = 0.85f) besehy

The internal couple requires that 7= C, that is, the compression force
and the tensile force must be equal.

If T < C¢(or a < hy), the full depth of the flange thickness is not needed to
develop the compression part of the internal couple. In that case the depth
of the equivalent stress block is less than the thickness of the flange, and
case a below is applicable; otherwise, use case b.

The compression zone is within the flange (a < hy), the beam behaves like a
rectangular beam.
Determine the steel ratio, p:

P= besrd

Use f, f, and p to obtain the resistance coefficient, R, from Tables A2.5
through A2.7.

The resistance coefficient obtained, R, is only applicable for beams
with a single layer of reinforcement (d,=d). If the beam has multiple
layers of reinforcement, R may need to be revised. If the value of the
strength reduction factor, ¢, in the last step is 0.90, no change in the
Deged,
and obtain the corresponding value of ¢ from Tables A2.5 through A2.7.
Then calculate R'(R' = R’ /d).

Calculate Mg:

value of R is necessary. If ¢ < 0.90, however, then compute p, =

Mg = &M, = begd*R /12,000
or
Mg = OM,, = betd*R’ /12,000

My is in ft-kip, b and d are in in., and R and R’ are in psi.

After calculating M, check to ensure the beam can safely carry the loads by
comparing My with the maximum factored moment (M,). Also, check the
depth of the beam to determine if deflection calculations are required
according to the ACI Code (see Figure 2.41).

The compression zone extends below the flange (a > hy); compression zone
is T-shaped.

Figure 3.5 shows the T-shaped compression zone and the corresponding defini-
tion of symbols used below.

Step 5.

Determine the depth of the compression zone (@) by equating the tensile
force to the compression forces in the flange and the web:
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T = Cy + 0.85f/ b, (a — hy)
T — Cr + 0.85f byhy = 0.85( bya

TG+ 085 by (3.5)
0.85/"b,,
T—-Cy
=085 by Y

Step 6. Locate the neutral axis (c¢) and check to ensure the section satisfies the ACI
Code’s requirements for being in the tension-controlled or transition zones.
The neutral axis is located at:

c 3 . . . . .
If 7 > 7 the section does not satisfy the ductile failure requirements,
t

as g,< 0.004 when .= 0.003.

c 3 . . . .
If —< 7 determine the strength reduction factor, ¢ using the relation-
t

ships below:
c 3
if — <= =0.90
i df*8_>¢ 9
. C 3 Bz
f—>= =A
e )

A, and B, are obtained from Table A2.2b.
Step 6a. Determine the centroid of the compression zone by dividing it into rect-
angular parts and using Equation (3.6):

Y= (3.6)

y 1is the distance from the top of the beam to the centroid of the
compression zone.

The moment arm (z), which is the distance between the tensile and
compression forces, is:

z=d-Yy
Step 7. Calculate the design resisting moment, Mg:

My = oM, = $Tz (3.7)
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Step 8. After computing M, check to ensure the beam is adequate. Also check the
depth of the beam for deflection (Figure 2.41).

Example 3.1 Figure 3.7 shows the partial floor framing plan and sections of a
reinforced concrete floor system. The slab is 4 in. thick, and the weight of mechan-
ical/electrical systems, ceiling, and floor finishing is 24 psf. The floor live load is
200 psf. The beam ends are integral with their support, f = 3ksi, f, =60ksi, and a

24in.x 24in.
Column (typical)

[
e N _______________ o
l (B-1) H H
10-0"| | I s-1)] I
| s I I
L - 1L
> L - 1L
l (B-2) H H
10-0"| | ; I (S-1)I I
I sl Lia [ [
@7 il_______(g_é)_ _____ :H _______________ :H__
100" | ¥ (1)) ¥
L el L
*x :_:::::::::::::::JI :E:::::::::::::::JI :_:
10-0" i 1] i i 1! i i

@%l ﬁ::::::::::::::::H:::::::::::::::i::

b
__ J‘ — — T 4in
30in. «1— #4 stirrup (typical) 26 in
6 #11 '
5 #11 ; ; ;
2 e 0 0 o

18 in—] k—18 in.—]

| 10-0" |

Figure 3.7 Floor framing plan and section for Example 3.1. (a) Partial floor framing plan.
(b) Section A-A
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unit weight of concrete of 150 pcf. Stirrups are #4 bars. Use ACI coefficients for
calculation of bending moments.

a. Check the adequacy of the edge beam (B-1) at midspan.
b. Check the adequacy of the interior beam (B-2) at midspan.

Solution Use the flowchart of Figure 3.6.
(a) Edge Beam (B-1) B-1 is an L-beam for positive moment (midspan):

Step 1. Calculate the effective flange width:

. £, S
beff = mln{bw + 59 bw + 6hf$ bw + 7}

where

0, = (32 —2) x 12 = 360in.

b, = 18in.
hf = 4in.
sy = 10 x 12 — 18 = 1021n.
360 102
bett = mln{IS + H, 18 + 6(4), 18 + 2}

besr = min{48in.,42in.,69in} = 42in.
Step 2. From Table A2.4 — p,i, = 0.0033

4 141
d=h—y=30in. — (1.5+§+T> =273in.

>

s,min = Pmin bwd
Ag.min = (0.0033)(18)(27.3)
A.\',min == 1.62in.2

5#11 — Table A2.9 —A,=7.80 in.> > 1.62 in.” .". ok
Step 3. Assuming that the steel yields at the nominal resisting moment (f;=f,),
calculate the tensile force, T':

T = Ay, =780 x 60 = 468kip

Step 4. Determine the total compression force, Cy, assuming that the compression
zone is within the flange:
Cr = 0.85f besrhy
Cr =0.85(3)(42)(4)
Cr = 428k
T =468k > Cr = 428 kip
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Because T > Cy, the assumption in step 4 was not correct, and the
compression zone has to be larger in order for Cy to be equal to T. Thus,
the compression zone extends below the flange.

Step 5. Determine the depth of the compression zone, a:

=085 T

_ d4e8-428
0.85 % 3 x 18

a=4.87in.

Step 6. Calculate the location of the neutral axis, c:

_£_4.87
B, 085
¢ =15.73in.

Because there is only a single layer of reinforcement (d,=d =27.3 in.):

¢ 573 3
4 773 0210<7=0429 o

3
0.210 < 3= 0375 . .$=0.90

Therefore, the section is tension-controlled.
Step 6a. Locate the centroid of the compression zone (hatched area) in Figure 3.8.
Divide the compression zone into two rectangular shapes and calculate y
(measured from the top of the beam).

0.85f,

bey = 42in————| 28,
7777777 =4 C<—§ Ja=487in.

26 in.

by, = 18in. |

Figure 3.8 Forces acting on the beam section of Example 3.1a
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54y

. 4 0.87
(42 x 4) <§> + (18 x 0.87) (4 +T>

I (42 x 4) + (18 x 0.87)

y=22lin

Calculate the moment arm, z:
z=d -y =273 — 2.21 =25.09 in.

Step 7. The design resisting moment, Mk, is:

10,568 kip-in

Mg = ¢Tz = 0.90 x 468 x 25.09 = 3

= 881 fi-kip

Step 8. To ensure that the beam can carry the loads, calculate the maximum
factored moment after determining the loads.

4
Weight of slab = 150 <12> = 50psf

Superimposed dead loads = 24 psf

Total dead load = 74 psf

18 26
4 . 1 T~ T~
{7 x5.75+ 50<12><12

)] = 0.913kip/ft

"o = 1000

. [200x 575
L= 171,000

wy=12wp + 1.6w, = 1.2 x 0.913 + 1.6 x 1.15 = 2.94kip/ft
6, =32 —2=30ft

} = 1.15kip/ft

From Table A2.1:

w2 (2.94)(30)
14 14
M, = 189 fi-kip < M = 881ft-kip .. ok

(M,)" = 189 ft-kip

Check the beam depth for deflection. See Figure 2.41. (B-1 is a one-end
continuous beam):

b ¢ 32x12
mtTT18.5 0 185
hmin = 21in. < h =30in. .. ok
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Therefore, the deflection does not need to be checked.
B —1 is ok.

(b) Interior Beam (B-2) B-2 is a T-beam for positive moment at midspan.

Step 1. Determine the effective flange width:
. 4y
bett = ming by + 75 by + 160y, by + sy

where

£, = (32 — 2)ft x 12 = 360in.

b, = 18in.

hy = 4in.

Sy =10 x 12 — 18 = 102in.

360
ber = min{18 + o 18+ 16(4),18 + 102}
begr = min{108in., 82in., 120in.}
beff = 82in.
Step 2. From Table A2.4 — p,;, =0.0033

d=h—735=30-(15+4/8+1.41+1/2) =26.1in.

As,min = Pmin bwd
Ay min = 0.0033(18)(26.1) = 1.55in.2

6 #11 — Table A2.9 —A,=9.36 in.> > 1.55 in.> .". ok
Step 3. Assuming that the steel yields (f;=f,), calculate the tensile force, T:

T = Asf, =9.36 x 60 = 562 kip

Step 4. Calculate the flange compression force, Cy:

Cy = 0.85f begehy = 0.85(3)(82)(4) = 836 kip
T =562 kip < 836 kip

Therefore, the compression zone is within the flange. In other words,
a < hy. Thus, the beam analysis is similar to that of a rectangular beam with
a width of b= b= 82 in.
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Step 5. Calculate the steel ratio, p:

A 9.36
=—= = 0.0044
bered 82 % 26.1
Step 6.
p = 0.0044
; . R = 225psi
i =3ksi — Table A2.6a — ¢ = 0.90
fy = 60ksi
Step 7. Calculate the design resisting moment, Mp:
_ berd’R
* 712,000
Mo (82)(26.1)*(225)
12,000

Mg = 1,047 ft-kip
Step 8. Determine maximum (M,)":

From part a: Total dead load =74 psf
Total live load =200 psf

1 2
74 x 10+ 150 —8 X —6
wp = 12 12/0 _ | 23kip/te
b= 1,000 T
200 x 10 .

w, = 1.2wp + 1.6w,,
w, = 1.2 x 1.23 4 1.6 x 2.0 = 4.68kip/ft

2 2
L owl? (4.68)(30)° ,
(M,)" = =" = = 301fe-kip

M, = 301ft-kip < Mg = 1,047 ft-kip .. ok

165

Check the beam depth to determine whether deflection analysis is needed:

Nmin = 21 in. from case a
h =30 in. > 21 in. .. ok
B —2 is ok.

3.1.5 Design of T-beams

In theory, the design of T-beams involves finding the flange thickness, the width
and depth of the web, and the amount of reinforcement required. In practice,
however, the flange thickness is determined when designing the slab. The size of
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the web is selected to resist not only the moments at the supports (no T-beam
action), but to provide adequate shear capacity, and to simplify formwork layout for
ease of construction.

Hence, when designing a T-beam, the geometric dimensions of the beam
typically are known. The only unknown is the amount of steel required to resist
the loads. The T-beam design procedure, like beam analysis, depends on the
required depth of the equivalent stress block. In most cases, the compression zone
is within the flange area; so the design follows that of a simple rectangular beam,
with a width equal to the effective width of the flange.

In some rare cases, however, the compression zone available within the depth of
the flange, may not be adequate to develop the necessary factored moment. The
difference then must be compensated by having an additional compression zone
below the bottom of the flange (within the web).

The steps for the design of T- and L-beams follow. These are summarized in the
flowchart of Figure 3.10.

Step 1. Calculate the maximum factored moment that the beam must carry (M,,).

Step 2. Determine the effective flange width (b.¢) based on the ACI requirements.

Step 3. Assume a single layer of reinforcement (y = 2.51in.) and the effective depth,
d = h —Y. In addition, assume ¢ = 0.90.

Step4. Calculate Mgy using Equation (3.8). Mg, is the moment capacity when the
compression zone is only within the flange.

Mgs = &M,y = $(0.85f, )besihy (d — hy/2) (3:8)

Step5. Case a: If M,, < Mgy— the compression zone is entirely within the flange.
Case b: If M, > Mgs— the flange area is not adequate to develop the
required factored moment.

Case a: Compression zone is within the flange (a < hy).
Step 6. Calculate the resistance coefficient, R:

12,000M,,
R = —
beged

Step 7. Use f,, f/, and R to obtain p and ¢ from Tables A2.5 through A2.7.
Step 8. Calculate the required area of steel, Ay:

As - pbeffd

Check the result against the minimum reinforcement requirement
A min = PminDPwd. Pmin 18 given in Table A2.4. Select the size and number
of the bars using Tables A2.8 and A2.9.

Step 9. Calculate the actual effective depth:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1

3.1 T-beams 167

If d > d,ssumed» the design is a little conservative. Otherwise, you may
revise the design by using this new value of effective depth.
Step 10. Compare the beam depth with the required minimum for deflection
control.

Case b: Compression zone extends below the flange (a > hy)—see Figure 3 9a.

Step 6. Calculate the area of steel required to balance the entire flange in com-
pression. See Figure 3.9b. Assume dy=d=h—2.5 in., and the moment
arm z; = dy — hy /2.

Step 7. The area of steel necessary to develop the compression zone of the entire
flange area (A, is given in Equation (3.9).

|
beff 1

|

Figure 3.9 T-beam design where the compression zone extends below the bottom of the flange.
(a) Compression zone extends below the flange. (b) Compression in flange only. (¢) Compression
in web only
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 12Myy

Ay = 3.9
= Wy (3.9)

Mgy is in kip-ft, £, in ksi, z;in in., and A in in.2.
Another way of calculating Ay is to use equilibrium of forces in

Figure 3.9b (Ayf, = C).

Agf, = 0.85f besthy
0.85f! beithy

Ay = 7
y

’ Design of T- and L-Beams ‘

}

Find the maximum M, ‘

2" Find by
b= min {b,, +{njy, b, + 16h;, b, +s,}  (T-beam)

b= min {b,, + {nj15, b, + 6h;, b, + 5, /5} (L-beam)

’1.

3 Assume y=25in.and
$=090,d=h-Y.

]

Find Mgs = M, (design resisting moment
for compression zone covering the entire flange):

h
Mgs= ¢(0.85 f¢) beﬂh,(d— 2’

Case a Case b

4.

Compression zone is No Yes Compression zone extends
within flange (a < hy). below flange (a > h;)
6. 12.000M 6. Assume di=h-25in.
R=—7"22 hy
beiid? and z;= ¢ -5
! 2
12M,
7 use f,, fe, and Rto find o =37 z”f
p and ¢ from Tables v
A2.5 through A2.7. l
I 8  p,=h—h and
8 assume d, = h,, — 2.51in.
’ . As = pbeyd ‘ l

l 12,000(M,, — Mgs)
Ry=——"7"—7>""-
As,min = Pminbwd by,dy

o @

Figure 3.10 Flowchart for the design of T- and L-beams
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© ®
9. , )
No Use f,, fzand Ry, to find
pwfromTables A2.5
through A2.7.
| Awmnbd, |
Yes l

10.
’ As=Agt + Agy ‘

!

. Select the size and
Select the size and number of bars using

number of bars using
Tables A2.8 and A2.9. Tables A2.8 and A2.9.

I |

d=h-y ‘ ’12. g=h-y ‘

11.

d= dassumed?

13.

10. Check the beam depth
for deflection.

Check the beam
depth for deflection.

Figure 3.10 (continued)

Step 8. In order to calculate the area of required steel for the part of the compres-
sion zone that is below the flange (Aj,,), consider only the depth of the stem
that is below the flange (h,, = h — hy). Assume that the effective depth of the
stem (d,,) is d,, = h,, — 2.5 in. See Figure 3.9c.

Then use Equation (3.10) to calculate the resistance coefficient for the
required area of steel in the web (R,,).

12,000(M,, — Mgy)
B b.d>,

(3.10)

w

Step 9. Use f,, /!, and R,, to obtain p,, (steel ratio for the web) from Tables A2.5
through A2.7, and calculate the required area of steel in the web (A,,)
using Equation (3.11).

Agy = pyybwdy (3.11)
Step 10. The total area of steel is:

Step 11. Select the size and number of bars using Tables A2.8 and A2.9.
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Step 12. Based on the size and number of the selected bars, compute the actual
beam effective depth (d = h —¥). If this value is larger than what was
assumed in step 3, the design is a little conservative. Otherwise, revise the
design as needed by using the new value of effective depth.

Step 13. Finally, check the beam depth (%) for deflection requirements.

Example 3.2 Because beams B-1 and B-2 of Example 3.1 were overdesigned,
redesign these L- and T-beams respectively for the maximum positive moments at
midspan.

Solution Use the flowchart of Figure 3.10.
(a) Edge Beams (B-1)

Step 1. From Example 3.1a, step 8:
M, = 189 ft-kip
Step 2. From Example 3.1a, step 1, the effective flange width (b.g) is:
besr = 42 in.
Step 3. Assume y=2.5 in. and ¢ =0.90:
d =h—-y=30 in. — 2.5 in. =27.5 in.

Step 4. Equation (3.8) gives the design resisting moment if the entire flange is in
compression (Mgg):

h
MRf = ¢Mnf = ¢(085ﬁ,)beffhf (d — Ef)

Mpgs = 0.90(0.85 x 3)(42)(4) (27.5 - g)

9,832in-kip

My =—"1

= 819ft-kip

Step 5. Because M, = 189 ft-kip < Mg,= 819 ft-kip, the compression zone will be
within the flange (a < hy).
Step 6. Calculate the resistance coefficient, R:

12,000M,,
R = T 2
begrd
- 12,000 x 189

T ks

Step 7.
P £ = 3ksi

Jy = 60ksi — Table A2.6a — p = 0.0014
R = T1psi
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(When obtaining p from Table A2.6a, because R =71 psi is not in the

table, we selected the value corresponding to R =74 psi.)
Step 8.

As = pberd = (0.0014)(42)(27.5) = 1.62in.?
From Table A2.4, p.;, = 0.0033
Thus A min = 0.0033 x 18 x 27.5 = 1.63in.?
Because A; is less than A min use Ag = 1.63in.2

From Table A2.9, we select 3#7 bars(A; = 1.8in.%)
From Table A2.8 — by, = 9in. < 18in. .. ok

From Table A2.8 — bp.x = 24in. > 18in. .". ok

Step 9. Calculate the actual effective depth (d) of the beam:

4 0.875 .
1.5 +§ + T = 2.441n.

y
d

Step 10. Check the beam depth for deflection:

Nmin = m(one-end continuous beam)
Rx12 o
hmin—W—len.<h—3Om. U ok

Figure 3.11 shows a sketch of the beam.

Tl Tain.

30in.

|«—18 in.—]

Figure 3.11 Sketch of beam B-1 for Example 3.2

(b) Interior Beam (B-2)
Step 1. From Example 3.1b, step 8:

M, = 301 ft-kip

h—y =30in. — 2.44in. = 27.56in. > dysumed = 27.51n. .

. ok
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Step 2. From Example 3.1b, step 1, the effective flange width (beg) is:
bete = 82in.
Step 3. Assume ¢ =0.90 and y = 2.5in.:
d =h —y =30in. — 2.5in. = 27.5in.

Step 4. Equation (3.8) gives the design resisting moment for the beam with the
entire flange in compression (Mgy):

h
Miy = ity = 40085y (4=

Mgy = 0.90(0.85 x 3)(82)(4) (27.5 - 4/2)

19,195 in-ki .
My = % = 1,600ft-kip

Step 5. Because M, =301 ft-kip < Mgy= 1,600 ft-kip, the compression zone will
be within the flange.
Step 6. Calculate the resistance coefficient, R:

R_ 12,000M,,
beffd2
12,000 x 301 .
_ R X UL 5 = 58psi
82 x (27.5)
Step 7.
P F = 3ksi
Jy = 60ksi — Table A2.6a — p = 0.0011
R = 58psi
Step 8.

Ay = pbesed = 0.0011 x 82 x 27.5

Ay =2.48in.2
From Table A2.4 — p_;, = 0.0033

Ag. min = 0.0033 x 18 x 27.5 = 1.63in.?
From Table A2.9 — 3#9bars(A; = 3in.?)
From Table A2.8 — by, = 10in. < 18in. .". ok
From Table A2.8 — by = 24in. > 18in. .. ok

Step 9. Calculate the actual effective depth (d):

4 1.128
5 —|——+T = 2.561n.

y=1
d =h—y=30in. — 2.56in. = 27.44in. = dysumed = 27.51n. .". ok
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Step 10. Check the beam depth for deflection:

¢ wx12
hoo— — 21in. < h = 30in. . ok
185 185 . < ..o

Figure 3.12 shows a sketch of the beam.

| |
T ] — Ti4|n.

30in.

3 #9
o e o

|[—18in—|
Figure 3.12 Sketch of beam B-2 for Example 3.2

Example 3.3 Design the T-beam shown in Figure 3.13. Assume that the effective
flange width is 54 in. The T-beam is subjected to a total factored positive moment,
M, =950 ft-kip. Use f/ =3 ksi, and f, = 60 ksi. Assume #4 stirrups.

| beff =54in. 45' |
T [ [ T 3 3in.

30 in.

|[——20 in—|

Figure 3.13 Sketch of T-beam for Example 3.3

Solution Use the flowchart of Figure 3.10.
Step 1. M, = 950ft-kip (given)
Step 2. begt = 54in. (given)
Step 3. Assuming $=0.90 and y = 2.5in. :

d =h—y=30in. — 2.5 in. = 27.51n.
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Step 4. From Equation (3.8):

h
Mg = dM,y = ¢(0.85f;./)beffhf (d — %)

MW:(Q%xowx3xﬂx$(ﬂ5—%>

9,667 in-kip

M ==,

= 806 ft-kip

Step 5. Because M, =950 ft-kip > Mg,= 806 ft-kip, the compression zone will
extend into the web area (a > hy). Use Case b.

Step 6. First calculate the amount of steel needed to work with the entire flange in
compression (A ), and then the reinforcing needed to work with the part of
the web that is in compression (A, ). The total required area of steel (A;)
will then be:

Ay = Ay + Ay,

To determine the area of steel required to work with the flange in
compression (Ag), assume dy (effective beam depth for the entire flange
in compression) as:

df = h—2.5in. =30in. — 2.5in. = 27.5in.
Then the moment arm of this internal couple is
h 3in.
4:@—%=m5m—%?:%m

Step 7. The area of the steel required to work with the flange (A,y) is:

12M
Ay =—1
fyzr
12 % 806
A X — 6.89in.2

¥70.9 % 60 x 26
Step 8. The depth of the web (4,,) is:
hy = h — hy =30in. — 3in. = 27in.
Then
dy = hy, —2.5in. =27in. — 2.5in. = 24.5in.

The resistance coefficient for the area of steel required for the part of
the compression in the web (R,,) is:
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o _ 12,0000, — My)

v b,d>,
12,000(950 — 806 .
w = ( 5 ) = 144 psi
20(24.5)
Step 9.
P £ = 3ksi

f, = 60ksi — Table A2.6a — p =0.0028
R, = 144 psi

Age = p,bwd, = (0.0028)(20)(24.5)

Ay = 1.37in.2

Step 10. The total required area of steel (Aj) is:
Ay = Ay + Ay = 6.89 + 1.37 = 8.26in.”

Step 11. )
From Table A2.9 — Try 6 #11 bars(A; = 9.36in.%)

From Table A2.8 — by, = 19.5in. < 20in. .". ok
From Table A2.8 — by = 54in. > 20in. .". ok
Step 12. Calculate the actual effective depth (d):

y=15+1/2+1,=271in.
d =h—y=30in. — 2.71in. = 27.3in. & dysumea = 27.5in. .. ok

The sketch of the final beam design is shown in Figure 3.14.

30 in.

6 #11
o000 00

f——20 in.—]

Figure 3.14 Sketch of final design of T-beam for Example 3.3
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3.2 Doubly-Reinforced Beams

3.2.1 Introduction

To this point we have shown the use of steel reinforcement only for the tension part
of a reinforced concrete beam (tension steel). When reinforcement is also used in
the compression zone of a reinforced concrete section (compression steel), the
beam is referred to as a doubly-reinforced beam. Even though such a section in
general is not economical, the use of compression steel has several advantages and
applications, including the following:

1. It allows the use of a cross section smaller than that of a singly-reinforced beam.
This is especially useful if the beam size is limited for architectural or aesthetic
purposes.

2. It helps in reducing long-term deflections.

. It can support stirrups or shear reinforcement by tying them to compression bars.

4. It adds significantly to the ductility of beams. Compression reinforcement
enables the beam to withstand large levels of movement and deformation
under extreme loading conditions that might occur during earthquakes.

5. Tt is frequently used where beams span more than two supports due to practical
considerations. The ACI Code requires a percentage of the tensile steel at
midspan to continue into the supports, and by a small extension this steel can
easily be used as compression reinforcement at the face of the supporting
column.

(98]

3.2.2 Analysis of Doubly-Reinforced Concrete Beams

It is possible to use compression reinforcement, in conjunction with additional
tensile reinforcement, to increase the strength of flexural members. The ACI Code
(Section 22.2.3.1) allows the use of deformed reinforcement to resist compressive
in addition to tensile forces. To develop the internal couple in a reinforced concrete
section, the total compression force, C, has to be equal to the total tensile force, 7,
which is provided by the steel. In a doubly-reinforced beam, however, the com-
pression force is developed partly by the concrete, and partly by the compression
steel.

Utilizing the principle of superposition, it is assumed that part of the steel in
tension provides the tensile force to balance the compression force in the concrete
(Cy=T,), and another part provides the tensile force that balances the force in the
compression steel (C, =T5). Figure 3.15 shows these forces.
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Figure 3.15 Compression and tensile forces in doubly-reinforced beam

The following notations will be used in this section, and are shown in
Figure 3.16.

Al Area of compression steel

d’ Distance from the center of the compression steel to the compression edge of the beam
Ay Area of tension steel for the concrete-steel couple

Ay Area of tension steel required to work with the compression steel
Ay Total area of tension steel (A, =A; +Ay)

M, | Nominal resisting moment of the concrete-steel couple

M,, | Nominal resisting moment of the steel-steel couple

d Effective depth of the section

d, Effective depth of the extreme tension steel

g Net tensile strain for extreme steel in tension

) Strain in the compression steel

7 Stress in the compression steel

E Modulus of elasticity of the steel

Figure 3.16a shows a doubly-reinforced beam represented by the superposition
of two “beams”: (1) a singly-reinforced beam with an area of steel A, and (2) an
imaginary tension-compression steel section, with A} as compression reinforcement
and Ay, as tensile reinforcement. Therefore, the total area of tensile steel, Ay, is
equal to the sum of Ay; and Ay (A; = Ay +Ap).

Figure 3.16b shows the distribution of strain in a doubly-reinforced beam at the
ultimate moment. In order for the beam to remain tension-controlled, &, > 0.005
when €,=0.003. If & >¢, then f =f,; however, when g <eg,, f/ =E;s,.
Therefore, in order to determine the stress level in the compression steel, f, it is
always necessary to determine the strain, €/, and check the above relationship.

Figures 3.16c and 3.16d show the forces generating the concrete-tensile steel and
compression steel-tensile steel couples, respectively. Consider the compression
steel-tensile steel couple. In order to form a couple, the compression force, Cs,
must be equal to the tensile force, T, as shown in Equation (3.13).
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a
b
c
C;= 0.85f ba
z=d-3
> T, = Agf,
d
d o !
 #TTTTe ¢ | <«—— Cy= Afg
T: AN Al V!
[ S H :
B B P
P A i
: .. [ ] [ ] : _ —_— T2= ASny

Figure 3.16 Analysis of doubly-reinforced beams. (a) Doubly-reinforced beam = singly-
reinforced beam + tension-compression steel. (b) Strain distribution in doubly-reinforced beam.
(¢) Concrete-steel couple. (d) Steel-steel couple
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C,=T,

3.13
A;f;’ = Ast;v ( )

The following steps present the analysis of a doubly-reinforced beam. Figure 3.17
summarizes these steps in a flowchart.

Step 1. Assume that the compression steel has yielded (s§ > sy) before the concrete
in compression has reached its ultimate strain. Therefore, £ = f, and

Aofy = Aj IS
from which
Ap = A§
Because
Ay = A +Ap

Ag; can be calculated according to Equation (3.14).
Ay =A; —Ap = A, — A, (3.14)

From Figure 3.16c, which is the part of the beam represented by the
concrete-tensile steel couple, Equation (3.15) can be written.

C, =T (3.15)
0.85f/ab = Af,

Step 2. Calculate the depth of the compression zone (@) using Equation (3.16).

A,
- 1
T 0857b (3.16)

Then determine the location of the neutral axis:

Step 3. Determine the strain levels for the tensile steel (¢,) from the similarity of
triangles (see Figure 3.16b).
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Analysis of Doubly-Reinforced Concrete Beam

13

1'Assume that all steel in tension and compression yields.

(f,= fi= 1)
v

Asp = Ag
Asy = As— A

2: As1

&5

4. _0.003(c-d)
c

3a,
& < 0.005?

a
My = Aqti(d - 5)
Mps = A’sfy(d’ d’)
7.
Mn: Mn1 + Mn2
8.
MR =0 Mn
9.
Y
Section is ok. e Mgz M,?
No
Check beam Lo
depth for Section is N.G.
deflection.

5.
(0.85f,bPy)c2 + (87As Adf,)c — 87d'Ay= 0
Solve for c.

v
6. 0.003(d,- ¢)
St: —C
7. _d
fo= (e > )(87) £, < 0.005?

8.
M, = (o.ssf,;ba)(d—g)

l

| Moo= Ao o)

!

an Mn1 + Mn2

!

Mg= oM,

Figure 3.17 Analysis of doubly-reinforced beams

+ Bygy
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& 0.003
di—c ¢ (3.17a)
L 0.003(d, — )
00030 — )

c

Step 3a. If €, < 0.005 (transition-controlled section), calculate ¢ accordingly.
— ¢=A,;+B¢g; (A| and B, are obtained from Table A2.2a.)
Otherwise, ¢ =0.90.
Step 4. Determine the strain in the compression reinforcement (e;) using the
similarity of triangles in Figure 3.16b:

el 0.003
—_J
c—d (3.17b)
. 0.003(c —d')
BT

Compare it to the yield strain of the compression reinforcement. There
will be two possibilities: Case I if €5 > €, and Case 2 if ] < &,.

Case 1 — Compression reinforcement yields.
€ > € (3.18)

This indicates that the compression steel yielded. In other words, f = /y or the

assumption made earlier in step 1 is correct. Hence, proceed directly to calculating
the resisting moment of the section.

Step 5. Calculate the nominal resisting moment from the concrete—tensile steel
couple according to Equation (3.19).

My = Az = (Anf,) (d=3) (3.19)

Step 6. Calculate the nominal resisting moment from the compression steel—tensile
steel couple according to Equation (3.20).

My = ALfl(d—d) = AL f,(d —d') (3.20)

Step 7. Calculate the nominal resisting moment for the doubly-reinforced beam
according to Equation (3.21).

M, =M, +M,, (3.21)

Step 8. Calculate the design resisting moment (My) using the strength reduction
factor (¢) and Equation (3.22).
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Mg = oM, (3.22)
Case 2 — Compression reinforcement does not yield.
g < & (3.23)

Step 5. Because €; < €, the compression steel did not yield when the strain at the
extreme compression edge on the concrete section reached 0.003. From
similar triangles (see Figure 3.16b) the strain in the compression steel can
be calculated using Equation (3.24).

4
o 0.003(; d) 624

The stress in the compression steel (f;) can then be calculated using
Equation (3.25).

fl=elE = [w] E, (3.25)

Thus, the assumption made in step 1 is not correct. The force provided by
the compression steel is less than was assumed. Hence a smaller amount of
tensile steel will work in the compression steel—tensile steel couple, and a
new location has to be determined for the neutral axis.

Equilibrium requires that the total compression on the section be equal to
the total tension, as expressed by Equations (3.26) and (3.27).

Ci+Cr=T+T, (3.26)
0.85f/ab + AL f{ = Aa f, +Ax f,
3.27
O85ﬁ’ab + Ai f_;/ == (Asl + Ax2) y ( )
Because A, =A; +Ay,:
0.85f/ab + Asf! = Asly (3.28)

Substituting a = B;¢ and f; from Equation (3.25) into the above equation:

0.85f/B,cb + Al

[w} E = Af, (3.29)
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Multiplying the two sides of this equation by c:
(0.85£/ BB, )c* +0.003(c — d')E,Af — Ayfyie = 0
Rearranging the equation:

(0.85£/bB, )2 + (0.003ESA§ — A, fy)c —0.003d' E,A, =0 (3.30)

Substituting E; =29,000 ksi, the location of the neutral axis (¢) can be
determined from the quadratic Equation (3.31).

(0.85F'bp, ) + (87A; - As]g,)c —87d'AL =0 (3.31)

(Note that f,’ and f, are in ksi.)
Step 6. Once ¢ is known, determine the net tensile strain in the extreme layer of
steel (g;) using Equation (3.32) (developed in step 3 above).

~0.003(d, — ¢)

; (3.32)

€t

Step 6a. If e, < 0.005 (transition-controlled section), calculate ¢ = A + Bg; (A
and B, are found from Table A2.2a). If & > 0.005 (tension-controlled
section), set ¢ = 0.90.

Step 7. Calculate the stress in the compression steel, f/, using Equation (3.33),

which is derived by substituting the value of E into Equation (3.25).

_ 0.003(c —d) . _ (0.003)(c —d')(29.000)
C § c

fl= Ldl) (87)

c

f;/
(3.33)

The depth of the equivalent stress block (a) is:
a=Pc

Calculate the component forces of the internal couples (see Figure 3.16¢
and d) and determine whether equilibrium is satisfied, as expressed in
Equation (3.35).

Ci = 0.85f'ba
Cy=Alf!
T+ T, =A,f, (3.34)
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T \+T,=C+C, (335)

If Equation (3.35) is not satisfied, then most likely an error was made in
the computation of c.
Step 8. Calculate the nominal resisting moment of the doubly-reinforced section by
adding the concrete—tensile steel and compression steel—tensile steel cou-
ples as shown in Equations (3.36)—(3.38) (see Figure 3.16c¢, d).

— — _9 G _a
My = Cizi = Cy (d 2) (0.85f ba) (d 2) (3.36)
an = CzZz = Cz(d - d’) = A/val(d - d/) (337)
Mn = Mnl +Mn2 (338)

Calculate the design resisting moment, Mg, using Equation (3.39).

Step 9. Once My, is calculated, determine whether the beam has enough capacity by
comparing Mg with the maximum factored moment, M, (i.e., the demand):

Mg > M, (Beam is adequate.)
Mg < M,(Beam is not adequate.)

Check if the beam depth is large enough so that deflection does not need
to be computed.

Example 3.4 Calculate the design resisting moment, My, of the doubly-reinforced
beam shown in Figure 3.18. f! =4 ksi, fy=40 ksi, E;=29,000 ksi. The stirrups
are #4 bars. The beam is subjected to a positive bending moment.

Solution Use the flowchart of Figure 3.17.

k— 14in. —

N|

30in.

Figure 3.18 Beam section for Example 3.4



3.2 Doubly-Reinforced Beams 185

Step 1. Assume that the tension and compression steel yield. The validity of this
assumption will be checked later in the analysis.

fi =1 =f, = 40ksi

From Table A2.9 — 6#9 — A, = 6.0in.?
— 2#7 — AL =1.2in2

Ag =A,—A;=6—12=48in?

Step 2. Calculate the depth of the equivalent stress block (a) in the concrete for the
section:

A, 4.8 % 40
4= 085 085 xdx 14 F03in

Therefore, the location of the neutral axis (c) is:

a  4.03in.

=4 — 475in.
‘7B, 085 n

Step 3. Calculate the strain in the tension and compression steel and check for the
validity of the assumption made in step 1. Make a sketch of the strain
distribution as shown in Figure 3.19 and calculate the strains from similar

triangles.
4 1128
d, = 30in. — (1.5 +3 +2> — 27.44in.
0.003(d; — ¢)
g=——">
C
L _ 0.003(27.44 — 4.75)
' 475
g, = 0.0143
5 40
— 00143 > ¢, =2 = —0.00138
& ~ & = E T 29,000
14in.
e,= 0.003 . —14in.—|

Jf.z 4.75in. g4= 0.0015

30 in.

¢;=0.0143 ) il 'S

Figure 3.19 Strains for beam section of Example 2.10
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Step 3a.
g = 0.0143 > 0.005 ..¢=0.90

(The section is tension-controlled.)
Step 4. Calculate the strain level in the compression steel (g;). Check to see if the
steel yields when strain in the concrete reaches 0.003:

4 0875

,0.003(c —d')
gh="rT 7
c
, 0.003(4.75 — 2.44)
&= 475

e; = 0.00146 > ¢, = 0.00138

Therefore, the compression steel yields, and the assumption in step 1 was
correct! Because the compression steel yields, follow the process under
case 1:
Step 5. Calculate the effective depth (d).

4 1
d=30- <1.5—|—§—|— 1.128—|—§> = 26.371n.

Note that the clear vertical space between the bars is 1.0 in.
Calculate the nominal resisting moment from the concrete—tensile steel
couple, M,,;.

Mur= At (4 5)
(4.8)(40) <26.37 — %)

M, =
M, = 390ft-kip

Step 6. Calculate the nominal resisting moment for the compression steel-tensile
steel couple, M.

My, = Aéf}‘(d — d’)
(1.2)(40)(26.37 — 2.44)

n2 = 12
M,» = 95.7 ft-kip

Step 7. Calculate the total nominal resisting moment, M,,, which is the sum of the
concrete—tensile steel (M,;) and compression steel-tensile steel (M)
couples:
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M,=M, +My,
M, =390 + 95.7 = 485.7 ft-kip

Step 8. Calculate Mp.

My = oM, = 0.90 x 485.7 = 437 ft-kip

Example 3.5 Determine the design resisting moment, Mg, for the doubly-
reinforced beam with 6 #8 bars used for steel in tension as shown in Figure 3.20.
Use f! =4 ksi and f, =40 ksi, E; = 29,000 ksi. The stirrups are #4 bars. The beam is
subject to a positive bending moment.

k—14in. —]

30in.

Figure 3.20 Beam section for Example 3.5

Solution Use the flowchart of Figure 3.17.

Step 1. Assume f, = f/ = f, =40 ksi
2 #7 — Table A2.9 — A, = 1.20in.?
6 #8 — Table A2.9 — A, = 4.74in.?
Ay = A, — AL =474 — 1.20 = 3.54in.2

Step 2. Calculate the depth of the equivalent stress block.

Asty 3.54 x 40
a = =
0.85f/b 0.85x4x14
a=2.97in.
The neutral axis is:
2.97
c=2 =71 _35in.

B, 085
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Step 3. Calculate the strain in the tensile steel:
4 1 .
dy =30 — 1.5+§+5 =27.51in.

From Equation (3.17a):

0.003(d, — ¢)
A
. 0.003(27.5in. — 3.5in.)
- 3.5in.
4
= . 2 = = . l
g, = 0.0206 > g, 35.000 0.00138

Step 3a.
g = 0.0206 > 0.005 ..¢ =0.90

Step 4. Calculate the strain in the compression steel:

4 0.
d = l.5+§+¥:2.44in.

From Equation (3.17b):

o
o 0003(c =)
&
. 0.003(3.5 —2.44)
g =
35

g; = 0.00091 < g, = 0.00138

The compression steel does not yield when the strain in the concrete
reaches 0.003. Therefore, the assumption in step 1 was not correct. Hence,
follow the procedure outlined in case 2.
Step 5. Determine the location of the neutral axis, c, using Equation (3.31).

(0.85F'bp, )c? + (87A§ - Axfy)c —87d'AL=0
(0.85 x 4 x 14 x 0.85)c2 + (87 x 1.2 — 4.74 x 40)c — 87 x 2.44 x 1.2 =0
40.46¢% — 85.2¢ — 254.7 =0

This is a second order equation in the form of:
AP +Bx+C=0

The solutions for x are:

_ —B+VB*—4AC
B 24

X
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where A =40.46, B =-85.20, C =-254.7.

85.20 + \/ (—85.20)% — 4(40.46)(—254.7)
2(40.46)

Thusc =
¢ =3.77in.

(Quadratic equations have two roots. The one in the example has
¢y =3.77 in. and ¢, =—1.67 in. ¢ cannot be a negative value, so the second
one obviously does not apply.)

Step 6. Determine the correct value of the net tensile strain at the extreme layer of
the reinforcement using Equation (3.32).

~0.003(d; — )
C
. 0.003(27.5 — 3.77)
- 3.77

€

Step 6a.
g =0.0189 > 0.005 .. ¢ =10.90

Step 7. Calculate the stress in the compression steel ( f/) using Equation (3.33).

=)
. (377 —2.44)
g =BT 2% )

Ji =30.69ksi < f, = 40ksi
The corrected depth of the compression zone (a) is:
a=P,c =0.85x3.77 = 3.20in.
Step 8. Calculate M,,; and M,,,, the nominal resisting moments for the concrete—

tensile steel couple and the compression steel-tensile steel couple,
respectively.

d=130- (1.5+:+1+;> =26.51n.

M, = (0.85¢ba) (d - %)

2
(0.85 x4 x 14 x 3.2) (26.5 — %)

Mnl =

M, = 316 ft-kip

My =Aif!(d—d)

1.2 x 30.69(26.5 — 2.44)
12

12

n2 =

M, = 74.0ftkip
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Calculate the design resisting moment, M,,.

Mn :Mnl +Mn2
M, =316+ 74.0 = 390ft-kip

Calculate the design resisting moment, M.

My = oM, = 0.90 x 390
My = 351 ft-kip

Design of Doubly-Reinforced Concrete Beams

If a singly-reinforced section cannot develop the required factored moment and the
beam size cannot be increased, a doubly-reinforced section may be appropriate. In
the design of doubly-reinforced beams, the section sizes are known, so only the
reinforcement needs to be determined.

The design of a doubly-reinforced section follows the same concept as that of the
analysis: Calculate the amount of steel necessary for the concrete—tensile steel and
compression steel-tensile steel couples and add the results. The step-by-step design
procedure is outlined below and summarized in a flowchart in Figure 3.21.

Step 1.

Step 2.

Step 3.

Calculate the maximum factored moment, M,,, from the loads acting at the
section under consideration. Because the beam sizes (b and /) are known,
estimate the effective depth (d) as

d =h — 5y (assumey = 2.5in.)

Also, assume d'=2.5 in. In the following two steps we determine
whether a doubly-reinforced beam is required or a singly-reinforced
beam will be adequate.

In order to calculate the maximum moment capacity of a singly-reinforced
tension-controlled section (¢pM,,), obtain the maximum tension-controlled
steel ratio (p,.) permitted by the ACI code from Table A2.3 and the
corresponding resistance coefficient (R) from Tables A2.5 through A2.7.
Calculate the maximum .¢pM,,; for a singly-reinforced beam:

&M, = Rbd* /12,000 (3.40)
If M, > &M, a doubly-reinforced beam is required. If M, < dM,; a

singly-reinforced concrete beam will suffice. If a singly-reinforced con-
crete beam will suffice, design the beam accordingly using the flowchart of


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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| Design of Doubly-Reinforced Concrete Beams |

!

|1' Calculate maximum M, |
|Assume d= h-yandd'= 25in,y= 25in. |

I

_ 2 Use f, and f, to find p,(Table A2.3) and corresponding R from the resistance
coefficient tables (Tables A2.5 through A2.7).

!

Rbd?2
M= 35 000
Mo< M2 No Design as a
OMp u singly-reinforced beam.
Yes
4.
| Ast=pecbd |

!

OMpo= M, — OMpy

!
Gy M2
o(d-d)
¢ = 0.90

I

Q

® ®

Figure 3.21 Design of doubly-reinforced beams
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Select the size and number of bars for Agand A’
from Tables A2.8 and A2.9.

9.
dz dassumed
and/or

' '
dsd assumed

Figure 3.21 (continued)

Step 4.

Step 5.

Figure 2.46. If a doubly-reinforced beam is needed (i.e., M, > ¢$M,;),
then proceed as follows:
For the concrete—tensile steel couple:

Ag = p.bd (3.41)

Calculate the difference between M, and ¢M,,,. This difference is the
moment that must be resisted by the compression steel—tensile steel couple.

¢Mn2 =M, — d)Mnl

Considering the compression steel-tensile steel couple, (see Figure 3.16d)
calculate the compression force, C,, from Equation (3.43).

PM,y = $Cazy = $Co(d — d') (3.42)
g M
Cr =Asfy = old—d) (3.43)

To calculate A we must first determine the value of f/, as the compression
strain in the reinforcing may be less than the yield strain. In order to do this,
determine the location of the neutral axis and check the strain level in the
compression steel (see Figure 3.16¢):


http://dx.doi.org/10.1007/978-3-319-24115-9_2
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Step 6.

Step 7.

Step 8.

Step 9.

Ci =T
0.85f/ba = A, f,
a— Aslf:v
~ 0.85f'b
=2
Py

Calculate ¢ (see Figure 3.16b):

o _ 0.003(c — d')
S ¢

If e > g, —f! :fy (i.e., the compression steel has yielded). If, however,
g < &, — f = Eg;.

Calculate A} from Equation (3.45).

Cy = ALf! (3.44)
A= ?,2 (3.45)
N

Calculate Ay, using Equation (3.46) (see Figure 3.16d).

Aéf;" = Asty
Alf (3.46)

As =
2 7,

Calculate the total area of steel (A,).
Ay =Ag +Agp (3.47)

The result enables the selection of the size and number of bars for the
compression steel (A}) and the tension steel (A,) using Table A2.9.
After the selection of the tensile and compression steel, calculate the actual
values of d and d’, and compare to the assumed values in step 1. If
d > dygeumed OF d' < d}ssumed> the assumptions are conservative. However,
if these relationships are violated by more than Y2 1n., a recalculation of A,
and A}, is necessary using the adjusted d and d’ values by repeating the
process from step 2.

Example 3.6 Figure 3.22 shows the floor framing plan and sections of a reinforced
concrete building. The slab is 6 in. thick and there is a superimposed dead load of
25 psf. The floor live load is 125 psf. Assume that the beams are integral with the
columns, f = 4ksi, f} = 60ksi, and the unit weight of the concrete is 150 pcf. The


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Figure 3.22 Floor framing plan and sections for Example 3.6

stirrups are #4 bars. Design the reinforcements for the edge beam and the first
interior beam along column lines 1 and 2 (as shown in the sections A-A and B-B of
Figure 3.22) where the maximum negative moments occur. Consider doubly-
reinforced beams if necessary. Use ACI coefficients for the calculation of moments.

Solution Use the flowchart of Figure 3.21.
(a) Edge Beam Along Line 1

Step 1. Find the factored loads on the beam:
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6
Weight of slab = 150 (E) = 75pst

Superimposed dead loads = 25 psf
Total dead load = 100 psf
Live load = 125psf

The uniformly distributed dead and live loads on the beam are (tributary
width = 10.58 ft):

14 24
wp = 100 x 10.58 + 150(5 X E)] /1,000 = 1.41kip/ft
125 x 10.58 .

(Note that live load reduction does not apply for the beams, because the
unit live load is in excess of 100 psf.)

wy, = 1.2wp + L.6w, = 1.2 x 1.41 + 1.6 x 1.32 = 3.8kip/ft

7 7
B 1 =40ft — | —+-—= | = 38.8ft
eam clear span (12 + 12>
The maximum factored bending moment is next to the first interior
column (negative moment):

_ w,? 3.8(38.8)° ,
M,)” = 0 = 10 = 572 ft-kip

Assuming y = 2.51n., the effective depth, d, can be calculated.
dassumed = 1 —y = 30in. — 2.5in. = 27.5in.

Also,
d' 4ssumed = 2.51n.

Step 2. Usef/ and /fy to obtain the maximum tension-controlled steel ratio (p,.) from
Table A2.3:

f! = 4ksi — Table A2.3 — p,. = 0.0180
f, = 60ksi

The corresponding resistance coefficient, R, from Table A2.6b is:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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p = 0.0180 — Table A2.6b — R = 818 psi

Step 3. Calculate the design resisting moment based on the limit of reinforcement
for tension steel (py.):

Rbd>  818(14)(27.5)*
d)Mnl = =

12,000 12,000
M, = 722 fi-kip > 572 ft-kip

S.OM,; > M, Design as a singly-reinforced beam.

Because the beam is to be designed as a singly-reinforced section, follow
the flowchart of Figure 2.46. Continuing with step 3 of that flowchart:

12,000M,
R="2
bd
12,000 x 572

= 648 psi
14(27.5)° P

Step 4. From Table A2.6b, obtain the steel ratio (p) for this R value:

p=0.0137 > p_;, = 0.0033 (Table2.4) .. ok
Step 5. Calculate the required area of the steel (Ay):
As = pbd = (0.0137)(14)(27.5) = 5.27in.?

From Table A2.9, use 6 #9 bars.
Step 6. Calculate the actual d.

y = L.51in. +4in.+1.128/2 in. = 2.56 in.

t T T
Cover #4 stirrup #9 bar

d =30 —2.56 = 27.44 in. ~ dygumed = 27.5 in. ..ok

Figure 3.23 shows the final cross section and reinforcement.
(b) Interior Beam Along Line 2

Step 1. Using the total dead and live loads calculated in part (a) and a tributary width
of 20 ft, the uniformly distributed dead load (wp) and live load (w,) are:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_2
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_ — =
Y v 6in.
—
d 30 in.
#4 Stirrups
f—14in.—]

Figure 3.23 Final design for Example 3.6 (edge beam)

14 27
wp = [100 x 20 + 150 (ﬁ x E)} /1,000 = 2.40Kkip/ft
125 x 20 .

wy = 12wp 4+ 1.6w, = 1.2 x 2.40 + 1.6 x 2.5 = 6.88kip/ft
The maximum factored moment is:

_ w2 6.88(38.8)° .
M) =" =19 — 1,036 ft-kip
dassumed =h-— y =33in. — 2.5 =30.51n.

’ .
assumed = 2.511.

Step 2. .
f! = 4ksi — Table A2.3 — p,. = 0.0180

Jy = 60ksi
p =0.018 — Table A2.6b — R = 818psi

Step 3. The limit of resisting moment for a singly-reinforced tension-controlled
section is:

Rbd*  818(14)(30.5)

M}’l = =
PMin 12,000 12,000
dM,,1 = 888 ft-kip < M, = 1,036 ft-kip

Since $M,,; <M, the beam has to be designed as a doubly-reinforced
section.
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Step 4.
P Ag = p,.bd = (0.018)(14)(30.5)

Ag1 = 7.691in.2
q)MnZ =M, — (anl
dM,» = 1,036 — 888 = 148 ft-kip

The compression force to be carried by the compression steel (C») is:

M, 148 x 12 ,
C, = - = 70.5k
27 9(d—d)  0.9(30.5 —2.5) P

Step 5. Determine the depth of the compression zone (a):

Asif, 7.69 x 60

“T 085 b 085 x4 x 14
a=9.69in.

a 9.69
=22 114in.
‘=B, 085 n

Step 6. Calculate the strain in the compression steel (gf) :

o 0:003(c —d)
s C
0.003(11.4 —2.5)
! __ —
e = 4 = 0.0023
5y 60
& =% =5 000 0.00207 < 0.0023

The compression steel will yield, thus
fl= f, = 60ksi

Step 7. Calculate the required compression steel (A;) and the additional tension
steel for the compression steel-tensile steel couple (Ay,).

G 705

)
g_ﬁ_—60 = 1.18in.
fIAL 60 x 1.18 .9
Ap="—"=———=1.18in.
52 7 50 in

Step 8. Calculate the total required tensile steel (A,) and select the bars.
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AS = Asl +As2
Ay =7.69+1.18 = 8.87in.?

For tensile steel, select 9 #9 bars (A; provided = 9 in.z) and for compression
reinforcement A} = 1.181in.2 select 2 #7 bars (AQ, provided = 1.20 in.z).
Step 9. Calculate the actual values of d and d’, and compare to the assumed values.

4 1.128
d=h-5=33—(15+_+——
=0 (1545+77)

= 30.441in. ~ dysumeq = 30.51n.

4 0.875
d=15+ 3 + 5 = 2.44in. < dysumea= 2.5in. .. ok

The final design of the beam is shown in Figure 3.24.

@ Sloee o 00 @ 6|n
9 #9
#4 Stirrups 27 in.
247
f—14in—]

Figure 3.24 Final design for Example 3.6 (interior beam)
3.2.4 Lateral Support for Compression Steel

Any slender compression member is susceptible to buckling. Compression steel is
made up of slender reinforcing bars that can buckle and cause failure of the beam as
shown in Figure 3.25a. To prevent such catastrophic failures, Section 9.7.6.4.1 of
the ACI Code requires that compression reinforcement in beams be enclosed by ties
or stirrups, as shown in Figure 3.25b. The size of the stirrups must be at least #3 for
main bars that are #10 or smaller, and #4 for those that are #11 or larger, according
to Section 9.7.6.4.2 of the ACI Code. The maximum spacing, s, of the stirrups for
this purpose is given by ACI Code, Section 9.7.6.4.3 and is:

Smax = min{ 164, 48d,, byin}

where d,, is the diameter of the main bars, d, is the diameter of the transverse
reinforcement (stirrups), and b, is the smaller dimension of the beam section.
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a Buckling of compression reinforcement

I—’A

Figure 3.25 Lateral support for compression steel in doubly-reinforced beams. (a) Possible
buckling of compression reinforcement without adequate stirrups. (b) Stirrups for doubly-
reinforced beams

3.3 Deflection of Reinforced Concrete Beams

3.3.1 Introduction

The analysis of deflections in reinforced concrete flexural members is a very
complex and inexact process. The difficulty lies in three major uncertainties.

The first is the inelastic behavior of concrete. As previously discussed, concrete
in compression does not follow Hooke’s law: Stresses and strains are not linearly
related, even at relatively low stress values. The inelastic behavior of concrete,
however, may be the least of the difficulties, because the assumption of elastic
response does not lead to very large errors up to working stress or service load stress
levels.

The second uncertainty is much more difficult to get a handle on. In the formulae
for deflection calculations, the product E/ is in the denominator. For example, the
elastic deflection formula for a simply-supported beam with uniformly distributed
loads is:



3.3 Deflection of Reinforced Concrete Beams 201

_ 5 wet
T 384 EI

The product E x I =modulus of elasticity x moment of inertia. As mentioned in
Section 1.6 of Chapter 1, the Code gives the assumed modulus of elasticity of
concrete as:

E =33wlo/f!

where w,. is the weight of the concrete in pounds per cubic ft and f. is the 28-day
cylinder strength of the concrete in psi. (Normal-weight concrete is about 145 pcf.)

The Code formula for the modulus of elasticity is accurate only within a range of
about +15 %.

Calculating the moment of inertia is even more problematic. Concrete flexural
members, as discussed earlier, develop cracks while subject to normal service load
conditions. Between the cracked sections and the points where the moments are less
than the cracking moment (M,.,), there is the full concrete section augmented by the
reinforcing. At the cracked sections, however, only a much smaller moment of
inertia is available. Correspondingly, the center region of a beam has considerably
less rigidity as shown in Figure 3.26.

L L L2 LN N N N
N I S A A S

//_\
MCf

Uncracked Cracked section Uncracked
[" section section |

Figure 3.26 Regions in a simply-supported beam

The third major uncertainty is due to the creep behavior of concrete in compres-
sion. The first two uncertainties influence the ambiguity of calculating the so-called
instantaneous deflections, but creep influences long-term deformation (i.e., a grad-
ually increasing deformation under sustained loads). Fortunately, the rate of
increase of deformation dissipates with time, and it virtually stops after about
5 years.


http://dx.doi.org/10.1007/978-3-319-24115-9_1
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3.3.2 The Effective Moment of Inertia (1,)

The ACI Code simplifies the complex problem posed by uncracked and cracked
sections in different regions of beams by assuming that the effective moment of
inertia (/,) lies somewhere between the gross section’s moment of inertia (/,) and
the cracked section’s moment of inertia (/). Equation (3.48) [ACI Equation
24.2.3.5a] presents the ACI Code (Section 24.2.3.5) formula to calculate /..

M.\’ M.\’
le= <M> o (M) ][ 349

I, is the moment of inertia of the gross concrete section about its centroidal axis,
neglecting reinforcement

1., is the moment of inertia of the cracked concrete section

M., is the cracking moment

M, is the actual (unfactored) maximum moment in the member

where

The ACI Code (Section 24.2.3.6) recommends using an average of values
obtained from Equation (3.48) for the critical positive and negative moment
sections in calculating I, for continuous beams. This averaged value should be
used in the appropriate deflection formulae for continuous beams.

a. Equation (3.49) gives the gross moment of inertia for a rectangular section.

bk’

I, =— 3.49
Equation (3.50) gives the cracking moment.
A
M., :B (3.50)
Ve

where f, is the modulus of rupture given by Equation (3.51) (for values of 1 refer
to Section 1.6)

f="750/f (3.51)

and y, is the distance from the section’s centroidal axis (neglecting reinforce-
ment) to the extreme fiber in tension for a rectangular section, as shown in
Figure 3.27:

Ve


http://dx.doi.org/10.1007/978-3-319-24115-9_1
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Figure 3.27 Rectangular section
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Figure 3.28 T-beam section
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b. For a typical T-beam section like the one shown in Figure 3.28, calculating y,
and the gross moment of inertia requires considerable computational effort. To
ease the difficulty, Table 3.1 is provided, which gives coefficients (C,,) as a
function of the #/h and b,,/b ratios. Then we can calculate the distance from the

section’s centroidal axis to the bottom using Equation (3.52).

¥ = Cyh (3.52)

Table 3.1 Coefficients (C,,) to calculate y, for T-beams
t/h

b,/b | 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
0.1 [0.647 |0.713 |0.744 |0.757 |0.760 |0.755 |0.747 |0.735 |0.721 |0.705
02 [0.579 |0.629 |0.659 [0.678 |0.688 |0.691 |0.690 |0.685 |0.677 |0.667
0.3 [0.550 |0.585 |0.610 [0.627 |0.638 |0.644 |0.646 |0.645 |0.641 |0.635
04 10.533 |0.559 |0.578 [0.592 |0.602 |0.609 |0.612 |0.613 |0.611 |0.607
0.5 |0.523 |0.541 |0.555 |0.567 |0.575 |0.581 |0.584 |0.586 |0.585 |0.583
0.6 [0.515 [0.528 |0.539 [0.547 |0.554 |0.558 |0.561 |0.563 |0.563 |0.563
0.7 |0.510 |0.518 |0.526 [0.532 |0.536 |0.540 |0.542 |0.544 |0.544 |0.544
0.8 [0.506 |0.511 |0.515 [0.519 |0.522 |0.524 |0.526 |0.527 |0.528 |0.528
09 [0.503 |0.505 |0.507 |0.509 |0.510 |0.511 |0.512 |0.513 |0.513 |0.513
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Table 3.2 Coefficients (Cy,) to calculate /, for T-beams

t/h

b,/b 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1 | 0.01534 | 0.01800 | 0.01896 | 0.01922 | 0.01924 | 0.01930 | 0.01957 | 0.02018 | 0.02123 | 0.02282
0.2 | 0.02420 | 0.02830 | 0.03044 | 0.03142 | 0.03177 | 0.03183 | 0.03185 | 0.03201 | 0.03246 | 0.03333
0.3 | 0.03208 | 0.03655 | 0.03925 | 0.04074 | 0.04145 | 0.04171 | 0.04175 | 0.04177 | 0.04194 | 0.04239
0.4 | 0.03964 | 0.04395 | 0.04677 | 0.04850 | 0.04946 | 0.04989 | 0.05002 | 0.05003 | 0.05008 | 0.05030
0.5 | 0.04704 | 0.05091 | 0.05359 | 0.05533 | 0.05638 | 0.05693 | 0.05715 | 0.05719 | 0.05720 | 0.05729
0.6 | 0.05437 | 0.05763 | 0.05996 | 0.06156 | 0.06257 | 0.06315 | 0.06342 | 0.06350 | 0.06351 | 0.06354
0.7 |0.06165 | 0.06418 | 0.06605 | 0.06738 | 0.06825 | 0.06878 | 0.06905 | 0.06915 | 0.06917 | 0.06918
0.8 | 0.06890 | 0.07063 | 0.07195 | 0.07290 | 0.07354 | 0.07395 | 0.07418 | 0.07428 | 0.07430 | 0.07431
0.9 10.07612 | 0.07701 | 0.07769 | 0.07820 | 0.07855 | 0.07878 | 0.07892 | 0.07898 | 0.07900 | 0.07900

The gross moment of inertia of T-beams about the centroidal axis can be
determined with the help of Table 3.2, which gives coefficients (Cy,) for differ-
ent ratios of #/h and b,,/b. Then we can use Equation (3.53) to calculate the gross
moment of inertia.

I, = (Cpp) b0 (3.53)

Example 3.7 Calculate y,, I, f,, and M., for a T-beam made of normal-weight
concrete with the following data: b=60 in., b, =12 in., t=4 in., h=24 in., and
! = 4,000 psi.
Solution

b, 12

4
== = — =0.167
b 60

t
h 24

0.2,

From Table 3.1 (interpolating) — Cy, = 0.665 — y, = Cy,h
= 0.665 x 24 = 15.96in.
From Table 3.2 (interpolating) — Cj, = 0.03077 — I, = Cr,bh’
=0.03077 x 60 x 24°
=25,522in.*

The modulus of rupture is (A= 1.0 for normal weight concrete)
[ =75M/f = 7.5 x 1.0 x /4,000 = 474 psi

The cracking moment in the positive moment regions (i.e., tension at the bottom) is:

oy _Fds 474 325,522
Ty 1596

= 757,984in.-1b = 63.2 ft-kip
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The cracking moment in the negative moment regions (i.e., tension at the top) is:

Slg 474 x 25,522

M o — =
h—y, 24— 15.96

= 1,504,655in.-1b = 125.4 ft-kip

3.3.3 Cracked Section Moment of Inertia (I.,)

Rectangular Section The calculation of the cracked section’s properties is based on
the transformed section concept. This is a useful tool borrowed from the theory of
elasticity. Figure 3.29 shows the strains, the stresses, the internal couple, and the
location of the cracked section’s neutral axis for a rectangular section.

The internal couple’s components can be expressed as:

:fc(kd)b (kd)b

C =FE_ g, — and T = A,f, = AEs&;s

Substitute the area of steel with a “special kind” of material (A;),,, which can take
tension and has an elastic response similar to that of concrete. The tension force
then can be calculated as:

T =AE¢e, = [(Ax)[,-] E. g

The transformed steel area (A,),. is shown in Figure 3.30 and can be calculated
using Equation (3.54).

E
(As), = A5 = nA; (3.54)
C
a b c
b f.= E
& c= Ecéc
C= fy(kd)b/2
—
kd
e o o >
£ fo= Es &g T= A,

Figure 3.29 The cracked rectangular section: (a) strains, (b) stresses, and (c¢) the internal couple
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—b——

kd
d- kd
(As)tr= nAs
V Y
Figure 3.30 The transformed section
Table 3.3 Values of n
f! 3,000 psi 4,000 psi | 5,000 psi
n 9 8 7

where n is the modular ratio, which is the ratio of the steel’s and the concrete’s
modulus of elasticity. The value of n = E/E . may be rounded as shown in Table 3.3.
The centroidal axis (measured as kd from the top) is located where the first moments
of the areas above and below that axis balance each other.

b(kd) % — (Ay), (d — kd) = nAy(d — kd)

By substituting Ay = pbd, the value for k can be calculated using Equation (3.55).

k= \/2np + (np)* — np (3.55)

The location of the neutral axis depends on only two parameters: the value of # that
depends on the concrete’s quality (because the modulus of elasticity of steel, E, is
relatively constant and equal to 29,000 ksi), and the steel ratio, p, employed in the
section.

Then the moment of inertia about the centroidal axis can be expressed as:

o = “’;‘”3 + (npbd)(d — kd)’

After some mathematical manipulation, this equation can be written as shown in
Equation (3.56).

k3
I, = bd® [@ +np(1 — k)ﬂ (3.56)
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Table 3.4 Values of k and C, for rectangular
sections

np k C,
0.010 0.132 0.0083
0.020 0.181 0.0154
0.030 0.217 0.0218
0.040 0.246 0.0277
0.050 0.270 0.0332
0.060 0.292 0.0384
0.070 0.311 0.0433
0.080 0.328 0.0479
0.090 0.344 0.0523
0.100 0.358 0.0565
0.110 0.372 0.0605
0.120 0.384 0.0644
0.130 0.396 0.0681
0.140 0.407 0.0717
0.150 0.418 0.0752
0.160 0.428 0.0785
0.170 0.437 0.0817
0.180 0.446 0.0848
0.190 0.455 0.0878
0.200 0.463 0.0908
0.210 0.471 0.0936
0.220 0.479 0.0964
0.230 0.486 0.0990
0.240 0.493 0.1016
0.250 0.500 0.1042
0.260 0.507 0.1066
0.270 0.513 0.1090
0.280 0.519 0.1114
0.290 0.525 0.1137
0.300 0.531 0.1159

If the expression within the bracket is designated by C,, the cracked moment of
inertia can be calculated easily from Equation (3.57) using values obtained from
Table 3.4.

I, = C,bd’ (3.57)

Table 3.4 lists k and C, for different values of np.

Example 3.8 Given a rectangular section with b =12 in., 7 =20 in., A; = three #8
bars, f! = 4,000psi, and /= 160,000 psi; calculate the gross moment of inertia (/,),
the location of the neutral axis at service load conditions (kd), and the cracked
section moment of inertia (/). Assume d=h—2.5 in.=17.5 in.
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Solution The gross moment of inertia is:

;b _12x20°

== = 8,000in.*
$T 12 12 m

The steel ratio is:

Ay 2.37

P=pd " Tax175 OO0

From Table 3.3:
£l =4,000psi —n=28
Then:

np =8 x 0.0113 = 0.0904

From Table 3.4 (interpolating):

k~0.344 and C, =~ 0.0525

Hence, the location of the neutral axis from the top is:

kd =0.344 x 17.5 = 6.02 in.
and the cracked section inertia is:
I, = C,bd> = 0.0525 x 12 x 17.5° = 3,376in.*

T-section Figure 3.31 shows a typical T-shaped concrete beam reinforced for
positive moment. The expression for k and the cracked section moment of inertia are
quite complicated for T-beams; however, there are easy solutions with certain
simplifying assumptions. During service load conditions, especially with large
amounts of reinforcing, the neutral axis may fall below the bottom of the flange
(in other words kd > f). Figure 3.32 shows the neutral axis and stresses for the general
case. If kd <t, or np is less than the value shown in Table 3.5, the neutral axis is
within the flange and Equation (3.57) and Table 3.4 can be used to calculate /...

In the introduction we stated that the calculation of deflections contains many
uncertainties, so the errors introduced with simplifying assumptions are minimal
and do not seriously influence the validity of the results. The main simplification for
calculating deflection for T-beams is that when the neutral axis at service load
conditions falls below the bottom of the flange, the portion of the compressive zone
that is within the web is neglected. As shown in Figure 3.32, this is usually a small
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I b I
i _1; .
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d
h
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e o o
— by ——
Figure 3.31 T-beam section
| b | .
T
! [
1 kd
d—kd
nA | .
AL, ;
s
b

Figure 3.32 The transformed section of a T-beam

Table 3.5 Values of np that satisfy the condition that kd <¢

t/d 0.1 0.2 0.3 0.4 0.5
(Pumie | 0.0055 [0.0250 [0.0643 [0.1333 | 0.2500

area combined with small stresses, and so the error is small. Thus, the neutral axis is
located where the first moments of the transformed areas from above and from
below are equal:

Introducing

Ag = pbd
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then solving for k gives:

np + ! <Z) ’

h=——22d7
o+ (3)

Table 3.6 provides k values for different np and #/d values. When kd > ¢, or np is

greater than the value shown in Table 3.5, the neutral axis is below the flange and

Table 3.6 should be used to find parameters required to calculate /... The heavy

horizontal line in each column of Table 3.6 represents the limiting values of
Table 3.5.

(3.58)

Table 3.6 Values of k in T-beams as a function of np and #/d

t/d
np 0.1 0.2 0.3 0.4 0.5
0.010 0.136
0.020 0.208

0.030 0.269 0.217
0.040 0.321 0.250
0.050 0.367 0.280
0.060 0.406 0.308
0.070 0.441 0.333 0.311
0.080 0.472 0.357 0.329
0.090 0.500 0.379 0.346
0.100 0.525 0.400 0.363
0.110 0.548 0.419 0.378
0.120 0.568 0.438 0.393
0.130 0.587 0.455 0.407
0.140 0.604 0.471 0.420 0.407
0.150 0.620 0.486 0.433 0.418
0.160 0.635 0.500 0.446 0.429
0.170 0.648 0.514 0.457 0.439
0.180 0.661 0.526 0.469 0.448
0.190 0.672 0.538 0.480 0.458
0.200 0.683 0.550 0.490 0.467

0.210 0.694 0.561 0.500 0.475
0.220 0.703 0.571 0.510 0.484
0.230 0.712 0.581 0.519 0.492
0.240 0.721 0.591 0.528 0.500

0.250 0.729 0.600 0.536 0.508 | 0.500
0.260 0.736 0.609 0.545 0.515 |0.507
0.270 0.743 0.617 0.553 0.522 |0.513
0.280 0.750 0.625 0.560 0.529 ]0.519
0.290 0.756 0.633 0.568 0.536 | 0.525
0.300 0.763 0.640 0.575 0.543 | 0.531
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The cracked moment of inertia of a T-beam depends on many parameters. Thus,
unlike a simple rectangular section, several tables would be required to give
coefficients for the calculations. This text will rely on the reader to perform the
necessary calculations.

By using the following parameters (Equation (3.59)):

A t by,

we can calculate the coefficient C,7 using Equation (3.60):
K 2 OVZ 2 2
C,.T:BA?—i—np(l—k) + (1 —P,) ?—(xAk—HxAk (3.60)

The cracked section moment of inertia for T-beams, where the neutral axis is below
the bottom of the flange, can finally be calculated using Equation (3.61).

I, = Corbd’ (3.61)

Example 3.9 The cross section used in Example 3.7 has 6 #11 bars in two rows,
A, =6 % 1.56=9.36 in.>. Calculate the cracked section moment of inertia of the
T-beam.

Solution
Calculate the parameters required in Equation (3.60) for C,;. Because there are two
rows of reinforcing, use d =h — 4 in.; thus, d =24 — 4 =20 in.

f/ =4,000psi » n=8 (from Table3.3)

Ay 9.36
p= Eg = 6‘? <20 0.0078b—> n(;z— 8 x 0.0078 = 0.0624
— =50 2 - v = — = 2
oA 420 0 Ba 5 %0 0

Solving from Equation (3.58) or using Table 3.6 (interpolating), k= 0.314.

kd = 0.314 x 20 = 6.281in.

Thus, the neutral axis is below the bottom of the flange.
Hence, from Equation (3.60):

0.314°

Crr =02 x +0.0624 x (1 —0.314)* + (1 —0.2)

0.23
X (3 —02%x0314+0.2 x 0.3142) =0.0393

Then

I, = 0.0393 x 60 x 20° = 18,864 in.*
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3.3.4 Applications

As mentioned earlier, the main application of calculating /... is to find the effective
moment of inertia (/) required for computing deflections. The following examples
will demonstrate this.

Example 3.10 The cross section of the simple span beam shown in Figure 3.33 is
the same as that used in Example 3.8. Calculate the deflection due to the total
service loads. Assume the beam is made of normal-weight concrete with a unit
weight of 145 pcf.

Solution
From Example 3.8:

b=12in., h = 20in., d = 17.5in., A, = 2.37in.2, I, = 8,000in.%, I, = 3,376in.*
£.=7.5(1.0)/F,000 = 474 psi

For the given loads, the service load moment is:

(0.7 4 0.4)(30)?

M, =
8

= 123.75ft-kip

The cracking moment is determined using Equation (3.50):
S, 474 x 8,000

Mcr -
Vi @
2

= 379,200in.-1b = 31.6ft-kip

The effective moment of inertia from Equation (3.48) is:

M.\’ M.\’
1(): l 17 IL‘I‘
()i - ()]

31.6 \° 31.6 \°
- <m> x 8,000 + |1 — <m> ] x 3,376 = 3,453 in.4

This value is only about 2.3 % higher than the cracked moment of inertia (/).
It hardly seems worth the trouble to go through the calculations.

I L = 0-4 kip/ft
DL = 0.7 kip/ft

Figure 3.33 Loads for Example 3.10



3.3 Deflection of Reinforced Concrete Beams 213

The modulus of elasticity of the concrete is:

E. = 33(145)"° /4,000 = 3.64 x 10°psi
With these values the instantaneous deflection is:

1,100 4
Syt 5 % B x (30 x 12)

Anp o = _ — 1.6in.
PLHLL = 384E 1, 384 x 3.64 x 100 x 3.453 n

About 1 in. of this deflection is due to dead loads. The rest is due to live loads.

Example 3.11 Given the T-beam used in Examples 3.7 and 3.9, calculate the
instantaneous deflections due to the dead and live loads shown in Figure 3.34.

Solution From dead loads:

2.0 x 40?
Mpy = 72 — 400.0ft-kip
From live loads:
0.8 x 402 .
My = = 160 ft-kip

From Example 3.7:
I, = 25,522in.* and M., = 63.2ft-kip
From Example 3.9:

I, = 18,864in.*

Substituting into Equation (3.48), the effective moment of inertia is:

63.2\° 63.2\° .
I, = (4()()) x 25,522 4+ |1 — (4()()) ] % 18,864 = 18,890in.

O Ll = 0-8 kip/ft
LT T - oL = 2.0 kiprft

]
VAN Z\

| 40'-0" |

Figure 3.34 Loads for Example 3.11
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Note again that the result is only slightly different from the value of 7.
) = 4,000psi, from Example 3.10, E =3.64 x 10° psi, and therefore the instanta-
neous deflections are:

2,000

App = — x 1 o x 12y = 1.68in
PL7384 7 364 x 10° x 18,890
800 .
ALL = m X 168 = 0.671]].

The calculation of the live load deflection (A;; not exactly according to the ACI
requirements, as this value has to be computed by subtracting the dead load
deflection from the total dead and live load deflection. This total deflection is
computed using the effective amount of inertia (/) based on the applied dead and
live load amounts. The difference in the results, however, is negligible.

3.3.5 Comments on the Effective Moment of Inertia (1,)

The values of the cracked section moment of inertia and the effective moment of
inertia (as defined by the ACI Code) usually differ only slightly, as observed in
Examples 3.10 and 3.11. To make it easy to understand the reason, we now rewrite
Equation (3.48) as Equation (3.62).

ML'I‘ ’ M('r } Iu cr :
I[) — | =L I 1 — . I{,’I‘ = I(.’, - I, — IL'I” 3.62
(M) o (M)] +(M) Uemle)  B62)

In other words, I, is equal to /., plus a fraction of the difference between I, and /...
Because the cracking moment (M,,) is usually much smaller than the actual
moment (M,,), their ratio, raised to the third power, is a small number. In building
structures the actual moment is about 65—75 % of the ultimate moment; and in most
members the ratio of the cracking moment to the actual moment is less than 0.3
where the required reinforcing is at least two or three times the minimum Ag pn.
Hence, the multiplier to the (/, —I.,) is only 0.027 or less. Thus

Lo~ 1, +0.03(1, — 1) =~ 1y

3.3.6 Long-Term Deflections

In addition to instantaneous (or elastic) deflections, designers must deal with
deformations caused by shrinkage and creep. The ACI Code treats these as
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additional deformations obtained by using a few empirically obtained multipliers
that represent “great national average” values.

Accordingly, Equation (3.63) (ACI Equation 24.2.4.1.1) gives us the additional
long-term deflection multiplier (ACI Code, Section 24.2.4.1.1). The additional
long-term deflection is computed by multiplying the immediate deflection by Ax.

§

=T+ 500 (3.63)

Aa

where p’ is the ratio of compressive reinforcing (if any) in positive moment regions
/

Al . . .
of the beam (i.e., o= ﬁ)’ and the time-dependent factor & for sustained loads is

equal to one of the following:

5 years or more 2.0
12 months 1.4
6 months 1.2
3 months 1.0

Tests have shown that the presence of compression reinforcing steel decreases
the additional long-term deformation. If no reinforcing exists on the compression
side, the deflection due to sustained loads may grow to three times the instantaneous
deflection in 5 years or more. Fortunately the rate of growth dissipates and becomes
very slow after about 3 years. The growth in deflections virtually disappears after
about 5 years.

These additional deformations apply only to the part of the instantaneous
deflections that the structure must sustain on a continuous basis. Thus they apply
to the dead loads and the part of the live loads that is continuously present. For
example, in a residential structure or an office structure, probably less than 15 % of
the design live loads are present continuously. In a library stack area or a storage
facility, on the other hand, 75-80 % of the design live loads are present all the time;
thus, the live loads in these facilities contribute a great deal to the long-term
deformations as well.

Table 3.7 summarizes deflections that are permissible according to the ACI
Code Section 24.2.2. Note that the main concern is damage to nonstructural
elements that are supported by, or are attached to the concrete structure. These
elements most frequently are walls, or, in some rare occasions, ceilings. So aside
from the fact that some shallow elements with really long spans may also exhibit
undesirable vibrations (very rare in concrete structures), the issue is not the mag-
nitude of the deflection, but what it may cause. For example, when a beam or a slab
deflects, a partition wall may unintentionally become a support to the beam or slab.
If the partition wall cannot take that load without cracking or buckling, then that
partition wall will fail, while nothing terrible happens to the beam or slab whose
action caused the failure. So the designer’s job is to evaluate the consequences
arising from the inevitable deflections and take steps to avoid potential harm to
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Table 3.7 Maximum permissible computed deflections [ACI Code Table 24.2.2]

3 Special Topics in Flexure

Deflection
Type of member Deflection to be considered limitation
Flat roofs not supporting or attached | Immediate deflection due to live, £/180
to nonstructural elements likely to be | snow or rain loads
damaged by large deflections
Floors not supporting or attached to Immediate deflection due to live load £/360
nonstructural elements likely to be
damaged by large deflections
Roof or floor construction supporting | That part of the total deflection £/480
or attached to nonstructural elements | occurring after attachment of
likely to be damaged by large nonstructural elements (sum of the
deflections time-dependent deflection due to all
Roof or floor construction supporting | sustained loads and the immediate £/240
or attached to nonstructural elements | deflection due to any additional live
not likely to be damaged by large load)
deflections

neighboring elements. In the example cited above, the easy solution is to connect
the partition wall at its top in such a way that it permits the deflection of the
structure above it and, at the same time, provides lateral support to the wall.

3.4 Reinforcement Development and Splices

3.4.1 Bond Stresses

The integrity of reinforced concrete requires that there be no slippage between the
reinforcement and the surrounding concrete. The whole theory of design is based on
that assumption.

Figure 3.35 shows a small piece of a beam with applied moments. As the
moment changes along the length of a beam, so does the tension in the reinforcing
steel.

When the reinforcing is isolated, as shown in Figure 3.35b, the role of the bond
stresses becomes quite clear. They transfer the difference in the tensile force, AT,
from the steel to the concrete surface surrounding the bar, and vice versa.

The magnitude of the bond stresses varies along the length of the beam with the
rate of change in the moments. Where the moments change rapidly, the bond
stresses are high; and moments change rapidly where shears are high. Hence,
where shears are high, the bond stresses also are high.

The use of deformed bars results in three distinct effects that resist relative
slippage between the surface of the reinforcement and the concrete. The first is
chemical adhesion between the two materials. The second is friction on the surface
of the bar. (Reinforcing bars are not smooth; in fact, they have a rather rough
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a
b
M M+aM Bond stresses—\
— — —
T QIIIiiiiiiiip T+AT T €—rc———>» T+AT
— — —

— ax—

Figure 3.35 (a) A Ax long portion of a beam and (b) isolated reinforcing as a free body

Chemical adhesion and friction Reactions from concrete to ribs

S S/

B S— P~ B S—
T‘_ﬂ — || — B—>T+AT T<—ﬂ —> T+AT
— - — J

Figure 3.36 (a) Adhesion and friction forces on the bar surface and (b) reactions on the
deformation ribs

surface.) The third comes from the concrete bearing on the ridges of the deforma-
tions. These effects are shown schematically in Figure 3.36.

Research has shown that the following sequence occurs at the bar/concrete
interface. Initially, chemical adhesion bonds the two together. After the adhesion
breaks down, friction and the reactions on the ribs become engaged. These reactions
are at an angle to the axis of the bar, as seen in Figure 3.36b. The angle depends on
the slope of the rib’s surface and the rib configuration. For simplicity ribs are shown
perpendicular to the bar, although they very often have different orientations.

Forces of the same magnitude but with opposite sense act on the surrounding
concrete. The component of these forces that acts parallel with the axis of the bar
counteracts AT. The component that is perpendicular to the bar axis, however,
develops outward pressures from the bar to the concrete. Figure 3.37 shows these
two components of the reaction. The perpendicular component, in turn, results in
circumferential tensions in the concrete, similar to those in a pipe under pressure.
The circumferential tensions affect a cylindrical portion of the concrete that surrounds
the bar, as shown in Figure 3.37b. If the bar is too close to the outside of the concrete,
the cylinder is too thin, and cracks may appear on the side or bottom of the beam,
indicating a splitting failure. If bars are too close to each other, the two cylinders
overlap, and a split may develop in a horizontal plane between the bars. Thus, the
closer the bar is to the surface (small concrete cover), or the closer parallel bars are to
each other, the greater is the likelihood of splitting failure due to bond stresses.

Bond stresses change along even a small length of the beam. Research has shown
that bond stresses spike next to flexural cracks (there is no bond across the crack
width), and also where a reinforcing bar terminates. These highly localized peak
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b  Cylindrical zones of
circumferential tensions
surrounding the bars

a
Outward (radial)
component of
reaction on
concrete
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Reactions from
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Possible fractures

Figure 3.37 (a) Reactions on the surrounding concrete from the ribs and (b) outward-pointing
radial pressures on the concrete

bond stresses do not significantly endanger the safety of the structure provided that
an adequate length of bar extends beyond where the bar will be fully stressed to
yield at ultimate strength. This extra bar length is called embedment length and is
defined as the length necessary for the bar to develop its full capacity. Another,
more common name for this length is development length.

3.4.2 Development Length for Bars in Tension

The ACI Code provides two ways to determine the required development length for
deformed bars and deformed wires.

The first method (Section 25.4.2.2 of the ACI Code) is a simplified one, whereas
the second method is more involved. In both of these methods, however, the
formulae include all the important variables that influence the bond strength. The
latter method, which is based on Equation (3.64) (ACI Code, Equation 25.4.2.3a of
Section 25.4.2.3), is the general approach used to calculate the development length.
Table A3.1 provides a description and values of the different factors.

ERFAERAAR

0, =
a0 <ch + K,,.>

dp

dy > 12in. (3.64)

where

cp + Kfr
- <25
dp -

Table A3.2 summarizes the simplified equations allowed by the ACI for the
calculation of the required development length for reinforcing bars in tension in
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lieu of using Equation (3.64). The required development length cannot be less than
12 in. (¢, > 12 in.).

Table A3.3 shows the tensile bar development lengths (¢;) for f, =60 ksi and
f! = 3ksi or 4 ksi. The reinforcing bars are assumed to be uncoated (y, = 1.0) and
not top bars (y, = 1.0), and the concrete is normal weight (A = 1.0).

Example 3.12 Calculate the required development length, ¢, for a #7
epoxy-coated bottom bar. Assume normal-weight concrete, f/ = 4,000psi,
fy=060,000 psi, #3 stirrups, 1.5 in. concrete cover over the stirrups, and a 5 in.
center-to-center spacing of bars.

Solution Both methods will be used here:
(a) Using Equation (3.64):

Step 1. Obtain the factors’ values from Table A3.1.

y, = 1.0(not a top bar)
y, = 1.5(epoxy coated, cover is less than 3dj)
y, = 1.0(#7 bar)

= 1.0(normal-weight concrete)

5in.
cp = {1.5 +0.375 + 0.875/2 = 2.31in., %} —231in.

Assume K, =0 (conservative)
Step 2. Check the requirement for Equation (3.64).

e+ Ky 23140

_ —264>25 Use25
d, 0.875 o s

Step 3. Use values from steps 1 and 2 to calculate the required development
length.

3 (60,000)1.0 x 1.5 x 1.0 , ,
P X JLOX LS X 10T 0 ers— 3gin. > 12in. - ok
40 (1.0)v/4,000 (2.5)

(b) Using the simplified expressions of Table A3.2:
The bar diameter is 0.875 in. Because clear cover = 1.5 in. > 0.875 and clear
spacing =5 — 0.875 =4.125 in. > 2(0.875), use condition A from Table A3.3:

0y =y, by = 1.5(42) = 63in. > 12in. .. ok

The simplified expression results in a more conservative development
length.
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3.4.3 Tension Bars Terminated in Hooks

When there is not enough “space” or length to transfer stresses using the entire
development or embedment length (e.g., when a beam terminates into a column),
the ACI Code permits the use of hooks or mechanical anchorage devices, or a
combination of these. The bending radii and the extensions for hooks are standard-
ized by the ACI Code and are shown in Figure 3.38. Equation (3.65) (ACI Code,
Sections 25.4.3.1 and 25.4.3.2) gives the required development length, £, for bars
in tension when the end is terminated in a hook:

AAATS
50/1\/]7;.

In the above equation, y, is the reinforcement coating factor, .. is the cover
factor, y, is the confining reinforcement factor, and A is the lightweight aggregate
concrete factor. The recommended values of these factors are shown in Table A3.4.
ACI Code Section 25.4.3.2 allows to use y,. = y, = 1.0, conservatively.

Bars that are developed by standard hooks at a discontinuous end of a member
must be enclosed within ties or stirrups when both the top (bottom) cover and the
side cover over the bar are less than 2.5 in. The stirrup or tie spacing may not exceed
3d,, along the development length £,,, and the first stirrup or tie must be within 2d,,

th = dh > max{Sd;,,6in.} (365)

a | | I
| Can | Can
[ [
D= 6d, for #3 through #8 bars
. = 8d, for #9 through #11 bars
4dpz2.51n. = 10d, for #14 and #18 bars
b
64, for #3 through #5 bars
124, for #6 through #8 bars
135

6d, for #3 through #8 bars

D > 4d,, for #3 through #5 bars only;
for larger bars D is the same as for
primary reinforcing bars.

Figure 3.38 ACI Code standard hooks. (a) For primary reinforcement. (b) For stirrups and ties


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1

3.4 Reinforcement Development and Splices 221

of the outside of the bend, and y, = 1.0, where d,, is the diameter of the hooked bar
(ACI Code Section 25.4.3.3).

Example 3.13 Calculate the development length (¢,,) for the bar in Example 3.12
if it is terminated in a standard hook.

Solution From Table A3.4:

y,=12
v, =10
y,=1.0
A=1.0

) _ 60,000 x 1.2 1.0 x 1.0
& 50(1.0) /4,000

Example 3.14 Figure 3.39 shows a beam/column connection. The beam clear span
is 30 ft, w, = 2.2 kip/ft, M,, = 194 kip-ft, and V,, = 33 kip at the face of the column.
Calculate the cutoff points for the top bars. £ = 4,000psi, f, = 60,000 psi. Assume
uncoated bars with normal-weight concrete.

x 0.875 = 19.9in. > max{8(0.875),6in.} = 7in.

Solution Check to determine if there is any excess reinforcement:

A, 316
P b T 16x155
From Table A2.6b — R = 609 psi

Mg = bd’R /12,000 = 16 x 15.5% x 609/12,000 = 195 kip-ft

= 0.0127

The reinforcement is just adequate; no excess is provided. Calculate the point of
inflection, which is the theoretical point where the negative reinforcing is no longer

18in. -0
f— d
ext1 ext2
fe > €, <—'| 4 #8 bars
1
L ]
t ! |
d=155in.
_ b=16in.
s
< 3
e 21
x
3
3.03 ft
8.03 ft

Figure 3.39 Sketch for Example 3.14
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needed; in other words, where M = 0. Cutting a section at the distance x from the
face of column, the equation for moment, M,, is:
My=-M,+V,x—wx*/2=0

2222
Y _0— x=8.03ft

— 194 + 33x —

Calculate the theoretical point where two of the four bars may be terminated. With
only 2 #8 bars, p=0.0064, R =326 psi, and My = 104 kip-ft. Then

2

104+ 33— 22 104 - x = 3.03f0

Calculate /; using the general Equation (3.64). From Table A3.1 the necessary
factors are:

top bars)

uncoated bars)

1.3
=1.0
1.0 (bars larger than #6)

(
(
(
= 1.0 (normal-weight concrete)

cp = 2.51n.
K, = 0 (transverse reinforcements present)

Then

360,000 13x1.0x10
b= |~— 1.0 = 37in. = 3.08ft
4~ 140(1.0)/,000 (2.5+0) n

1

The theoretical cutoff point for two of the bars lies at 3.03 ft from the face of the
column. In addition, the ACI Code requires that bars must extend beyond
the theoretical cutoff point (see the dimension labelled as “extl” in Figure 3.39)
by the greater of d (the effective depth of the beam) or 12d, (ACI Code,
Section 9.7.3.3). Hence,

ext1 > max{d, 12d,}
> max{15.5in., 12 x lin.} Use15.5in. = 1.3ft

Thus, the two inner bars can be terminated at 3.03 + 1.3 =4.33 ft from the face of
the column.

The other two bars, however, must be extended the dimension shown as “ext2”
in Figure 3.39 according to ACI Code (Section 9.7.3.8.4).
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ext2 > max {d, 12d, ¢,/16},

where 7, is the clear (net) span of the beam. The ¢,/16 requirement covers the
uncertainty of the true location of the point of inflection.

ext2 > max{15.5in., 12 x lin., 30 x 12/16} Use22.5in. = 1.88ft

Thus, the two outer bars may be cut off at 8.03+1.88 =9.91 ft =9'-11" from the
face of the column.

These bars have to be long enough to develop their strength between their cut off
point and the theoretical cutoff point for the first two bars. This length is
9.91 —3.03 = 6.88 ft, which is considerably greater than the required development
length of 3.08 ft.

If the bars were extended straight into the column, they would not have the
length needed to develop their strength because ¢, =3.08 ft, but the width of the
column is only 18 in. These bars must be bent into the column with a 90° hook, as
shown in Figure 3.39. Considering the factors of Table A3.4, check for the
adequacy of the available length to develop £,.

v, = 1.0(uncoated bars)
y,. = 0.7(sidecover > 2.5in. with concrete cover = 2in. beyond the 90-degree hook)
A = 1.0 (normal-weight concrete)

/o _ 60,000 x 1.0 x 0.7 x 1.0
® T 50(1.0) /4,000

= 13.3 in. > max{8(1),6in.} =8’

The anchorage into the column will be satisfactory.

3.4.4 Development Length for Bars in Compression

Bars in compression require considerably less development length than bars in
tension, because there are no tensile cracks in the compression zone to weaken the
bond. In addition, the bars transfer some of their forces to the concrete in
end-bearing. Hooks are useless for bars in compression. Equation (3.66) is used
to compute the compression development length, ¢,. (ACI Code, Section 25.4.9.1):

L,

501\/5

where the constant 0.0003 has the unit of in.?/Ib. The calculated length (¢,.) may be
multiplied by the reduction factors given in Table A3.5.

Table A3.6 gives the compression bar development length (¢,.) for f, = 60 ksi,
and f! = 3—5ksi, or more for A =y, = 1.0.

dy; 0.0003f,y,d) p > 8in. (3.66)
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3.4.5 Splices of Reinforcement

Splices are often needed in construction, either because the required length of a bar
cannot be supplied, or because of practical construction considerations, such as
splicing column reinforcing just above the most recently cast floor.

Splices for #11 or smaller bars may be made either by simple overlap, by butt or
lap welding them together, or by using a proprietary splicing device.

Tension Splices
Lap splices The ACI Code (Section 25.5.2.1) gives the minimum length of lap for
tensile reinforcing as

Class A splice......... max{1.0 4; ;12 in.}
Class B splice......... max{1.3 4, ;12 in.}

Generally speaking, Class B splice is required for most cases. Class A splice is
permitted only when both of the following conditions are satisfied:

a. The area of reinforcement provided is at least twice that required by analysis
everywhere along the length of the splice;

b. Only one-half or less of the total reinforcing is spliced within the required lap
length.

Welded splices

Splices may be butt welded or lap welded, as shown in Figure 3.40. The ACI Code
(Section 25.5.7.1) requires that they be able to develop 125 % of the yield strength
of the reinforcing. Welding must conform to the Structural Welding Code—
Reinforcing Steel (ANSI/AWS D1.4).

Figure 3.40 (a) Butt-welded bar and (b) lap-welded bar

Butt-welded splices are preferred over welded lap splices. In the former the
tensile force travels in a straight path. In the latter there is an eccentricity equal to
the bar diameter. The resulting moment develops forces on the concrete perpen-
dicular to the spliced bar. These forces may result in local cracking along the bars in
the lap zone.

Welded splices are expensive, as they are very labor intensive. Butt-welded bars
usually require extensive preparation of the ends, and lap-welded splices take more
time to weld.
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Proprietary mechanical splices Many patented devices are available for
splicing reinforcing bars. Some are internally threaded sleeves into which the
threaded bar ends are screwed from both ends. Others are sleeves that fit around
the bar ends to be spliced; molten metallic filler is poured to provide the necessary
interlock.

Compression Splices
Lap splices The ACI Code (Section 25.5.5.1) defines compression lap splices,
Ly, as

5 = 0.0005f,d), > 12in. for f; < 60,000psi

and

by = (0.0009]; - 24) dy > 12in. for £, > 60,000psi

When f;./ < 3,000psi, the calculated lap length must be increased by one-third.

Welded splices Welded compression splices are permitted. The rules for the
welding are the same as those for welding tension splices.

Problems

In the following problems, assume concrete is normal-weight unless noted
otherwise.

3.1. Determine the nominal moment capacity, M,, of the following T-beams. Use
£/ =3,000psi and f, = 60,000 psi:

(@) b, =121in., beir=30 in., hy=4 in., d=21.5 in., and three #10 bars
(b) b, =141n., begr=36 in., hy=4in., d=27.5 in., and four #10 bars
(¢) b,=161n., bey=36 in., hy=4 in., d =33.5 in., and five #10 bars

Assume single-layer reinforcement at the bottom of the beams.

3.2. Rework Problem 3.1 assuming the beam is rectangular (i.e., bos = b,,). How
much does the T-beam nominal moment capacity increase (inpercent) as
compared to the rectangular beam assumption for each case?

3.3. Rework Problem 3.1 with f/ = 4,000 psi. What is the percentage of increase in
M, for each case?

3.4. Calculate the positive moment capacity, Mg, of the T-beam shown below,
which is part of a reinforced concrete floor system with beams having a
clear span of 19’-8” and spacing of 8-0" on center. Use f.= 4,000psi,
f,=060,000 psi, #4 stirrups and a cover of 1.5 in. Neglect the top bars in
computing the moment capacity.
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3.5.

3.6.

3.7.
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i i 6in.

30 in.

5#9
[ NN NN |

k—16 in.—]

The figure below shows a cross section of the interior bay of a floor system.
The beam has a clear span of 24’-0”. The superimposed dead load is 20 psf.
What is the maximum allowable service live load on the floor in psf based on
the moment capacity of the beam at the midspan? For simplicity assume
the beam is simply-supported. Assume #4 stirrups and 1.5 in. cover. Use
£ =4,000psi, f,=60,000 psi. Neglect the top bars. Do not consider live
load reduction.

o R

18 in.
2 #11 2 #11

f—12in.~

| 10-0" |

Consider the floor system of Problem 3.5 with £ = 4,000 psi, f, = 60,000 psi,
a superimposed dead load of 25 psf, and a live load of 60 psf. What is the
maximum allowable clear span for the beam? For simplicity assume the beam
is simply-supported. Do not consider live load reduction.

What are the required areas of reinforcement for the following T-beams? Use
1! =4,000psi, and f,=160,000 psi.

(@) begr=0661n., b,, =12 in., hy=4 in., h =20 in., M, = 200 ft-kip
(b) bey=48in., b, =12 in.,, hy=4in., h=18 in., M, = 150 ft-kip
(¢) beg=321in., b,=10in., hy=3 in., h=16 in., M, = 100 ft-kip

3.8. Select the reinforcement for the beam of Problem 3.5 if the superimposed

dead load is 40 psf and live load is 40 psf. Assume the beam is singly
reinforced with bottom bars (positive moment). Consider live load reduction.
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3.9. What is the moment capacity, Mg, of the doubly-reinforced beam shown
below? Use f, = 60,000 psi, #4 stirrups, 1.5 in. cover, and d=251n.

(a) b=121in,h=241in., A;,=3#9 and, A, =2 #6;]‘;’ = 4,000psi
(b) b=12in.,h=30in., A, =4 #9 and, A, =2 #7;fc/ = 3,000 psi
(¢) b=16in., h=341in., A;=5 #10 and, A; = 2 #7; f/ = 3,000psi

Note: Reinforcements are in single layers.

3.10. Calculate the moment capacity, Mg, of the rectangular beam shown below.
How much will this capacity increase if 3 #9 bars are added as compression
reinforcement? Assume d' =2.5 in., f = 4,000psi, f, = 60,000 psi, and #4
stirrups and a cover of 1.5 in.

32in.

4 #11
o o o o

k—16in.—]

3.11. Design a rectangular reinforced concrete beam to resist service moments of
200 ft-kip from dead load (including the beam weight) and 150 ft-kip from
live load. Architectural requirements limit the beam width to 14 in. and the
total depth to 26 in. £/ = 3,000psi, and f, = 60,000 psi. Assume #3 stirrups
and 1.5 in. cover. Use compression reinforcements if needed.

3.12. Calculate the gross moment of inertia (/,) and the cracked section moment of

inertia (I.,) for the following rectangular reinforced concrete beam. Use
f! =4,000psi, and f, = 60,000 psi.
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14 in.

f——
#3 @ 121in. %
Stirrups
24 in.
4 #9
15in. 4

Clear cover

3.13. Calculate the cracked and effective moments of inertia for the beam of
Problem 3.4 in the positive moment region (tension in the bottom). The
actual service load moment is M, = 500 kip-ft.

3.14. Calculate instantaneous deflections due to the dead and live loads for the
T-beam of Problem 3.5. The floor live load is 100 psf.

3.15. The following rectangular reinforced concrete beam has a width b, =12 in.,
and a total depth 7 =24 in. It is reinforced with 2 #9 bars and #3@10 in.
c/c stirrups. Use f! = 3ksi, fy=060 ksi, and clear cover=1.5 in. Assume
normal-weight concrete.
Answer the following questions:

(a) Use Table A3.3 to see whether sufficient development length is avail-
able for the 2 #9 bars.

(b) Check to see whether sufficient development length is available if 2 #7
bars were used in lieu of the 2 #9 bars.

(c) Use the simplified formula given in Table A3.2 to see whether sufficient
development length is available for the 2 #9 bars if £/ = Sksi was used
in the beam.

(d) Calculate the required development length for the 2 #9 bars when
Equation (3.64) is used.

[Point of maximum moment

[ 2iin.

12in.

=1
< 2 49

I
L
I
I
AN 24in.
|
I

| 56"

#3@101in. Beam Section

3.16. A 6-ft-wide wall footing supports a 12 in. thick concrete wall. £/ = 3ksi and
fy =060 ksi. The maximum moment in the footing occurs at the face of the
wall. Concrete is normal weight. Answer the following questions:
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(a) Use the simplified expressions shown in Table A3.2 to determine
whether #6 bars can develop their yield strength at the point of the
maximum moment without hooks at the ends.

(b) Determine whether #6 bars could be used if they have standard hooks at
their ends.

(c) What is the maximum bar size that could be used without hooks at the
ends? Use Equation (3.64).

[~3in.

3.17. The reinforced concrete beam shown in the elevation below has a width of
15 in. and a total depth of 24 in. It is subjected to a factored moment of
260 kip-ft at the face of the column. Use f = 4ksi, fy =060 ksi, #3 stirrups,
and 1.5 in. clear cover. Answer the following questions:

(a) Determine the required development length (¢,) for the 4 #8 epoxy-
coated top bars using the simplified formulae shown in Table A3.2.
Calculate and use the permitted “excess reinforcement factor” (refer to
Table A3.1).

(b) Recalculate the required development length by using Equation (3.64).
Refer to Table A3.1 for definitions of the factors.

4%

tq

[ 4#8
v

< #3 Stirrups @ 8in. %

1 24 in. |
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3.18. Calculate the location (measured from the face of the support) where two of
the 4 #8 bars may be terminated. Use f = 4ksi, and f, = 60 ksi.

= 2.5 kip/ft (includes the self-weight)! 121in.

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIIIIIIIIIIII
: — 448

| = — #3 Stirrups
: 18 in, P

R

12'-0" |

Self-Experiments

In the following self-experiments, you will learn the behavior of T-beams and
doubly-reinforced beams. Include in the final report all the test details (sizes, time
of day you cast the concrete, amounts of water/cement/aggregate, problems
encountered, etc., with images showing steps of the tests).

Experiment 1
Cut several pieces of Styrofoam in the form of rectangular beams and a slab. Place
the beams and slab on two supports as shown in Figure SE 3.1.

Apply a load (a few pounds) on top of the slab and observe how much the beams
bend. Record the maximum deflection of the beams.

Next, glue the rectangular beams to the slab and repeat the test. How much do
the beams deflect? Compare the maximum deflection between the two cases.
Explain the difference, if any, in the results obtained. What is the importance of
gluing the pieces together?
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Supports

Figure SE 3.1 T-beam test

Experiment 2

In this experiment, make the T-beams of Experiment 1 from concrete. First, build
the forms for the beams and slab. Then, place wires at the bottom of the beams and
slab (with about "4 in. cover), and place concrete in the form. Make stirrups to hold
the beam wires together as shown in Figure SE 3.2. Record all the different stages
of casting the beams and slab and placing the wires. Record your observations and
any problems encountered.

Stirrups

Main bars

Figure SE 3.2 Reinforced concrete T-beam
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Experiment 3

This experiment demonstrates the behavior of doubly-reinforced beams. Get a
piece of Styrofoam and cut it as a rectangular beam. Make two holes at the bottom
of the beam using a heated wire. Then pass wires through these holes. Place the
beams on two supports and apply a load at the center of beam. Record how much
and the manner in which the beam bends under the load.

< =

.’

Figure SE 3.3 Doubly-reinforced Styrofoam beam

Now, remove the wires and apply some glue to them. Again pass the wires
through the holes and wait for the glue to harden. Load the beam as before and
record how much and the manner in which the beam deflects under the load. Is there
a change in the amount of deflection? Why?

Make two holes at the top of the beam, apply some glue to the two wires, pass the
wires through the holes and wait for the glue to harden. Load the beam as before and
record how much and the manner in which the beam deflects under the load. Do you
notice any differences? Does the addition of top wires help the beam in resisting the
load?

Experiment 4

In this experiment we construct a doubly-reinforced concrete beam. Using wood
and cardboard, make forms for the beam. Place two rows of wires at the top and
bottom and tie them together with smaller-sized wire representing stirrups
according to Figure SE 3.4.
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Record all the different stages of making forms, placing bars, and casting
concrete. Record your observations and any problems encountered.

Figure SE 3.4 Doubly-reinforced concrete beam



Chapter 4
Shear in Reinforced Concrete Beams

4.1 Introduction

In the classic two-dimensional structural studies of beams typically three separate
internal forces are identified on any selected section. These are the axial force, P,
(tension or compression) that acts along the axis of the member; the shear force, V,
that acts in the plane of the section perpendicular to the axis of the member; and the
bending moment, M (see Figure 4.1).

So far we have treated the bending moments as being the only force acting on a
given section. It is true that the shear is zero where the bending moment is the
largest, and thus it has no influence on the strength of the beam there. But elsewhere
along the length of the element shear has a major effect on resulting tensile stresses.
To fully understand the problem, we briefly review elementary strength of materials
and the analysis of stresses and strains in homogeneous materials.

4.2 Shear in Beams

Figure 4.2 shows a reinforced concrete beam and its shear and moment diagrams
due to some applied load. A small length of the beam, dx, bounded by sections 1 and
2, is selected. The shear and the moment are different at the two respective sections
(i.e., Vi >V, and M| <M,).

The change in the moment equals the area under the shear diagram, and the rate
of change in the moment equals the magnitude of the shear. This is expressed
mathematically as

am M, — M,
—=V or —=V
dx dx
© Springer International Publishing Switzerland 2017 235
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-
\/
Figure 4.1 Internal forces on a section

RE

— |
ax
i | Ve

Figure 4.2 Shear and bending moment diagrams on a beam

The internal couples are substituted for the moments (see Figure 4.3);
(i.e., Mi=T1z=C,z and M, =T,z=C,z), therefore T; <T, because M; <M,.
When a small part of the beam that is below the horizontal section is isolated
(see lower part of Figure 4.3), equilibrium requires that the horizontal force acting
on that section balance the applied loads. The area of that horizontal section is bdXx,
and if the stress (i.e., the force per unit area) is designated by v, we can derive

the following relationship:

M, M, dM
T2 - Tl ===
z z z
From equilibrium:
Tz - T1 = vbdx
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— f—b—rA
Ci—> < C.
Vi
Horizontal 4
section x_ M
T1 <—4-—-———= > T2 ° ° °
o
< V- b-dx

Figure 4.3 The internal couples on a short (dx) length of reinforced concrete beam

Hence:
dTM = vbhdx (4.3)
Rearranging the terms of Equation (4.3):
V= d—M = vbz (4.4)

dx
The horizontal shear stress value may then be calculated as

LV
bz

= e =

A

v

Figure 4.4 Shears on a unit-size cube within the beam

Figure 4.4 shows an isolated part of the beam in elevation. Inside this portion of
the beam a small 1 in. x 1 in. X 1 in. cube is selected. The shear stresses are
indicated on the elevation of this cube. Previously we showed what causes the
horizontal shears. The horizontal shears form a couple (shown in Figure 4.4 as a
counterclockwise couple). Because a couple can be kept in equilibrium only by
another couple, a clockwise couple must be acting on this cube. The clockwise
couple is furnished by equal-magnitude shears on the vertical sides of the cube.
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The existence of shears on both the horizontal and vertical sections of a beam is
known as the “duality of shears.” This means that shears of equal magnitude are
always present on both the horizontal and the vertical surfaces of a small cube
inside the beam.

Shears do not cause a problem for concrete. As a matter of fact, concrete is quite
strong in shear. Figure 4.5 shows the cube with the components of the shear stresses
parallel to the diagonals.

\— Components of v
AN N /
N V €— .
vl N\ e T
A4
v 1
N4 AN
/ NV AL
/

Figure 4.5 Resolution of the shears into diagonal components

In Figure 4.6 we substitute the shears with their components. Then we cut the
cube into two triangular wedges along the diagonal planes. Figure 4.7 shows that
tensile stresses are generated along one of the diagonal faces to maintain equilib-
rium. Figure 4.8 shows a section of the cube along the opposite diagonal. In this
case, compression stresses will exist to maintain the equilibrium. So the conclusion
here is that horizontal and vertical shears cause tension and compression in the
diagonal directions.

. ///'
A N/
AN DAY
/ N
yal

/ \ v AN
Figure 4.6 The shears substituted by their diagonal components

By looking at one of the wedges in Figure 4.7 we can derive the magnitude of the
diagonal tension. Because the area of the diagonal plane is V2 (the cube is
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i

Tensile stresses

4

wils

Rl

v

V2

Figure 4.7 Equilibrium on one triangular wedge, resulting in tensile stresses

1 in. x 1 in.) the magnitude of the diagonal tension is #v/2, where ¢ is the diagonal
tensile stress. The equilibrium equation for forces along the diagonal is:

r(\/i) - 2(\%) (4.6)
Thus
t=v 4.7)

In other words, the magnitude of the diagonal tensile stresses equals that of the
shear stresses.

We can perform a similar calculation for the wedges shown in Figure 4.8.
The result would show that the magnitude of the compressive stresses on the
diagonal face equals that of the shear stresses.

The above conclusion is valid only on a unit cube that is not subject to axial
stresses, as these do not occur at the neutral axis. Flexural compressive stresses
occur above the neutral axis while below the neutral axis we have flexural tensile
stresses, for the beam shown in Figure 4.2.

v

Compressive stresses

v

Rl
Rl

v

V2

Figure 4.8 Equilibrium on the perpendicular triangular wedge, resulting in compressive stresses
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Figure 4.9 Stresses on a unit cube above the neutral axis

Figure 4.9 shows a cube that is above the neutral axis. This cube, therefore, is
subject to axial compression as well as to shears. Imagine now a series of sections
cut through this cube. These sections are rotated by an angle, ¢, from the horizontal
section. A detailed mathematical analysis can show that among all the possible
planes there exists a pair of planes, perpendicular to each other, where the resulting
normal stresses are the largest compressions or tensions, respectively. These planes
are called the principal planes. The stresses that act on the planes are the principal
stresses. Figures 4.10 and 4.11 show the orientation of the principal compression
and tensile stresses, respectively, on a section above the neutral axis.

The angle ¢ can be calculated as:

tan 2¢p = ? (4.8)

and the principal stresses as:

fia=h (f +\/f? +4v2> (4.9)

Figure 4.10 Orientation of the principal compressions above the neutral axis
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Figure 4.11 Orientation of the principal tensions above the neutral axis

The axial stress below the neutral axis is tension (see Figure 4.12). Thus, the
orientations of the principal tensions will be similar to those shown in Figure 4.13.

Figure 4.12 Stresses on a unit cube below the neutral axis

Because the magnitudes of the flexural stress and the shearing stress vary along
the beam as well as in relation to their distance from the neutral axis, the orientation
and the magnitude of the principal stresses also vary accordingly. Of the two
principal stresses, the tensile stress is the main concern here, as concrete is weak
in tension. The diagonal tensions, therefore, may tear the beam apart. A potential
crack starts out vertically at the bottom surface (because there is no shear at the
outer edge), then changes orientation gradually as shear is introduced, causing a
change in the principal stress direction. It crosses the neutral axis at 45°, because no
axial forces exist at that location (pure shear), and then flattens out as it invades the
zone of larger compressive stresses. Figure 4.14 shows two such cracks that follow
the principal tensile stresses.

Shear (or, more precisely, diagonal tension) is a very complex problem. Thus a
simplified approach is used in the analysis and design of beams for shear. Although
simplified, the approach has been shown to provide safe and satisfactory design.
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Figure 4.13 Orientation of the principal tensions below the neutral axis

R

Figure 4.14 Potential cracks perpendicular to the principal tensions

4.3 The Design of Shear Reinforcement

The basic concept of shear reinforcement is the same as that of flexural reinforcing.
If cracks begin to open due to lack of tensile strength in the concrete, reinforcement
is needed to transfer the tensile forces across the crack.

Vertical stirrups are used almost exclusively in modern concrete construction
for shear reinforcement in beams (see Figure 4.15). The terminology shear
reinforcement comes from the fact that shear is used as a measure of the diagonal
tension. (To confuse the issue even further, shear reinforcement is often also
referred to as web reinforcement.) Vertical stirrups typically are U-shaped #3
or #4 bars. They surround the tensile reinforcing on the bottom and are anchored
into the compression zone by a hook at each end. (See the beam section
in Figure 4.15).
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Vertical stirrups Stirrup support bar
T v
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Figure 4.15 Model of shear resistance according to the ACI Code

The relationship between the design resisting shear, Vg, and the nominal
resisting shear is:

Ve = oV, (4.10a)

where ¢ is the strength reduction factor. As discussed in Chapter 2, the ACI Code
uses this factor to account for possible understrength of the materials and construc-
tion inaccuracies. The ¢ factor for shear (ACI Code, Section 21.2.1) is:

b =0.75 (4.10D)

which is smaller than the value for bending (¢ =0.90). The main reason for the
difference is that reinforced concrete beams are less ductile in shear than in
bending.

The design principle is to supply a greater strength than the required strength.
Expressed mathematically (Section 9.5.1.1 of the ACI Code):

Ve >V, (4.11)

The left side of the equation, V%, is the design shear strength of the section under
investigation. The right side, V,, is the demand, or the shear acting on the section.

To describe the V,, or the nominal strength of the section against shear failure,
Figure 4.15 shows a simple model that has been adapted in lieu of the very complex
interaction of the concrete and the various reinforcements. Other theoretical models
try to provide a practical solution to the problem. The empirical model adapted by
the ACI Code and discussed here is an easy-to-follow representation of the different
components of the available strength.

1. The first component of the model is the shear strength of the concrete section, V..
The compression zone provides resistance due to friction and aggregate
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interlock. To make calculation easy, the ACI Code relates the value of V. to an
average shear over the whole working section of the concrete beam (ACI Code,
Equation 22.5.5.1):

V. = 20/f!b,d (4.12)

In this expression f must be entered in psi, and b,, and d are in inches. X is the
light-weight concrete factor, which is equal to 0.75 for concrete made of “all-
light weight” aggregates, and is equal to 0.85 for “sand-light weight” concrete.
It is equal to 1.0 for “normal weight” concrete. The resulting V. is in pounds.
Tables A4.1a, A4.1b, and A4.1c include V. for different sizes of beam (b,, and /)
and compressive strengths (f/) of normal weight concrete.

2. The second component of the model is the sum of the tensions developed by the
vertical component of the diagonal tensions in the stirrup legs (V;). All stirrup
legs that cross a potential crack (Figure 4.15 shows three stirrups with two legs
each) will provide this strength. Thus

V, = n(Avfyt) (4.13)

where n is the number of stirrups crossing the potential 45° crack. Because the
stirrups are placed at a spacing of s, and ns is approximately equal to d, we can
calculate the strength, V;, (ACI Equation 22.5.10.5.3) as:

A f,d
V, = A 1 (4.14)
N

where

A, =sum of the cross sectional areas of the stirrup legs in square inches

s = spacing of the stirrups in inches

b,, = width of the web of concrete beams in inches

d=distance from the extreme compression fiber to the centroid of the tensile
reinforcement in inches

/i = the specified yield strength of the transverse reinforcing steel (i.e., stirrups)
in ksi or psi (consistent units must be used)

Tables A4.2a and A4.2b show V, for #3 and #4 stirrups with different s and 4,
and f,, = 60,000 psi.

3. The third component of the model that provides strength against shear is the
so-called “dowel action.” This results from the vertical shear resistance of
the horizontal reinforcing after the sides of the crack are vertically separated.
The contribution from this source is neglected by the ACI Code.

The final design equation (based on ACI Code Sections 9.5.1.1, 9.5.3.1, and
22.5.1.1) is:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Ve = Vs = d(Ve + Vi) >V, (4.15)

From what was mentioned above, if V,, < oV, ($pV. is the shear that concrete can
carry), theoretically we do not need any stirrups. The ACI Code
(Section 9.6.3.1), however, requires a minimum amount of stirrups where
V,> ¢V./2. There are exceptions to this requirement as indicated in Table
9.6.3.1 of the ACI Code. This minimum amount of stirrups (ACI Code
Section 9.6.3.3) is:

b h

The use of minimum amount of stirrups required by the code prevents
sudden shear failures when inclined cracking occurs. This rule has a few
exceptions, such as for slabs, footings, and concrete joist construction; in these
cases there is a possibility of load sharing between the weak and strong areas, so
no shear reinforcements are needed when V, < ¢V, (more on these topics in
Chapters 6 and 7). In any case, the ACI Code requires no shear reinforcements
where V, < ¢V, /2 in reinforced concrete beams.

In general, therefore, a reinforced concrete beam has three possibilities
(or zones) when designing for stirrups. Figure 4.16 shows these zones.
Note that design of beams for shear involves finding the spacing of stirrups
because almost all construction uses the same size stirrups for the entire beam.
The spacing is changed based on the level of shear force the stirrups have
to resist.

s 50D,
A‘,mm_max{ms\f vl “S} (4.16)

! Critical section
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Figure 4.16 Different zones for stirrup spacing
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4.3.1 Zonel (V,<¢V./2)

No stirrups are needed where V, < ¢pV./2. For a symmetrically loaded beam this
condition usually occurs in a region close to the center of the beam, as shown in
Figure 4.16. Although the ACI Code does not require any stirrups in this zone, a few
stirrups are used to hold the main reinforcements in place.

43.2 Zone2 (¢V,)2<V,<PV)

This is a zone where theoretically no stirrups would be needed. The ACI Code,
however, requires a minimum area of stirrups. Because our objective here is to
determine the stirrup spacings, we rewrite Equation (4.16) to obtain the maximum
allowable spacing (s) in terms of the selected stirrup size, the width of the beam’s
web, and the materials used in the beam.

. Ay fy Ay fy
$1 = min = s 4.17
! {0.75 Vb~ 50b,, (4.17)

The units used for this empirical equation are as follows: A, (in.%), £, (psi),
f!(psi), by (in.), and s, (in.).

The ACI Code (Section 9.7.6.2.2) places a further restriction on the maximum
allowable spacing in this zone (syax):

d
Smax = min{sl, 3 ,24in.} (4.18)

This requirement ensures that each 45° potential crack is intercepted by at least one
stirrup (Figure 4.15). Therefore, Equation (4.18) determines the stirrup spacing in
Zone 2 of the beam.

4.3.3 Zone 3 (pV.<V,)

This is the only part of the beam for which we need to design the stirrups (i.e., this
zone may require closer stirrup spacing than the allowable maximum found in
Equation (4.18)). To determine the spacing of the stirrups in this zone, we need to
calculate how much shear the stirrups must carry (V;). This is accomplished by
rearranging Equation (4.15):
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(4.19)

V,
The first term on the right side of this equation (—") is the total factored shear on

¢

the beam at the section under consideration magnified by the strength reduction
factor in the denominator and the second term (V) is the shear to be carried by the
concrete. The remainder is to be resisted by the stirrups (V;). Rearranging
Equation (4.14) to find the stirrup spacing:

A fod
v,

S =

(4.20)

Usually A,, f,;, and d are the same for the entire beam. Therefore, the stirrup spacing
(s) changes with the shear to be resisted by the stirrups (V;). Clearly the stirrup
spacing is smaller near the supports as V; is larger. The calculated stirrup spacing
increases continuously as we move toward the midspan and the shear diminishes.
Although theoretically this is true, in reality only a few (two or three) different
spacings are used. While we could save a few stirrups by continuously varying the
stirrup spacings, this complicates construction, as locating and placing the stirrups
become difficult. As Figure 4.16 shows, the first stirrup is usually placed 2 in. or
3 in. from the face of the support.

Because stirrups cannot resist shear unless they cross an inclined crack, the
ACI Code (Section 9.7.6.2.2) limits the maximum stirrup spacing. The maximum
allowable stirrup spacing is:

d
itV <4y/f/byd (or V; <2V,) = Smax = min{sl,z, 24in.}
(4.21)
d
if Vi >4\/f/byd (or V; >2V,) = Smax = min{sl,z, 12in.}

The first part of Equation (4.21) limits the stirrup spacing such that each
potential 45° crack will be intercepted by at least one stirrup (Figure 4.15).
Where the shears are so large that the stirrups are required to carry V, > 2V,, the
maximum allowable spacing is limited to that shown in the second part of
Equation (4.21). This is necessary to provide better control of the width of the
potential inclined cracks.

Example 4.1 Determine the total resisting shear, V, for the beam shown in
Figure 4.17. The shear reinforcements provided are #3 stirrups @ 8 in. on center.
Assume f = 4,000 psi and f;, = 60,000 psi. Concrete is normal weight.
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b, = 12in.

Figure 4.17 Section in Example 4.1

Solution
A= 1.0 (normal weight concrete)
From Equation (4.12)

Ve=2x1.0x 4,000 x 12 x 18.5 = 28,0811b = 28.1kip

From Equation (4.14)

(2 x0.11) x 60,000 x 18.5
8

Vi = = 30,5241b = 30.5kip
From Equation (4.15)

Vi = ¢V, = 0.75(28,081 + 30,524) = 43,9541b = 43.95kip

Solution Using Tables
From Table A4.1b (interpolating for =21 in.)

V. = 28.1kip
From Table A4.2a (interpolating for 2 =21 in.)

V; = 30.5kip
Thus

Vi = QV, = 0.75(28.1 + 30.5) = 43.95kip

Example 4.2 A reinforced concrete beam section with a width, b,,=15 in.,
and, a total depth, 7 =24 in., is subjected to a shear force, V;, = 60kip. Find the
spacing of #3 stirrups at the section. f/ = 3,000 psi, and f,, = 60,000 psi. Concrete is
normal weight.
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Solution .
det =h—2.5=24—-25=21.5in.

A= 1.0 (normal weight concrete)
From Equation (4.12)

B 2 x 1.0 x /3,000 x 15 x 21.5

Ve 1,000 = 35.3kip
From Equation (4.19)
Vi :%— Ve = %— 35.3 =44.7kip
From Equation (4.20)
o (2x0.11) x 60 x 21.5 635

44.7

Rounding down to the nearest ’2in., we use stirrups at 6 in. on centers at this
section.

Solution Using Tables
From Table A4.1a (interpolating for b,, = 15 in.)

V. = 35.3kip
Then
60
V.= = 353 = 44.7Kki
$ =075 P

Entering into Table A4.2a with h =24 in., #3 stirrups with two legs at 6 in. spacing
will provide V; = 47.3kip, which is slightly more than we need.

4.4 Additional Requirements for the Design of Shear
Reinforcing

The following are additional ACI requirements:

(a) The value of \/f must be less than 100 psi (ACI Code, Section 22.5.3.1)
unless minimum web reinforcement is used in the flexural member. This
limitation has been placed because of the limited amount of experience with
the use of concrete strength in excess of £/ > 10,000 psi.
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(b) The design yield strength of the shear reinforcing bars is limited to 60,000 psi
(ACI Code, Section 20.2.2.4). This requirement limits the crack width. The
limit is 80,000 psi when welded wire reinforcement is used as shear
reinforcing.

(c) The value of V; is limited to 8\/ﬁbwd (ACI Code, Section 22.5.1.2). This
provision effectively limits the maximum value of V, to 10\/]? byd.
Stating it differently, V; may not exceed 4V, (V; <4V,.). Thus, if V, is too
large to satisfy this requirement, the concrete section must be enlarged by
making the beam wider or deeper. Note that V; ,,,x for a beam usually is at its
critical section (V).

(d) The critical section for stirrup design (within zone 3) may be taken at distance
d from the face of the support in beams and joists, when the loads are applied
onto the top of the beam. In the portion between the face of the support and the
critical section the support reaction introduces vertical compressions into the
end zone of the member, which significantly increases the shear strength in
that region. Sections located between the face of the support and the critical
section may be designed for V,, at the critical section (VM) This means that for
design purposes the shear force from the critical section to the face of the
support is taken as, V,,, as shown in Figure 4.18. Note that we use the “bar” here
to indicate the value at the critical section (i.e., V,, V; and 5 represent the total
shear at the critical section, shear to be resisted by the stirrups at the critical
section, and the required stirrup spacing at the critical section, respectively).

Critical section -~

u T

o

Figure 4.18 Location of the critical section

(e) Limit the stirrups’ size to #3, #4, or #5, as these bar sizes are easier to bend.
(This is only a recommendation, not an ACI requirement.) Also, the bend radii
at the corners of the stirrups require a minimum beam width for each size of
stirrup, as shown in Table 4.1.

Table 4.1 Recommended
minimum beam width to
accommodate different

stirrup sizes #4 12
#5 14

Stirrup size Minimum beam width (b,,) (in.)
#3 10




4.5 Stirrup Design Procedure 251

b, = 24in. 24in. < b, = 48 in.
Two legs Four legs
A, = 2A A, = 4Ag
b, > 48 in.
f—— Sixlegs —
A, = 6Ag

Figure 4.19 Recommended number of legs of stirrups based on beam width.
Note: Ag, = area of each leg of the stirrups

Sometimes, to avoid very small (less than 3 in.) required spacing, the designer
may employ four, six, or more legs for stirrups. This increases A, in Equation (4.20),
and consequently the calculated spacing, s. The use of multiple legs is also
recommended in wide beams, as shown in Figure 4.19.

4.5 Stirrup Design Procedure

The steps for designing stirrups are summarized in Figure 4.20 and given below:

Step 1. Determine the distribution of shear along the beam to calculate the stirrup
spacing. (You can do this by drawing the shear force diagram.) Use either
the beam clear span or the center-to-center span. If you use the center-to-
center span, include half the support width when locating the critical
section.

Step 2. Determine the shear at the critical section (Vu) . As mentioned in Section 4.4,
the critical section is at a distance d from the face of the support. V, is the
largest shear acting on the beam that needs to be considered.

Step 3. Calculate the shear capacity of concrete (V,.):
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Design of Shear Reinforcements
in Beams

1- Draw V, diagram.

2. Calculate \7u (shear at the critical section).

|

3.

V, = 2xf) b, d

Section size is
inadequate:
revise.

No stirrups are needed.

6. Determine the location of Ve
on the V,, diagram.

l

Av fyt Av fyt ]
0.75/ b, 50b,,

7.
sy = min[

Smax = min{s1, g, 24 in.}

Place stirrups at
Smax UP to the location of ¢ Ve/2

9- Calculate the stirrup spacings:

A, fqd
g=——
If Vo> 2V,: Vs If Vs =2V;: J
— l—— . .
Smax = min{s1, f—z 12 in.] A fyd Smax = mln{sv > 24 |n.}
= —
S

Vu= (Vo + Vy)

Figure 4.20 Flowchart for stirrup design
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V. = 20/fbud

A depends on the unit weight of concrete. If concrete is normal-weight
(145-150 pcf), A= 1.0. For concrete made of “all-light weight” aggregates,
A=0.75, and for “sand-light weight”, A =0.85.

Step 4. Calculate the shear to be carried by the stirrups at the critical section (V;). If
V, > 4V., we have to increase the beam section size, and repeat the proce-
dure. Otherwise, the beam size is ok.

Ve

Step 5. If V,, < - the beam does not require any stirrups to resist the shear force.

PVe

Ifv, > - we need at least a minimum area of stirrups.

Step 6. Determine the locations of ¢V, /2 on the V, diagram to identify the location
where no stirrups are needed.
Step 7. Determine the maximum spacing of the stirrups:

s1 = min Ay Aoy
: 0.75\/f'b," 50b,,

d
Smax = min{sl,i, 24in.}

A, fy,d
Smax . R
are required. Place them up to the point of ¢$V,/2. If V,; >V}, go to step 9.

Step 9. Calculate the stirrup spacing:

Step 8. Calculate \A/Y = IV < VS, only minimum stirrups (at $y,x spacing)

Ay

T,

Check for the maximum allowable spacing:
. d . .
Smax = Min sl’i’ 241n. if V, <2V,
. d . .
Smax = Min sl’i’ 12in. if V; > 2V,

This calculation may need to be repeated at different locations. Use one or
two different spacings, at most, in this zone.

Example 4.3 Design the stirrups for the beam shown in Figure 4.21. The columns
are 15 in. X 15 in. The load includes the beam’s self-weight. Use f/ = 3,000 psi and
J=60,000 psi. Concrete is normal weight.
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| w, = 5kip/t

2

|
| 24 in.
|
|

30'-0"

=12 in.-|

Beam section

V,=62.9kip

I
75kip | Vel =10.6 kip |
I
.

v} -
t—<_z.42 ft \
12.9 ft

Figure 4.21 Elevation of beam in Example 4.3

Solution

Step 1. Draw the V,, diagram:

0
R="% =22 — 75kip

See the shear force diagram in Figure 4.21.
Step 2. Calculate V,:
The estimated effective depth (d) is:

d=h—-25=24-25=215in.

The critical section is at the distance d from the column face. Thus, from
the column centerline this distance is:

X = %Jr 21.5 =29in. = 2.421t

Because the factored shear decreases from the support to the midspan
(Figure 4.21) at a rate of 5 kip/ft (the slope of the shear is the load), the
shear at the critical section (V,,) is:

V., =175 —5(2.42) = 62.9kip
Step 3. A= 1.0 (normal weight concrete)

Ve = 20/f/byd = 2(1.0)4/3,000(12)(21.5)/1,000 = 28.3kip
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Step 4.

75

$=0.
Vi 62.9
¢

BN

-V, = ﬁ7283*556klp

4V, = 4(28.3) = 113.2kip > 55.6kip ... ok

The beam size is adequate.
Step 5. Determine whether stirrups are required:

dV.  0.75(28.3)
2 2
". Stirrups are needed!

= 10.6kip < V, = 62.9kip

Step 6. Determine the location of ¢$V,/2 on the V,, diagram.
Write the equation for the shear force diagram:

V,=175—5x
Note that x in this equation is measured from the centerline of the
column.
PVe
‘/u =
2
75 — 5x=10.6
x=12.91t

Therefore, from 12.9 ft to the center of the beam (i.e., x=15 ft), no

. |2
stirrups are needed because V,, < % in this zone.

Step 7. Determine the maximum allowable stirrup spacing:
Using #3 stirrups with two legs (b, =12 in., see Figure 4.19) —
A,=2(0.11)=0.22 in.?

: Ak Avfu
§1 = min
0.75+/f!b,,~ 50b,

R { 0.22(60,000) 0.22(60,000)}
: 0.75/3,000(12)°  50(12)
51 = min{26.8in.,22in.} = 22in.

d
Smax = min{sl,—, 24in.}
2
S = min{22in., 21;m,24in.}

Smax = 10.5in. (rounded down to closest / in.)
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Step 8. Determine whether the beam needs more than minimum stirrups. With #3
stirrups at Spax = 10.5 in.

- Ay fud — (0.22)(60)(21.5)
S Smax 10.5

= 27.0kip < V, = 55.6kip

.". Needs more than the minimum stirrups!
Step 9. Calculate the spacing of the stirrups:
The smallest required spacing of stirrups is at the critical section (3),
where V; = 55.6Kkip (step 4):

Asfud _0.22(60)(21.5)

—5.1in.
V. 55.6 5-Lin

E:

We round the spacing down to the closest /2in., so 5§ = 5in.
Because  V; = 55.6kip < 2V, = 2(28.3) = 56.6kip, the maximum
allowable stirrup spacing is:

d
Smax = min{sl,z, 24in.}
. 21.5 )
Smax = Min 22,7, 24 > = 10.51n.

At this point we have calculated two stirrup spacings (5 = 5in., and
Smax = 10.5 in.). These spacings are acceptable, so we may just use them. But if
we want to save a few stirrups, we could select another spacing between these two
values (say, s =8 in.).

Then we would have three different stirrup spacings, s =35 in., 8 in., and 10.5 in.
The question now is, where do these spacings start and where do they end? The first
stirrup starts 2 in. from the face of the support, and then the stirrups are placed at
s = 5in. This spacing ends where the 8 in. spacing starts. Use Equations (4.14) and
(4.15) with s=8 in.:

. Adyd 0.22(60)(21.5)
s 8
V,=¢(V, 4+ V) = 0.75(28.3 + 35.5) = 47.9kip

= 35.5kip

The s = 8 in. starts (or s =5 in. ends) where V, = 47.9 kip. Determine the location of
this point on the shear diagram:

75 —5x=47.9

x=5.421t

from the center line of the column.
Therefore, the number of 5 in. spacings (V) is:
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To column face First spacing

5.42(12) - 7.5 -2
N = ; = 11.1

We conservatively round this spacing upto N=12 or 12 @ 5 in.

Next we need to determine where s =28 in. ends or the maximum allowable
spacing (Smax = 10.5 in.) begins. To locate this point, use Equations (4.14) and
(4.15) with s =10.5 in.:

y A 0.22(60)(21.5)

— 27ki
$= 10.5 Tkip
V, = (V. + V) = 0.75(28.3 +27) = 41.5kip
75 —5x =415
x=6.7ft

This is the end point of s =8 in. The number of 8 in. spacings (V) is:

6.7(12) — (7.5+2+ 12 x 5)

N:
8

=14 .. 2@ 8in.

Finally, we will determine the portion of the beam in which a stirrup spacing of
10.5 in. can be used. Because 10.5 in. is the maximum spacing and no stirrup is
needed after that, the end point is x = 12.9 ft (found in step 6 for V,, = ¢V,./2). The
number of 10.5 in. spacings is:

v 129012)~ (75+2+12x5+2x8)

1035 =66 ..7@10.5in.

Therefore, the stirrup spacing from each end of the beam is 1 @ 2 in.+ 12 @ 5 in.
+2 @ 8 in.+7 @ 10.5 in. Figure 4.22 shows the resulting stirrup layout.

Column center line

T
|
I
'
'
|
A

|2 12@5 in. 2@8in. 7@10.5in.

Figure 4.22 Resulting stirrup layout for Example 4.3
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Example 4.4 Design stirrups for the floor beam shown in Figure 4.23. The
loads include the beam’s self-weight. The columns are 15 in. x 15 in. Use
£/ =4,000psi, and f+=060,000 psi. Assume that the minimum cover is 1.5 in.
Concrete is normal weight.

a Py=75Kp  Py=75Kp 4 0kip/t

| A L
IIIIIIIIIIIIIIIiIIIIIIIIIIIIII"IIIIIIIIIIIII TITTTTTTIT T IO 0Iaq0T

-

| |
Ly A ‘ -
50" 5'-0" ——— 5'-0" ——»!
15'-0" |

Elevation

b
| |

=

27 in.

2#10

f15in.>

Section A-A

Figure 4.23 Elevation and section of beam in Example 4.4. (a) Elevation. (b) Section A-A

Solution

Step 1. Draw the V, diagram (see Figure 4.24):

by =151/, =13.75ft

2+1x1
R:75><+><5

— 82.5Kki
2 P

Alternatively, we can use the clear span.
The reaction at the face of column is:

_75x2+1x13.75

R
2

= 81.88kip

Step 2. Calculate V:

d=h—(15+%+127/2)
—27-25=245n.
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75

kip 75 kip

1.0 kip/ft
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R l— 5.0" —>k— 5-0" —>l«— 50" —]

Critical section —

(V)

| — .
2.5 ey = 798 Kip
82.5 « 77.5 kip

p Ve/2=17.4 kip

2
A

X=267ft— <«—

—> X

Figure 4.24 Shear force diagram for Examp.

le 4.4

The location of the critical section from the column center is:

x=15/2424.5 = 32in./12 = 2.67ft
V, =825 — 1.0(2.67) = 79.8kip

The shear at the critical section using the clear span is:

V, = 81.88 — 1.0(24.5/12) = 79.8kip

259

As expected, the shear at the critical section, V,, is the same when using
the center-to-center span or clear span.
Step 3. Calculate the concrete resisting shear, V.:
A =1.0 (normal weight concrete)

V. = 2h/f/byd = 2(1.0)v/4,000(15)(24.5)/1,000 = 46.5kip

Step 4. Calculate the shear to be resisted by the stirrups (determine whether the

beam size is adequate):

=~
I

v, 79.8
Yoy 298 465 — 59.9kip

b 0.75
4V, = 4(46.5) = 186kip > 59.9kip .. ok

The beam size is adequate.
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Step 5. Determine whether stirrups are required.

oV,  0.75(46.5)
2 2
.. Stirrups are required.

= 17.4kip < V, = 79.8kip

Step 6. Locate ¢pV,/2 (17.4 kip) on the V,, diagram. This point lies on the vertical
part of the shear force diagram (Figure 4.24). Determine the stirrup spacing
for the first 5 ft of beam from each end; the 5 ft at the center do not require
any stirrups for shear.

Step 7. Calculate the maximum stirrup spacing:

Use #3 stirrups with two legs (b,=15 in., see Figure 4.19),
A,=2x0.11=0.22 in.

s| = min A A
B 0.75\/Fb,," 50,

. { 0.22(60,000) 0.22(60,000)}
' 0.75v@000(15)°  50(15)
51 = min{18.6,17.6} = 17.6in.

The maximum allowable spacing is:

d
Smax = min{sl s 5, 24 m}
Smax = min{17.6in., 24; - 24in_}

Smax = 121n.

Step 8. Determine whether more than the minimum amount of stirrups
(or maximum stirrup spacing) are required.

‘A/‘ = A_V fyd
’ Smax
022 x 60 x 24.5
- 12

= 27.0kip < V, = 59.9Kkip

.". Needs more than the minimum amount of stirrups. (or stirrups to be
closer than the maximum allowable spacing.)



4.5 Stirrup Design Procedure 261

Step 9. Calculate the stirrup spacing.

The stirrup spacing at the critical section (5) is:

Avfyd _022(60)(24.5)

v 599 =5.4in. .. §=5iIn.

E:

Find the stirrup spacing at the end of this zone, where V,, =77.5 kip:

Vu 77.5

V=2 oy, = T2 465 — 568k
= 0.75 P
Adyd  022(60)(24.5) .
_ A =57
=y 56.8 "

Because V, = 59.9kip < 2V, = 2(46.5) = 93kip the maximum stirrup
spacing is the same value found in step 7.

Smax = 12.0in. > s = 5in. .. ok

Because the portion of the beam to have § = 5in. is a short distance
(5 ft), we use 5 in. spacing for the entire 5 ft. The number of spacings (V) is:

N =

5(12) = (7.5+2
(12) 5( + ):10.1 .. Use 11@5in.

Figure 4.25 shows the stirrup layout. As a practical matter, we usually
place a few stirrups where stirrups are not required to hold the main
reinforcements in place.

> f————11@5in. ————|

76"

Figure 4.25 Stirrup layout for Example 4.4
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4.6 Additional Formulas to Calculate the Shear Strength
of a Beam Section

4.6.1 Beams Subject to Flexure and Shear Only

Equation (4.12) (V. = 2\/f/b,d) is the simplest expression that the ACI Code
permits in calculating V.. This equation neglects the influence of the longitudinal

A

A
reinforcing, p,, = b and the ratio i

the designer wishes to take the contribution of these parameters into account
as well, then the following equation (ACI Code, Table 22.5.5.1) may be used
(ACI Code, Section 22.5.5.1):

u

both of which affect the shear strength. If

Vid
V. = <1.9}»\/]?+ 2,500p,, M_> b,d < 3.5X\/ﬁhwd (4.22)
where
Vud <1.0
M,

4.6.2 Members Subject to Axial Compression

The presence of significant axial compression (in addition to flexure and shear)
increases the shear strength of a section. This is because the compressive loads can
prevent cracks from developing. The ACI Code provides the following equation
(ACI Code, Section 22.5.6.1) to account for the contribution of axial compression:

Nll
v.=2(1 M/Fbyd 423
: ( +2,000Ag> VI (4.23)

where N, is the axial compression calculated from factored loads and A, is the gross
cross-sectional area of the concrete section. In the formula N,/A, must be expressed
in psi. N, is positive for compression. A more detailed calculation of V. considering
N, is given in the ACI Code Table 22.5.6.1.

4.6.3 Members Subject to Significant Axial Tension

The presence of significant axial tension (in addition to flexure and shear) decreases
the shear strength of the section. The ACI Code mandates the use of the following
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equation (ACI Code, Equation 22.5.7.1) to account for the presence of axial
tension:

Ny
=2 by 4.24
V. ( +500Ag)Wf bud (4.24)

where N, is negative for tension. N,/A, must be expressed in psi. V. cannot be less
than zero.

Example 4.5 Calculate the nominal shear capacity, V., of the section shown below
for the following cases (normal weight concrete with £/ = 3,000 psi):

f—12in. —

25 in. d=22in.

3#9

(a) Without any axial load or consideration of flexure.

(b) Considering the effects of flexure where V,, =20 kip and M, = 100 kip-ft.
(c) The section is subjected to an axial compressive force, N, = 100 kip.

(d) The section is subjected to an axial tensile force, N, = —100 kip.

Solution
A= 1.0 (normal weight concrete)

(a) The shear capacity of the concrete section according to Equation (4.12) is:
Ve = ZK\/ﬁbwd = 2(1.0)4/3,000(12)(22)/1,000 .. V, =28.9kip

(b) Using Equation (4.22):

Vid
Vv, = (1.%\/]7 +2,500p,, M—) bud < 3.5M/f!b,d
Vid
M,

<1.0
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A, 3.0
byd (12)(22)

Vd  20(22)

=20 _037<1.0 .. ok
M, 100(12) < °
V.

= [1.9(1.0)+/3,000 + 2,500(0.0114)(0.37)] (12)(22)/1,000
< 3.5(1.0)4/3,000(12)(22) /1,000
V. = 30.3kip < 50.6kip
.V, = 30.3kip
(¢) Using Equation (4.23):

=0.0114

Pw =

Ny
=201 by,
K ( +2,000Ag>x\/fb“d

V.= 2(1 +%) (1.0)4/3,000(12)(22)/1,000

V. = 33.7kip

(d) Using Equation (4.24):

N
— i
V, = z<1 + SOOAg)}\ Fb,d
(—100)(1,000)

Vﬂ(”m

) (1.0)1/3,000(12)(22)/1,000

V. = 9.6kip

4.7 Corbels and Brackets

The ACI Code has special provisions for brackets and corbels. Figure 4.26 shows a
typical corbel. These are special elements on the side of a column or at the end of a
wall. In Figure 4.26, V, is the factored vertical load from some building element,
which may be a precast or prestressed building girder, or a crane girder. N, is the
factored tension force on the corbel acting simultaneously with V,,. This horizontal
tension force results from any restraint against free relative horizontal movement
between the bracket and the supported element. Most often N,. comes from
frictional restraint that occurs in the presence of volumetric changes in
the supported girder. The use of special bearing pads helps to minimize the
magnitude of N,,.



4.7 Corbels and Brackets 265

/ Imaginary

compression
strut

Figure 4.26 Corbel (or bracket)

The ACI Code’s design methodology (Section 16.5) is based on the satisfying
of the equilibrium of four forces (assumed to be concurrent). The method is
applicable when the following conditions are satisfied: (1) a, /d < 1.0, (2) N,. <V,
and (3) the depth of the bracket at the front is not less than d/2. (ACI Code Sections
16.5.1.1-16.5.2.2).

From Figure 4.26 it is clear that the shear plane at the level of the primary tension
reinforcement is subject to a moment:

M, = V,a, + Nye(h — d) (4.25)

It is also subject to the tensile force, N, and the shear force, V.

Figure 4.27 shows the typical reinforcement of a corbel. The required amount of
primary reinforcement, Ay, is determined from two parts. The first part, Az, resists
the moment in Equation (4.25). Its design follows the procedure of the flexural
design of rectangular sections. The second part, A,, resists the tensile force, N,,.

Hence:

Age = Af + A, (426)
where

NLIC
Ay ==, $=090 4.27
¥, ¢ (4.27)
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| — Asc (tension reinforcement)

/ Anchor bar

2d

™~
w

Stirrup support bars

Ap, (horizontal closed stirrups)

/\/

Figure 4.27 Reinforcing required in a corbel

Assumed crack at shear plane Assumed crack at shear plane

= =
T l Shear-friction

Shear-friction Avt reinforcement

reinforcement _
at an angle perpendicular
to the crack

Figure 4.28 Reinforcing at an assumed crack

The design of A, total area of closed stirrups parallel to the primary tension
reinforcement, is based on the shear-friction concept. If a crack forms at a shear
plane, reinforcing is needed to prevent a relative displacement (slippage) between
the surfaces. This type of reinforcement is shown in Figure 4.28. The reinforcement
ties together the two halves and ensures that the friction resistance parallel to the
crack is maintained.

When the shear-friction reinforcing is perpendicular to the shear plane, as is the
case for the corbel shown in Figure 4.27, the shear strength can be calculated as
(ACI Code Equation 22.9.4.2):
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o= d(nAyf). 6=075 (4.28)

where p is the coefficient of friction defined by the ACI Code for different types of
concrete and different pouring sequence scenarios. A, is the area of reinforcement
crossing the shear plane to resist shear. (Refer to Section 22.9.4.2 of the ACI Code.)
For a corbel cast monolithically with the column (always the case), p=1.4 for
normal-weight concrete.

The ACI Code imposes the following limitations to ensure that the corbel will
act in concurrence with the proposed design model:

1. The depth of the corbel at the outside edge of the bearing area shall be not less
than d/2. (ACI Code Section 16.5.2.2.)

2. The corbel must be deep enough so that V,, for normal-weight concrete may not
exceed the smaller of 0.2 f/b,,d, (480 + 0.08f’)b,.d, and 1600 b,d (ACI Code
Section 16.5.2.4).

3. The corbel’s minimum primary reinforcement, A;. iy, must be the greater of the
following (ACI Code Section 16.5.5.1):

(A4 +A,) . (244/3+A,), and 0.04 (f//;;) (bud)
Assuming V, = ¢V, and rearranging Equation (4.28), the expression for A,/ is
obtained as
Vi Vi Vi
A‘f = = =
o 0.75£,(1.4)  1.05f

for corbels cast monolithically with normal-weight concrete. The minimum total
area of closed stirrups parallel to the tension reinforcement, A, i, is equal to (ACI
Code Equation 16.5.5.2):

(4.29)

Ah,min = O-S(Asc - An) (430)

A few words must also be said about the anchor bar. The tensile reinforcement
(Ayc) must develop its strength between the outer edge of the corbel and the face of
the column. (For a discussion of development of tensile reinforcing, see Chapter 3.)
This length is not adequate in most cases, hence some device is needed to add
mechanical anchorage. One such device is a large—diameter bar (#9 or larger) to
which the reinforcing bars representing A,. are welded (see Figure 4.27). Another
way to provide mechanical anchorage is to weld the bars to an edge angle, as shown
in Figure 4.29.


http://dx.doi.org/10.1007/978-3-319-24115-9_3
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| — Asc (tension reinforcement)

/I «——Edge angle

/\/

Figure 4.29 Tension bars anchored to an edge angle

Example 4.6 Design the required reinforcement for the corbel shown in Figure 4.30.
Assume the following data: V,=62 kip, N,,=6 kip, a,=8 in., b=16 in,
£ =5,000psi, and f, = 60,000 psi.

Solution

Step 1. Assume 1.5 in. cover and #6 bars for the primary reinforcement.

d=18-15— ? = 16.12in.

From Equation (4.25):

M, =62 x 8+ 6(18 — 16.12) = 507kip-in.
M, 507 x 1,000

= =" =122psi
bd*  16(16.12)* P
From Table A2.6¢c
p=0.0023
(Af) requirea = Pbd = 0.0023 x 16 x 16.12 = 0.59in.?


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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/\/

Figure 4.30 Sketch of the corbel in Example 4.6

From Equation (4.27)

Nye 6 )
(An)required = (I)_f)‘v = 0.9 % 60 =0.11in.

Hence
(Ase)requirea = 0-59 +0.11 = 0.7in.?

Select 2 #6 bars Table A2.9 — 0.88 in.”
Step 2. Design the required shear reinforcement:
Check for V,, max:

$(0.2£/b,d) = 0.75 x 0.2 x 5,000 x 16 x 16.12/1,000
= 193.4kip > 62kip .. ok
$(480 + 0.087/)b,.d = (0.75)(480 + 0.08 x 5,000)(16)(16.12)/1,000
= 170kip > 62kip .. ok
$(1,600b,d) = 0.75 x 1,600 x 16 x 16.12/1,000
= 309.5kip > 62kip .. ok

269
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From Equation (4.29)

() s = T = T
vf required 105]‘)') o 1.05 x 60

=0.98in.?

Using #4 stirrups —two legs provide 2 x0.2=0.4 in®> Thus, the
required number of horizontal stirrups is

n = 0.98/0.40 = 2.45 — Use a minimum of three stirrups.

Because (2/3)d=(2/3) x 16.12=10.7 in., place stirrups at 3.5 in.
center-to-center to have the three stirrups within the ACI Code-required
distance 2/3d. Then use additional stirrups at the same spacing to the
bottom of the corbel.

Step 3. Check for A, min:

#9 Anchor bar.
Weld 2 #6 bars to
the anchor bar.

2 #6
\

4 Spaces
@ 3.5in. c/c

#4 Closed stirrups

I~
I~

2 #5 Stirrup support bars

/\/

Figure 4.31 Sketch of result for Example 4.6
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Ase.min = 3Ay + A, =73 X 0.98 +0.11 = 0.76in.” < (2# 6 bars)
=0.88in.2 .. ok
Ase.min = 0.04 (fg /];) (bud) = 0.04(5,000/60,000)(16)(16.12)
=0.86in.2 < 0.88in.2 .. ok
Apmin = 0.5(Aye — Ay)
Apmin = 0.5(0.7 — 0.11)
= 0.3in.” < 44#4stirrups (4 x 0.4 = 1.6in.%) .. ok.

Figure 4.31 shows the final design of the corbel.

Problems

In the following problems, assume concrete is normal-weight unless noted otherwise.

4.1.

4.2.

4.3.

A rectangular reinforced concrete beam has been designed for moment only,
without any stirrups for shear. It is, however, subjected to a shear at the critical
section, V, = 10kip. The beam width, b, is 12 in., and the effective depth, d, is
26 in. Use £/ = 4,000 psi. Determine whether this beam is adequate.

A beam is subjected to a uniformly distributed load and has a maximum shear of
60 kip at the face of its supports. The beam clear span is 30 ft-0 in., b= 12 in.,
d=241n., ! = 4,000 psi, and Sy = 60,000 psi. What is the shear at the critical
section? What is the required spacing for #3 stirrups at the critical section?

Design stirrups for the beam shown below. The dead load includes the beam’s
self-weight. Use £/ = 4,000 psi, f3+=60,000 psi, and 12in. cover.

P, = 10kip P, = 10 kip Wp— 1.0 kip/ft
A w, = 2.0 kip/ft
N WA TP
TIN > 2NN
A
I 8-0" 120" 8-0" I
f—16 in.—]
32in.
3 #11
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4.4. Rework Problem 4.3 for a beam subjected only to the concentrated load on the
left in addition to the distributed loads.

4.5. The shear force at the critical section, V,,, of a reinforced concrete beam is
60 kip. If the beam has b,, =14 in., f/ = 3,000 psi, and f3+=160,000 psi,
what is the required effective depth, d, so that the minimum spacing of #3
stirrups is 9 in.?

4.6. Design stirrups for the beam shown below. The dead load is 0.70 kip/ft (beam
weight not included), and the live load is 1.5 kip/ft. Use f/ = 4,000psi,
f3+=160,000 psi, and 172 in. cover. The unit weight of the concrete is 150 1b/ft°.

k—12 in—| A€
- [T T T T

A

24 in.

5-0" |12"-| 20'-0" |12"'| 5-0" |
I I I I 1

4.7. A 6 in. thick one-way reinforced concrete slab has #6 @ 8 in. main reinforce-
ment. The cover is %in. and f/ = 3,000 psi. The unit weight of the concrete
is 150 pcf. Answer the following questions:

(a) What is the maximum shear (V,)) the slab can carry?

(b) What is the maximum live load the slab can support based on shear
requirements? Assume that the slab is simply-supported and has a clear
span of 10 ft-0 in.

4.8. Design stirrups for the interior beam (B-1) shown below. The mechanical/
electrical systems weigh 5 psf, the partitions are 20 psf, and the ceiling,
carpeting, and so on, weigh 5 psf. The floor live load is 80 psf. Consider live
load reduction, if applicable. Use f = 4,000 psi, f3=160,000 psi, and 1}2in.
for cover. Use ACI Code coefficients to determine the beam shear force. The
unit weight of the concrete is 150 pcf.
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I 30'-0" I 30'-0" I

Columns
12in.X 121in.
(typical)

- 1] | [

12in. (typical)

4.9 Design stirrups for the beam shown below. The applied loads do not include
the beam’s self-weight. Use f/ = 4,000psi, f3+=160,000psi, and 1%2in. for
cover. The concrete is ‘all-lightweight’ with a unit weight of 110 pcf.

f—12in. -] A Pu:|2° Kip w, =3 kip/it
T T OO TN T T T T AT
2 2\
A
27 in.
548 | 10-0" | 10-0" |
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4.10 Rework Problem 4.3, considering the effects of moment on the shear strength
of concrete. Use the moment and the shear at the critical section for purposes
of simplification.

4.11 Rework Problem 4.3 for a beam subjected to an axial compressive live load of
150 kip. Compare the results with Problem 4.3.

4.12 Rework Problem 4.3 for a beam subjected to an axial tensile live load of
50 kip. Compare the results with Problem 4.3.

4.13 Design the required reinforcement for the corbel shown below. Use
f= 4,000psi, f, =f,,= 60,000 psi, b= 18 in., and 172 in. for cover.

/\/

V,, = 50 kip

[«—5 in.‘l

o= 10 kip

v 2

16in.

/\/

Self-Experiments

In these self-experiments you learn about shear in beams. You will use both
Styrofoam and reinforced concrete models. Remember to include in your report
all the details of your tests (sizes, time of day you poured, amount of water/cement/
aggregate, problems that you encountered, etc.) together with images showing the
steps of the tests.
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Experiment 1
In this experiment we use Styrofoam models to learn about the vertical and
horizontal components of shear in beams.

Test 1: Horizontal Shear

Stack several layers of Styrofoam, one on top of the other, and place them on two

supports, as shown in Figure SE 4.1a. Apply a load, P, at the center of the beam.
Measure how much the beam deflects at the center under the load. Now glue the

layers together and repeat the test. Compare the measured deflection for the two

cases, and discuss your observation.

| ©

v 7

Figure SE 4.1a Horizontal shear test

Plastic wire
\ 4

A\ 4
A

Figure SE 4.1b Vertical shear test

Test 2: Vertical Shear

Place layers of Styrofoam next to each other and run a plastic wire through them.
Anchor the wire at both ends. Place the beam on two supports and apply a load on
the beam, as shown in Figure SE 4.1b.

Observe how the different pieces of Styrofoam move with respect to each other.
Record your observations.

Experiment 2

In this experiment we use different sizes of wire as main and shear reinforcements
for a reinforced concrete beam, as shown in Figure SE 4.2. The sizes of beam,
reinforcement, and span length are your choices. However, they have to be in
reasonable proportions for further testing. Cast the reinforced concrete beam.
Describe all the different stages of casting the beam and placing the bars. Also,
include a drawing and show the sizes and dimensions you used. After the beam
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cures, apply a load at the center of the beam. Increase the load until you notice the
concrete cracks. Record your observations and any problems encountered.

|—> A Stirrups (smaller size)
|

Z L, A 7

Main bars

A-A

Figure SE 4.2 Reinforced concrete beam with main and shear reinforcements



Chapter 5
Columns

5.1 Introduction

Columns are the main supporting elements of a building structure. If we compare a
building to a tree, we can think of columns as the trunk of the tree. Any damage to
columns may result in catastrophic failure of at least part of the building. Columns
mainly carry loads in compression, although they also may be subjected to bending
moments transferred by the beams and girders connected to them.

Aside from walls, the compression members of reinforced concrete structures
are divided into two groups: pedestals and columns. Section 2.3 of the ACI Code
indicates that an upright compression member is considered to be a pedestal if its
height is less than three times its least lateral dimension. Pedestals may be designed
with plain or reinforced concrete. Figure 5.1a shows a pedestal.

Columns, on the other hand, are compression members whose height is more
than three times their least lateral dimension. Figure 5.1b shows a typical column.
The ACI Code requires all structural columns to be reinforced in order to prevent
unexpected brittle failure.

5.2 Types of Columns

Figure 5.2 shows the various classifications of reinforced concrete columns. Columns
can be classified by the type of their reinforcement (main and lateral), by their shape,
by the type of loads that they will resist, by the type of structural system of which they
are part, and by their length. We now will study each class of columns.

5.2.1 Based on Reinforcement

Three main types of columns fall in this category: tied columns, spiral columns, and
composite columns.

© Springer International Publishing Switzerland 2017 277
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Y

6

b T

>3

o>

~1

Figure 5.1 (a) Pedestal, (b) column

5.2.1.1 Tied Columns

Because columns are subjected mainly to axial loads, they are reinforced with
longitudinal bars along their length. Because these bars are very slender, they need
to be laterally supported to keep them in place during concrete placement, and they
need lateral support when subjected to loads. Small-diameter (#3 or #4) bars,
referred to as fies, are used to fulfill these requirements. Columns that use ties for
lateral reinforcement are called tied columns. Figure 5.3a shows a square tied
column. The ties are wired to the longitudinal bars to make a cage, which then is
placed into the form and properly positioned before casting the concrete. The cage
of bars and ties keep the longitudinal bars straight and the ties provide resistance
against buckling. Ties generally follow the perimeter of the column’s cross section
(rectangular in rectangular columns and circular in circular columns).

Tied columns are the most common because their construction costs are lower
than those for spiral and composite columns. In fact, over 95 % of all columns in
concrete buildings located outside earthquake-prone regions are tied columns. The
area inside the ties is called the core, and the area outside them is the shell of the
column (see Figure 5.3a).

5.2.1.2 Spirally Reinforced Columns

Spirals are used in spirally reinforced columns to provide lateral support to the
main reinforcements. Spirals are helical-shape wires, which are placed around
the main reinforcements as shown in Figure 5.3b. Because most spiral columns
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Spiral columns |

Tied columns |

—| Based on reinforcements l—

Composite columns |

Square columns |

Circular columns |

—| Based on shape l—

Rectangular columns |

NN

Other shape columns |

Axially loaded columns
(small eccentricity)

Column [ -
Types | Based on loading l—

Eccentrically loaded columns
(large eccentricity)

Braced columns |

—| Based on structural system l—

Unbraced columns |

Short columns |

—| Based on length l—

NN

Slender (long) columns |

Figure 5.2 Different types of columns

are circular in shape, a spirally reinforced core sometimes may be placed inside a
square cross section. Spiral reinforcing is a more expensive construction (about
twice as much) than using ties. Spiral columns provide larger capacity than do tied
columns, but their main advantage is their ductility and toughness when large
overloads, such as loads occur in earthquakes, are expected. Similar to tied
columns, the area confined by the spirals is the core, and the area outside them is
the shell (see Figure 5.3b).
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Core Tie . '
N
Shell —> r _l
A A
A-A 4
Tied column
b 4

SpiraI‘\

—
Core g
Shell r

I
B —

@«

—
B-B v
Spiral column
c
I-shape E

— Pipe

Composite column

Figure 5.3 Types of columns based on reinforcements

5.2.1.3 Composite Columns

Composite columns are constructed by placing a steel shape, such as a pipe or
I-section, inside the form and casting concrete around it. These columns may have
additional reinforcing bars around the steel shape, as shown in Figure 5.3c. Com-
posite columns are often used in multistory buildings to increase the capacity of the
steel sections. The surrounding concrete also provides fireproofing to the steel core.

5.2.2 Based on Shape

Selecting a column shape is generally an architectural and structural decision and
depends on the framing system, costs, reinforcement arrangement, and aesthetics.
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| |

Figure 5.4 Different column shapes

Square and rectangular shapes are the most common, as they are the simplest to
form and construct. Circular columns may be formed by using cardboard or
plastic tubes, or by using hinged steel forms, which can be removed easily. Other
column shapes besides circular and rectangular are also used. Figure 5.4 shows a
few of them. Figure B5.1 in Appendix B shows the tapered reinforced concrete
columns used for a train station.
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5.2.3 Based on Loading

Columns primarily carry loads in compression. But they can also be subjected to
moments, depending on the building’s geometry and loading. Therefore, columns
are grouped into two classes: axially loaded columns, and eccentrically loaded
columns. (Sometimes these are referred to as columns with small eccentricity, and
columns with large eccentricity, respectively).

A concentric axial load and a moment can be combined into an eccentric load.
The term eccentricity refers to the distance between the point of load application
and the center of the section. To better understand the consequence of an eccen-
tricity on the behavior of columns, consider Figure 5.5a, which shows a column
subjected to a compression force, P, acting at the center of the section (point 1).
Because the force acts at the center of the section, the internal compression stresses
are distributed uniformly on the section.

If we move P to a new location (point 2) at a distance e from the column center,
as shown in Figure 5.5b, the load generates bending stresses in addition to axial
compressive stresses. The bending stress is the result of the moment caused by the
off-center load (M = Pe). The action of P at the eccentricity, e, is equivalent to the
load P acting at the center and an additional moment, M = Pe.

If the moment acting on the column is negligible compared to its axial load, we
consider the column to be an axially loaded column, or a column with small
eccentricity. If the applied moment is large, the column is an eccentrically loaded
column, or a column with large eccentricity. In former ACI Codes, tied and spiral
columns were considered to be axially loaded columns when the eccentricity was
less than 0.1 4 and 0.05 &, respectively (h =the cross-sectional dimension in the
direction of the eccentricity).

Now that we know that the effects of eccentric loads are the same as adding
moments on columns and vice versa, let us review the sources of moments or
eccentricities. Figure 5.6a shows a reinforced concrete building frame under gravity
loads (Refer to Figures 2.10 and 2.11). The column on line B is subjected to
moments from the adjoining beams. If the beam spans and loads are equal, the
applied moments have the same magnitude but opposite directions, thus canceling
each other. As a result, the column on line B is subjected only to an axial load. Even
though this is theoretically correct, in reality there is always some moment on the
column because the loads on the neighboring beams are never the same and the
column is not perfectly straight.

The columns on lines A and C, on the other hand, are subjected to moments from
the beams on one side in addition to axial loads. Therefore, these columns are
subjected to large moments or have large eccentricities. Also, the column between
the two bays (column B) will be subjected to moment in addition to axial loads if
the live load is larger on one span than on its adjacent span.

Another example of a column with large eccentricity is shown in Figure 5.6b, in
which the column is part of a precast concrete structure. The beams and columns are
cast off the construction site, and then transported to the site for assembly.


http://dx.doi.org/10.1007/978-3-319-24115-9_2
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®

View A +

Figure 5.5 (a) Axially loaded column (column with small or no eccentricity); (b) eccentrically
loaded column

In precast construction, beams are often placed on brackets and connected together
through steel plates embedded in both the beam and the bracket. As a result, there is
always an eccentricity between where the beam is supported and the column
centerline. This eccentricity generates a moment on the column, which needs to
be considered in the analysis and design of the column.

Lateral loads, such as high winds and earthquakes, can generate large moments
on the columns of monolithic concrete structures. Such columns usually have large
eccentricity. Figure 5.6c shows how the columns of a two-story building undergo
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Figure 5.6 (a) and (b) Gravity loading, (c) lateral loading

large bending moments when subjected to lateral loads. Columns subjected to loads
with large eccentricity will be studied in greater detail later in this chapter.

5.2.4 Based on Structural System

Column and beam assemblies can be divided into two categories, depending on the
building structural framing systems used: braced frames and unbraced frames. The
columns within such systems are called braced columns and unbraced columns,
respectively.

In a braced frame, lateral loads are resisted by shear walls, elevator or stairwell
shafts, diagonal braces, or a combination thereof. The large stiffness of these
elements prevents the columns of such a frame from undergoing large lateral
motion or sidesway, and from experiencing significant moments due to lateral
loads. In an unbraced frame, on the other hand, the columns (unbraced columns)
are subject to large bending moments due to the lateral loads and have to withstand
large lateral motions. These columns generally have large eccentricities. Figure 5.7
shows braced and unbraced columns in two different structural framing systems.
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a
Shear wall +— > Braced columns
b 4
> Unbraced columns

Figure 5.7 (a) Braced columns, (b) unbraced columns

5.2.5 Based on Length

Columns may be divided into two groups based on their length, or more accurately
their slenderness ratio. Slenderness ratio (kf/r) is the ratio of the column’s effective
length (kf) to the least radius of gyration (r) of the section. Short columns are
columns whose slenderness ratio is low enough that their failure occurs from
excessive stress levels rather than by buckling. Slender columns, on the other
hand, may buckle when subjected to large axial loads.

Most reinforced concrete columns in normal building structures are short col-
umns. In fact, the results of a study conducted by the ACI (Notes on ACI 318-71,
Building Code with Design Applications, p. 10-2) indicate that 90 % of braced
columns and about 40 % of unbraced columns could be considered to be short
columns. As a result, the emphasis in this book will be on short columns.

5.3 Behavior of Short Columns with Small
Eccentricity Under Load

Figure 5.8 shows the failure mechanisms of an axially loaded square tied column
and round spiral column. When a short tied column is subjected to increasing axial
loads, the column fails suddenly. First the longitudinal reinforcing reaches yield,
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Figure 5.8 Short columns under axial loads: (a) tied columns; (b) spiral columns

and then the concrete fails when the ultimate strain is reached. The failure is usually
accompanied by plastic buckling of the longitudinal bars. Figure 5.9 shows a typical
load-deformation relationship for tied and spiral columns. The tied column reaches
the maximum capacity at point A, and fails soon thereafter at point B.

A spiral column, on the other hand, does not fail suddenly because the closely
spaced spirals keep the core confined while the column shell spalls (Figure 5.8b).
This confinement does increase the column’s deformability significantly. The outer
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Figure 5.9 Load-deformation relationship of axially loaded columns

shell is not confined, thus it falls away readily. The inner core, however, is still able
to carry loads, even after the concrete has been crushed by large compressive
stresses. The column behaves like a bag of flour: As long as the paper sack does
not burst, the flour column will support loads. For this reason, in this type of
column, the ACI Code requires a minimum spiral reinforcement that will prevent
the column from bursting until well after the concrete has reached its assumed
ultimate strain of 0.003. Thus, a typical spiral column will have a second maximum
point in its load-deformation diagram (point C in Figure 5.9). The yielding of the
spirals makes the column failure ductile, which makes a spiral column ideal for
unexpected large overloads such as seismic loads.
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5.4 General ACI Code Requirements for Columns

The ACI Code has several requirements for the design of columns:

1. Limits on the amount of longitudinal reinforcements. Column steel ratio, p,, is
defined as the ratio of the area of the longitudinal reinforcement (Ay,) to the gross
area of the column (A,):

Py =1 (5.1)

The ACI 318-14 no longer uses the column steel ratio notation (p,); however, the
authors have kept it for purposes of clarity.

The ACI Code (Section 10.6.1.1) limits the area of the longitudinal reinforce-
ment, Ay, in columns between 0.01 A, to 0.08 A,. This means that the steel ratio,
pg, can average as shown in Equation (5.2):

0.01 < p, <0.08 (5.2)

The minimum steel ratio of 0.01 provides resistance to bending, which may exist
whether or not calculations show the column is subjected to bending moments.
In addition, a minimum amount of steel reduces creep and shrinkage of the
concrete under sustained compression loads. It is common practice to use a
minimum bar size of #5 for the longitudinal reinforcement.

Although the maximum steel ratio is 0.08, in practice it is very difficult to use
such a high amount of steel in the column, especially where the bars are spliced
above a floor level. Such congestion may be avoided by using #14 or #18 bars.
(A #14 bar has a cross sectional area of 2.25 in.z, a #18 bar has one of 4.0 inz.)
These bars are not used in beams, but are very useful in columns.

Bundled bars may be used if the column is subjected to a large load and a large
number of bars is needed. Bundles consist of three or four bars (a maximum of
four bars according to the ACI Code, Section 25.6.1.1) tied together in direct
contact, and are usually placed at the corners of the column, as seen in
Figure 5.10. Each bundle of bars is treated as if it were a single round bar of
area equal to the sum of the areas of the bundled bars. The main drawback of
bundled bars is that they cannot be lap-spliced.

Figure 5.10 Column reinforced with bundled bars
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Figure 5.11 Minimum number of bars: (a) tied columns, (b) spiral columns

2.

Limit on the number of bars. According to the ACI Code (Section 10.7.3.1), the
minimum number of main longitudinal bars is four for rectangular or circular tied

columns, three for triangular tied columns, and six for spiral columns (see
Figure 5.11).

. Limit on the clear cover. According to the ACI Code (Section 20.6.1.3.1), the

minimum clear cover for columns is 1.5 in., measured from the edge of the
column to the transverse reinforcement. This cover is for interior columns that
are not exposed to weather or in contact with the ground. The clear cover is 2 in.
for formed surfaces exposed to weather or in contact with the ground. If the
concrete is cast directly against the earth without forming (as in drilled piles), the
cover must be increased to 3 in.

. Limit on tie spacing. In general, there are four main reasons for having ties in a

column:

A. They hold the longitudinal reinforcement in place during construction.

B. They provide a confined core and, as a result, increase the column’s strength
and ductility.

C. They act as shear reinforcement.

D. They provide lateral support for the longitudinal bars and prevent them from
elastic buckling. Columns need sufficiently large tie sizes that are well
connected to the longitudinal bars at sufficiently close vertical spacings (s).
To satisfy the above requirements, the ACI Code (Sections 10.7.6.1.2 and
25.7.2.2) requires that at least #3 ties be used for #10 or smaller longitudinal
bars, and at least #4 ties be used for #11, #14, and #18 and bundled bars.
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In addition, the ACI Code (Sections 10.7.6.1.2 and 25.7.2.1) requires that the
vertical center-to-center spacing of ties (s) be limited to:

s < min{16d,, 48d;, bmin }

where d,, is the diameter of the longitudinal bars, d, is the diameter of the ties,
and by, is the minimum dimension of the column. The clear spacing of ties has
to be at least equal to 4/3 of the maximum aggregate size (d,,,). According to the
ACI Code (Sections 10.7.6.1.2 and 25.7.2.3), a bar is adequately supported
laterally if it is located at a corner of a tie, with an enclosed angle not exceeding
135°, or if it is located between laterally supported bars with a clear spacing of
6 in. or less. Figure 5.12 shows typical tie arrangements that satisfy this

a b c
=6in. =6in. 6in. >6in.
4 bars 6 bars 6 bars
d e f
_ — |
=6 in. >6 in. =6 in.
i 1 ¥ 1 ¥
T * T T
=6 in. >6 in. =6 in.
- 1 4 1 4
=6in. =6in. >6in. >6in.
8 bars 8 bars 10 bars
g h
_ .
>6in.
1 4
1
>6in.
1 4
10 bars 12 bars

Figure 5.12 Typical tie arrangements
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requirement. Figure B5.2 in Appendix B shows the main reinforcements and ties
for arrangement e before concrete placement.

5. Limit on longitudinal bar spacing. Sections 10.7.2.1 and 25.2.3 of the ACI Code
requires that the clear distance between longitudinal bars be at least equal to the
greatest of 1.5 times the bar diameter (d},), 1.5 in. or 4/3 of maximum aggregate
size (d,g,), to allow concrete to flow between the reinforcements. Reinforced
concrete columns in multistory buildings are generally cast one level at a time.
Therefore, the longitudinal reinforcements in columns typically are spliced
above every floor. An exception is columns in seismic zones where splicing is
usually near midheight between floors. There are different methods of splicing
bars in columns. Figure 5.13 shows one common method of splicing reinforce-
ments in a multistory building. Table AS.1 lists the maximum number of bars
that can be placed in a square or circular column based on minimum bar spacing
requirements and the splicing method shown in Figure 5.13. The spiral and tie
sizes are assumed to be #4 with 1.5 in. cover. Figure B5.3 in Appendix B shows
the reinforcements at the end of a concrete column during construction.

6. Limit on spacing and amount of spiral reinforcement. Spirals are often made of
smooth bars rather than deformed bars; and the spacing and amount of spirals need
to be such that they confine the column core. For these reasons, the ACI Code
(Sections 10.7.6.1.2 and 25.7.3.1) requires that clear spacing between spirals
(Sciear) be at least equal to %3 dags and between 1 and 3 in. (see Figure 5.14a). In
cast-in-place construction spirals must be at least Js in. in diameter.

Spiral steel ratio is defined as:

B Volume of spiral steel in one turn, s

(5.3)

Ps = Volume of column core in height, s

If the diameter of the spiral steel is dy, and the area of the spiral steel is A, the
volume of column core in height s (see Figure 5.14b) is:
ﬂh%
4

XS

The volume of spiral steel in one turn, s, is:

mhy X A,

Substituting the above into Equation (5.3), we get:

_ mhy X Ay, 4Aghy
Ps = /’lf y - ]’I(ZS
nT— XS )
4

Because h; = h.—d,, and d, is negligible compared to /., we can assume that A
and A, are approximately equal (h,= h.). Substituting 4. for kg into the above


http://dx.doi.org/10.1007/978-3-319-24115-9
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Figure 5.13 Reinforcements in a multistory building

equation allows us to calculate the spiral steel ratio for columns, py, using the
simplified Equation (5.4).

o, = A

= s (5.4)

The ACI Code requires a minimum spiral steel ratio to ensure ductility and
toughness. According to Equation (25.7.3.3) in Section 25.7.3.3 of the ACI
Code, the minimum spiral steel ratio (py min) is:

A 7
= 0.45 —g—1>L
Ps. min (AC,, % (5.5)
£, <100ksi
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Figure 5.14 Spiral columns

In this equation, A, is the gross area of the column:

nh?
Ay =—
8 4
A, is the area of the core (measured from outside-to-outside edge of spiral
reinforcement). See Figure 5.14:

2
nh;

Ay = 4

and f;, is the specified yield strength of the transverse (spiral) reinforcement. The
required spiral pitch, s, can then be calculated from Equation (5.4) based on an
assumed spiral size, which must be at least 3/8 in. in diameter.
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5.5 Some Considerations on the Design of Reinforced
Concrete Columns

When designing reinforced concrete columns, we must consider a number of
factors in order to minimize the overall cost of construction.

5.5.1 Column Size

In general, columns in multistory buildings are designed based on their floor-to-floor
height. In order to simplify the formwork, the size of columns in a multistory
building is usually kept the same throughout the height of the structure whereas
the amount of reinforcement, and perhaps the concrete’s compressive strength, are
increased for the lower stories. Smaller size columns are easier to conceal in walls
and less intrusive architecturally, which results in larger rentable floor spaces for
building owners. Therefore, the structural designer tends to select as small a column
size as possible. The ACI Code does not require a minimum column size, but in
practice rectangular columns are at least 10 in. wide and round columns have a
minimum diameter of 12 in. Smaller columns are very difficult to construct properly.

5.5.2 High-Strength Material Use

Because most columns are in compression, it is more economical to use high-
strength concrete. High-strength concrete with compressive strength exceeding
16,000 psi has been used for the columns supporting lower stories in large, tall
buildings. The reliable production of such ultra-high-strength concrete requires
very special technology, so it is less commonly used; but 8,000—10,000 psi concrete
is commonly available.

In most cases, however, the compressive strength of concrete in columns in low
or mid-rise buildings is in the 5,000—6,000 psi range. Although the cost of concrete
increases as compression strength increases, the strength increases at a greater rate
than the cost. Grade 60 rebars are used in most concrete structures. Grade 75 bars
may provide better economy for columns in high-rise structures, especially when
they are used in conjunction with high-strength concrete.

5.6 Analysis of Short Columns with Small Eccentricity

Most reinforced concrete columns are categorized as short columns. This means
that they will fail in compression under large loads rather than undergo elastic
buckling. In this section we will study the load carrying capacity and the design of
short columns with small eccentricity.
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Figure 5.15 Axial load capacity of a column

We first find the axial load strength of a column. Figure 5.15a shows a typical
column subject to a concentrated load at its center. From equilibrium of forces in
the vertical direction (along the column axis), the axial load capacity of a column
(P,) is equal to the sum of the volume of stresses in the concrete and the steel (see
Figure 5.15b). Based on the results of tests carried out at the University of Illinois
and Lehigh University from 1927 to 1933, the ACI Code uses 0.85f/ for the
ultimate concrete compression stress. At ultimate load the stress in the steel is
equal to the yield stress (f,). Therefore, according to ACI Equation 22.4.2.2:

P,= 085f/(4,— Ay + fAy
| | L (5.6)

Concrete contribution  Steel contribution

The stress in the concrete (0.85f,) is applied on the net column area (A,—A,,), which
is the area of the concrete. In reality, however, the loads acting on columns always
have an eccentricity (e.g., due to vertical misalignment of the form). The ACI Code
accounts for “accidental eccentricity” by requiring that the theoretical capacity be
reduced by 20 % for tied columns and 15 % for spirally reinforced columns. Then
the nominal load capacity of columns is:

P, =0.8P, = 0.8 [0.85];’ (A — Ag) + J;As,] (tied columns)  (5.7)

P, —0.85P, — 0.85 [0.85;;’ (Ag — Ay) + ];As,} (spiral columns) (5.8)

To find the design resisting load, P;, we must reduce P, by the strength reduction
factor, ¢:
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Pr = $P, (5.9)

According to the ACI Code (Sections 10.5.1.2 and 21.2.2), columns with small
eccentricity have the following strength reduction factors:

¢ = 0.65 (tied columns) (5.10)
¢ = 0.75 (spiral columns) ’

The values of ¢ for pure compression are less than those used for beams in
bending (0.90). The main reasons that the strength reduction factors are consider-
ably lower are the following:

1. A column failure is a much more severe event than the local failure of a beam,
because a column supports larger areas of a building.

2. The quality of concrete used in columns is less reliable than that used in beams
and slabs. The difficulty of consolidating the concrete in narrow column forms
and between the longitudinal and lateral reinforcements often leads to honey-
combs that are difficult to repair (even when visible).

3. The strength of the concrete has a much greater role in the ultimate strength of a
column than it does in beams and slabs, where the reinforcing has the most
influence on the ultimate strength.

After introducing the ¢ factor, we calculate the strength of an axially loaded
column (ACI Code Sections 10.5.2.1, 22.4.2.1 and 22.4.2.2) as follows:

Pe = P, = 0.8¢ {0.85 £ (A — Ag) + ];As,] (tied columns) (5.11)

P = OP, = 0.85¢ {0.85 £ (Ag — Ay) + fy'As,} (spiral columns) (5.12)

The steps of the analysis of short columns with small eccentricity are shown in
Figure 5.16 and are as follows:

Step 1. Check the steel ratio. When we analyze a column, we know its dimensions
and the size and number of its reinforcements. Therefore, we have the gross
area of concrete (A,) and the total area of steel (Ay,), from which we can
determine the column steel ratio (p,):

Ay

P =

The steel ratio is limited by:

0.01 < p, < 0.08

If the steel ratio does not fall within these limits, the column does not
conform to the current ACI Code requirements.
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Analysis of Columns
(short with small eccentricity)

A

1. Check the steel ratio:
0.01 = py=0.08

297

A

2 Check the maximum number of bars (Table A5.1).

v

Tied column

y

3. Calculate P = $P, where ¢ = 0.65:
Pg = 0.8¢ [0.85f; (A — Ag) + f,Aq]

'

Spiral column

8. Calculate Pg = $P, where ¢ = 0.75:
Pg = 0.85¢ [0.85f; (A — Ag) + f,Aql

Column is N.G.

5 Check tie spacing:
Smax = Min {164, 48d;, byn}

6. Check the tie arrangement
using Figure 5.12.

5 Check the spiral steel:

4A;,
Ps = hcs

A f;

Pemi :0.45(—9 - 1)—

s,min Ach fyt

ps = ps,min?

6'Check the clear vertical
space of the spirals:
1in. = Syear = 3in.

Figure 5.16 Flowchart for analysis of reinforced concrete columns

Step 2. Determine whether the spacing between the longitudinal bars meets the
ACI Code requirements by obtaining the maximum number of bars that can
be placed in the column according to Table AS5.1. The remaining steps
differ depending on whether the column is tied or spiral:

(a) Tied Columns


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Step 3.

Step 4.

Step 5.

Step 6.

Step 3.

Step 4.

Step 5.

Step 6.

5 Columns

Calculate the column capacity, Pg:
¢ =0.65
Pe = 0P, = 08[085£/ (4, — Au) +£,Ad]
Calculate the factored loads, P,, and determine whether the column can
resist the applied loads (P > P,).
As indicated in Chapter 2, Section 2.10, depending on the value of the total

floor load, P;, compared to the total roof live load, P;,, one of the load
combinations of Equation (2.3d) is used to compute P,:

P,=12Pp+16P,+05P, (ifPL>183P,)
P,=12P,+1.6P,+10P, (ifP, < 1.83P,)

Check the tie spacing:
Smax = min{16d},48d;, byin }

Check the arrangement of the ties using Figure 5.12.
(b) Spiral Columns
Calculate the spiral column capacity, Pg:

¢ =0.75

Py = dP, = 0.854;[0.85]@’ (A — Ay) + fyAx,}
Calculate the factored loads, P,, and determine whether the column can
resist the applied loads (P > P,).

Check the spiral steel. Calculate the spiral steel ratio (p,) and compare it
with the minimum amount required by the ACI Code:

4A;
Ps = h_P
S
A 1!
o min = 0.45 —g—1> <
P i (Ach fy,
Ps Z ps,min

Check the clear space (s.jear) between each turn of the spirals:

lin. < Sclear = § — dgp < 3in.

Example 5.1 Determine the maximum factored axial load that a short tied column
with the cross section shown below can resist. There is no moment on the column.
Determine whether the ties are appropriate. The compressive strength of the
concrete is 4,000 psi, and the reinforcement is A615 grade 60 steel.


http://dx.doi.org/10.1007/978-3-319-24115-9_2
http://dx.doi.org/10.1007/978-3-319-24115-9_2
http://dx.doi.org/10.1007/978-3-319-24115-9_2
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8 #8 — 14in.

/

<o .
11/, in. cover j #3 @ 14in.
(typical)

Section A-A

7z

Solution
Step 1. Determine and check the steel ratio, p,:
8#8 — TableA2.9 — A, = 6.32in.?

14in. x 14in.column — A, = 14 x 14 = 196 in.2

Ay 632
=D 202032
Pe = 4, ~ 196

0.01 <0.032 <0.08 .. ok

Step 2. Check the spacing of the longitudinal bars by obtaining the maximum
number of #8 bars that can be placed into the column from Table A5.1:

h = 14in. — Maximum of 12#8 bars

Step 3. Calculate the column load capacity, Pg:

Pe—P = o.sq)[o.ssfg (A — Ay) +fyAS,]
Pr = 0.8 x 0.65[0.85 x 4 (196 — 6.32) + 60 x 6.32]
Pr = 533 kip

Therefore, the maximum design (factored) load for this column is 533 kip.
Step 4. We skip this step because we need only the load capacity.
Step 5. Check the adequacy of the ties. The maximum spacing of the ties (Syax) iS:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Smax = min{16d},, 48d;, bmin }
Smax = min{16 x 1,48 x %, 14 in.}

Smax = min{16 in., 18 in., 14 in.} = 14in.

.. Therefore, #3 @ 14 in. for the ties is adequate.
Step 6. Check the tie arrangement, according to Figure 5.12. Determine the clear
space between the bars:

Cover Tie #8

L

14 —2(1.5) — 2(%) — 3(1.0)
2
Clear space = 3.6in. < 6in.

Clear space =

Because the clear space between the bars is less than 6 in., no additional
ties are necessary on the non-corner longitudinal reinforcing. Therefore, the
tie arrangement meets the ACI Code requirements.

Example 5.2 The circular spiral column shown below is subjected to a dead load
of 200 kip and a roof live load of 225 kip. The eccentricity of the loads is small.
The compressive strength of the concrete is 4,000 psi, and the reinforcement is
A615 grade 60 steel. Check the adequacy of the column including the spirals.

Pp = 200 kip
P,,= 225 kip

6 #9

>
>«

3/g in. diameter @ 2 in.

} 16 in. >

7 7 7 Section A-A
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Solution

Step 1. Determine and check the steel ratio:

6#9 — Table A2.9 — A, = 6.0 in.2
n(16)*

16in. diameter column — A, = =201.11n.2
6.0
Pe =501~ 003

0.01 < 0.03 <0.08 ..ok

Step 2. Obtain the maximum number of #9 bars for a 16 in. diameter column from
Table A5.1. The answer is nine bars. Therefore, 6 #9 bars can easily fit into
the column.

Step 3. Calculate the design resisting load, Fy, using ¢ = 0.75 for spiral columns:

Pr= ¢ Py = 0850 0.85£! (4, — Ay) + A
Pr = 0.85 x 0.75[0.85 x 4(201.1 — 6.0) 4+ 60 x 6.0]
Pr = 652 kip
Step 4. Determine the total factored load on the column:
P, =12Pp+ 1.6P, = (1.2)(200) + (1.6)(225)
P, = 600 kip

Because Pg = 652 kip > P, = 600 kip, the column has enough strength to
carry the load.
Step 5. Check the amount of spiral steel:

Ay =0.11in2 (%, in. dia. spiral)
he=h-2(1.5)=16-3=131in.
s = 2.0 in. (from figure)

Calculate the spiral steel ratio, py:

47, 4(0.11)
S T e X)) Rt

The minimum spiral steel ratio, py mn iS:

le — 045 —
Fy n(13)? 60

4

A ! 201.1 4
psmin=0.45< g —1>f( 0 1
’ Ach

=0.0155 < 0.0169 .. ok

Therefore, enough spiral steel is provided.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Step 6. Check the clear space between each turn of spiral:

Setear = § — dyy =2 =, = 1.625 in.

lin. < 1.6251in. < 3in. .. ok

Therefore, the column is adequate for the given loading condition.

5.7 Design of Short Columns with Small Eccentricity

Design of reinforced concrete columns is a task that requires the involvement of
both the architect and the structural engineer. The shapes and sizes are usually
based on architectural requirements such as aesthetics and space needs. The con-
struction costs also play an important role. These costs can be reduced by doing the
following:

1. Make the forms reusable by making the column shapes and sizes as uniform as
possible.

2. Typically it is cost effective to use the fewest longitudinal reinforcements
(or largest bar size) possible. This also reduces the cost of ties, as fewer ties will
be required. In addition, difficulties in placement of the concrete will be reduced.

Often the column size (A,) is preselected, or decided by factors other than
strictly structural considerations. In these cases, the structural designer needs only
to find the required amount of steel (Ay,) in addition to designing the ties or spirals.
In other cases, however, the structural designer may want to determine the mini-
mum size of a “workable” column.

In the following we consider two cases: A, = known, A, = unknown; and A, and
Ay = unknown.

5.7.1 Ay,=Known, Ay = Unknown

A safe column requires that:
P R — (bP n 2 P, u
The load capacity of a tied column according to Equation (5.11) is:

P = 0.8¢ {0.85]3.’ (A — Ay) +fyAs,}

The useful capacity of the column (P;) must be at least equal to the factored load
on the column (P,). Thus,
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P, =089 [085f (A, — Ay) +£,44]

Because the area of concrete (A,) is known we can solve the above equation for the
area of steel (A,,):

Aq[089(f, — 0.85£)| = P — 08¢ (0857 4,)
b = 0.65
P, — 0.8¢ (0.85f/ A,)

= (5.13)
0.8(1)(fy . 0.85fg)
Similarly, the required area of steel, A, for spiral columns is:
b =0.75
A — P, —0.85¢ (O.85f;’Ag) (5.14)

0.850(f, — 0.85£)

Note that if the numerator in Equations (5.13) or (5.14) results in a negative value,
the column requires only 1 % longitudinal reinforcement (p,,;,). The design steps
are shown in Figure 5.17 and are as follows:

Step 1. Determine the factored axial load on the column, P, (as indicated in the
previous section):

P,=12Pp+ 1.6P, +0.5P;, (if PL > 1.83P;,)
P,=12Pp+1.6P,, +1.0P, (if PL < 1.83P;,)

Which steps you perform next depends on whether the column is to be tied
or spirally reinforced:

Tied Columns

Step 2. Calculate the required area of steel using Equation (5.13). Use ¢ =0.65.

Step 3. Use Tables A2.9 and AS5.1 to select bars. The minimum number of bars
for tied square columns is four. Determine whether 0.01 <p, <0.08. If
pe <0.01, use p, = 0.01. Also, if p, > 0.08, or you cannot find any arrange-
ments of bars to fit inside the column, the column dimensions are not
enough and its cross-sectional area (A,) must be increased.

Step 4. Design the ties. Use #3 ties for #10 and smaller longitudinal bars. Other-
wise, use #4 ties. The tie spacing, Smax, 1S:

Smax = min{16dy, 48d,, byin }

Round down s,,, to the nearest 0.5 in. Check the tie arrangement using
Figure 5.12.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Design of Columns
(short with small eccentricity)
Ag = known, Ag;; = unknown

l

Calculate P,

l

|

l

| Tied column | | Spiral column ‘
| ¢ = 0.65 | | ¢ =0.75 ‘
2. . 2. .
Calculate Ag;: Calculate Ag;:
A P, — 0.84(0.85f;A,) A P,— 0.85¢(0.85f5:49)
st 0.84(f, — 0.857) st 0.85¢(f, — 0.85f;)
3. 3.
Use Tables A2.9 Use Tables A2.9
and A5.1 to select bars. and A5.1 to select bars.
4. Design ties: 4. Design spirals:
Smax = Min{164dj,, 484}, byin} _4Ayp
Check the tie arrangement Ps = hs
using Figure 5.12.

A f
- g _ 4|t
Ps,min = 0.45 (Ach 1) fyf
Set ps = ps min @nd solve for pitch
(s). Round down to the nearest
0.25in.
1in. = Sgear = 3iN.

Figure 5.17 Flowchart for the design of a short column with small eccentricity (A, =known,

Ag = unknown)

Spiral Columns

Step 2. Calculate the required area of steel using Equation (5.14). Use ¢ =0.75.

Step 3. Use Tables A2.9 and AS.1 to select bars. The minimum number of bars for
spiral columns is six. Determine whether 0.01 <p,<0.08. Similar to
the tied columns, if p, < 0.01, use p,=0.01; and if p,>0.08 or bars do
not fit inside the column, increase the column cross-sectional sizes.

Step 4. Design the spiral steel by equating the spiral steel ratio (p;) to py.min (use
a minimum spiral diameter of 3/ in.):


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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A !
Py.min = 0.45 (—g - 1) ¢

Ach f;
4A,,
Ps = hCS
Ps = ps,min

Solve for s (spiral pitch) and round down to the nearest !/, in. Check
the clear pitch where S¢jeqr = $—d,,, Which must be between 1 and 3 in.
If Sciear 1S less than 1 in., increase the spiral size; if S¢jeq, i more than 3 in.,
use 3 in.

Example 5.3 Figure 5.18a shows the typical partial floor plan and sections of a
three-story reinforced concrete office building. The mechanical and electrical
systems for the floor and the roofing and insulation weigh 5 psf. The weight of
the partitions is 15 psf. The floor live load is 50 psf and the roof snow load is 30 psf.
Assume f! = 4,000psi and f, = 60,000 psi Design the square 16 in. x 16 in. tied
interior columns between the ground and second levels. Moments acting on the
columns are not significant, and you should not consider live load reduction in load
calculations. Assume that the unit weight of the concrete is 150 pcf. Neglect the
self-weight of the columns.

Solution
Step 1. Determine the loads acting on the columns:

Floor Loads

Weight of concrete slab = 150 (%,) = 75 psf
Mechanical and electrical = 5 psf
Partitions = 15 psf

Floor dead load = 95 psf

The tributary area for the columns is 30 ft x 30 ft=900 ft’. In
addition to supporting the slab, the columns also support beams B-1

and B-2.
Slab B-1 B-2
[ [l [ |
PDﬂoor:£(900)+@ ngx3x30 +ﬁ ﬁ><E><30
: 1,000 1,000{ 12 12 1,000{ 12 12
Pp foor =85.5+36+12.0=133.5kip

50

900) = 45ki
1000 00 = 45kip

L.floor =
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L

Columns
16 in. X 16 in. (typical)

¥ 30'-0" }
Typical partial framing plan

[e2)
=
N
N

24in.

—16 in.—]

Section A-A

Roof
EL + 39'-0"

3rd level
EL + 27'-0" \

\
2nd level <
/&

EL +15-0" |

Ground
EL + 0.00 V7

Section B-B

Figure 5.18a Framing plans and sections for Example 5.3
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Roof Loads
Weight of concrete slab = 150(6/12) =75 psf

Roofing and insulation = 5 psf
Roof dead load = 80 psf

The tributary area of the columns at roof level is the same as that of a
floor (900 ft?). Therefore

Slab B-1 B-2

' I 1 |

PDroof :870(900)"'ﬂ %XEX:;X:;O +£ ﬁ><E><30
ool 71,000 1,000 12 12 1.oool 12712

P roor = 72.0+36.0+12.0=120.0kip

30 )
P oo =sNOW load= 7000 (900) =27.0 kip

>

Because the column self-weight is small compared to the applied
loads, we neglect the column weight. The columns between the ground
and second levels carry two floor loads and one roof load:

PD - 2PD,ﬂoor + PD,roof
Pp = 2(133.5) + 120.0 = 387.0 kip

P = 2P/ fioor
P, = 2(45)

P = 90.0 kip
P, = 27.0 kip

Since 1.83P,, = 1.83(27) =49.4kip < P, =90kip, therefore, from Equa-
tion (2.3d):
P, =12Pp + 1.6P, + 0.5P;,
P, =1.2(387) + 1.6(90) + 0.5(27)
P, = 621.9 kip

Step 2. Determine the required area of steel, A,

P, —08¢[0.85f/4,]
o 08p[f, - 0857

~621.9 — 0.8(0.65)[0.85(4.0)(16 x 16)]
o 0.8(0.65)[60 — 0.85(4.0)]

Ay = 5.75 in?
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Step 3. Using Table A2.9, select 8 #8 bars (A; = 6.32 inz). Based on Table A5.1, the
maximum number of #8 bars for a 16 in. X 16 in. column is 12. Therefore,

8 #8 bars are ok. The provided column steel ratio, p,, is:
Ay 632
Pe = 4, T16x 16
0.01 < p, =0.0247 < 0.08 .". ok

=0.0247

Step 4. Design ties:
Use #3 ties for #8 longitudinal bars. The maximum tie spacing, S;,x, 1S:

Smax = min{16d,, 48d,, byin }
Smax = min{16(1.0),48(%), 16}
Smax = {16.0,18.0,16.0}

Smax = 16.0 in.
Check the tie arrangement based on Figure 5.12:

16 —2(1.5) — 2(%) — 3(1.0)
2
Clear space = 4.6 in. <6 in. .. One tie per set

Clear space =

Figure below shows the cross section of the designed column.

< 16 in. g
8 #8 ~ [
16in.
#3 @ 16 in. [

Figure 5.18b Final design of Example 5.3

5.7.2 Az and Ay = Unknown

Because we have to determine both the size of the column and the required area of
steel, and only one equation defines the column load capacity, we must assume
one unknown. According to the ACI Code, p, can vary between 0.01 and 0.08.
If p, =0.01, the column size may be excessively large. On the other hand, p, = 0.08
is not practical as the reinforcement will be very congested. Exceeding p, = 0.04 is
not recommended, so for this process we use p, =0.03.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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A safe column must satisfy the following relationship:
P R — d)P n 2 P u

From Equation (5.11) the load capacity of a tied column is:

}%:o&ﬂoﬁﬂ@g—mg+ngZRl

For design, we consider P; = F,. The column steel ratio, p,, is defined as:

Ay
pg:AT:_’A”:pgAg

Substituting A, in the equation for P,:
a:o&ﬂawﬂ@g—%%)+g%%}
and simplifying:
&:O&MJO%ﬂO—pJ+ﬁ%}
Solving A, for tied columns:

Py

Ag:o%¢kﬁﬁ41‘%)+ﬁ%}

$ = 0.65

Similarly, for spiral columns, the required column area, A,, is:
P,

Ag&%¢@8ﬁ(1—%)+g%}

¢ =0.75

309

(5.15)

(5.16)

Now that we have determined the column area, we can calculate the column

dimensions, 4 and b, as follows:

Ay =P —h = /A, (square column)
A, =hxb (rectangular column)

2
p ™y [

¢= — (roundcolumn)
n
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As we mentioned before, the minimum practical size for a rectangular or square
column is 10 in. and for a round column is a diameter of 12 in.

Use the column area, A,, to calculate the required area of steel, Ay using
Equations (5.13) or (5.14):

P, —0.8¢(0.85f'A
Ay =2 $(085£4,) (tied column)

O.Sd)(fy - O.85]§,’)

P, — 0.85¢(0.85f/A
st = $(0.854:4,) (sprial column)

0.850(f, — 0.85£)

(5.17)

The steps for the design of short columns with small eccentricity are shown in
Figure 5.19 and are as follows:

Step 1. Determine the factored axial load on column, P,:

P,=12Pp+ 1.6P, +0.5P;, (if P > 1.83P,,)
P,=12Pp + 1.6P;, + 1.0P, (if PL < 1.83P;,)
and assume a column steel ratio p, = 0.03.

Based on the type of column (i.e., tied or spiral), follow the appropriate
subsequent steps:

Tied Columns

Step 2. Calculate the required gross area of the column, A,:
Py

A= 0.80[0.857 (1~ p,) +1,p,]

b = 0.65

Step 3. Determine the column size:

h= /A,  (square column)

hxb=A, (rectangular column)

A
h=24/=% (round column)
T

Round 4 or b to the nearest full or even inch.
Step 4. Calculate the required area of steel, A,

P, —0.80(0.851/A,)
0.8(f, - 0.857;)
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Design of Columns
(short with small eccentricity)
Ag, Ag = unknown

l

Calculate P,,.
Assume p, = 0.03

|

| Tied column

l

l

Spiral column

| ¢ =065

l

l

¢ =075

Calculate Ag:
PU

Ag = 0840857, (1—pg) T Typg]

l

l

Calculate Ag:
PU

A9 =0.85610.857, (1~ pg) + T,pg]

!

8. Determine the column size, b
and h. Round to the nearest inch.

3. Determine the column size, h.
Round h to the nearest inch.

|

!

Calculate Ag;:
_ P,—0.84(0.851;A)
~ 0.84(f,—0.85f)

st

l

Use Tables A2.9
and A5.1 to select bars.

l

Design ties:
Smax = Min{16d,,, 48d;, byin}
Check the tie arrangement
using Figure 5.12.

4 Calculate Ag;:
P, — 0.85¢(0.851;A,)
st™ 0.854(f,—0.85f;)
5. Use Tables A2.9
and A5.1 to select bars.
6. ) o
Design spirals:
4A,
Ps = hcs
A f,
_ g9 _ 4|
Psmin = 0.45 (Ach 1) fyt

Set ps = psmin @nd solve for
pitch(s). Round down to the
nearest '/, in.
1in. = Syear =3iin.

Figure 5.19 Flowchart for the design of a short column with small eccentricity

Step 5. Use Tables A2.9 and AS.1 to select the size and number of longitudinal
bars. Remember that the minimum number of bars for square tied columns

is four.

Step 6. Design the ties. Use #3 ties for #10 and smaller longitudinal bars.
Otherwise, use #4 ties. The tie spacing, Smax, 1S:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Smax = min{16d}, 48d;, bin }
Round down s,,.x to the nearest '/,in. Check the tie arrangement using
Figure 5.12.
Spiral Columns
Step 2. Calculate the required gross area of the column, A,:
P,

Ag:0%¢@sm(1—%)+g%}

b =0.75

Step 3. Calculate the column size:

h= /A, (squarecolumn)
hxb=A4A, (rectangular column)

Ag
h=24/— (roundcolumn)
T

Round £ to the nearest full or even inch.
Step 4. Determine the required area of steel, A,

P, — 0.85(1)(0-85]((:/ Ag)
0.850(f, - 0.85)

st —

Step 5. Use Tables A2.9 and AS5.1 to select the size and number of longitudinal
bars. Remember that the minimum number of bars for spiral columns is six.

Step 6. Design the spiral steel by equating the spiral steel ratio, p;, to psmin. Use a
minimum spiral diameter of /g in.:

A f!
i = 0.45 g—l)‘
s (Ach 5

m=%ﬁ
S
Ps = ps, min

Solve for s (spiral pitch) and round down to the nearest '/, in. Check the
clear pitch, S¢jear = S—dj,, which must be between 1 and 3 in. If 5., 1S less
than 1 in., increase the spiral size; if s¢je,r 1S more than 3 in., use 3 in.

Example 5.4 Design a short square tied column to carry an axial dead load of
300 kip and a floor live load of 175 kip and a roof live load of 80 kip. Assume
that the applied moments on the column are negligible. Use f/ = 4,000psi and
fy=160,000 psi.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Solution

Step 1. Compute the factored load, P,.
1.83P;,=1.83(80) = 146.4kip < P, = 175kip, therefore from Equation
2.3d:

P, =12Pp+ 1.6P, +0.5P,,
P, = 1.2(300) + 1.6(175) + 0.5(80)
P, = 680kip

Assume p,=0.03.
Step 2. The required area of the column, Ay, is:

P,
A, =
© T 0.8¢ 0857(1-p,) +1,,]
W 630
¢ = 0.80(0.65)[0.85 (4)(1 — 0.03) + 60(0.03)]
A, =257in.2

Step 3. For a square column, the size, 4, is:

h= /A, = /257
S h=16.0in.

Try a 16 in. x 16 in. column:
A, = (16)(16) = 256 in.?
Step 4. The required amount of steel, A, is:

P, —0.8¢(0.85//A,)

st —
0.8(1)(fy - 0.8513/)
680 — 0.8 x 0.65(0.85 x 4 x 256)
0.8 x0.65(60 — 0.85 x 4)

=773 in®

Step 5. Select the size and number of bars. For a square column with bars uniformly
distributed along the edges, we keep the number of bars as multiples of
four. Using Table A2.9, 8 #9 bars (A;=38 inz) are selected.

From Table A5.1— Maximum of 12 #9 bars .". ok

Step 6. Because the longitudinal bars are #9, select #3 bars for the ties. The
maximum spacing of the ties (Syax) 1S:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Smax — min{ 16d1,, 48d,«, bmin}
Smax = min{16(1.128),48(%), 16}
Smax = min{18.0,18.0, 16.0}

J Smax = 16 1n.

The selected ties are 3 @ 16 in.
To check the tie arrangement, use Figure 5.12. To check the number of
ties per set, calculate the clear space between the longitudinal bars:

Cover #3Ties #9 Bars

[

16— 2(1.5) — 2(3/3) —3(1.128)

2
Clear space = 4.4in. < 6.0 1in.

Clear space =

Therefore, one tie per set is enough, as shown below:

le—— 16in —>]

—— #3 @ 16in.

8 #9

Example 5.5 Solve Example 5.4 for a circular spiral column. f, = 60,000 psi.
Solution

Step 1. The factored load was determined in Example 5.4: P, =680 kip. Assume
pe=0.03.
Step 2. The required gross area of column, A, is:

A, = il
0.85¢ {0.85f(f (1 — pg> +f, pg}
680
¢~ 0.85(0.75)[0.85(4)(1 — 0.03) + 60(0.03)]
Ag =209 in.’

A
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Step 3. The column size, A, is:

o Ay, (209 .
h=2 - =2 3-14716.31n.

We round down to 16 in.
h = 16in.

The provided gross area of the columns, A,, is:

2 3.14(16)°
A, :%:#:201 in.2

Step 4. The area of steel required, Ay, is:

P, — 0.85p(0.85f'A,)
0.850(f, — 0.85£)

680 — 0.85 x 0.75(0.85 x 4 x 201)
0.85 x 0.75(60 — 0.85 x 4)

Ay = 6.771in.2

st —

Ast =

Step 5. Using Table A2.9, select 7 #9 bars. The provided area of steel is 7.00 in”.

Table A5.1 — Maximum of 9 #9 bars ..ok

Step 6. Design the required spiral:
Because the longitudinal bars are #9 bars, try 3/8 in. diameter spirals. The
cross-sectional area of the spiral, A, is 0.11 in. The column core size, h,, is:

he=h—2(1.5) =16 —2(1.5) = 13in.
Therefore, the spiral steel ratio, p, is:

44, 4(0.11)

Py = s T T 13s

In the above equation, the pitch of spiral, s, is the unknown. The
minimum required spiral steel ratio, ps min, 18:

A f!
=045 2% — 1)1
ps, <A(-h f;;t

where A, is the area of core.

mh: 3.14(13)° .
Ay = T‘ = 7§ ) =132.71in.?


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Substituting the above into the equation for p; min:

_oas( 20 )4
Prmin = 049 7357 60
—0.0154

ps, min

Calculate the spiral maximum pitch, §,ax:

pPs = ps,min
4(0.11)
=0.0154
135 max
4(0.11) .
Smax = 13(0.0154) n
Use s =2.01in.

In addition, the spiral clear pitch, S.jea, Should be between 1 and 3 in.:

Sclear = § — dsp =2- 3/8 = 1.6251n.
lin. < 1.625in. < 3in. ..ok

Therefore, the spiral to be used for this column is 3/3 in. diameter at 2 in.
The following figure shows the final design of the column.

3/g in. diameter @ 2 in.
7 #9

} 16 in.

5.8 Behavior of Short Columns Under Eccentric Loads

There are two types of columns, based on the applied loads: axially loaded and
eccentrically loaded. In monolithic concrete construction, most columns are eccen-
trically loaded, which means that the applied load is not acting at the center of the
column. In other words, the column is subjected to a moment in addition to the
axial load. In the following, we explore the behavior of such columns in more
detail.
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b P, Py Cc

Py
\ eI e /1\MU=PUG
|
I
|
|
|
I
I
|

)

/f Z )l/ Z )l/ Z

Figure 5.20 Eccentrically loaded column

Figure 5.20a shows a column subject to a load, P,, at a distance e from the center
of the column. By adding two equal and opposite forces of magnitude P, at the
center of the column, as shown in Figure 5.20b, we nullify the net effect because
these forces cancel each other out.

The two equal and opposite forces at a distance e form a couple or moment with
magnitude M, = P,e, and a concurrent axial load of P, applied concentrically as
shown in Figure 5.20c. Hence, we conclude that a column subjected to a load £, at a
distance e from its center is equivalent to a concentric load, P,, and a moment,
M, = P,e. Similarly, a concentric load, P,, and a moment, M,,, may be represented by
an eccentric load, P,, at an eccentricity e equal to M,,/P, from the centroid.

The concentric load, P,, creates a uniform compression stress while the applied
moment, M,,, adds bending stresses, as shown in Figure 5.5. Suppose a column has a
nominal axial load strength of B,. If the load is applied at an eccentricity, e, the
column axial load capacity, F,, will be reduced because it is subjected to a moment
in addition to the load. The moment, as shown on Figure 5.20c, adds compressive
stresses to the already compressed column. Thus, as the eccentricity of the load
increases, the applied moment increases, and the axial load capacity of the column
decreases.

Figure 5.21 shows the deformations and strains of a typical column subjected to
an axial load, P,, and a bending moment, M,. When the load is concentric, the
deformations across the section are uniform (i.e., the section shortens uniformly).
Because strain (g) is defined as the ratio of the change in length to the original
length, the distribution of strain across such a section is uniform, as shown in
Figure 5.21a. Assume that the same column section now is subjected to only a
moment, M,,, which causes one side of the section to be in tension and the other side
in compression. The result is a linear distribution of deformation (A’) or strain (g),
as shown in Figure 5.21b.
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Figure 5.21 Deformations and strains from axial load and moment

When a column is subjected to the combined action of an axial load, P,, and a
moment, M,, the compressive deformations and strains due to P, and those due to
M,, add up, while the compressive deformations and strains due to P, and the tensile
deformations and strains due to M,, reduce each other. Depending on how large M,
is in comparison to F,, a part of the section may be in tension (large M,), or the
entire section may be in compression (small M,). In Figure 5.21c, € is the shape of
the strain distribution for a large M, /P, ratio, and &, is the strain distribution for a
small M, /P, ratio. Therefore, a column with a given amount of reinforcing may fail
due either to excessive compression, where the effects of the load and the moment
are added up, or to excessive tension, where tension from a large moment over-
comes the compression from the axial force.

The ultimate useful strain in the concrete is assumed to be 0.003. Any reinforced
concrete column with a given amount of reinforcing has a combination of P, and M,
that causes the compressive strain in the concrete to reach 0.003 while tensile strain
in the steel at the opposite side of the section reaches the yield strain. This state is
called a balanced failure condition, which is somewhat similar to that defined for
reinforced concrete beams (see Chapter 2).

Example 5.6 Determine the nominal axial load strength, P,, and the nominal
moment, M, for the short tied column shown in Figure 5.22a for the following
cases: (1) axial load (i.e., e =0.0); (2) ¢ =5 in.; (3) balanced condition; (4) no load
but moment (i.e., e=00); and (5) axial tensile load. Assume f/ = 4,000 psi,
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13in. ]

4 #10

F-— X 24in.

13in.

Figure 5.22a Column of Example 5.6

/= 160,000 psi, and bending about the x—x axis. Do not consider reduction in P, due
to accidental eccentricity.

Solution
1. Assuming the load is concentric, the nominal axial load capacity of the column is
the sum of the compressive strengths of the concrete and the steel:
P, =P, = 0.85f (A, — Ay) +/,Ayu
A, = (16)(24) = 384 in.?
4#10 — Table A2.9 — 5.08 in.?
P, =0.85(4)(384 — 5.08) + 60(5.08)
P, = 1,593 kip

Thus, for case 1, P,=1,593 kip, and M, =0.

2. Figure 5.22b shows case 2, which is e =35 in. about the x—x axis. In order to
determine the value of P, we must determine the stress in the steel and the
distribution of stress in the concrete at the time of failure. The stress and strain
in the steel are proportional up to the yield point. Because ¢ =35 in. is small
compared to the column depth (i.e., =24 in., and e/h = You = 0.21), assume
that the tensile steel has not reached yield (e, < €,) when the concrete reaches the
compressive strain of 0.003. Also, because the yield strain for grade 60 steel is
€,=10.00207 and the compression steel is close to the compression edge of the
column, we can assume that the strain in the compression steel is more than the
yield (g] > &,). Therefore,

g > ey—f) =1,

g < &, —f; <fy
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Figure 5.22b Isometric view of column

a b c
. Y 0.003 0.85f}
Location of the fk———16in.— ] 5
axial load .
. I
3 in.J s /o G,
P, «— C; |a=0.85¢c
—_—
18 in.

3 in.7 T

Column section Strain distribution Stress distribution and forces

Figure 5.23 Assumed strain and stress distribution for e =5 in. for Example 5.6

Figure 5.23 shows the assumed distribution of strain and stress at failure for
this section. The strains in the tension and the compression steel (g, and &)
depend on the location of the neutral axis (c). From similarity of the triangles of
Figure 5.23b, determine the relationship between €, and c:

g d—c

0.003 ¢

g, = 0.003 (d _ ">
C
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The strain in the tensile steel is:

d _
f=E, &= 29,000(0.003)( - °>

fS:87(d—c>
c

Use the volumes under the stresses shown in Figure 5.23c to calculate the
compression and tensile forces acting on the section:

C) = 0.85f! ab = 0.85(4)(0.85¢)(16) = 46.24c kip
Cy = Al (fy - 0.85f;)

C, = 2.54[60 — 0.85(4)] = 143.8 kip

The tensile force, T, is:
T =fAs

Substituting f;:

T — 87 <d - C)As
.

21 ¢ 21 ¢
T:87( - ‘)(2.54):221( - ‘)kip

Equilibrium requires that the sum of forces be equal to zero.

P—-Ci—C,+T=0
or
P=Ci+C,—-T

21— ¢
P, = 46.24c + 143.8 — 221 ( - ‘> kip

In addition, the section needs to satisfy the second equilibrium equation
(i.e., the sum of moments must equal zero). Taking the moments about the
location of tensile steel (Ay) for simplicity:

P,(14) - C (d _ g) —C(18) =0
N P,(14) = €y (d - g) +Cy(18)

1 0.85c) +(143.8) (18)}

P =— [(46.24c) (21 -
P, = —1.40c* + 69.36¢ + 184.89 kip

14
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Equating the two expressions for P,;:

21 — ¢

46.24c + 143.8 — 221 ( ) = —1.40c* + 69.36¢ + 184.89

After some simplifications, the following third order equation results:
1.40¢* — 23.12¢* + 179.91c — 4,641 = 0
Solving for ¢ by trial and error:
¢ =18.93in.
Substituting ¢ into either equation for P,:
P, =995 kip
Having determined ¢ and P,, we now check the correctness of our assump-

tions. First, calculate the strain in the compression steel (/). From similarity of
the triangles of Figure 5.23b:

&g _¢c—3
0.003 ¢

-3

el = 0.003 (C )
C

18.93 -3
! __
e/ = 0.003 <718.93 )

g; = 0.00252 > g, = 0.00207

Strain in the compression steel is more than the yield strain; therefore, the
stress is equal to the yield stress (}‘Y’ = fy) Thus, the assumption that the

compression reinforcement had yielded is correct. Now we need to determine
the level of strain in the tensile steel:

g, = 0.003 (d - C>
C

21 —18.93
18.93

g; = 0.00033 < g, = 0.00207

g, = 0.003 <

Hence, the second assumption (i.e., the tensile steel has not yielded) was also
correct.
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Calculate the nominal moment:

M, = P,e =995 S

12
M, = 415 ft-kip

Thus for case 2, P, =995 kip and M,, =415 ft-kip

3. Case 3 is the balanced condition. The balanced failure condition occurs when the
extreme concrete compression strain is 0.003 and the steel tensile strain is equal
to the yield strain, e,. In this case, the strain distribution across the section is
defined, so there is no need to make any assumptions. Figure 5.24 shows the
strain and stress at balanced failure condition.

Using similarity of the triangles of Figure 5.24b, locate the neutral axis:

0.003 ¢
&y T d—cp
0.003(d — cp) = &y¢p
. _ 0003
"7 0.003 + &,
. __0003(21)
™ 0.003 + 0.00207
cp = 12.431in.

Also from similarity of the triangles, calculate the strain (and stress) in the
compression steel (g and f):

a Location of the b ¢
applied load (to be found) 0.003 0.85f;
‘ f—— |
- P,= P,
3 in.} A > p C
«~——GCy | a,=0.85¢,
| e & b b
181in. T [ I 1 v
o —
3in] a > >T
- ‘4—»‘ fy
g, = 0.00207
Column Strain Stress distribution

and forces

Figure 5.24 Strain, stress, and force distributions at balanced condition
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e/ _cp—3
0.003 ¢,
ol 0.003(c, — 3)
) Cb
. 0.003 (12.43 — 3)
€y =
12.43
el = 0.00228

Because g/ = 0.00228 > ¢, = 0.00207, f; = f, = 60 ksi. The sum of the forces
acting on the section is P, or P, (see Figure 5.24c¢):

C) = 0.85f ab = 0.85(4.0)(0.85 x 12.43) (16) = 574.6 kip
Cy = Al (fy - 0.85fg) = 2.54]60 — 0.85(4)] = 143.8 kip

T = Af, = 2.54(60) = 152.4 kip

P=Py=Ci+Cy—T =5746+ 143.8 — 152.4

P, = 566 kip

From the sum of moments about the tensile steel, determine the balanced
eccentricity, or ey

0.85¢p
2

P (ep +9) = Cy (d— >+C2(18)

0.85 x 12.43
566(c, +9) = 574.6 <21 - ><7> +143.8(18)
ey +9 =20.53
e, = 11.53 in.

and the nominal moment at the balanced condition, M,, = M,, is:

11.53
M, = P,e = 566 (12) = 544 ft-kip

Thus, for case 3, P,=566 kip and M, =544 ft-kip. Note that as the moment
increases, the axial load decreases.

4. In case 4 the column is subjected only to moment. This is obviously only a
theoretical case, as columns always have an axial load. Because the eccentricity
is the ratio of moment to applied load, this condition represents a very large
(infinite) eccentricity. Essentially, columns subjected to pure moments behave
like doubly- reinforced beams. Assuming steel in tension yields (f;=f;) before
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0.85f;
b 0.003 | c c
I &5 G
a=0.85¢c <« C,
c
21in. l, ——— C’V’n
. - Z ——7
T e
k——161in.—] g >g,
Column section Strain distribution Stress distribution and forces

Figure 5.25 Strain, stress, and force distribution of column subjected only to moment

concrete crushes in compression, the stress in the compression steel has to be less
than the yield stress (fC’ < fv> to make the sum of the compression forces equal

to the tensile force. This is because the areas of the tension steel and the
compression steel are equal (A; = A/ = 2.54 in.?), and if both of them yield,
the force in the concrete would have to be zero, which definitely cannot be true.

Figure 5.25 shows the strain and stress distributions of the section for this
condition. Because we do not know the exact level of strain in the tension steel,
we cannot determine the location of the neutral axis, ¢, by using similarity of the
triangles of Figure 5.25b. Therefore, determine c through the use of equilibrium
equations. First calculate the stress in the compression steel as a function
of c. From similarity of the triangles in Figure 5.25b:

gg ¢—3
0.003 ¢
~0.003(c —3)
o C

€5

Because €] < g, — f; = E¢{

£~ 20,000 x 0.003(c — 3)
K k)
C

(c—=3)

c

£l =87

The forces acting on the section are:
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Ci = 0.85f ab
C1 = 0.85(4)(0.85¢)(16) = 46.24c kip
= Allf —0.85f]

C, = 2.54[f! — 0.85(4)] =2.54 [87(62—_3) - 3.4}

(=3

C, =221 — 8.64 kip

T = A f, = 2.54(60) = 152.4 kip
Equilibrium of the forces acting on the section (Figure 5.25c) requires that:
Ci+Cy=

46.24¢ +

2Ue=3) ges—1504
C

Simplifying the above equation, we get:
46.24¢* + 60c — 663 = 0

which is a second order equation. Solving for c:

60+ 1/(60)” + 4(46.24) (663)
2(46.24)

c =
c=13.2in.

The stress in the compression steel (f7) is:

(c—3) 87(3.2-3)
c 3.2

1 =5.44 ksi

£l =87

and the magnitude of the forces acting on the section is:

C; =46.24c = 46.24(3.2) = 148.0 kip
221(c = 3) 864 221(3.2 -3)
c 3.2

T =Afy= 2.54(60) = 152.4 kip
Ci+C,=148.0+52=153.2kip

C, = — 8.64 = 5.2 kip

The small difference between C + C, and T is due to round-off errors and is
negligible. To calculate the nominal moment capacity, M,, we determine the
moment of these forces about the tensile steel:
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0.85¢

M,,:Cl(d— >+C2(d—3)

0.85 x 3.2
2

M, = 2907 + 93 = 3000 in.-kip/12 = 250 ft-kip

M, = 148 (21 - ) +52(21 —3)

Thus, for case 4, P,=0 and M,, =250 ft-kip.

5. Normally, concrete columns are not subjected to pure tension. To obtain a
complete picture of the effects of loads and moments, however, we consider
the case of a tensile member. Concrete cracks in tension and does not provide
any strength. Therefore, the column’s tensile strength is provided only by the
steel (4 #10 bars):

P, = —A,f, = —5.08(60) = —305 kip

Thus, for case 5, P, =-305 kip and M,,=0. The negative sign means that the
column is in tension.
The following table shows the calculated values of P,, M,,, and corresponding e.

M,, (ft kip) P, (kip) e (in.)
0 1,593 0
415 995 5
544 566 11.53
250 0 00
0 —305 0

Figure 5.26 shows the plot of these values to better visualize the results
obtained. The horizontal axis in the graph is M,, = P,e and the vertical axis is P,.

The graph shows the combinations of moment, M,,, and load, P,, at which the
column may fail. This graph is called a column interaction diagram. The
interaction diagram in Figure 5.26 is a unique property of a specific column
with given dimensions, materials, and amount of reinforcing. When the load is
applied with no eccentricity or moment, the column has a nominal axial load
capacity of P,= 1,593 kip. As the eccentricity, e, increases (or the moment on
the column increases), the axial load capacity of the column decreases until it
reaches the balanced failure condition, which is when the failure of concrete in
compression and the yielding of steel in tension occur simultaneously. Values of
P, and M,, above the balanced condition cause the concrete to crush in compres-
sion (g, = 0.003) before the steel yields in tension. Therefore, the failure of the
column section in this region is compression controlled. If the eccentricity
increases from the balanced condition (e;), the failure of the section occurs at
decreasing values of P, and M,. This may seem odd; however, when the
eccentricity increases from a balanced condition (e > e,), the steel in tension
yields before concrete in compression crushes (i.e., the element, in fact, may act
as a flexural or bending member). In this region the failure of the section is
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Pn(kip)
A
2,000 -
(0, 1,593)
1,500 [
1,000 - (415, 995)

ension-controlled

|
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Figure 5.26 Column interaction diagram of Example 5.6

5 Columns

ompression-controlled

. c
0.
6=2) (544, 566)
500 - M _ 41531 A
b

Balanced condition
M, = Ppe (ft-kip)

tension controlled. Because the column fails in tension in this region, an increas-
ing compression force, P,, keeps the section from failing and results in an

increase in its moment capacity, M,,, as well.

The interaction diagram also shows that, if we draw a line connecting a point
on the diagram to the origin (P, =M, = 0), any point on this line represents a P
and M combination that has the same eccentricity (e), because the ratios of P and

M are constant.

Here we repeat Example 5.6 to gain a better understanding of the interaction
diagram and its relationship to the distribution of strain across the section. This
time, however, we examine P, and M,, values for different levels of strain in the

tensile steel (g,).

Example 5.7 Determine M, and B, from the interaction diagram of Example 5.6
for the following different levels of strain in the tensile steel: (1) &,=0.0;
(2) &=0.25e; (3) &=0.50e,; (4) &=0.75¢,; (5) e=¢,; (6) &=0.0035;

(7) £,=0.0040; and (8) g,=0.0050.
Solution For f,, = 60,000 psi, the yield strain, €,, is:

£, 60,000
== TR 0.00207
& T E, 29,000,000

The stress in the steel depends on its strain level:

if & <ey,—f =Es¢g
if 8,2£y—>fszfy

(5.18)

Now, we consider the distribution of strain and stress on the column section, as

shown in Figure 5.27.



5.8 Behavior of Short Columns Under Eccentric Loads

329

a l—p=16in.—] b 0.003 ¢ 085f;
y
3in.} &
Gy
a= 0.85c C
gl |° p N 1
n I
e x & e 1
XT L O 2 /A i o
o
9in
. X L —— —>T
3in £
S
€t
Column section Strain distribution Stress distribution
and forces

Figure 5.27 Strain, stress, and force distribution of column of Example 5.7

In order to determine P, and M,, for different values of €;, we must calculate the
stress levels of the steel in tension (fy) and in compression (f;). The tensile stress
of steel can be determined from the strains (g¢,) given in the problem statement.
To calculate (f;), however, we must determine the location of the neutral axis

(c) for each strain case.
From similarity of the triangles of Figure 5.27b:

c 7d—c
0003 g
0.003d  0.003(21)  0.063
“T0003+e 0003+e 0003+e

The strain in the compression steel (g;) is:

c _c— 3
0.003 ¢!
o — 0.003 (c — 3)
C

if e <ey, —f =Eg
if e >e —f =f

The forces acting on the section shown in Figure 5.27c are:
C,=0.85f'ab = 0.85(4)(0.85¢)(16) = 46.24c kip
Cy, =f/A{ — 0.85f/A{ =f/(2.54) — 0.85(4) (2.54)

= 2.54f' — 8.64 kip
T = A,f, = 2.54f, kip

(5.19)

(5.20)
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Equilibrium requires that:

P,=Ci+C,—T

P, = 46.24c¢ + 2.54f] — 8.64 — 2.54f, kip (5:21)
Taking moments about the location of the tensile force:
a
Py(e+9) = C, (d - 5) 4 Ca(d—3)
0.85¢ ,
P,(e +9) =46.24c | 21 — + (2.54f) — 8.64)(21 — 3) (5.22)
_46.24¢(21 — 0.425¢) + 18(2.54f/ — 8.64) _9
N 46.24c + 2.54f! — 8.64 — 2.54f,
M, =P (5.23)

12

For each strain case we can use Equations (5.18), (5.19), and (5.20) to determine
the location of the neutral axis (c) and the stress in the tensile and the compression
steels (f; and f/). Having c, f,, and f;, we can calculate P,, e, and M, from
Equations (5.21) to (5.23). The table below shows the results for each case:

Case & s; ¢ (in.) M,, (ft-kip) P, (kip) e (in.)
1 0.00 0.0026 21.0 357 1,115 3.84
2 0.25(0.00207) 0.0025 17.91 439 934 5.64
3 0.5(0.00207) 0.0024 15.62 488 790 7.41
4 0.75(0.00207) 0.0023 13.84 520 670 9.32
5 1.0(0.00207) 0.0023 12.43 544 566 11.53
6 0.0035 0.0021 9.69 517 440 14.1
7 0.0040 0.0020 9.0 502 402 14.96
8 0.0050 0.00186 7.875 473 340 16.7

Figure 5.28 shows the interaction diagram generated from the results of Exam-
ples 5.6 and 5.7. This diagram is the same as the one shown in Figure 5.26. The
levels of the tensile steel strain (g,) and stress (f;) along the curve are also shown.
This interaction diagram shows the maximum nominal capacity of the column. Any
combination of P, and M, that lies inside the curve (e.g., point A) is safe for the
column; however, any combination of P, and M, that lies outside the interaction
diagram (e.g., point B) will cause the column to fail.

5.9 ACI Column Interaction Diagrams

In Examples 5.6 and 5.7, the rectangular column had 4 #10 bars. But if we increase
the area of reinforcements (e.g., to 8 or 12 #10 bars), the shape of the interaction
diagram would remain approximately the same but would have larger values of P,
and M,,, as shown in Figure 5.29.
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Figure 5.28 Column interaction diagram of Example 5.7

> M,

Figure 5.29 Column interaction diagrams for different areas of steel reinforcements

> M, = Ppe (ft-kip)
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Column interaction diagrams exist for rectangular and round columns with
different reinforcement arrangements, concrete compression strength, and steel
tensile strength. These curves are similar to the one shown in Figure 5.29. To
make these curves more versatile, however, the P, values are substituted by

P L . .
K, = /—", which is a nondimensional parameter as long as the values are sub-
Il Ag
stituted with consistent units (e.g., kip and inches). Also, R, = 7 /A" 7 is used for the
c8

horizontal axis instead of M, which is a nondimensional value. Each set of curves
is made for a specific arrangement of reinforcement, compressive strength of
concrete (f), yield strength of steel (f,), steel ratio (p,), and parameter y, which
represents the spread of reinforcements in the column:

h/

where /' and & are the distance between the center to center of the extreme steel in
the column, and the total depth of the column, respectively, as shown in Figure 5.30.
The dimensions /%’ and h are measured perpendicular to the bending axis of the
column.

Figure 5.31 shows the interaction diagram for a rectangular column with steel
reinforcement uniformly distributed around the column. It is from the ACI Design
Handbook, SP-17(11). In Figure 5.31, f/ =4 ksi, fy=060 ksi, and y=0.6.
The interaction diagrams are for p, = 0.01-0.08. Figure 5.32 is a similar interaction
diagram for a circular column with f’ =4 ksi, f,=60 ksi, and y=0.8. The
diagrams show the levels of stress in the tension steel (f;) as a fraction of the steel
yield strength (f,). In addition, they indicate tensile strains of &,=0.0035 and
0.0050. Another value that is given is K ;,,x, Which is the maximum useable nominal
axial load capacity for a tied column:

: : Bending axis
Bending axis \ /

Figure 5.30 Definition of parameter y(y = #'/h)
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Figure 5.31 ACI column interaction diagram [SP-17(11)]
Kinax = 0.80[0.857 (4 — Ay) + A ;] (5.25)

In essence K,.x represents a cut-off level for K,, (and consequently for B,). The
value of K, in the diagrams is defined for tied columns, as just mentioned. For a

0.85
spiral column, the value from the diagrams has to be multiplied by 080" 1.0625

(i.e., the ratio of the limiting coefficients that account for accidental moments).
These computer-generated interaction diagrams assume the reinforcement to be a
thin rectangular tube for rectangular cross sections that have longitudinal reinforce-
ments distributed along all four faces, and a thin circular tube for patterns of
longitudinal steel bars arranged in a circle.
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Figure 5.32 ACI column interaction diagram [SP-17(11)]

5.10 Design Axial Load Strength (¢P,),
and Moment Capacity (¢pM,,)

The latest ACI column interaction diagrams [ACI Design Handbook, SP-17(11)]
take no consideration of the strength reduction factor, ¢, which is a significant
change from previous versions. This change is intended mainly to make the dia-
grams as universal as possible.

As in the case of beams, the design resisting moment of columns (Mp) and their
design axial load strength (Pg) are:

MR:q)Mn
PR:(I)Pn
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Figure 5.33 Variation of strength reduction factor (¢) with the net tensile strain in steel (g,)

where ¢ is the column strength reduction factor, which depends on the level of
strain in the tension steel. Figure 5.33 shows the column strength reduction factor as
a function of net tensile steel strain (g,) for tied and spiral columns. Most building
columns are compression controlled, that is, the concrete reaches the ultimate
useable compressive strain of 0.003 before the strain in the tensile steel reaches
the yield strain (¢,). The ¢ factor is constant for compression-controlled sections
(0.75 for spiral columns and 0.65 for tied columns). If the moment on the column is
relatively large compared to the axial load, the column section may be in the
transition zone. Then the ¢ factor varies between 0.75 for spiral columns, or 0.65
for tied columns, and 0.90 as &, varies between g, and 0.005. If &, is more than
0.005, the section is tension controlled, and ¢ is constant and equal to 0.9. Such a
section acts like a flexure member (beam) rather than a compression member
(column).

If the column section is compression controlled, we can easily calculate the
design resisting axial load, Pg, and the design resisting moment, Mz; however, when
the column is in the transition zone, we must calculate ¢ from ¢, as given below
from ACI 318-14, Table 21.2.2

¢ =0.75+40.15 (()((?();ityz,y) (spiral column) (5.26)
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b—————T T T

Figure 5.34 K, vs. ¢ diagram for the interaction diagram of Figure 5.31

(e — &) .
=0.654+0.25———= (tied col 5.27
¢ (0.005 —¢,) (tied column) (5.27)

These values have significance in only a small area of the interaction diagrams (i.e.,

the zone betweené = 1.0 and &,=0.005).

Graphs that relate ¢ and K, have been developed for each interaction diagram to
simplify the computation of ¢. Figures 5.34 and 5.35 are examples of such graphs
and are to be used in conjunction with the interaction diagrams of Figures 5.31 and
5.32, respectively. Appendix A contains additional interaction diagrams and their
corresponding K, versus ¢ graphs.

5.11 Analysis of Short Columns with Large Eccentricity
Using Interaction Diagrams

The analysis of columns with large eccentricities can be approached in many
different ways. A possible approach is to ask the question, “Is a particular column
safe or not for a given set of P, and M,?” Another approach is to determine the
largest factored axial load that the column may take with a given moment. Yet
another approach is to ask the question, “What is the largest eccentricity (e) that a


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Figure 5.35 K, vs. ¢ diagram for the interaction diagram of Figure 5.32

given factored load may safely have?” Regardless of the approach, one can always
take advantage of the interaction diagrams.

The value of ¢ is constant if the section is compression controlled. For columns
in the transition zone, however, ¢ must be adjusted accordingly. Therefore, the
procedures for the analysis of columns in compression—controlled and non—com-
pression-controlled zones are somewhat different.

5.11.1 Analysis of Columns with Compression-Controlled
Behavior

The following are steps for the analysis of compression-controlled members which
are summarized in Figure 5.36:

Step 1. Calculate and check the column steel ratio, p,:

A
0.01 <p, === <008
8

The strength reduction factor, ¢, is equal to 0.65 for tied, and 0.75 for

spiral columns.
/

h
Step 2. Calculatey = m (see Figure 5.30) and the nondimensional factors K, or R,;:

K, = P

TOfA,
M,

R,=—2%_

Of Agh
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Analysis of Columns
(short with large eccentricity)
(compression - controlled section)

l

" Calculate and check the steel ratio:
0.01< py<0.08
¢ = 0.65 (tied column)
¢ = 0.75 (spiral column)

l

2 Calculate ¥ L K, Py (or R, M, )

u = y = ,_ = ’—

h 7 ofpAg " ofeAgh

Select the interaction diagram based onf; , f,, and v , and find R, (or K;)
for the computed p, (Appendix A).

Is the column in the
compression-
controlled zone of
the interaction
diagram?

Use the flowchart for a
non—compression-controlled
section (Figure 5.37).

8 Caloulate P, = KA, Pg=0P,

M, =Rof; Agh', Mg = 0M,,

S The section is ok.

Check the ties/spirals. The section is N.G.

Figure 5.36 Flowchart for the analysis of columns with compression-controlled section

If we know both P, and M,,, then we may take these calculated K,, and R,,
values as the “demand” on the section. We now enter into the appropriate
interaction diagram (based on f/, f,, and y) and locate the point defined by
the calculated K, and R,,. If this point falls within the curve defined by p,
(calculated in step 1), the P, and M,, combination is safe for this column.

Another approach is to calculate only K,, (or R,)) and, from the appropri-
ate interaction diagram, obtain the corresponding R, (or K,) using the
calculated p,.
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We need to consider two important points here:

1. If the point defined by the calculated K, or R, on the interaction

diagram falls between K,,,x and ‘]};: 1.0 (balanced condition), the
y

column section is compression controlled, and the assumed ¢ is correct.
Therefore, proceed to step 3.

2. If the point defined by the calculated K, or R, falls belowj:—s = 1.0, the
y
column section is either in the transitional or the tension-controlled zone.
This means that the ¢ value used in step 1 is not correct and must be
adjusted. We need to proceed with the steps for the analysis of non-
compression-controlled columns, as discussed in step 2a and summa-
rized in Figure 5.37.

Step 3. Calculate the axial load (or moment) capacities:

P, =K, f/A,, Px = $P,
M, = R, f/Ah, Mg = M,

¢ =0.65 for the tied columns and 0.75 for the spiral columns.

Step 4. Check the column capacity. For the column to be adequate, its axial load
capacity, Pg, has to be greater than the applied load, P, or the column
moment capacity, Mg, has to be larger than the applied moment, M,

PRZPM or MR ZMM

Step 5. Check the ties or spirals. If the section is ok, we can check the ties or spirals
as we did for the columns with small eccentricity (step 5 of Figure 5.16).

5.11.2 Analysis of Non-compression-Controlled Columns

The following are steps for the analysis of non-compression-controlled columns,
which are summarized in Figure 5.37.

Step 1. Same as that for compression-controlled columns.

Step 2a. Estimate the ¢ value. If the column is not compression controlled, the
assumption made for the ¢ factor is not correct. A larger ¢ value, which
will increase the Pr and Mg capacities, can be used in the non-
compression-controlled region of the interaction diagrams. The ¢ factor,
however, varies with the tensile steel strain (g;), as shown in Figure 5.33.
Because the value of ¢, at this stage is unknown, we estimate a new ¢
value and recalculate K,, or R, if only one of them is given.
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(short with large eccentricity)
(non—compression-controlled section)

Analysis of Columns

A

2a.
Estimate the ¢ value from the
appropriate K|, versus ¢ diagram.

y

Calculate K, =

—Pu_ orR, = M,
dRA, T OfAh

y

Sele

fi, f,
computed py (Appendix A).

ct the interaction diagram based on
,and Y, and find R, (or K}, for the

y

" Recalculate the ¢ value
using the K|, versus ¢ diagrams.

Is the new ¢
No value the

same as the

previous one?

Yes
Yy

5 Columns

3. Calculate P, = K,f;Aq, Pg = &P, or

M, — R,f Agh, Mg = M,

y

4.
Pr=P, No

Yes
or

The section is ok.

Check the ties/spirals.

Mg =M,?

The section is N.G.

Figure 5.37 Flowchart for the analysis of columns with non—compression-controlled section
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Py

K, =
¢j;\/4 Ag

Rn — - u
bl Agh

Use f/, f,, and v to select the appropriate interaction diagram. Having
K, or R, and, p, we can either locate the corresponding point on the
diagram, when both K, and R,, are known, or obtain the corresponding
R, (or K,)), when only one of them is known.

Step 2b. Recalculate the ¢ value. At this point, recalculate the ¢ value using the K,
value obtained in step 2a. We can determine the corrected ¢ factor by
using K, versus ¢ diagrams such as those in Figures 5.34 and 5.35. If the
new ¢ factor is close to the previous estimate, proceed to step 3. Otherwise,
move back to step 2a and use the new ¢ factor to revise K,, or R, then
repeat the process.

Step 3. Calculate the column’s resisting load and moment:

P =K.flA,  Px=0P,
M, =R.f/Ah Mg =M,

Step 4. Check the adequacy of the column. The following relationships must be
satisfied for the column to be adequate:

PR ZPM or MRZMM

Step 5. Check the ties or spirals. If the column section is adequate, we can check
the ties or spirals (step 5 of Figure 5.16).

Example 5.8 Determine the maximum axial load that can be applied on the short
tied column section shown below (this is the column used in Example 5.1). The
applied dead and roof live load moments are M = M; =35 ft-kip. Use f/ = 4,000
psi and f, = 60,000 psi.

f——14 in.——]

8 #8 — 11&
o #3 @ 14n.
]

11/, in. cover (typical)
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Solution
Step 1. Check the column steel ratio, p,:

Ay 632
=0 2220032

Pe =4, ~ 196
0.01 < p, = 0.032 < 0.08 .".ok

h = 14in. — Table AS.1 — Maximumof 12#8bars ..ok

This is a tied column; therefore, ¢ =0.65.
Step 2. Select the interaction diagram to be used.

W =14 —2(1.5) — 2(}s) — 2(}») = 9.25in.
y=Hh/h=925/14 =0.66
M, = 1.2Mp + 1.6M;, = 1.2 x 35+ 1.6 x 35 = 98 ft-kip
M, 98 x 12

= =0.165
Of/Ah  0.65(4)(196)14

R, =

fl =4 ksi, fy =060 ksi, and y = 0.66; therefore, we use the interaction dia-
grams of Figures AS5.1a and AS5.2a and interpolate:

Fig.A5.1a(y = 0.60) — p, = 0.032, R, =0.165 — K, = 0.64
Fig.A5.2a(y = 0.70) — p, = 0.032, R, =0.165 — K, = 0.74

Interpolating between the above K, values for y = 0.66:

(0.74 — 0.64)(0.66 — 0.60)

K, = 0.64
+ 0.1

=0.70

The point p, =0.032 and R, =0.165 on both the interaction diagrams is in
the compression-controlled zone; therefore, proceed with step 3.
Step 3 and 4 The nominal axial load capacity, P, is:

P, =K, f;/Ag
P, = 0.70(4)(196) = 549kip
Pe = P, = 0.65(549) = 357kip

If we compare P =357 kip with the result of Example 5.1 for the same
column but with small eccentricity, Pr =533 kip, the effect of added
moment on the reduction of the column axial load capacity is evident.

Step 5. The procedure of checking the ties is the same as that shown in
Example 5.1.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Example 5.9 Check the adequacy of the short spiral column shown below (the
same as the one used in Example 5.2) if it is subjected to Mp =36 ft-kip and
M, = 43 ft-kip. Use Pp = 200 kip, P, = 225Kip, f = 4000 psi, and f, = 60,000 psi.

6 #9

3/g in. diameter @ 2 in.
16 in. diameter

Solution
Step 1. Check the column steel ratio, p,:

Ay 60
S Y
Pe =74, “2011 003

0.01 < p, =0.03 <0.08 ..ok

If we assume that the column is compression controlled, ¢ =0.75.

Steps 2, 3 and 4. To show the different ways of solving this problem, steps 2, 3, and
4 steps are combined. However, one can choose one of these methods to
solve the problem. Because we have both the axial loads and the moments,
we proceed as follows:

W =16 —2(1.5) — 2(%) — 2(1.128/2) = 11.12in.
y=H/h=11.12/16 = 0.70
M, =12Mp + 1.6M;, = 1.2 x 36 + 1.6 x 43 = 112 ft-kip
P, =12Pp + 1.6P;, = 1.2 x 200 4 1.6 x 225 = 600kip

M, 112 x 12
R, = = =0.14
" df/A 0.75(4)(201.1)16
P
K, = 600 0.99

u = =
Of/A,  0.75 x4 x 201.1

If we enter these values into the interaction diagram shown in
Figure AS5.10a, the point falls in the compression-controlled region. The
point representing K, =0.99 and R, =0.14 requires a p, value of about
0.05. The provided value is only 0.03. Thus, the column is not adequate.

Alternatively, to calculate the maximum factored load that may be used
in conjunction with the given moments, proceed as follows.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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For R, = 0.14 and p, = 0.03, the corresponding K,, using Figure A5.10a is
K, =0.66
Thus
P, =K, f/A; = 0.66 x 4 x 201.1 = 531kip
and
Pr = P, = 0.75 x 531 = 398kip

Therefore, another easy way of solving the problem is just to compare P,
with P, R

Pr =398kip < B, = 600kip .".N.G.

In Example 5.2, the axial load capacity of this column, Pg, was 652 kip,
which was satisfactory. Comparison of the axial load capacities again
shows the significant decrease due to the applied moment.

Alternatively, the following question could be asked: “How large an
eccentricity may the given loads safely have?” Then we proceed as
follows.

For K,,=0.99 and p, =0.03, the corresponding R,, from the interaction diagram is

R, =0.08
Thus
M, = Pe =R, f/A;h =0.08 x 4 x 201.1 x 16
= 1,030kip-in = 85.8 ft-kip
and

Mg = OM, = 0.75 x 85.8 = 64.4ft-kip
P, = 600 kip (see above calculation), so

My 64.4x 12
P, 600

e= = 1.291n.

Example 5.10 Determine whether the tied column shown below is adequate. The
applied factored axial load and bending moment are P, = 70 kip, and M, = 60 ft-kip,
respectively. Use f! = 4ksi, and f, =60 ksi. Also, check the adequacy of the ties.
The typical clear cover is 1.5 in.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1

and K,=0.19 falls in the transition zone (i.e., the region between
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} 12in. |

8 #6 — 12in.

#4 @ 12in.

Solution

Step 1. Check the steel ratio, p,:

8#6bars — Table A2—9 — A,, = 3.52in?
Av_ 392 04

0.01 < 0.024 < 0.08 ..ok

Pe =4,  12x 12

345

We assume that the column is compression controlled; therefore, ¢ = 0.65.

1 .
Step 2. Wo=12-2(15) —2(5) —2(?) =7.25in.
7.25
=222 0.60
12
K, = —n
"brA,
70
K, =0.19

T 0.65(4) (12 x 12)

Figure A5.1a is the interaction diagram for f = 4ksi, f, =60 ksi, and y =0.60 with

y

uniformly distributed reinforcements for a rectangular column. The point for p, = 0.024
}3 =1.0 and
]

€, =0.005). Therefore, continue with the analysis for columns with non-compression-
controlled sections using the flowchart of Figure 5.37.

Step 2a. Use Figure A5.1b with p, =0.024 and K, =0.19 to obtain the strength

reduction factor, ¢:

$ = 0.735


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Therefore, the new value of K, is:

P, 70
df/A,  0.735(4.0)(12 x 12)

K, = =0.165

Using p, =0.024 and K,, =0.165, from Figure A5.1a, we find that the
section is in the transition zone and R,, =0.155.
Step 2b. We use the K, versus ¢ graph of Figure A5.1b to obtain the new ¢ value
with the new values of K,, and p,. The new strength reduction factor, ¢ is
0.76. Because this new ¢ factor is different from the one obtained in step
2a, repeat the process:

P, 70

Kn = =
GfA,  0.76(4.0)(12 x 12)

= 0.160

Using p, =0.024 and K,, = 0.160, from Figure A5.1a, we find that the
section is in the transition zone, R,, = 0.152. From Figure A5.1b, $ =0.77.
Repeat the process as this new ¢ factor is different from the previous
value:

Vs 70

Kn = =
bfA,  0.77(4.0)(12 x 12)

=0.158

From Figure AS5.1a, we can conclude that the section is in the transition
zone and obtain R,, = 0.152. Use Figure A5.1b to obtain ¢ = 0.77. Because
the new ¢ value is about the same as the one obtained in the previous
iteration, we proceed with step 3.

Step 3.

M, =R, f!Ash

0.152(4)(12 x 12)(12)
M, =
12

M, = 87.6ft-kip

Mg = &M, = 0.77(87.6) = 67.5ft-kip
Step 4.

My = 67.5ftkip > M, = 60ft-kip ." ok

Therefore, the section is adequate.
Step 5. Check the adequacy of the ties:

Smax = mln{ 16d17’ 48df? bmin}
= min{16(%),48(}4), 12in.}
min{12in.,24in., 12in.}

max

* max

Therefore, #4 @ 12 in. is ok.
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Step 6. Check the tie arrangement using Figure 5.12:

12 —2(1.5) — 2(0.5) — 3(0.75)
2
2.91in. < 6in. .".One set of ties is required.

Clear space = =29in.

Therefore, the tie arrangement is ok.

5.12 Design of Short Columns with Large Eccentricity

The design of columns with large eccentricity, similar to the analysis, depends on
the column behavior under the load and moment. If the column is compression
controlled, the ¢ factor is constant, and the design process is straightforward. If the
column is not compression controlled, however, the ¢ factor varies with the tensile
strain in the steel (g,). Thus, using the ¢ value as if the column were compression
controlled would lead to a conservative design. An iterative approach is necessary
to calculate the correct ¢ value.

5.12.1 Design of Columns with Compression-Controlled
Behavior

The following are steps for the design of compression-controlled columns, which
are also summarized in the flowchart of Figure 5.38:

Step 1. Determine the factored loads and moments acting on the column. The loads
on the column come from the beams and slabs connected to it. The
moments acting on the column are due to either gravity loads or lateral
loads such as wind or earthquake loads. If gravity loads are considered (P,
is the roof live load, and M;,. is the roof live load moment):

P,=12P,+1.6P,+05P,  (ifP. > 1.83P,)
P,=12P,+1.6P, +10P,  (ifP, < 1.83P.)
M,=12Mp + 1.6M, +0.5M;,  (if My > 1.83M,,)
M, =12Mp+1.6M, +1.0M,  (if M, < 1.83M,,)

Step 2. Estimate the column size. In most cases, the column size is preselected
based on architectural considerations or ease of construction. If it is
necessary to estimate the column size, however, we must make reasonable
assumptions because both the area of the column (A,) and the area of steel
(Ay;) are unknown. Different simplifying assumptions may be used to
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Design of Columns
(short with large eccentricity)
(compression-controlled section)

|

Determine P, and M,

|

Estimate the column size:

___ P

~ 0.80(0.85f)
__ Py

97 0.85¢(0.85f,)

|

Tied column: A, (¢=0.65)

Spiral column: A (¢=0.75)

3. Assuming h’ = h-5 in., calculate:
h P, M,
= = ,and R, = U— and
V= K = onay 2 0= G agn 2N

find p,from the interaction diagrams.

Is the column in the
compression-
controlled zone of
the interaction
diagram?

Revise the column
size or bar size/
arrangement.

y

Use the flowchart for
non—compression-controlled
sections (Figure 5.39).

Calculate the area of steel,
Ast = pgAg, and select the bars.

|

Can the reinforcing
fit into the column?

6. Design the ties/spirals.

Figure 5.38 Flowchart for the design of compression-controlled columns

obtain a preliminary size. The most common assumptions are that the
column’s capacity is the same as that of an axially loaded column and
that the area of steel, A,,, is neglected. The latter is made in an attempt to
account for the effects of the moments. The preliminary design equations
are given below:
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Pr = 0.80 [0.85 £ (A — Ay) + fyAs,} (tied column)
Pr =085 [0.85f(A, — Ay) +£,Ay]  (spiral column)

Assuming A, =0, these equations become:
Thus:

Pr = 0.8$(0.85f/A,)  (tiedcolumn)
Pr = 0.85¢ (0.85f/A,)  (spiral column)

When designing columns, Py = P,. Therefore, if this substitution is made,
we can calculate the column area, A,, as follows:

By .
Ag = W (tled COlumn)
P

A, =— % spiral column
¢ = 085p(08sy) \Spiralcolumn)

After calculating the gross area of the column, A,, we can select the
column size. Round the column size to the nearest inch.

Step 3 and 4 Calculate v, K,,, and R,,. In order to utilize interaction diagrams it is
/

h . .
necessary to calculate y = T We assume that the centerline of the longi-

tudinal reinforcing is 2.5 in. from the face of the column.
Thus

W =h—2025)=h—>5in.

Using f/, f,, and y, we select the appropriate interaction diagram, and then
compute K,, and R,;:

I M,

K, = R,
L dflA L GfIAh

Entering the interaction diagram with the known values of K, and R,,, we
determine whether the column is compression controlled. If the column is
not compression controlled or if R, is out of the range of the interaction
diagram, we proceed to the flowchart for the design of non—compression-
controlled sections (Figure 5.39). Otherwise, use K,, and R,, to obtain p, and
move to step 5.

Step 5. Calculate the required area of steel, A,

ASI = pgAg
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Select bars using Tables A2.9 and AS.1. If the selected bars can fit into
the column based on Table AS.1, we proceed to step 6. Otherwise, increase
the column size, which will increase the space between the bars, and
repeat the process starting back in step 3.

Step 6. Design the ties or spirals. This step is the same as that for columns with
small eccentricity (as shown in Figure 5.17).

5.12.2 Design of Non-compression-Controlled Columns

The following are steps for the design of non—compression-controlled columns,
which are also summarized in the flowchart of Figure 5.39.

Steps 1-3 are the same as those for compression-controlled columns.

Step 4a. Assume a ¢ between 0.75 and 0.90 (say ¢ = 0.80), because the column is
not compression controlled.

Step 4b. Check the column size. If the column is in the non-compression-controlled
region or R, is completely outside the range of the interaction diagram
(due to very large moment), the ¢ factor used in step 2 of the design of
compression-controlled columns is overly conservative. If R,, is out of the
range of the interaction diagram, we need to increase the column size, as
the moment on the column is too large for the column dimensions. If this is
the case, we proceed to step 4c. Otherwise, the column dimensions are ok
and we go directly to step 4e.

Step 4c. If the column size is not enough for the applied moment, we need to resize
it. In order to do so, assume an R,, value in the transition zone for a steel
ratio of p, about 0.02. Recall that an estimated p, = 0.03 was used for the
design of columns with small eccentricity. We try to work with a smaller
steel ratio for columns in the non-compression-controlled zone, however,
as they behave more like flexural members.

Step 4d. Resize the column. The resisting moment of the column, My, is:

Mg = OR, f/Ach
To resize the column, make M, = M,, and solve for A i as shown below:

M, = ¢R, f!Ash

Ah=—"
T OfIR,

We select the dimensions for a square column. For a rectangular
column select one side of the cross section, either the width (b) or depth
(h), and solve for the other dimension. Note that selecting a larger h value
(elongating the section in the direction of bending) is more beneficial.
Round the column sizes to the nearest inch.
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Design of Columns
(short with large eccentricity)
(non—compression-controlled section)

4a. Assume a ¢ value between
0.75 and 0.90 (start with ¢ = 0.80)

Is the point on
the interaction diagram
within the range of
curves?

4c.
¢ Select R, in the

transition zone for pg = 0.02.

4e. H
Calculate y = ry and: 4d. Recalculate the
R K — P, column size (h):
" oA, Ahe M
__M, 9 ofR,
" ohAGh

4. Use the interaction diagrams to calculate pg .
Also, find ¢ from the K|, versus ¢ diagrams.

5.

Is ¢ the
same as the
previous value?

6. Design the ties/ Calculate the area of steel,
spirals. Ast = pgAg, and select the bars.

Figure 5.39 Flowchart for the design of non-compression-controlled columns

Step 4e. Determine vy, K,,, and R,. Once you know the new size of the column,
/

h
determine y = n (As in step 3, assume 4 =h—2(2.5) =h-5 in.). Also,

calculate K,, and R, as

Fy M,

R,
bf'Ag b Agh

K, =
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Step 4f. Obtain p, from the appropriate interaction diagram, and update the

Step 5.

Step 6.

¢ value. To do so, use v, f/, and f;» and the assumed ¢ value to select
the appropriate interaction diagram. Then use the values of R, and K,
(determined in the previous step) to obtain p, from the interaction
diagram. Also, determine ¢ from the K,, versus ¢ diagram.

Determine whether convergence has been achieved. If the new ¢ factor is
not approximately the same as the one obtained in the previous cycle,
repeat the process with this new ¢ value starting in step 4e. Repeat the
procedure cycle until the ¢ value converges. After achieving convergence,
compute the required area of steel by using the steel ratio, p,, determined
in the last cycle:

Ay = pgAg

Select the reinforcing bars using Table A2.9 and check the layout using
Table AS.1.
Design the ties or spirals. This step is similar to that of the design of
compression-controlled columns.

Example 5.11 Design a short tied square column to carry Pp=300 Kkip,
P, =175 kip, P, =80 kip, Mp =150 ft-kip, M; =90 ft-kip, and M;,=32 ft-kip.
Assume f! = 4,000 psi, f,=060,000 psi, and that the main reinforcements are
distributed uniformly around the column edges.

Solution

Step 1. Calculate the factored load, P,, and the factored moment, M,,:

With reference to Equation 2.3d, since
1.83 P, =1.83(80)=1464k<P,= 175k

and
1.83M;, = 1.83(32) = 58.6 ft-kip < M = 90 ft-kip
therefore,

P, =1.2Pp 4 1.6P, + 0.5P,,
P, = 1.2(300) + 1.6(175) + 0.5(80) = 680 kip
M, = 1.2Mp + 1.6M; + 0.5M,,

M, = 1.2(150) + 1.6(90) + 0.5(32) = 340 ft-kip


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Step 2. Estimate the column size:

Ag=
£ 0.8¢(0.85£)

a 680
£ 0.8(0.65)(0.85)(4.0)
h= /Ay = /385 =19.6in.

.. Try a 20in. x 20in. column

= 385 in?

Step 3.
P Wo=h—2(2.5)=20—2(25) = 15in.
W15

Calculate K,, and R,;:

P 680

~ Bf/A,  0.65(4)(20 x 20)

R M _ 340(12)
" df/Ah 0.65(4)(20 x 20)(20)

K, =0.65

=0.20

Because f' =4ksi, f,=60 ksi, and y=0.75, interpolate between
Figures A5.2a and A5.3a. Enter these diagrams with the values of K,, and
R, to obtain the corresponding steel ratio, p,:

From Fig.A5.2a y=0.70 — p, = 0.04
From Fig.A5.3a y=0.80 — p, =0.034

Interpolation between the values for y =0.75 gives us:

0.034 + 0.04
pg = 72 - 0.037
Step 4. We now check our assumption for column behavior. Because the column is
in the compression-controlled region of the interaction diagram, our
assumption for the ¢ factor is correct. Go to step 5.
Step 5. The required area of steel, Ay, is:

Ay = p A, = 0.037(20 x 20) = 14.8in.”

Using Tables A2.9 and A5.1 — .. Use 12 #10 bars (A;,=15.24 in?)
Step 6. Design of the ties: Using #3 ties, the maximum spacing of the ties is:

Smax = min {16d},, 48d;, bmin }
Smax = min {16(1.27), 48(%), 20}
Smax = min{20.3in., 18in., 20in.} = 18in. .. #3@ 18in. ties.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Based on Figure 5.12, this column requires three sets of ties, as shown in
the figure below.

} 20 in. |

12 #10 —

20 in.

#3 @ 18in. —

Example 5.12 Solve Example 5.11 for a round spiral column. f;, = 60,000 psi.
Solution

Step 1. From Example 5.11, B, = 680 kip, and M, =340 ft-kip.
Step 2. Estimating the column size:

p— Pu

~0.85¢(0.85f)

680
A, = =314in.2
¢~ 0.85(0.75)(0.85)(4.0) n

A 314
h=24/-8=2,/——=20.0in.
V x 314 m

. Assume h = 20in. — A, =

Ag

Steps 3 and 4

W15
P P
Ky=——= =0.72
¢flA,  0.75(4)(314)
M, 340(12) —om

Ri=3% f/Ah  0.75(4)(314)(20)

Because y=0.75, we interpolate between the interaction diagrams for
y=0.70 and y=0.80. From Figures A5.10a and A5.11a — p, = 0.062
(compression-controlled zone). Although p, is within the allowable range
of 0.01-0.08, in practice a steel ratio of more than 0.04 will cause congestion
of reinforcements and is not acceptable. To make this point clear, continue to
step 5.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Step 5.
Ay = p,A, = 0.062(314) = 19.5in.>

We cannot fit this much steel reinforcement into a 20 in. diameter column,
based on Tables A2.9 and AS.1 (unless we use #18 bars, which are special-
ordered). Therefore, we should increase the column dimension by 2 in. to
h =22 in. and repeat steps 3 and 4:

Step 3 and 4 W =22-2(25) = 17in.
B
A, = ”(242)2 — 380in.2
Kn= q;;t;xg - 0.75(648)(2380) =060
R M 3002 o

Gf/Ah  0.75(4)(380)(22)
Using the interaction diagrams:

Fig. A5.10a y =0.70 — p, = 0.037 (compression controlled)
Fig. A5.11a  y=0.80 — p, = 0.032 (compression controlled)

Interpolating between the above values:

(0.037 — 0.032)(0.8 — 0.77)
0.1

p, =0.032 + =0.034

Step 5.
Ay = p,Ag = 0.034(380) = 12.9in.?

-.Use 13 #9bars (A, = 13.0in.%)

Step 6. Design the spirals. Assume /g in. diameter spirals:

he =22 —2(1.5) = 19in.

19)?
A= TS g2
4
A f!
Ps, min = 0.45 <_g — 1) <
’ Ach fyt
380 4.0
. =045(=——1)— =0.0101
ps,mm (284 ) 60


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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44,

ps_hS

ps, min —

0.0101 =

s =229in. — s = 2%in.
Sctear = 24 in. — ¥% in. = 17 < 3in. ..

Therefore, the spiral pitch (s) is:

4(0.11)
19(s)

Ps

4(0.11)
19(s)

s =2 1/4in.

The following is a sketch of the final design:

13 #9

=

| 22in. |

/g in. diameter @ 21/, in.

5 Columns

Example 5.13 Design a circular spiral column to resist P,=300 kip, and

M, =400 ft-kip. Use f/ =4ksi and f,=

0.02. The design of the spirals is not required.

Solution

Step 1. P, =300 kip, and M, =400 ft-kip.

Step 2. Estimate the column size (h):

Py

300

A
£ 0.85¢(0.85f7)  0.85(0.75)(0.85 x 4

[Ag /138.4
h=2 314 =13.3in.

. Try h = 14in.
n(14)?

i 154 in.?

A, =

60 ksi. Use a maximum steel ratio of
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Step 3. , )
h'=h—-2(2.5)=14-2(2.5) =9in.
o9
V=100
P, 300
K, = = =0.65
oflA,  0.75(4)(154)
M, 400(12
R, = (12) =0.74 > 0.30 .".Out of range.

Of/Ah  0.75(4)(154)(14)

Because R,, is out of the range of the interaction diagram, use the flowchart
for non-compression-controlled columns (Figure 5.39).

Step 4a. Assume ¢ = 0.80.

Step 4b. As noted in step 3, the value of R, is not within the diagram’s range;
therefore, proceed to step 4c.

Step 4c. In order to resize the column, we must have a reasonable value of R,,.
Using the interaction diagram of Figure A5.10a (f = 4ksi, f, =60 ksi,
and y = 0.70) for a steel ratio, p, = 0.02, we obtain the maximum value of
R,. This value is about 0.14. We use this value to select a reasonable size
for the column.

Step 4d. e M,
/R,
400(12) 4
Ah=—"2) 10,714
"= 0.80(4)(0.14) n
h?
™ Vn=10,714
()
h3
ET: 10,714 — K = 13,641in>
h=239in. ..Tryh=24in
Step 4e.
cp e W =24 — 2(25) = 19in.
K19 _

Calculate the nondimensional parameters K,, and R,

24)?
A, = “(4 V" _ 4s2in?
P, 300
K, — _ — 0207
Of/A,  0.80(4)(452)
M, 400(12
R, — 00012) 38

Ofl Agh - 0.80(4)(452)(24)


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Step 4f. Since f/ = 4 ksi, fy=060 ksi, and y=0.80, and the column is a round
section; therefore use the interaction diagram of Figure AS5.11a. Using K,
and R,,, we obtain a steel ratio, p, = 0.019. In addition, using the K, versus
¢ diagram of Figure AS5.11b and K, =0.207, we obtain a value of
¢=0.825.

Step 5. Because the new ¢ factor (0.825) is higher than that of the previous cycle
(0.80), repeat step 4e with the new ¢.

Step 4e. . P 300 o
" bfl A, - 0.825(4)(452) e
R, = M, 400(12) =0.134

Gf/Ah  0.825(4)(452)(24)

Step 4f. From Figure A5.11a, p, = 0.017. From Figure A5.11b, ¢ = 0.84.

Step 5. Because the new value of ¢ is close to that of the previous step (0.84
vs. 0.825), accept this value and calculate the area of steel (Ay,):

Ay =p, Ay =0.019(452) = 8.59in’

Using Tables A2.9 and AS.1, select 7 #10 bars (A,=8.89 in.2). The
following shows a sketch of the final design.

7 #10

| 24 in.

Note: The spiral was not designed.

5.13 Slender Columns

5.13.1 Column Buckling and Slenderness Ratio

Columns are divided into two classes based on their slenderness: short columns and
slender columns. Short columns crush under large axial force, whereas columns
with great slenderness may buckle before they fail in crushing.

Figure 5.40 shows a slender column subjected to an increasing axial compres-
sion force, P. As P increases the column may buckle (i.e., suddenly show large
lateral movement, see Figure 5.40). The stress at which the column starts buckling
is called the Euler buckling stress (fz):


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Reinforced concrete column ——

J

L

Figure 5.40 Buckling of a reinforced concrete slender column.
(Note: Reinforced concrete columns cannot usually be assumed to be pin-ended due to the
continuity of these members. Here we show a pin-supported column as a theoretical example.)

Je= LEZ (5.28)

)

E =modulus of elasticity of the concrete

k = effective length factor for the column

£, = the unsupported length of the column, which is the clear distance between the
floor slabs, beams, or other members that provide lateral support for the column

where

. . . I, . . .
r=radius of gyration of column section, equal to A_g in which /, is the

g

moment of inertia of gross concrete section neglecting reinforcement and
A, is the gross area of the column. The ACI Code (Section 6.2.5.1) suggests
a rounded value of r of 0.3/ for rectangular columns, and 0.25/ for circular
columns, where # is the dimension of the column in the direction perpen-
dicular to the axis of bending.

kt,
The term — is called the slenderness ratio. From the expression of the Euler

buckling stress we can see that as the slenderness ratio increases, the stress at which
the column buckles decreases. In other words, the column buckles at a lower stress
when it is more slender. The numerator of the slenderness ratio (k¢,) is called the
effective length, which depends on the unsupported column length (¢,), the type of
end supports (i.e., pinned, partially fixed, or fully fixed), and whether or not the
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Reinforced concrete column ——|

Column ——

Beam

—_

5 Columns

i/
\ Point of inflection
\
\
\
1
!
|
1 ke,
I
I
I
/
I
i
Point of inflection
0.

Figure 5.41 Relationship between relative member sizes and end conditions of columns

column is allowed to move laterally (i.e., unbraced or braced). The effective length
is the length of that portion of the column that lies between two points of inflection

of the buckled shape.

Column ends are connected to a foundation (at the base of the building), or to
slabs, beams and girders, or to both. Thus, there is no such thing as a true pin or a
fully fixed support for columns. The amount of the column’s fixity depends on the
relative stiffness of the building elements at the ends of the column. For example, if
the size of the beams and girders at the ends of column is small compared to the
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column size, the end supports can be assumed to be pinned because the beams and
girders at the ends will provide little restraint to the free rotation of the column ends
when buckling. This condition is depicted in Figure 5.41a. But if the size of beams
and girders is large compared to the column, the end supports may be treated as
fixed because the beams and girders will prevent the column ends from rotating, as
shown in Figure 5.41b. When the column’s ends are “pinned,” the entire column
buckles; as a result, the column’s effective length, k¢, is almost the same as the
column length, ¢,, in other words k= 1.0. When the column ends are “fixed,” its
buckled shape has two inflection points; thus, k¢, is smaller than ¢,. In the
theoretical case of perfect fixity, k¢, = 0.5¢, (i.e., k=0.5).

Another major factor influencing the effective length of a column is the type of
structural system. If a column is part of the lateral load carrying system, it is subject
to sidesway, which means it can have significant lateral motion and is called an
unbraced column. When other elements such as shear walls, however, are used as
the lateral load carrying system, the column will not have significant lateral motion
and is called a braced column. The ends of an unbraced column have significant
relative horizontal motion or sidesway. This relative movement is small when the
column is braced. A braced column is referred to as one without sidesway, and an
unbraced column as one with sidesway.

Sidesway affects the column’s effective lengths. Figure 5.42 shows two columns
with fixed-end supports. The column in Figure 5.42a is without sidesway and

a b
M7 — B v

o
o
5
=4
o
o
=
==
[0
o
=
o
=]

\\ /
\ T / Point of inflection

€y V ke, ¢ g

/

\— Point of inflection
4 T oz

Qr\\ Point of inflection

\
\
\

A w7z

Figure 5.42 Effective lengths for (a) column without sidesway, and (b) column with sidesway



362 5 Columns

theoretically its effective length is k¢, =0.5¢,. If the same column is subjected to
sidesway (unbraced), the effective column length, which is the theoretical length
between two points of inflection, is k¢, = ¢, as shown in Figure 5.42b.

5.13.2 P-A Effects

There is no such thing as a perfectly straight and vertical column. Applied moments
at the ends also bend the columns into a curvilinear shape. When a slender column
bends into a curve while subjected to an axial load, P, added moments, M, are
generated on the column. These moments have a magnitude of P multiplied by the
lateral deformation, A. This is called the P—A effect.

Figures 5.43 and 5.44 show P—A effects on columns. The P-A effects on
columns with sidesway are more severe than those on columns without
sidesway.

The ACI Code requires a magnification of moments on slender columns due to
P-A effects. ACI Code (Section 6.2.5) allows P—A effects to be ignored for

. . . . (ke .
columns without sidesway if the column’s slenderness ratio (—u satisfies the
r

following relationship (ACI Equation (6.2.5b)):

kb, M
<34+12-1

- 7 (5.29)

where M, is the smaller end moment. ﬁl is positive if M and M, are acting in the
2

same direction (column is bent into a double curve; see Figure 5.43b), and is negative
if M; and M, act in opposite directions (column is bent into a single curve;
see Figure 5.43a). The right side of Equation (5.29) is limited to a maximum value
of 40.

The ACI Code (Section 6.2.5) permits the effects of slenderness to be ignored for

ke,
columns with sidesway when — is less than 22. Figure 5.44 shows the P—A effects
,

on columns with sidesway.

Because of the complexity of the design of slender columns (as well as for
visual reasons), designers prefer to work with column dimensions that are not
slender. In general, we can ignore the slenderness effect of braced frames (columns

14
without sidesway) if Zu is equal to 10 or less on lower floors, and 12 or less on upper
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PXxA

Moment diagram

Column bent into a single curve by the end moments

i Moment diagram

Column bent into a double curve by the end moments

Figure 5.43 P-A effect on columns without sidesway superimposed over the end moments

by .
floors. For unbraced columns N must be smaller than 6 to have negligible slenderness

effects.

Designing slender reinforced concrete columns is a complex procedure.
Computer software is available to help the structural designer analyze and design
slender columns. The detailed discussion of this subject is beyond the scope of
this text.



364

5 Columns

Sidesway

M,
Moment diagram

Column with sidesway bent into a single curve by the end moments

b Sidesway
| AP
: PXA M,
; . ke
i N\ M, \
i
i \
i \
i
i
i L
i
i z
i

Moment diagram
Column with sidesway bent into a double curve by the end moments

Figure 5.44 P-A effect on columns with sidesway superimposed over the end moments

Problems

In the following problems assume concrete is normal weight unless noted
otherwise.
5.1. Calculate the axial load capacity, Pg, of the following columns with small

eccentricity. Use f/ = 3,000psi and f, =f,,= 60,000 psi. Determine whether
the ties/spirals are adequate based on ACI requirements. The clear cover is 1.5 in.
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f——12in.—f f——16 in.—] f—24in.—

a [ [ |
12in. 16in. 24 in.

|

#4 @ 18in. (three ties per set)

3/ in. diameter @ 2 in.
3/g in. diameter @ 2/, in.

f—16in.—] f——14in.——]

4 #10 #3 @ 12in. 8 #8 #3 @ 16 in. 12 #10

5.2. Rework Problem 5.1 for f/ =4,000psi and f/ = 5,000 psi. What is the
percentage of change in the axial load capacity for each case? Do not check
the ties/spirals.

5.3. Repeat Problem 5.1 for f,=40,000 psi and f,=75,000 psi. What is the
percentage of change in the axial load capacity for each case? Do not check
the ties/spirals.

5.4. The square reinforced concrete tied column shown below is subjected to a dead
load of 200 kip and a roof live load of 220 kip. Determine whether the column
is adequate. The clear cover is 1.5 in. The load’s eccentricity is negligible. Use
f = 4,000 psi and fy=160,000 psi. Do not check the ties.

k——16in.—]

T

16in.

8 #8 — JL

#3 @ 14in.
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5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5 Columns

Rework Problem 5.4 for the following circular spiral column. Do not check
spirals.

S/g in. diameter @ 2 in.

8 #8
f« 16 in. .

Compare the P determined in this problem with that of the square column of
Problem 5.4.

Determine the required reinforcements for a 12 in. X 12 in. tied reinforced
concrete column subjected to a dead load of 20 kip and a roof live load of
30 kip. Assume that the loads have small eccentricity. Use f = 5,000 psi
fy=160,000 psi, and 2 in. clear cover.

Redesign the column of Problem 5.6 for a dead load of 125 kip, a floor live
load of 175 kip, and a roof live load of 80 kip.

Design a square tied reinforced concrete column subjected to a dead load of
250 kip, a floor live load of 240 kip, and a roof live load of 150 kip. The
moments due to the loads are negligible. Use f = 4,000 psi, f, = 60,000 psi,
and 1.5 in. clear cover.

Redesign the column of Problem 5.8 as a circular spiral reinforced concrete
section. Assume f,, = 60,000 psi.

A 12 in. X 12 in. column reinforced with 4 #9 bars is subjected to axial roof
dead and live loads with small eccentricity. If the ratio Pp/P;, = 1.5, deter-
mine the maximum compressive axial service loads that the column can
carry. Use f/ = 4,000psi and fy=060,000 psi. Use #3 ties, and 1.5 in. clear
cover.

The following figures show the typical framing plan, elevation, and beam
section of a three-story reinforced concrete building. The floor live load is
50 psf and the roof live load is 15 psf. Assume 5 psf for mechanical/electrical
systems and 20 psf for partitions. Determine the required reinforcements for a
typical interior tied column between the ground and second levels. Use
f! =4,000psi, f,=60,000 psi, and 1.5 in. for cover. Do not reduce live
loads. Assume small eccentricity for the loads. The unit weight of the
concrete is 150 pcf. Neglect the self-weight of the column.

Rework Problem 5.4. Assume the column is subjected to a dead load moment,
M, =20 ft-kip, and a roof live load moment, M, , = 30 ft-kip.

Determine the maximum factored moment, Mg, that a 24 in. X 24 in. column
with 12 #10 bars distributed uniformly around the column can carry when
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subjected to a factored axial load, P,=750 kip. Use f/ = 4,000psi,
f,=160,000 psi, #3 ties, and 1% in. for cover.

I 300" I 300" I

10'-0"
(typical)

16in. X 16in.
column (typical)

Typical framing plan

6in.| < “
26 in.
f—16in.—]
Section A-A
Roof level o ]
7
120"
3rd level
| ]
120"
2nd level
{
15-0"
Ground level
=TT =T =T L

Elevation
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5.14. Rework Problem 5.10. Assume that the column is subjected to a factored

moment, M,, = 50 ft-kip.

5.15. Rework Problem 5.11. Assume that the column is subjected to a factored
moment, M, =110 ft-kip. Place the longitudinal reinforcing uniformly

around the four faces.

5.16. Determine Py values for the columns shown below subjected to the factored
moments indicated. Use f/ = 4,000psi, f;=160,000 psi, and 2.0 in. cover.

Do not check ties or spirals.

| 201in. |
y
!
| _
X - == x 20in.
8#8 T\ #4Ties
y
M, = 200 ft-kip
(o]
[¢——18in.——|
y
!
T
X - -x 18in.
6#10 L\~ #4 Ties

y
M, = 140 ft-kip

3/g in. Diameter spiral

8 #8
| 20 in. |
M, = 200 ft-kip
d |[—16in.—f
y
!
. _
-—--x 20in.
8 #11 : #4 Ties
y

M, = 180 ft-kip

5.17. A square tied column is subjected to a factored load, P, =250 kip, and a
factored moment, M, =50 ft-kip. Design this column. Use f/ = 4,000psi,
f,=160,000 psi, and 1.5 in. cover. Do not design the ties. Place the longitu-

dinal reinforcing uniformly in the four faces.

5.18. A circular spiral column is subjected to a factored load, P, =400 kip, and a
factored moment, M, = 150 ft-kip. Design this column. Use f/ = 4,000 psi,
f,=160,000 psi, and 1.5 in. for cover. Do not design the spirals.
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Self-Experiments

These self-experiments focus on the behavior of columns subjected to axial load
and moment. Include all the details of the tests in your report along with images
showing the different steps.

Experiment 1

In this experiment, we look at the beam-column action. Glue together two pieces of
Styrofoam to make a beam-column assembly. Glue the base of the column to a rigid
surface. Apply a concentrated load to the beam and move the load along the beam,
as shown in Figure SE 5.1. How does the load affect the column? How does the
location of the load affect the behavior of the beam and column? Discuss any other
observations.

Experiment 2

In this experiment, you will cast the square tied column shown in Figure SE 5.2.
Two sets of wires are needed, thicker wires for the main reinforcement and thinner
wires for the ties. The column dimensions and reinforcement sizes are optional.
Discuss the different stages of construction. Estimate how much load the column
can carry. Discuss any other observations.

Experiment 3

Repeat Experiment 1 by casting the column and beam using reinforced concrete.
Make sure that the beam reinforcements are bent into the column to provide a
moment connection. How does the reinforced concrete beam-column behave dif-
ferently from that of Experiment 1? Discuss any other observations.

Moving load ————————— >

S A N

Figure SE. 5.1 Beam-column assembly model
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>
>«

/\/

Figure SE. 5.2 Tied column model




Chapter 6
Floor Systems

6.1 Introduction

The appropriate selection of a floor system heavily influences the overall cost of a
building. A designer has to take many factors into account when making such a
selection; and, unfortunately, the structural scheme cheapest to construct may not
be the best bargain in terms of overall construction cost of the building.

The first element that forms the floor surface is the slab. Beams or columns, in
mathematical abstraction can be described by a single line. These are called linear
elements, because one of their three dimensions, the length, is much greater than the
other two (i.e., the dimensions of the cross-section). The load-path of linear
elements is easy to describe: They carry their loads along their length to the
supports.

A single line, however, cannot describe slabs or plates. As discussed in Chapter 2,
slabs have two dimensions that are significantly larger than the third one, the
thickness. They are usually described mathematically as thin plates. The “exact”
bending theory of thin plates, based on the theory of elasticity, requires the solution of
a partial differential equation of the fourth order. This is completely impossible for
any practicing engineer or architect. Furthermore, so-called “exact solutions” fail to
deal with everyday realities, such as reinforced concrete that does not follow strict
elastic behavior, or load distributions that are not nice and uniform, and so on.

Fortunately, we can understand how a slab behaves by carefully considering how
it deforms under loads. Slabs bend in two directions, so a single line cannot describe
the bent shape. A way of describing a bent surface is therefore necessary for
understanding slab behavior. The load-path (i.e., the way a slab transfers any
load to the supports) depends on the way the slab bends between those supports,
which in turn depends on the way the designer chooses to support the slab.
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The types of supports for slabs are divided into three groups.

1. Point supports. These consist of columns, posts, suspension points, and so
on. Slabs supported by supports of this type are referred to as flat slabs or flat
plates.

2. Line supports. Examples of line supports are beams, girders, and walls. Slabs
supported by supports of this type are referred to as one- or two-way slabs.

3. Continuous media (Slabs on grade supported by soil).

Admittedly the classifications of the first two types of support are somewhat
arbitrary. Often a designer may employ linear support elements (beams and walls)
in conjunction with point support elements, which makes the referencing more
difficult.

The overall cost of a monolithic concrete floor system depends on several
factors. First and foremost among these is the cost of shoring and forming. A strong
shoring system must be constructed. It should safely support the weight of the
freshly poured concrete and the associated construction loads (i.e., the people and
the equipment necessary for placing and finishing the wet concrete). The forms that
will serve as the mold must also be built.

The costs in a reinforced concrete floor system usually break down as follows:

Formwork (and shoring) 50 — 60 %
Concrete, including placing and finishing 25-30 %
Reinforcement, including placement 15-20%

These figures are based on current material and labor costs in the United States and
may not necessarily be the same elsewhere in the world. They clearly show,
however, that the cost of labor in the United States usually is greater than the raw
cost of materials. Thus, the selection of the right floor system for a building is not an
easy task.

6.2 Flat Slabs and Plates

Figure 6.1 shows a typical flat plate floor system. Flat plate is a slab of uniform
thickness resting on column supports. It is the most economical system to form, as it
requires only a wood deck on adequate shoring. It also provides for the least
structural depth and thus for minimal floor-to-floor height, which is a very impor-
tant cost consideration in the overall economy of a multistory building. Figure B6.1
in Appendix B shows a high-rise building with flat plate floor system under
construction.

Table 6.1, which is Table 8.3.1.1 of the ACI Code, provides guidelines for the
selection of minimum thickness of slabs without interior beams or flat plates as a
function of the clear span. The guidelines enable the designer to select a slab thick
enough to prevent excessive short- and long-term deflections in the system. The
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Figure 6.1 Flat plate floor system

Table 6.1 Minimum slab thicknesses recommended by the ACI Code Table 8.3.1.1 (without
interior beams)

Without drop panels With drop panels
Interior Interior
Yield Exterior panels panels Exterior panels panels
strength, Without With edge Without With edge
Iy (psi) edge beams beams edge beams beams
40,000 4y 4y 4, 4y 4, 4y
33 36 36 36 40 40
60,000 4y 4y Ly £y £y £y
30 33 33 33 36 36
75,000 4y 4y l, 4y 4y 4y
28 31 31 31 34 34

authors believe, on the basis of decades of experience in designing and observing
similar structures, that the ACI-recommended minimum thicknesses are somewhat
small and probably will result in excessive deflections, especially in exterior or
corner panels. Thus, we recommend selecting slabs about 7-10 % thicker than what
the Code requires. In Table 6.1, ¢, is the clear span from the face of one column to
the face of the next. Use the longer clear span when selecting a slab thickness for
rectangular bays.

Flat plates are the most economical for square (or nearly so) bays, and for spans
of about 26 ft or less. Beyond that span length the slab becomes too thick, with
corresponding increase of self-weight. Flat slabs (i.e., plates strengthened around
the columns by additional depth provided by drop panels, as shown in Figure 6.2,
and with column capitals, as shown in Figure 6.3) are an economical choice for bays
up to about 35 ft.

Figure 6.4 shows the schematic deformation diagram of a flat plate under load.
The largest deflections are in the center of the bay, and the most highly stressed
zones occur around the supports.
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el

Figure 6.2 Flat slab with drop panels

Limjy

Figure 6.3 Flat slab with drop panels and column capitals

&

Figure 6.4 Schematic deflection of an interior bay under load
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Because loads must travel toward the columns, the available zone through which
shear forces must travel becomes smaller and smaller; thus, the shear stress
increases, reaching a maximum at or near the interface of the column and the
slab, as shown in Figure 6.5. The large shears also indicate a sharp change in the
moments that occur around the columns. Shears cause diagonal tensions in concrete
structures that are subject to flexure, and because concrete is quite weak in resisting
tension, failure can result. The failure surface may be envisioned as a truncated
pyramid similar to the one shown in Figure 6.6. This phenomenon is known as
punching shear: The column “punches” through the slab, or, more precisely, the
slab fails and falls down around the column.

lllllll ll

Figure 6.5 Gravity load shear transfer from slab to column

Diagonal tension /

Figure 6.6 Diagonal tensions around the columns
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This type of failure (i.e., punching) can be quite catastrophic. Many spectacular
failures in the history of construction have happened due to punching shear.
The intensity of the shear stress and the resulting diagonal tension depends on the
cross-sectional area through which the shear forces must travel toward the column.
This cross-sectional area, or shear surface area, depends on two parameters:
the thickness of the slab around the column, and the cross-sectional size of the
column. So the selection of these dimensions plays a very important role in
the preliminary design of the system. The column size is also influenced by the
loads and moments that the column must resist at the floor level under consider-
ation. In this discussion, however, the column size is considered only from the point
of view of the punching shear in the slab.

Figure 6.7 shows a plan view of a typical interior column. The ACI Code
approach is based on a simple analytical model. It assumes that the critical shear
surface lies at a d/2 distance from the face of the column, where d is the effective
depth of the slab. The shear surface area then is the length of the critical periphery
(or perimeter of the critical section) multiplied by d.

ae,
Cq |

dr2

Critical shear
periphery

Co

Column section —

Figure 6.7 Definition of the critical shear periphery

The ACI Code gives the maximum factored shear to be transferred by stresses on
the concrete from the slab to the column as the smallest of Equations (6.1), (6.2),
and (6.3) (ACI Code Table 22.6.5.2).

¢vc¢<2+%)x\/ﬁbnd (6.1)

where P is the ratio of the long side to the short side of the column’s cross section,
and b, is the shear periphery (perimeter of the critical section for shear). A is the
lightweight concrete factor (A= 0.75 for ‘all-lightweight’, A = 0.85 for ‘sand-light-
weight’, and A= 1.0 for ‘normal weight’ concrete). As in Chapter 4, ¢ =0.75 for
shear. Equation (6.1) is the governing formula when the column’s cross section is
an elongated rectangle, with the ratio of longer side to shorter side greater than 2.

Ve = b (‘;‘;d + 2) /FIbod (6.2)
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where o is 40 for interior columns, 30 for edge columns, and 20 for corner
columns.

Ve = d(4r/Tlbod) (63)

Figures 6.8 and 6.9 show the shear periphery for a corner column and for an edge
column, respectively.

Experience has shown that vertical chases, ducts, pipes, and so on are somehow
“attracted” to columns. Although structures can tolerate openings near columns, open-
ings reduce the available shear periphery. Figure 6.10 shows some examples of openings
near a column and the resulting reduction in the effectiveness of the shear transfer.

a2,

|
Jar
|

?

d
Figure 6.8 Definition of the shear periphery at a corner column, b, = ¢; + ¢ + 25

Critical shear | ¢
periphery

Critical shear ae,

periphery x & |
Jar

?

d
Figure 6.9 Definition of the shear periphery at an edge column, b, = ¢; + 2¢; + 45

]

Ineffective

Assume free
edge

Ineffective Ineffective

Figure 6.10 Lost effective periphery due to openings near columns
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Example 6.1 For a floor structure with typical 24 ft by 26 ft bay sizes, the
superimposed dead loads are 20 psf and the superimposed live loads are 100 psf.
As a preliminary design, select an appropriate flat slab thickness
(without drop panels) and a column size as governed by punching shear. Assume
f! =4,000psi and f,= 60,000 psi. The concrete is normal weight with a unit
weight of 150 pcf.

Solution

The slab thickness will be governed by the longer span. Because we do not yet
know the column size, assume 18 in. x 18 in. square. Even if we under- or
overestimate the column size, the error will have little effect on the slab thickness
selection. Thus, the larger net (clear) span is:

26 x 12 — 18 = 294 in.
From Table 6.1 (for the exterior panel):
hmin = £,/30 = 294/30 = 9.8 in.

Select 10 in. as a practical dimension.

Load analysis:

10
Self weight of 10 in. slab = 150 (E = 125psf
Superimposed dead loads 20 psf
Live loads 100 psf

The factored load per square foot is:
g, = 1.2(125 + 20) 4 1.6(100) = 334 psf
The factored load on a typical interior column is:

P, = q,A = 334 x 241t x 26ft = 208,4161b

This value is larger than the actual shear that must be transmitted through the
critical shear periphery because the loads within the periphery do not contribute to
it. We will use this approximate value, however, for the factored shear as well as to
estimate the size of the required column.

Thus:

V. = 208,4161b

d=10-0.75—0.75=8.5 in. (average d assuming #6 bars in both directions with
3/4 in. cover)
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From Equation (6.3) (normal weight concrete, A = 1.0):
¢V, =0.75 x4 x 1.0 x /4,000 x b, x 8.5 =1,613b, > 208,416 1b

Hence:

b, > 129 in.

Because b, = column periphery + 8 X d/2 = column periphery + 34 in., the column
periphery for a typical interior column must be equal to or greater than
129-34 =95 in.

Thus, several possibilities exist. We can use 24 in. X 24 in. square column,
20 in. x 28 in. rectangular column, or 18 in. x 30 in. rectangular column, and so
on, as long as the aspect ratio of the longer side to the shorter side remains less than
2. Thus, if the column size is 14 in. x 34 in., the column periphery will satisfy the
minimum 95 in. requirement; but the aspect ratio p=34/14 =2.43 is greater than
2, which would require using Equation (6.1) as the governing equation.

4
¢V, =0.75 x (2+m> X 1.0 x /4,000 x (2 x 144+2 x 34 +4 x 8.5) x 8.5
= 191,109 1b

which is less than the required V,, = 208,416 Ib.

Moment transfer between the slab and the columns increases shear stresses
around the columns. How this moment transfer occurs precisely is still a subject
of discussion and research. The ACI Code (Sections 8.4.2.3.2 and 8.4.4.2.2) rather
arbitrarily assumes that 60 % of the moment transfer for square interior columns
occurs via flexure at the column’s face, and 40 % is assigned to a shear distribution
model over the critical periphery (For other column locations or shapes, refer to the
ACI Code Section 8.4.2.3.2 and Table 8.4.2.3.4). Figure 6.11 shows the assumed

Critical sections

Assumed distribution of shears
providing for moment transfer

Figure 6.11 Model of moment transfer from slab to column via shears
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model. These shears then must be combined with those from the gravity loads that
were discussed above.

Example 6.2 Assume that it is necessary to transfer a factored moment of
M, =120kip-ft between a flat slab and an interior column. The moment acts
clockwise, as shown on Figure 6.11.

The column is 20 in. X 20 in. and d = 8.5 in. for the slab. Calculate the factored
shear stress due to the moment.

Solution
Per the ACI Code, the shears will transfer 40 % of the moment. Thus, the shears will
be responsible for an M,, = 0.4 x 120 =48 kip-ft.

Designating the maximum shear as v,,,, then:

B=185+20=285 in.

Vi = vumBd = vy X 28.5 X 8.5 =242.25v,y

1 Bd 1 285x85
Vu2 = EVMMT = EvuMﬁ - 60.56VMM

VulXB 2 B
MM2<2) +4<VM2X3X2)

28. 2\ [28.
48 x 12,000 = 2(242.25\)”,\,1 X %) +4 [60.56\)”,.,1 (§> (%)}

576,000 = 9,205v,y — vum = 62.6psi

If the shear stresses exceed what the ACI Code allows, we can reinforce the
column/slab interface. The reinforcing may be a shear head manufactured from
crossing steel shapes, or sets of closed stirrups. The last two decades have witnessed
the development of proprietary premanufactured shear reinforcement.

6.4 Flexure in Flat Slabs and Plates

Flexure in flat slabs and plates is a very complex problem. The simple representa-
tion of the deformation shown in Figure 6.4 does not truly describe the deflections,
which have a rather intricate topography. But the magnitude of bending moments in
any direction is related to the slope of the deflection curve, so the largest moments
occur where the curvature of the deflection surface is greatest. Because the surface
curves in all directions, bending moments will occur in all directions at any location
on the slab. Moments in any direction can be represented by their component
moments in a preselected coordinate system, so the ACI Code uses a design method
based on a simple model that is easy to visualize and proven to be safe. (Refer to
Figure 6.12 in the following discussion of this model).
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Figure 6.12 Definition of column strips and middle strips in flat plates and slabs

Each slab bay is divided into strips in both directions, as shown in Figure 6.12.
By studying the deflection pattern shown in Figure 6.4, we easily understand how
flexures occur in the structure. In the zone where two middle strips cross (Zone A),
the slab bends downward in both directions; thus, there will be tensions in the
bottom in both directions (positive moment regions). Where two column strips
cross (Zone B), the slab bends upward in both directions, generating tensions at
the top in both directions (negative moment regions). Where a middle strip crosses
a column strip (Zone C), the slab bends downward in the direction of the column
strip, but bends upward in the direction of the middle strip; thus, there will be
positive moments in the column strip’s direction and negative moments in the
middle strip’s direction.

The ACI Code suggests two methods for the flexural analysis of flat slabs and
plates. The first (and simpler) is called the direct design method; the second is
called the equivalent frame method. These methods are not exclusively for flat slabs
or flat plates. They may also be used when beams exist on the column lines, which
are commonly known as two-way slabs on beams. In this chapter we discuss only
the direct design method. (Discussion of the equivalent frame method is beyond the
scope of this book. The interested reader is referred to Section 8.11.2 of the ACI
Code).

The direct design method may be used only when the plan geometry conforms to
the following set of limitations (ACI Code, Section 8.10.2)
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1. There are at least three consecutive spans in each direction.

2. The panels are rectangular and the ratio of the longer span to the shorter span is
not greater than 2.

3. The neighboring span lengths differ by no more than one-third of the
longer span.

4. Columns can be offset by a maximum of 10 % of the span (in direction of offset)
from either axis between centerlines of successive columns.

The flexure analysis of slab then proceeds as follows:

Step 1. Calculate the absolute sum of the average positive and negative moments in
each direction on a panel (ACI Code, Equation 8.10.3.2):

_q.0,

M, 2

where

q.. = the factored load on a unit area (psf);

£, =the clear (net) span length in the direction for which moments are
being determined;

¢, =the length of span (center to center) transverse to £,;

Step 2. Divide M, into positive and negative moments.

The value of M, is divided between total factored positive and negative
moments in the span under consideration. Figure 6.13 shows a schematic
moment diagram for a slab and the value of M,,. The values assigned are not
the result of theoretical studies, but rather observations from testing. They
appear to be safe and reasonable values given the highly indeterminate
nature of the problem. (A few percentage points of difference one way or
the other does not change the overall ultimate strength of the system).

fn
e Net span ——f
I Span |
T Positive factored moment
MO .
l Negative factored moment

Figure 6.13 Moments in a flat panel bay
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In an interior span (ACI Code, Section 8.10.4.1), the negative factored
moment is 0.65 M, and the positive factored moment is 0.35 M,,. In an
exterior span, the ratios of the total negative moments and the positive
moments are strongly dependent on the presence of beams between col-
umns. Edge beams on the exterior perimeter help support the exterior wall
system and better control deflections around the periphery, where deflec-
tions may be harmful to the wall system. Table 6.2 (from the ACI Code,
Section 8.10.4.2) shows the proportions of M, to be used in exterior spans
according to the edge support condition.

Table 6.2 Percent distribution of moments into positive moments and negative moments in an
end bay (ACI Code Table 8.10.4.2)

@ 2 3) \ ) (©)]
Slabs without
beams between
interior supports

Exterior Slab with beams | Without | With Exterior
edge between all edge edge edge fully

unrestrained supports beam beam restrained
Interior negative 0.75 0.70 0.70 0.70 0.65
factored moment
Positive factored 0.63 0.57 0.52 0.50 0.35
moment
Exterior negative 0 0.16 0.26 0.30 0.65
factored moment

Step 3. Divide positive and negative moments between column strips and middle
strips.

Now that we have determined the values of the positive and negative
moments across the full width (¢,) of the panel, we divide these moments to
the appropriate column strips and middle strips.

The calculations are slightly more involved when beams are incorpo-
rated into the floor system.

The ACI Code defines a coefficient, oy which is the ratio of flexural
stiffness of a beam section to the flexural stiffness of a width of slab
bounded laterally by the centerlines of adjacent panels on each side of the
beam. The coefficient ayis calculated using Equation (6.4) (ACI Equation
8.10.2.7b).

Ecpl)

_ 6.4
% =F 1 (6.4)

where E_;, and E ., are the modulus of elasticity of the concrete in the beam
and slab respectively (these two values are usually the same in cast-in-place
concrete construction); and [, and [ are the moment of inertia of the gross
concrete section of the beam and slab, respectively. For flat plates and
slabs, o= 0.0.
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Table 6.3 summarizes the percentages of the negative moment that is
assigned to the column strips at an interior support (ACI Code,
Section 8.10.5.1). The remainder of the moment is assigned to the middle
strip. Linear interpolation is permitted between the values shown.

Table 6.4 summarizes the percentages of positive moment assigned to
the column strips (ACI Code, Section 8.10.5.5). The remainder of the
moment is assigned to the middle strip. Linear interpolation is permitted
between the values shown.

Column strips at an exterior support are assigned percentages of the
negative moments according to Table 6.5 (ACI Code, Section 8.10.5.2).
Again, linear interpolation is permitted between the values shown. In
Table 6.5, the main distinction is whether or not an edge beam connects
into the column. A large edge beam with a significant torsional stiffness
attracts negative moments away from the column strip, or in other words, it
provides some fixity for the middle strip as well. In the case of free slab
edge (no edge beam), we assign the total exterior negative moment calcu-
lated in step 2 to the column strip.

Table 6.3 Percent of interior 0,00 0.5 1.0 2.0
negative moments assigned to 2L : : :
column strips (ACI Code (1ol lr) =0 3 73 73
Table 8.10.5.1) (o1 lr/ly) > 1.0 90 75 45
Table 6.4 Percent of positive 0,00, 0.5 1.0 2.0
moments assigned to column —
strips (ACI Code (@2l/tr) =0 €0 60 60
Table 8.10.5.5) (o 2/t7) > 1.0 90 75 45
Table 6.5 Percent 05704 0.5 1.0 2.0
distribution of negative
moment at an exterior column (©2lo/tr) =0 =0 100 100 100
into the column strip (ACI B> 2.5 75 75 75
Code Table 8.10.5.2) (g lo/l) > 1.0 | B:=0 100 100 100
B:>2.5 90 75 45

In Table 6.5, B, is the ratio of the torsional stiffness of the beam to the
flexural stiffness of a width of slab equal to the span length of the beam.
The term “beam” here refers to a T-section attached to a certain amount of
the slab that helps to increase the beam’s torsional stiffness. See Figure 6.14
for an illustration of the T-section.

The cross-sectional constant of the combined stem and attached slabs
may be evaluated from rectangular parts as given by Equation (6.5) (ACI
Code Equation 8.10.5.2b).
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Figure 6.14 Slab width increasing the beam’s torsional stiffness

c=Y (1 —0.635)% (6.5)

where x and y are the shorter and longer overall dimensions, respectively,
of the rectangular part of the cross section. The value for ; can then be
calculated using Equation (6.6) (ACI Equation 8.10.5.2a).

_ Ea4C
B 2E

B (6.6)

In typical cast-in-place concrete construction, E., =E,.
Step 4. Determine reinforcement.
From the moments calculated in step 3, determine the reinforcement
required in the column strips and middle strips using the flexural design
methods discussed in Chapter 2.

Example 6.3 Design the reinforcement for a typical interior bay of the flat plate
floor system of Example 6.1. Assume that the columns are 20 in. x 20 in. and that
the slab’s thickness is 10 in. Use f! = 4,000 psi and f, = 60,000 psi.

The solution shows detailed calculations for the longer span (26 ft)
direction only.

Solution

Step 1. Calculate M,,.

6 =260ft (¢, =240t ¢,=334psf (from Example 6.1)
£, =26 —20/12 =24.33 ft

0334 x 24 x 24.33?

M,
8

= 593.3kip-ft
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Step 2. Distribute M, between the negative and positive moments.
Mpeg = 0.65 x 593.3 = 385.6kip-ft
Mpos = 0.35 x 593.3 = 207.7kip-ft

Step 3. Distribute M., and M, between the column strip and the middle strip.
Because no beams are incorporated into the system, oy =0 and ap =0.
Thus, using the coefficient from Table 6.3, the factored negative moment
assigned to the column strip at an interior support line is:
— M column swip = 0.75 x 385.6 = 289.2 kip-ft
Theremainder (100 — 75 = 25%) is assigned to the middle strip.

— M migdie stip = 0.25 x 385.6 = 96.4 kip-ft

Using the coefficient from Table 6.4, the factored positive moment
assigned to the column strip is:
+ Mcotumn sirip = 0.60 x 207.7 = 124.6kip-ft
The remainder (100 — 60 = 40 %) is assigned to the middle strip.
+ Mmigdie stip = 0.40 x 207.7 = 83.1kip-ft

Step 4. Determine the required reinforcement.
In the 26-ft long span direction, the width of a column strip or a middle
strip is one-half the perpendicular span. Thus, use the following cross-
sectional data to calculate the required reinforcing:

b=24x12/2 =144 in.
d=10-0.75—-0.375 = 8.87 in. (assuming #6 bars in the outer layer
and ¥/, in. concrete cover)

Then the calculated column strip negative reinforcing is:

R_ 12,000M, 12,000 x 289.2

bd* 144 x 8.87
from Table A2.6b — p = 0.0060

thenA, = pbd = 0.0060 x 144 x 8.87 = 7.66 in.?
From Table A2.9, select18 #6 bars (A; = 7.92 in.%).

= 306psi —

The middle strip negative reinforcing is:
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12,000 x 96.4
144 x 8.872
then A; = 0.0019 x 144 x 8.87 = 2.43 in.2

From Table A2.9, select 13 #4bars (A; = 2.60 in.2).

= 102psi — from Table A2.6b — p = 0.0019

The column strip positive reinforcing is:

12,000 x 124.6
144 x 8.87%
thenA; = 0.0025 x 144 x 8.87 = 3.19 in.2

FromTable A2.9, select16 #4bars (A; = 3.20in.?).

= 132psi — fromTable A2.6b — p = 0.0025

The middle strip positive reinforcing is:

12,000 x 83.1
144 x 8.872
thenA, = 0.0017 x 144 x 8.87 =2.17 in.?

= 88 psi — fromTable A2.6b — p = 0.0017

From Table A2.9, select 11 #4 bars (A, =2.20 inz). Figure 6.15 shows the
selected reinforcing in the different strip zones. Final results include the
required reinforcing in the 24-ft span direction as well. The resulting
moments in the short span strips are somewhat less (due to the shorter
span), but the reinforcing required is almost identical to that of the long
span strip. This reinforcement will be placed in a second layer, with the
working depth d estimated as only 8.12 in. The student is encouraged to
verify these reinforcing requirements. The placement order (i.e., which
layer of reinforcement must be laid first and which layer onto the second
layer) must be clearly noted by the designer on the structural plans.

Example 6.4 Calculate the column and middle strip moments for an end bay of the
floor system in Example 6.3 with the addition of a 12 in. wide by 20 in. deep edge
beam. Figure 6.16 shows the slab divided into column and middle strips. As in
Example 6.3 only the 26 ft span direction calculations are shown.

Solution

Step 1. Calculate M, : ¢; = 26.0 ft, 0y = 24.0 ft, q, = 334 psf,

¢, =26—20/12 = 24.33 ft

0.334 x 24 x 24.332
B 8

Step 2. In this problem, the values listed in the fourth column of Table 6.2—slabs

without beams between interior supports, but with edge beam—will apply.

M,

= 593.3 kip-ft
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Figure 6.15 The calculated reinforcing from Example 6.3

Thus:
The total factored negative moment at the first interior support is:

0.70 x 593.3 = 415.3kip-ft

The total factored positive moment in the first span is:
0.50 x 593.3 = 296.7 kip-ft

The total factored negative moment at the exterior support is:
0.30 x 593.3 = 178.0kip-ft

Step 3. Distribute the moments to the column strips and the middle strips.

(a) Negative moments at the first interior support:
Because ay =0 (no beams in the span direction), from Table 6.3:
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Figure 6.16 Column strips and middle strips in the exterior bay

— Mol suip = 0.75 x 415.3 = 311.5kip-ft
—M nid. sirip = 0.25 x 415.3 = 103.8kip-ft

(b) Positive moments in the first span, from Table 6.4:

+ Mol sirip = 0.60 x 296.7 = 178.0kip-ft
FMmid. sip = 0.40 x 296.7 = 118.7 kip-ft

(c) Negative moments at the exterior support:
In order to use Table 6.5, calculate the value of f,.
Figure 6.17 shows the definition of the edge beam per Figure 6.14.
Calculating the required parameters:
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10in.

20 in. l

k—12 in.—}—10 in.—

Figure 6.17 The edge beam in Example 6.4

_20x12x 10+ 10 x 10 x5

- =853 in, A=20x 12+ 10 x 10 = 340 in.2
v, %20><12+%10><10 8.53 in, 0x12+10x 10 =340 in
200 x 12 10° x 10
I, = ; + ; — 340 x 8.53% = 10,595 in.*
3
I, = W = 24,000 in*
12\ 123 x 20 10\ 10° x 10
=(1-063x—)] —"4+(1-063x— ) ———=28399 in*
C( ><20) 3 +( ><10) 3 n
8,399
B”2><24,000*0'175

By interpolating between the values listed in Table 6.5, we obtain
the percentage needed to calculate the negative moment at the exterior
support:

—M ol stip = 0.982 x 178.0 = 174.8 kip-ft

The remainder, which is assigned to the middle strip, is:

—~M g, swip = 178.0 — 174.8 = 3.2Kkip-ft

This value is very small due to the relatively small torsional stiff-
ness of the edge beam.

6.5 Flat Slabs and the Use of Drop Panels

Flat plates are usually the most economical choice when spans are about 26 ft or
less. Beyond this length the slab thickness required to control deflections becomes
too large, thus making the slab too heavy. Moments and shears are highest in the
areas around the columns. Hence, it makes eminent sense to increase the depth of
the plate in these critical areas, as shown in Figures 6.2 and 6.3. Although the use
of drop panels may be attractive from the standpoint of structural behavior, the
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associated forming costs are considerable. On the other hand, drop panels allow
thinner slabs to be used in most of the areas. This results in weight and concrete
savings that offset some of the excess forming costs. Figure B6.2 in Appendix B
shows the forming of a drop panel for a flat slab floor system.

According to the ACI Code (Section 8.2.4), drop panels must extend at least
one-sixth of the span length in each direction from the column center line, and their
thickness must be at least 25 % of the slab thickness beyond them.

Example 6.5 Calculate the appropriate size of a flat slab system for the floor in
Example 6.3. The columns are 20 in. x 20 in. Figure 6.18 shows the plan layout
indicating the outlines of the drop panels.

Solution
The minimum plan dimension of the drop panel is

1 1
Pm%hﬂzﬁ%%%MXJQﬁﬂLw

From Table 6.1 the recommended minimum slab thickness is:

4, (26 x 12 —20) . .
Hnin = TR va— 8.11 in. select h = 8.51n.

|
T
il
L__.!,___!

|

|

|

|
T
-
2|
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R e LIt
L__¥__J R
I I
| 26'-0" |

Figure 6.18 Plan of flat slab
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0.25 in. X 8.5 in. = 2.13 in. Use2.51in.

Thus, the total thickness within the drop panel will be 8.5 +2.5=11 in.
The total volume of concrete within one typical bay is:

8.5 2.5 ;
24 % 26 x 7+ 8.67 x 8 x T2 = 456.5t

or an equivalent uniform thickness of 8.78 in., as opposed to the 10 in. thickness
used in the flat plate structure. This represents a 12.2 % saving in concrete use and,
correspondingly, in the self-weight of the structural slab. After the superimposed
dead and live loads are added, however, the savings in the average factored loads
diminish to about 5.4 %. The reduced working depth in the zones outside the drop
panels results in increased reinforcing as well, further diminishing the economical
advantages gained from the use of less concrete.

6.6 Waffle Slab Structures

Figure 6.19 shows a typical waffle slab or two-way joist floor structure. Waffle slab
floor structures are thick flat plate structures, with the concrete removed from zones
where it is not required by strength considerations. Waffle slab provides economical
structures for spans up to 60 ft, in square bays, loaded with light and moderate
loads. The voids are formed by steel (or fiberglass) “domes” that are reusable, thus
very economical. These forms are available in standard sizes, as shown in
Figure 6.20, although wider or odd-shaped domes are also used to satisfy some
design objectives. The sides of the domes are tapered (usually 1 in 12) to permit
easy removal after the concrete has cured. The two-way joists, when carefully
finished after the removal of the forms, provide a pleasing appearance as well.
Figure B6.3 in Appendix B shows an exposed waffle slab floor system.

Figure 6.19 Underside view of a waffle slab
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i
J Depth of void
|
‘<—19 in. or 30 in.—»\
«—24 in. or 36 in:

Standard depth:
6in.,8in.,10in., 12 in.
for 19 in.-wide voids

8in., 10in., 12in., 14in., 16in., 20 in.
for 30 in.-wide voids

Figure 6.20 Standard forming pans (domes) for waffle slabs

The lips on the domes, when laid out side by side, form 5 in.-wide joists for the
19 in.-wide voids and 6 in.-wide joists for the 30 in.-wide voids. But the designer
does not have to work with 24 in. or 36 in. planning modules. Because the domes
are always laid out on a flat plywood deck, the spacing between the domes can be
easily adjusted to make the joists wider than standard at the base. This accommo-
dates virtually any column spacing while maintaining a uniform appearance.
Leaving out the domes around the columns forms a shear head that provides
increased shear strength as well as concrete in the bottom for the high negative
moments. The slab over the domes is typically 3—4.5 in. thick, unless large
concentrated loads, increased fire rating requirements, or embedded electrical
boxes and conduits warrant the use of a thicker slab. The 3 in. minimum is quite
adequate for roofs. The slab is reinforced with a light welded wire reinforcement to
prevent shrinkage and temperature cracks. Figure B6.4 in Appendix B shows the
domes and reinforcements during the construction of a waffle slab floor system.

For overall depth selection, the span/depth ratios given in Table 6.1 under the
heading “Without Drop Panels” will result in a very serviceable structure. The solid
concrete area around the column ideally should approach the size required for drop
panels; in other words, it should extend about one-sixth of the span length measured
from the column centerline.

Example 6.6 Select an appropriate waffle slab floor structure for 36 ft x 36 ft bays.
Columns are 20 in. x 20 in. f;, = 60,000 psi

Solution

Select a 4.5 in.-thick slab, anticipating electrical conduits or junction boxes in the

slab Also, use the same depth structure in the end bays without edge beams.
From Table 6.1:

6, 36x12-20
> 20X 2T 1373 0n,
=30 30 m

Select 10 in.-deep pans and a 4.5 in. slab for a total structural depth of 14.5 in.
Figure 6.21 shows the resulting layout.
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Figure 6.21 Plan view of a waffle slab showing the defined column and middle strips

Each 30 in. x 30 in. x 10 in. dome displaces 4.92 ft* of concrete (CRSI Design
Handbook, p. 11-1). A typical bay contains 128 domes. Thus, the total volume of
concrete in the bay is:

Volume = 36 x 36 x % — 128 x 4.92 = 936.2 1

The average concrete thickness is only:

936.2
fvg = 22 (12) = 8.67 in.
& =36 36 12) = 867in

The analysis of the system is very similar to that of flat plates. When finding the
reinforcement take into account that, with the exception of the filled areas around
the columns, the slab is no longer solid, but rather a set of joists. Thus:

(a) Inpositive moment areas, divide the strip moment by the number of joists and
design the joists for that fraction. Figure 6.22 shows that joists in these areas
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Figure 6.22 Reinforcing in positive moment zones

are like T-beams, and the slab on top provides a wide compression flange. The
joists will have two layers of reinforcement, one for each joist direction; thus,

the working depth will be slightly less in one direction.

(b) In negative moment regions (where middle strips bend upwards over column
strips), the bottom width of the stem is in compression and the slab on the top
is in tension. Thus, distributed reinforcing is used over the width of the flange,

as shown in Figure 6.23.

(c) Shear and bending must be determined in the joists around the solid section
surrounding the column. On rare occasions, shear reinforcing is necessary in

the joists along a short distance.

13.5in.

+/-

—

b=6in.

Figure 6.23 Reinforcing in negative moment zones

6.7 One-Way Joists

Figure 6.24 shows a typical one-way joist system. One-way joists spanning between
beams are essentially closely spaced beam elements. The clear space between them
must not exceed 30 in. in order to qualify for the joist designation used by the ACI
Code. The forms are made of various materials, such as steel, fiberglass, fiber board,
and corrugated cardboard, and are made with or without the edge lip, as shown in
Figure 6.25. Forms without the edge lip, however, tend to bulge sideways during
construction under the lateral pressure of the freshly placed concrete, and the



396 6 Floor Systems

Figure 6.24 One-way joists and beams

T

1-in.-12 slope ~ Depth of void

4
k——20in. or 30 in. ——{"\

Lip
Standard depth:
8in.,10in., 12in., 14in., 16 in., 20 in.

Figure 6.25 Standard one-way joist pans

resulting joist widths are uneven. Forms with square or tapered ends are also
available, as shown in Figure 6.26. The tapered ends provide increased shear
capacity as well as increased moment capacity at the negative moment regions.
Figure B6.5 in Appendix B shows a one-way joist floor system under construction.

One-way joist systems are often used when the bays are elongated (i.e., the
column spacing in one direction exceeds the spacing in the other direction by about
40 % or more). At such span ratios the advantage of two-way behavior is greatly
reduced, and it is more economical to use one-way systems in which beams span
between columns, and joists span between the beams. It is also more economical to
orient the beams in the shorter spans and the joists in the longer span. For ease of
forming, the selected depth of the beams is often equal to that of the joists. In order
to provide for the necessary shear and moment capacity, the beams are made
considerably wider than the faces of the columns into which they frame. These
wide and shallow beams are not as efficient as deeper beams, but the savings
achieved by the reduced forming cost more than make up for that. Beams deeper
than the joists, such as those shown in Figure 6.27, occupy additional ceiling space
and require additional forming cost. Figure B6.6 in Appendix B shows an exposed
one-way joist floor system.

The slab over the voids is typically 3 in. thick, unless large concentrated loads or
increased fire rating requirements warrant the use of a thicker slab. The slab is
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Figure 6.26 Square- and tapered-end pan layouts
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Figure 6.27 Beam sections with joists

Table 6.6 Recommended minimum span/depth ratios [ACI Code, Tables 7.3.1.1 and 9.3.1.1].
(minimum thickness of non-prestressed beams or one-way slabs unless deflections are computed.)

Simply One end Both ends
Member supported continuous continuous Cantilever
Solid one-way Span/20 Span/24 Span/28 Span/10
slabs
Beams or joists Span/16 Span/18.5 Span/21 Span/8

reinforced with a light welded wire reinforcement to prevent shrinkage and
temperature cracks. The overall depth of the joist (including the slab’s thickness)
should be selected in accordance with Tables 7.3.1.1 and 9.3.1.1 of the ACI Code,
which is shown in Table 6.6. (This table was discussed in Chapter 2, but it is
repeated here for the readers’ convenience). The ratios listed therein give satisfac-
tory performance for most structural elements. The designer should be aware,
however, that these are minimum depth values, and should be used for members
not supporting or attached to partitions or other construction likely to be damaged
by large deflections. Thus, special attention should be paid when attaching walls to
the underside of concrete structural elements to ensure that such elements do not
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bear on the walls when deflecting. Furthermore, the deflection of the supporting
beams should not exceed span/600 to ensure crack-free masonry walls.

If the depth must be minimized beyond the values listed in Table 6.6, the
designer may use Grade 40 (f, =40,000 psi) reinforcement. This will result in
about 50 % more required reinforcement, but will reduce the strain in the
reinforcing steel in service load condition. Reduced strain in the reinforcement
provides reduced deflection. Because using a different grade of reinforcement for a
few selected members on a project is not recommended, it is permissible to use
Grade 60 steel equal in cross-sectional area to the calculated amount of Grade
40 steel that would be necessary. Values shown in Table 6.6 should be used directly
for members with normal-weight concrete and Grade 60 reinforcement. For other
conditions the values should be modified as follows:

(a) For structural lightweight concrete that has a unit weight in the range of
90-115 pcf, the values shall be multiplied by max(1.65-0.005w,, 1.09),
where w,. is the unit weight in pcf.

(b) For f, other than 60,000 psi, the values shall be multiplied by (0.4+
1/100,000).

6.8 Beams and One-Way Slabs

Figure 6.28 shows a typical beam and one-way slab system. A beam and one-way
slab system is an economical choice when the bays are elongated and the
superimposed loads are large. The system is especially economical when the
structure is subject to large line loads such as heavy partitions. Large openings
through the slab can be easily accommodated virtually anywhere in the floor. Beam
and one-way slab systems have a larger structural depth than do the other floor
systems, and their forming cost is usually higher. These disadvantages are

l AN

Figure 6.28 One-way slabs on beams and girders
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somewhat balanced by savings in concrete and reinforcement usage. This type of
system also provides a clear and unambiguous transfer of moments between beams
and columns. This is a real advantage in high-wind or seismic zones, where the
structural frame resists lateral loads on the building.

Table 6.6 provides information useful for determining the thickness of the slab
and the depths of the beams and girders. These values, however, are recommended
minimum depth values. The following must be considered in selecting the appro-
priate width for girders (and beams):

(a) The width should be enough to lay out the reinforcing in one row in the
positive moment regions;

(b) The width must provide sufficient cross-sectional area so that ¢V, >V, /3 at
least, but preferably ¢pV. >V, /2;

(c) The width of the girder (or beam) framing into a column should be the same as
that of the column face for ease of forming.

6.9 Two-Way Slabs on Beams

Figure 6.29 shows a typical two-way slab system. When the aspect ratio (the ratio of
the longer span to the shorter span) of a slab that is supported on all four sides is less
than about 1.50, the slab exhibits a significant two-way behavior. As discussed in
detail in Chapter 2, this means that the slab will carry the loads in both directions. In
plan, the load distribution from the slab to the beams may be approximated, as shown
on Figure 6.30. The shorter beam supports much less load than the longer span does.
So if the aspect ratio is significantly larger than 1.0, the use of stronger beams in the
long direction than in the short direction is recommended. As the aspect ratio
approaches 1.0, the load division between the beams is more evenly distributed.

Figure 6.29 Two-way slabs on beams


http://dx.doi.org/10.1007/978-3-319-24115-9_2

400 6 Floor Systems

Area loading
short beam

Figure 6.30 Load distribution in two-way slabs

The ACI Code provides recommendations (Section 8.3.1.2) for the minimum
thickness of slabs supported on all four sides. These ACI Code formulae are
somewhat cumbersome. In the experience of the authors, 7> ¢,/35 to £,/40 is a
reasonable value for preliminary design (4, is the longer clear span of the slab from
face of beam to face of beam). The preliminary selection of beams is governed by
considerations similar to those for one-way slabs and beams.

6.10 Two-Way Joists with Slab Band Beams

Figure 6.31 shows a typical two-way joist, or waffle slab, with slab-band beams
system. This floor system is an interesting variation of the two-way slabs on beams.
Wide beams form a two-way grid of beams (often referred to as slab bands)
between the columns. The depth of the beams is equal to the depth of the two-
way joist system. This arrangement provides a somewhat easier layout of reinforce-
ment in the negative moment regions around the columns. This system may also
have a seismic performance better than that of ordinary waffle slabs.
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Figure 6.31 Waffle slabs (or two-way joists) on beams

Problems

In the following problems assume concrete is normal weight unless noted
otherwise.

6.1.

6.2.
6.3.

6.4.

6.5.

6.6.

A flat plate reinforced concrete floor system with 16 in. X 16 in. columns is
planned on a 25 ft x 25 ft grid. Use f = 4 ksi and f, = 60 ksi.

(a) Determine the minimum recommended slab thickness for exterior panels
if edge beams are used on the exterior perimeter of the floor.

(b) Determine the minimum recommended slab thickness if no edge beams
are planned.

Repeat Problem 6.1 for f, = 40 ksi reinforcement.

Repeat Problem 6.1 using drop panels. Determine the minimum required size
and thickness of a typical drop panel over an interior column.

An 8 in.-thick flat plate reinforced concrete floor system with 18 in. x 18 in.
columns is planned on a 22 ft x 22 ft grid. The superimposed dead load is
15 psf and the live load is 50 psf. Based on the shear strength of the system
around a typical interior column, verify the adequacy of the design. Assume no
moment transfer between the slab and the column. Use f = 4 ksi, fy =060 ksi,
and d=6.5 in.

Use the data in Problem 6.4 to calculate the shear in a slab due to the transfer of
a factored moment, M, = 80 ft-kip, from the slab to an interior column.

A flat plate floor system of a reinforced concrete building is shown below. Use
£ = 5,000 psi, f, = 60,000 psi, and concrete cover = 3/, in. The superimposed
dead load is 20 psf and the live load is 80 psf. Use the ACI direct design
method to calculate the moments in the slab.
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(a) Determine an appropriate slab thickness for an interior panel. Round the

thickness to the nearest '/, in.

24 in. X 24 in.
Column
(typical)
7 ||
25'-0"
7 |
25'-0"

25'-0"

Plan of Problem 6-6

25'-0"

(b) Check the shear around a typical interior column. Assume #6 bars in both
direction and use the average d when calculating the shear strength.
Assume no moment transfer between the column and the slab.

(c) Calculate the required outer layer reinforcing for (1) positive moment in a
column strip, (2) positive moment in a middle strip, (3) negative moment
in a column strip, and (4) negative moment in a middle strip.

Self-Experiments

Experiment 1

Make small-scale reinforced concrete models of a one-way joist, a waffle slab, and
a flat plate floor system. Place wires for their reinforcements. Record the procedure
and your observations. Which system required the least effort in building the forms

and placing the reinforcement?

Experiment 2

Identify three different concrete floor systems from local buildings. Record the
range of the spans and the bay shapes (square, rectangular, etc.). In addition, record
their occupancy types. Write a report that summarizes your findings and includes

photos.



Chapter 7
Foundations and Earth Supporting Walls

7.1 Introduction

Any building structure requires a foundation system in order to transfer the loads to
the supporting soil. The strength of concrete typically is 400-800 kip per square feet
(ksf). Soils typically however, can safely withstand only pressures of 3—10 ksf. As a
result the foundation system has to spread the load over a large surface area to
reduce the pressure when it transfers loads from columns and walls to the
supporting soil.

Foundations were constructed of stone and masonry before concrete was used as
a building material. Application of concrete has improved the foundation system
significantly. Today, virtually all foundations are made of plain or reinforced
concrete.

Because the design of foundations requires an understanding of the soil-structure
interaction, we must study the different types of soil and their behavior under
loading. Therefore, the following sections present an overview of the different
types of soil, their classifications, the exploration methods, and the laboratory
tests for finding the allowable bearing capacity of soil.

Subsequently, this chapter deals with the different types of foundation systems,
with a focus on the design and analysis of wall and column footings. The last part of
this chapter discusses the different types of earth supporting walls, with an empha-
sis on basement walls and cantilever retaining walls.

7.2 Types of Soil

In general, all subsurface materials fall into one of two groups: rock or soil. But in
reality soils are made up mostly from rock eroded by air and water and settled over
many millennia. Soils are divided into two main categories: coarse-grained soils
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and fine-grained soils. Coarse-grained soils consist mainly of gravel and sand. The
particle sizes are large enough to be seen with the naked eye. Coarse-grained soils
are also called noncohesive soils, as their grains do not stick to each other when
oven-dried. Fine-grained soils are classified as clay or silt. A magnifying glass is
needed in order to see their particles. Fine-grained soils are also called cohesive
soils because their particles stick to each other. Cohesive soils expand when
subjected to moisture and shrink when dried.

In addition to these major categories of soil, soils are classified as organic or
inorganic soils. Organic soil consists of decayed vegetable or animal remains. The
top soil used to grow plants and vegetations is an organic soil. Inorganic soil, in
contrast, is almost completely free of organic materials. Organic soil is not suitable
for supporting building structures or even to be used as backfill against basement or
retaining walls. If it is encountered in a construction site, it must be replaced with
appropriate compacted engineered fill.

7.3 Soil Classification

A soil classification called the Unified Soil Classification System (USCS) has been
devised to specify the soil mix and its condition. It is based on the work of Professor
Arthur Casagrande at Harvard University. Each designation in this classification
consists of two letters. The first letter represents the type of soil: G (gravel), S
(sand), M (silt), C (clay), O (organic), and P (peat). The second letter shows the soil
condition, for example, W (well-graded) or P (poorly graded). In this classification,
soils are divided into 15 types, as shown in Table 7.1. A well-graded soil consists of
both large and small grains, with the small particles filling the voids between the
large ones (sand and gravel). Well graded and compacted sand and gravel are very
good substrata. The “poorly graded soil” refers to a soil that does not have the right
proportioning of sand and gravel and, as a result, has large voids between adjacent
grains.

7.4 Test Borings and the Standard Penetration Test (SPT)

In order to design foundation systems, we need information about the underlying
soil. The most widely used method of exploration drills holes (borings) into the
ground at the intended site of the building. The soil is sampled at different depths of
borings and standard tests are conducted to obtain information about the soil’s
properties.

Test borings are distributed so as to obtain insight about the soil under the whole
footprint of the building. The spacing and depth of the borings depend mainly on
the type of structure to be built and the uniformity of the soil deposit. For low-rise
buildings, the spacing of the borings is about 75-100 ft. Their depths are about
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Table 7.1 Unified soil classification system

Main division Symbol | Description
Coarse- Gravels GW Well-graded gravels, gravel-sand mixtures
grained soils GP Poorly graded gravels or gravel-sand mixtures
GM Silty gravels, gravel-sand-silt mixtures
GC Clayey gravels, gravel-sand-clay mixtures
Sands SW Well-graded sands, gravelly sands
SP Poorly graded sands or gravelly sands
SM Silty sands, silt-sand mixtures
SC Clayey sands, sand-clay mixtures
Fine-grained | Silts and | ML Inorganic silts and very fine sands, silty or clayey fine
soils clays sands or clayey silts
CL Inorganic clays, gravelly clays, sandy clays, silty
clays
OL Organic silts and organic silty clays
MH Inorganic silts, fine sandy or silty soils
CH Inorganic clays
OH Organic clays, organic silts
PT Peat and other highly organic soils

20-30 ft below the foundation level, with one deep boring to search for hidden
weak deposits. For high-rise buildings the spacing of borings is closer, around
40-50 ft, and the depth often descends to the underlying bedrock.

Boring is performed by an auger drill. A hollow pipe, called the casing, is advanced
to prevent the soil from collapsing into the borehole. As the bore hole is advanced, the
soil is tested in situ at certain locations. This testing is usually performed wherever
the driller experiences a different stratum, or at 5-ft intervals within the same stratum.
The test used most often is the Standard Penetration Test (SPT).

The SPT uses a device called a split-barrel sampler. Figure 7.1 shows a schematic
drawing of a split-barrel sampler. It is a hollow cylinder 2 in. in diameter, made up of
two fitting half cylinders, which are held together by two threaded end-pieces. It is
placed at the bottom of the bore hole and driven through the soil by a 140-1b hammer
that has a free fall of 30 in. The number of blows needed to move the sampler three
times 6 in. into the soil is recorded. The numbers of the blows from the second and
third 6-in. advancements are added up. This sum gives the so-called N value. The
blows from the first 6-in. advancement do not reveal the true characteristics of the soil
in situ, because the auger tends to leave disturbed soil at the bottom of the hole.

In addition, when the sampler is withdrawn at the end of the test, the device is
taken apart and the soil sample contained in the cylinder (part B on Figure 7.1) is
placed into a sealed and labeled jar. The sample is then taken to the laboratory for
further testing.

The blow count, N, is related to the soil condition. Table 7.2 shows a general
classification relating soil condition and the blow count. After careful laboratory
analysis of the samples, the geotechnical engineer prepares a boring log of each
boring performed at the site. Figure 7.2 shows a sample boring log.
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Figure 7.1 Schematic drawing of a split-barrel sampler for the Standard Penetration Test
(copyright ASTM International. Reprinted with permission)

Table 7.2 .Relati(?n.ship Sand Clay

between soil condition and Condition N Condition N

blow count, N (Data from

Terzaghi and Peck, Soil Very loose 04 Very soft <2

Mechanics in Engineering Loose 4-10 Soft 2-4

Practice, 2nd ed., 1968) Medium 10-30 Medium 4-8
Dense 30-50 Stiff 8-15
Very dense >50 Very stiff 15-30

Hard >30

7.5 Soil Failure Under Footings

Soil, like any other material, has a certain load bearing capacity. If the pressure
from the footing exceeds this limit, the soil will fail. This would cause the footing
to sink into the soil, which may have disastrous consequences on a supported
building.

Figure 7.3 shows a simple theoretical failure mechanism for soils under pressure.
A wedge is formed directly under the footing (Zone I). This wedge is pushed down
by the footing, which in turn pushes Zone II outward. Zone II rotates about a pivot
at the top and pushes Zone III sideways and up. The bottom parts of Zones I and III
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Figure 7.2 A sample boring log

form a shear plane along which the wedges move. This plane provides shear
resistance against the movement. The weight of Zone III also provides resistance
against the rotation of Zone II. Thus, placing loads on Zone III (surcharge) or
moving the footing deeper into the ground will inhibit the movement of the wedges.
As a result, the soil will have more bearing capacity.
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Figure 7.3 Bearing capacity failure of soil

7.6 Pressure Distribution Under Footing and Soil
Settlement

The pressure at the bottom of the footing propagates through the soil mass. The
pressure is most intense directly under the footing, and decreases at increasing
horizontal and vertical distances from the footing. This is known as the pressure
bulb effect as shown in Figure 7.4a for a circular footing. Figure 7.4b shows how the
pressure bulb extends in all directions like a balloon. The pressure bulb for a square
footing has a shape somewhat similar to the one shown in Figure 7.4. In the case of
a continuous strip footing, the pressure distribution extends along the footing with
proportions that are cylindrical rather than spherical.

Soils compress into a smaller volume when subjected to pressure. This leads to
settlement, or a downward movement of the footings. The amount of settling
depends on several factors such as the pressure level under the footing, the size
of the footing, and the properties of the soil. The volume of soil affected by the
footing is basically the limit of the pressure bulb shown in Figure 7.4. Therefore,
settlement also depends on the shape and size of the footing. Settlement can never
be completely eliminated unless the footing is directly supported by bedrock. So we
design footings to limit the detrimental effects of settlement on the structure.

Soils are composed of three major constituents: solid particles, a system of voids
between these particles, and air (gas) or water that fills the voids. When the soil is
loose, it has a large void content.

Settlement or consolidation in soils is associated with the squeezing of the
moisture or air out of the voids. This permits the solid particles to move closer to
each other, resulting in a denser structure.

In granular soils the movement of water (or smaller particles) is easy. Thus,
settlement of these soils will take place quickly as the structure is built on top of
them and loads are added onto the footings. About 90 % of the expected settling will
have taken place by the time the building is completed.

In cohesive soils (clays), the movement of moisture is slow, thus the consolida-
tion (settlement) of the soil is also slow. Settlement may take place long after the
completion and occupancy of the building.
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In general, there are two types of settlement of building foundations:

1. Uniform settlement: This happens when all parts of the entire building settle
approximately the same amount. Uniform settlement may damage underground
utilities, but usually does not cause any significant structural damage to the
building. The Monadnock Building in Chicago, for example, underwent almost
2 ft of settlement without any damage.

2. Differential settlement: In this case, different footings will experience different
amounts of settlement. Differential settlement can cause serious structural distortion
and damage, so it is important to design structures and foundations that minimize
the effects of differential settlement. It is common practice to try to limit differential
settlement to 1/300 of the horizontal distance between adjacent footings.

7.7 Allowable Bearing Soil Pressure

Because differential settlement can cause severe distortion and structural problems,
various methods are used to reduce its effect. One common method is to design the
footings so that each applies approximately the same pressure on the soil under the
most usual loads. These loads consist of dead loads and an average percentage of
the live load depending on the occupancy type.

There is a limit to the pressure that soils can safely support. This limit is called
allowable soil bearing pressure or simply soil bearing capacity, and is based on
two criteria: (1) the soil does not fail, and (2) the settlement is not excessive.

Building codes recommend soil bearing capacities for specific conditions. These
recommended values are generally approximate. Table 7.3 shows approximate soil
bearing capacities for each soil type. The proper method of establishing the
allowable soil bearing pressure is a soil investigation program conducted by a
qualified geotechnical engineer. Usually the structural engineer selects and designs
the foundation system based on a soil report from a geotechnical engineer.

Table 7.3 Allowable soil

Soil type Bearing capacity (ksf)
bearing capacities -
Medium clay 3
Stiff clay 4
Very stiff clay 6
Hard clay 8-10
Medium sand 2-6
Dense sand 6-8
Very dense sand 8-10
Sand and gravel mix 8-12
Soft rock 16
Medium, sound rock 30
Hard rock 40-80
Massive, solid bedrock 200-400
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For smaller projects, however, the structural engineer may use the presumptive
bearing capacities recommended by the local building codes such as those shown in
Table 7.3 when foundations are supported by soil whose properties are known.

7.8 Types of Foundations

Foundations fall into two main categories: shallow foundations and deep founda-
tions. Each of these foundation systems consists of different subsystems, as shown
in Figure 7.5. Many factors need to be considered in the selection of a foundation
system. These include soil strength, soil type, the location of the water table,
variation of the soil with depth, and so on. In general, foundations are constructed
of plain or reinforced concrete. The typical strength of concrete used in footings is
J7/ = 3,000 psi. In rare cases, concrete with higher strength may be used to reduce
the footing depth and weight.

7.8.1 Shallow Foundations

Shallow foundations are usually located no more than 6 ft below the lowest finished
floor. These are the most economical and most common type of foundation. A
shallow foundation system generally is used when (1) the soil close to the surface of
the ground has sufficient strength, and (2) underlying weaker strata do not result in
undue settlement.

Figure 7.5 divides shallow foundations into five major types: wall footings,
isolated column spread footings, combined footings, strap footings, and mat or

raft foundations.
Foundation Systems
Shallow foundation Deep foundation

Wall Isolated Combined Strap Mat
fooi spread
ooting

footing

footing footing foundation

Pile Pier foundation
foundation (caissons)

Figure 7.5 Types of foundations
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Depending on the condition and the type of the supporting soil, shallow foundations
are cast either into a neat excavation in the soil or into wood forms. It is most economical
to cast the concrete into earth forms. But this is only possible with a cohesive soil,
such as clay, which remains stable during the concrete placement. If the soil is granular,
the concrete is cast using wood side forms. The forms are removed after the concrete
gains strength, and the area around the footing is backfilled and compacted.

Wall Footings Wall footings support walls made of wood, masonry, or concrete.
They are made of plain or reinforced concrete and are continuous under the entire
length of the wall. Similar to slabs, structural analysis and design are performed on
a 1-ft-long strip of the footing (assuming the wall is evenly loaded). The supported
wall is usually placed at the center of the footing to avoid any eccentricity and
rotation of the footing. Figure 7.6a shows a typical wall footing.

L

Figure 7.6 Different types of shallow foundations: (a) wall footing, (b) isolated spread footing,
(c) combined footing (rectangular), (d) combined footing (trapezoidal), (e) strap footing, and (f) mat
foundation
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Figure 7.6 (continued)

Isolated Spread Footing An isolated or individual spread footing supports a single
column. Figure 7.6b shows a typical isolated spread footing. Spread footings are
usually square shaped, but we can design them in a rectangular shape, if needed.
This may be necessary if the footing is close to a neighboring footing or a
property line.
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Isolated spread footings can be made of plain concrete if they are subjected only
to gravity loads and are not located in earthquake-prone areas. Plain concrete
footings are usually used only with light loads.

Combined Footings One footing may be used to support two columns when the
columns are close to each other and the isolated spread footings for one column
would overlap the other. Such a footing is called a combined footing. Figure 7.6¢c
shows a rectangular combined footing. If the column loads are significantly differ-
ent, we may use a trapezoidal footing such as the one shown in Figure 7.6d. The
larger width of the footing will be closer to the column supporting the heavier load.
When designing a combined footing, it is important to size the footing so that it
exerts an approximately uniform pressure on the soil. To achieve this, the footing is
proportioned so that its centroid is at or near the resultant of the column loads.

Strap Footings A strap or cantilever footing is a special type of combined footing
that uses a “strap” or beam to connect the two footings together. The application of
this footing is similar to that of the combined footing. Strap footings may also be
useful when underground utility lines prevent the use of rectangular combined
footings. Figure 7.6e shows a typical strap footing. The strap acts as a cantilever
beam that partially resists the moment from the eccentrically loaded exterior footing.
This ensures that the soil pressure is uniform underneath the entire strap footing.

Mat Foundation A mat or raft foundation consists of a large and thick continuous
reinforced concrete slab that supports the entire building. This system is used when
the soil bearing capacity is low or column loads are heavy, resulting in more than
50 % of the building plan area being required for individual footings. An advantage
of a mat foundation is that it drastically reduces differential settlement between
columns. Mat foundations are usually made of heavily reinforced concrete slabs at
least 24 in. thick. Figure 7.6f shows a typical mat foundation.

7.8.2 Deep Foundations

The use of shallow foundations may not be economical or even possible if the soil
bearing capacity close to the surface is too low. Deep foundations are used in these
situations to transfer the loads to a strong layer, which may be located at a
significant depth below the ground surface. The load is transferred through skin
friction and end bearing as shown in Figure 7.7.

There are two main types of deep foundations: piles and piers (also called
caissons), as shown in Figure 7.5.

Pile Foundations Piles usually have small cross-section sizes, ranging from 6 to
24 in., and capacities of up to 500 kip. They are made of treated timber, steel, or
concrete in different shapes. Piles typically are driven into the ground using pile
driving hammers. This process causes noise and vibration, which may disturb
sensitive adjacent structures, such as hospitals.
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When a pile is driven into the soil, it displaces the soil that is in direct contact
with it. The soil around the pile becomes significantly compacted and lateral
pressure on the pile increases. This results in friction forces between the soil and
the pile.

Timber piles have been used since ancient times. The piles used today are about
25-35 ft long although it is possible to splice them for longer length. Timber piles
act mainly as friction piles because their end bearing is not significant. These piles
have load capacities in the range of 30-50 kip.

Steel and precast concrete piles are normally used to carry large loads. For long,
slender piles the end bearing on soil is insignificant compared to the resistance from
the skin friction. But if the piles are driven to the underlying bedrock, they act as
end-bearing piles because the end-bearing resistance contributes a large percentage
of the total resistance.

Piles are commonly used in groups with a pile cap connecting the tops of the
piles and providing a surface area for placing building columns. Figure 7.8a shows a
pile group supporting a column. The piles in a group should be separated far enough
that the load carrying action of each pile does not affect that of an adjacent one.
Typically, at least three piles are used in a group, but two piles are often acceptable
in certain conditions. Figure 7.8b shows typical layouts of piles in groups with their
associated pile caps.

It is common to use battered piles if the piles are to be subjected to large lateral
loads due to wind or earthquake loads. These piles resist the effects of lateral
loads through axial tension and compression forces. Figure 7.8c shows a pile
group with battered piles.

Auger-cast piles may be used to alleviate the noise and harmful vibrations
associated with pile driving. A long hollow stem screw is drilled into the ground.
The auger is withdrawn at the desired depth while, simultaneously, concrete is
pumped into the bottom through the hollow stem. The withdrawing auger removes
the soil and replaces it with a concrete column. The pile can be reinforced by
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lowering a wide flange steel section into the fresh concrete immediately after
withdrawal of the auger.

Pier Foundations Piers are typically made by using a large-diameter auger to drill a
round hole in the ground and placing concrete into the hole. The drilling process for
piers is much less noisy than pile driving. The shaft diameter is usually at least
36 in. This provides enough room to lower a person to inspect and test the soil
before placing the concrete. A protective steel cylinder (called a casing) is used to
prevent the collapse of the sides during drilling.

A drilled pier is sometimes called a caisson, which is French for “box.” A special
device is often used at the bottom of the pier to enlarge the base, creating a belled
caisson instead of a straight-shaft caisson. The main purpose of a bell is to increase
the bearing area of the caisson. Figure 7.9 shows a typical belled caisson with its
components. Bells can be made only in cohesive soils such as clay. It is common
practice when designing a caisson to ignore the skin friction between the shaft and
soil and use only the end bearing capacity.

Caissons support many tall buildings in Chicago. Each column of the John
Hancock Center is supported by a 140-ft-long caisson, which transfers the load to
the bedrock. The Willis Tower (old Sears Tower) sits on 114 caissons that are 6 ft in
diameter and over 100 ft long to reach the bedrock.
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7.8.3 Considerations for the Placement of Foundations

Several issues must be considered when selecting a footing type. These issues,
however, mainly affect the placement of shallow foundations.

Adjacent Property Lines Buildings often have columns or walls close to or right on
a property line. Typically building codes and legal considerations do not allow any
part of a footing to extend beyond the property line. A good way to avoid this
problem is by setting the building’s supporting elements away from the property
line and letting the supported structure cantilever to the legal limit. But if the design
demands supports at or near a property line, the structural designer may need to use
an elongated rectangular footing, a combined footing, or a strap footing.

Depth for Frost Penetration The moisture in the soil underneath a footing may
freeze during the cold season if the bottom of an exterior footing is located too close
to the ground surface. Water expands when it freezes, and the magnitude of the
expansion is about 10 %. The expansion takes place toward the least resistance,
which is usually upward. This phenomenon is called frost heaving. This can push
the footing upward, which in turn can distort and crack the footing and damage the
supported building structure.

This problem is simple to prevent. Exterior footings have to be placed below the
frost line, as shown in Figure 7.10a. The frost line is the distance measured from the
finished exterior grade to the bottom of the expected maximum depth of frost
penetration.

Historic data are available on the depth of the frost line in different locations. For
example, 42 in. is a safe depth in most parts of the Midwest. In the northern part of
the Great Lakes and in many northern states, exterior footings must be placed at
least 60—72 in. below the exterior grade. The geotechnical engineer usually pro-
vides the necessary information relating to the local frost line. The map in
Figure 7.10b shows the variation of the frost line depth for different areas of the
United States, based on the values recommended in city building codes. (This map
should be used only for general information because it is not necessarily accurate
for specific localities.)

In heated buildings, this requirement is mandatory only for exterior footings, as
frost does not travel horizontally to affect the interior footings. An exception to this
is when the foundations are constructed in the winter, or are left unprotected from
freezing during cold spells. In those cases even the interior footings should be
placed below the frost line and protected by backfilling or insulating blankets.

Different Elevations of Adjacent Footings 1f the elevations of two adjacent
footings are different, as shown in Figure 7.11, the pressure on the soil from the
upper footing may increase the pressure under the lower footing. Therefore, a limit
called the proximity line is placed on the slope of the line joining the footings when
placing adjacent footings at different elevations.

This slope should preferably be limited to 1:2 if the soil is mainly granular (sand,
gravel). If the footings are on good clays, however, the slope may be increased to
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close to 1:1. The designer should consult the geotechnical engineer regarding the
safe elevation difference between neighboring footings.

Presence of Expansive Soil Expansive soil is a type of clay that undergoes significant
volumetric changes with moisture variations. For example, a vast area of the southern
United States is covered by a clay deposit known as the Yazoo clay, which is an
expansive soil. Foundations placed directly on expansive soil may experience large
upward pressures that could cause serious distortion and structural damage through-
out the building. The moisture variation affects only the top few feet of an expansive
soil; thus, footings are usually placed at an elevation below which the periodic
moisture variation is insignificant. Short drilled piers are also commonly used.

Presence of Organic Layers Construction on soils that have significant organic
content or underlying layers of organic soils (e.g., peat, marl, etc.) can cause serious
problems. Organic matter is highly compressible and in a state of long-term
decomposition.

Two different strategies for dealing with organic soil are available to the designer.
One is completely removing the soil to the full extent of the organic layers and
replacing it with a so-called “engineered backfill.” The second is to use a deep
foundation, usually piles. It is also advisable to design the lowest level, which is
normally just a slab on grade, as a structural floor. Otherwise, the slab may settle
unevenly, cracking and distorting attached nonstructural elements, such as partitions.

7.9 Distribution of Soil Pressure Under Footings

Footings apply pressure on their supporting soil. This pressure has to be limited to a
certain allowable level (soil bearing capacity). There is also a reaction from the soil
acting on the footing when it presses the soil.

The true theoretical distribution of the reaction pressure from the soil on the
footing depends on the type of supporting soil. Figure 7.12 shows typical pressure

S L

Figure 7.12 Soil pressure distributions: (a) sandy soil, (b) clayey soil, and (c) design assumption
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distributions for different types of soil. The pressures are larger under the center of
footing and smaller along the edges if the soil is sandy. This is because the sand
along the edges does not have good lateral support and can easily move laterally
(see Figure 7.12a). The shape of the theoretical distribution of pressures in clays is
shown in Figure 7.12b. In practice, an average uniform soil pressure distribution,
like the one shown in Figure 7.12c, is assumed. This is much simpler and the results
have been proven to provide adequate and safe designs.

7.10 Design of Wall Footings

Because wall footings are long continuous members, designers use a 1-ft-long strip
of wall (b’ = 12 in. and its footing to represent the whole length for design purposes.
Figure 7.13 illustrates this concept. Wall footings are made of plain concrete or
reinforced concrete. Plain concrete footings are commonly used to support light
loads such as residential construction.

Figure 7.13 Wall footings design strip

7.10.1 Plain Concrete Wall Footings

To design a plain concrete wall footing we need only to determine the depth and
width of the footing such that (1) the soil pressure beneath the footing is less
than the allowable value (bearing capacity), and (2) the bending and shear strength
of the concrete footing is adequate. Generally, the footing width is calculated to
satisfy the first requirement, while the depth is computed to satisfy the second
requirement.

Plain Concrete Wall Footing Design We must perform the following steps in order
to design a plain concrete wall footing. They are summarized in the flowchart of
Figure 7.17.
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Step 1. Determine the footing width (b).

Geotechnical reports usually provide the designer with a net allowable
soil pressure. Net pressure excludes the weight of the footing and the
surrounding soil. So the weight of the footing and the weight of the backfill
directly above the footing are ignored in the design.

The footing thickness (4) and width (b) are both unknown, so we
estimate 4 and then check the pressure levels to determine how good the
estimate was. First we calculate the footing width (b) such that the soil
pressure (g,) is less than the allowable net bearing capacity of soil (¢g,), as
shown in Figure 7.14.
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Figure 7.14 Wall footing pressure on supporting soil
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In this equation wp, w;, wy, and wy are the unfactored dead, floor live,
roof live, and total loads, respectively. The footing width (b) is usually
rounded up to the nearest even inch.

Step 2. Estimate the footing thickness (%).

The rule of thumb for the thickness (%) of the plain concrete wall

footing is:
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b—t
. (712)

where ¢ is the wall thickness (see Figure 7.14). The thickness (/) is usually
rounded up to the nearest inch.

According to the ACI Code (Section 14.3.2.1) the wall footing has to
have a minimum thickness of 8 in. In practice, we use this value and the
thickness of the supported wall, whichever is larger. The footing has to be
at least as wide as the wall thickness. In addition, the geotechnical report
often states a minimum acceptable footing width, usually at least 16 in.
Figure 7.15 summarizes these requirements.
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Figure 7.15 Minimum dimensions of wall footings

Step 3.

Check the footing dimensions against these minimum values. If they are
smaller than the minimum, use the minimum width and thickness.
Calculate and check the moment.

The bending moment is the critical factor in determining the required
thickness (%) for plain concrete wall footings. The critical sections for
moment (where moments are the largest) are based on the type of wall
being supported. According to the ACI Code (Section 14.4.3.2.1) the
critical section for moment for a masonry wall (more flexible than a
concrete wall) is at a distance #/4 to the inside of the wall, as shown in
Figure 7.16a. The critical section for a poured concrete wall is at the face of
the wall, as shown in Figure 7.16b.

The weight of soil above the footing and the weight of the footing do not
cause any bending or shear in the footing. In this respect, a footing is like a
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mattress lying flat on a bed. It does not bend; but when you stand on it, you
notice how it deforms and bends. Similarly, the only loads that cause
bending and shear in the footing are the dead (wp) and the floor and roof
live (w, and w;,) loads. As mentioned in Chapter Two, Section 2.10,
w,=12wp+ 1.6w, +0.5w;,. if wy > 1.83w;,) and w,=12wp+ 1.6w; .+
1.0wy, (if wy < 1.83w;,). Figure 7.16¢c shows the bending of the footing
subjected to the applied loads. The ultimate tensile stress is calculated using
factored loads. Therefore, the factored pressure acting from soil on the
footing, g, is:

a
f—t—|
A
4 b
y)
4
: A4——Masonry wall 1 Concrete wall
I
!
|
/4 — — Critical section for moment /— Critical section for moment
L]
I
i '
i |
i |
T 0
f—D— f—p—
c d

~

Figure 7.16 Moment in wall footings: (a) critical section for masonry wall footing, (b) critical
section for concrete wall footing, (c) bending of wall footing, and (d) moment at the critical section
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Figure 7.16d shows the moment at the critical section, which can be
found from the equilibrium of the sum of moments:

D D?
M, = QuD E = 61:47 (7'4)

The footing is constructed of plain concrete, so there is no clear definition
of the effective depth (d). But ACI Code (Section 14.5.1.7) requires a
reduction of the overall footing thickness by 2 in. to allow for unevenness
of excavation and possible contamination of the concrete adjacent to the soil:

d=h—-2in. (7.5)

The moment, M, acts on a section (12 in. x d). Therefore, the elastic
section modulus, S,,,, is:

Sp=— = (7.6)

Design of Plain Concrete
Wall Footings

1. Determine footing width:

wr
Qa

A

2. _
Estimate footing thickness, h = % and compare
the footing dimensions with the minimum sizes.
A
Increase thickness (h). 3- Calculate and check moment:
W,
W=p

Mu=qu%2,d=h—2in.

M, =5V S, k=10
& = 0.60, Mg = oM,

No

Yes

END

Figure 7.17 Flowchart for the design of plain concrete wall footings
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(b'=12 in. because we use a 12 in. strip of footing.) The nominal
resisting moment of the footing, M, is (ACI Code Equation 14.5.2.1a)
therefore:

M, = S /7 S (7.7)

The value 57»\/]7 is the ACI Code-recommended ultimate tensile stress in
bending for plain concrete. A is the light weight concrete factor: A =0.75
(all-light weight concrete); A=0.85 (sand-light weight concrete); and
A=1.0 (normal weight concrete). Typically, footings are made of normal
weight concrete. Then, for the footing section to be acceptable:

My = M, (7.8)
Mg > M, (7.9)

The strength reduction factor for flexure, compression, shear, and bearing
of structural plain concrete (ACI Code, Section 21.2.1) is:

d = 0.60

If the footing is not acceptable, we should increase the footing thickness
and repeat the process. The thickness can be increased arbitrarily or by
solving Mr =M, for ¢.

Example 7.1 A 12 in. load-bearing CMU (concrete masonry unit) wall supports an
outdoor canopy. The wall will support a dead load of 10 kip/ft (including the weight
of the wall), and a roof live load of 5 kip/ft. Design a plain concrete footing for
this wall. The compressive strength of the concrete is 3,000 psi. The net bearing
capacity of the soil is 3,000 psf. The frost line is 4 ft from the grade. Concrete is
normal weight.

12in.
=
oMU wall— > -
N7\ ST
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Solution

Step 1.

Step 2.

Step 3.

Determine the footing width.

Wr =wp +wp, = 10+5 = 15k/ft
. . . wr 15.0
Approximate footing width () = — = 30 = 5ft

a
Estimate the footing thickness.

h:ﬂ1=6m42=mm.
2 2

The footing dimensions are larger than the minimum sizes.
Calculate and check the moment.

We check the moment by comparing the applied moment, M,,, with the
resisting moment, M. The ultimate Load, w,, is computed for the dead
load and roof live load (no floor live load):

wy, = 1.2wp + 1.6w;,
w, = 1.2(10) + 1.6(5) = 20 k/ft
Determine the factored pressure from soil acting on the footing (g,,):

Wy

20
=5 = 4.0 ksf

The critical section for moment, shown in Figure 7.18, is at #/4 from the
face of the CMU wall. Therefore, the distance, D, from the footing edge to
this location is:

D_b71+z
T2 4
5x12)—12 12
D:Li%——+7:ﬂm
(27>2
D? 12
M, =q — = (4.0) ~—=£—

M, = 10.13 ft-kip
d=h—2in. =24in. — 2in. = 22 in.
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12in.
/1/

Critical section for moment

M |

T
D =27in. ik/wu
e

hest = 24 in.

Tt it 1t 11
ff——b=5-0"—--]

Figure 7.18 Plain concrete wall footing of Example 7.1 (checking moment)

q, = 4.0 ksf

/72
S,, = elastic section modulus =

12(22)°
6

Sm = 968 in.}

The nominal resisting moment, M,,, from Equation (7.7) is:

A = 1.0 (normal weight concrete)

M, = SM/f! S
(968) , . .
M, = 5(1.0)(+/3,000) Conversion factor for in.-1b to ft-kip

12,000
M, = 22.1 fi-kip

Mg = $M,, = 0.6(22.1)
My = 133 ftkip > M, = 10.13 fi-kip ..ok

Therefore, the footing thickness is enough.

Figure 7.19 shows the final design of this footing.

7.10.2 Reinforced Concrete Wall Footings

Reinforced concrete wall footings usually support larger loads than do their plain
concrete counterparts. They are typically reinforced in the short direction.
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12in.
f—
/1/
22 S +
2"
20"
| 50" |

Figure 7.19 Final design of wall footing of Example 7.1

Reinforced Concrete Wall Footing Design The design of a reinforced concrete
wall footing is different from that of a plain concrete footing because the footing is
reinforced to develop the required moment. Consequently, the footing can be
thinner. As a result the shear also has to be checked in reinforced concrete wall
footings. The following steps, which are summarized in Figure 7.21, are performed
in the design of these footings:

Step 1. Determine the footing width (b).

Wr = Wp + WL + wp,

Footing width (b) = mr
qa

Round up b to the nearest even inch, if needed.
Step 2. Estimate the thickness (/).
The footing has no shear reinforcement. Thus, the concrete must be thick
enough to have sufficient shear resistance by itself. A reasonable thickness
is about 40-50% of the overhanging width of the footing. Hence, a
conservative estimate is:

h=05 (?) (7.10)

Round up /4 to the nearest inch, if needed. Based on ACI
Section 13.3.1.2, the depth of footing above bottom reinforcement has to
be at least 6 in. Considering the cover requirement, the minimum
reinforced concrete wall footing depth is 10 in.
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b

LN

Critical section for shear | Wall
i <
\F N

o

Figure 7.20 Shear in wall footings: (a) location of critical section, and (b) shear at the critical
section

Step 3. Calculate and check shear.
Similar to the plain concrete footing, the factored load (w,) and pressure
from the soil on the reinforced concrete footing (g,,) are:
w, = 1.2wp + 1.6wy + 0.5w;, (lf wp > 1.83WL,->

w, = 1.2wp + 1.6wy, + 1.0w,  (if wy < 1.83wy,)
— Wu
9y = b
The effective depth of the footing, d, is:

d = h — cover — diameter of bar/2 (7.11)

The minimum cover in footings is 3 in. (ACI Code, Section 20.6.1.3.1).
Assuming #6 bars:

d=h—-3in. —0375=h—-338in.

According to the ACI Code (Sections 13.2.7.2), the critical section for
shear is located at a distance d from the face of the wall. Figure 7.20 shows
the critical section and the shear at the critical section. To calculate V, we
cut the footing at this location and write the equilibrium of forces
(Figure 7.20b):

V, =q,C (7.12)

where

c=2""_4 (7.13)
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Design of Reinforced
Concrete Wall Footings

1. Determine the footing width (b):

wr
b=
Ga

A

Estimate footing thickness (h):
_ b-t
h-os(t=1)

Make sure the footing dimensions are more than minimum.

A

3 Calculate and check shear:

| -t
qu = T ;C:b -d

Increase thickness (h).

N

b 2
V,=q,C, d=h-338in.
V,=2\Vf b'd (A,=1.0,and b’ = 12in.)
=075

No

V, = bV,?

Yes

4. Determine the required reinforcements:

D% | . 12,0000,
Muzqu?;b:12|n.,R:TZU
Use Tables A2.5to A2.7 to find p :
As=pb'd

Select the size and number of bars.
Check the bars development length using
Tables A3.1 and A3.3 or Equation 3.64.

Figure 7.21 Flowchart for the design of reinforced concrete wall footings
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The nominal shear strength of concrete, V., (ACI Equation 22.5.5.1) is:

V. =20/ bd
Y =12in.

(7.14)

According to the ACI Code (Section 21.2.1), the strength reduction
factor for shear in reinforced concrete (¢) is:

$ =075
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Therefore, for the section to be adequate:
Ve >V, (7.15)

Otherwise, the footing thickness has to be increased.

Step 4. Determine the required reinforcements.

Based on the ACI Code (Section 13.2.7.1), the critical section for
moment is at the same location as for the plain concrete footing (i.e., #/4
from the face of masonry walls and at the face of concrete walls), as shown
in Figure 7.16. Calculate the moment at the critical section as follows:

MD2
M, = :
Determine the R value:
12,000M,, .

Using Tables A2.5 through A2.7, we obtain the steel ratio p and calculate
the required area of steel:

As=pbd (7.17)
Check this value against the minimum area of reinforcement, A pjn:
Ag.min = 0.0018b'h (7.18)

Check the bar’s development length by using Table A3.3 and the
applicable modification factors of Table A3.1. The bar length from
the critical section for moment to the edge of the footing has to be more
than ¢, Otherwise, the bars have to be hooked at their ends. Therefore,

D —3in. (cover) > ¥, (7.19)

Note that we can use Equation (3.64) and the corresponding modification
factors of Table A3.1 instead of Table A3.3 to obtain the bar development
length. This method usually results in a smaller required development
length.

Normally, 1 #4 or #5 longitudinal bar is used per foot of width as
distributor bars.

Example 7.2 Design the wall footing of Example 7.1 using reinforced concrete.
Assume f,, = 60,000 psi.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_3
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Solution

Step 1. Determine the required width, b.

wT:wD—i—er:lO—&—S:lSk/ft

T
9a
15
b=—=5f1t
3

Step 2. Estimate the footing thickness, /.

b—t 5—-1
h=0.5 (T) =05 (T) =1.0ft

/’l — 1/_0//

Step 3. Calculate and check the shear.
Determine the factored pressure on the footing from the soil (gq,,):

w, = 1.2(10) + 1.6(5) = 20 k/ft

J— Wu

4 = ?
20

4 = ?

g, = 4.0 ksf

Calculate the effective depth of the footing. Assume #6 bars with 3 in.
minimum clear cover. Therefore,

d=12—-338 =8.621in.

The critical section for shear is located at the distance d from the face of
wall, as shown in Figure 7.22a; from Equation (7.13):

b—t
=———d
¢ 2
_ 5(12) — 12 86

C =1538in. = 1.28 ft

The shear at the critical section (V) is:
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a 12 in.
/1/

Critical section for shear —\

d=12-3 -3 =8.62in. — i |
C=15.38in. _\\ v
|

T T 1 1
q, = 4.0 ksf
. b=5-0" I
b
/1/
D=27in. »;r/wu
|
t4 = 3in. =
: Tor
Tt © 1 1 1
g, = 4.0 ksf

| b =5-0" |

Figure 7.22 Reinforced concrete wall footing of Example 10.2: (a) check shear, and (b) check
moment

Vi.=¢q,C
V, =4.0(1.28) = 5.12 kip

The shear strength of the concrete, ¢V, is:

OV = ¢(20/fIV'd)

2(1.0)+/3,000(12)(8.62)
1,000

¢V, = 8.50 kip > 5.12 kip

GV, = 0.75

Therefore, the footing thickness is enough to resist the shear.


http://dx.doi.org/10.1007/978-3-319-24115-9_10
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Step 4. Determine the required reinforcements.
The critical section for moment is at the distance "/, from the face of wall,
as shown in Figure 7.22b:

b—t t
D=——+—
> g
D—5(12)712+12
B 2 4
D=27in. =2.25ft
2
M, = WP
2
4.0(2.25)
M, = M = 10.13 ft-kip
R:12,00(2)1VL,
b'd

12,000(10.1
o 12.000010.13)

(12)(8.62)* S0 psi

From Table A2.6a— p=0.0026
Ay = pb'd = 0.0026(12)(8.62) = 0.27 in.% /ft

The minimum required reinforcement is the same as the minimum shrink-
age and temperature reinforcement:

A; = 0.00185'h = 0.0018(12)(12)

Ay = 0.26 in.2/ft < 0.27 in.2 /ft

From Table A2.10 —use #5 @ 13 in. (A;=0.29 in.z/ft)

Check the reinforcing bars’ development length. According to
Table A3.2 because clear spacing =13 — 0.625 in. = 12.375 in. > 2(0.625)
and clear cover =3 in. > 0.625 in., therefore condition A is applicable.

From Table A3.3 for #5 bars, f,, = 60 ksi, and fl =3ksi:

;=28 in.
The ends of the bar must have 3 in. cover. Hence:

D—-3in.=27in. —3in. =24in. <28in. .. N.G.

Therefore, the bars do not satisfy the development length requirements
using the simplified expression. We can either bend the bar ends up to
create hooks or use the more accurate Equation (3.64) of Chapter 3 to check
the required bar development length. From Equation (3.64):


http://dx.doi.org/10.1007/978-3-319-24115-9_3
http://dx.doi.org/10.1007/978-3-319-24115-9_3
http://dx.doi.org/10.1007/978-3-319-24115-9_3
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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3y ww

by = |— ————|d, > 121in.
d 40 }\\/]7 cp + Ky =
dp
where
cp+ Ktr
<25

dp -
From Table A3.1:
K, (no transverse reinforcement) =0

0.625

¢p(concrete cover to bar center) = 3 + — = 3.313 in.

(cpy +Ky)  (3.313+40) )
— 53525 . Use2s.
A 0.625 - s

v, (bottom bars) = 1.0

v, (coating factor) = 1.0

y, (reinforcement size factor) = 0.80
A (normal weight concrete) = 1.0

B { 360,000 (1.0)(1.0)(0.8)} . (As,,equired>
‘7 140(1.0)v3,000 25 ’

Av required 0.27
Ly =26.3d, | O ) = 26.3(0.625) | —=—
¢ b ( S, provided) ( ) (029)

As, provided

=153in. > 12in. ..ok
D—-3in.=24in. > 153in. .. ok

Therefore, the main reinforcement bar has sufficient development length.
Since the footing is 5'-0” wide, we use 5 #4 distributor bars.
Figure 7.23 shows the final design of this footing.

7.11 Reinforced Concrete Square Spread Footing Design

Square spread footings are the most common type of column footing. Regardless of
the material used for the column construction, reinforced concrete (or, rarely, plain
concrete) spread footings are used to support columns. Figure B7.1 of Appendix B
shows a large square spread footing under construction.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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ZANDZA\ A\DZAN

5 #4 .

) (Distributor
#5 @ 13in. "\ [ bars)

A ]

3in. clear cover v

| 5.0" |

Figure 7.23 Final design of wall footing of Example 7.2

The steps for the design of reinforced concrete square spread footings are
summarized in the flowchart of Figure 7.28 and are as follows:

Step 1. Calculate the required area and select the size of the footing.
As shown in Figure 7.24, the footing is sized such that the pressure on the
soil (gy) is less than the soil bearing capacity (q,). Pp, Pr, P, and Pr
are the applied service dead, floor live, roof live and total loads,

respectively.
Pr=Pp+ P+ Py,
Pr
45 =73 < 4a
et
/1/
SIZ ANVZN
l// Pp, P, Py
T
h
N S S S +
Qs = Qa

f bx b |

Figure 7.24 Footing pressure on supporting soil
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Step 2.

Step 3.
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or

P
Arequired = q_T - brequired = Arequired (720)

a

where ¢, is the allowable soil pressure. The value for b is usually rounded
up to the nearest even inch.
Estimate the footing thickness.

In a square or rectangular footing, a reasonable estimate of the required
thickness is about one-half of the larger overhanging (O.H.) length of the
footing. Therefore, for a square footing, the estimated required thickness is:

h=0.5(0H)=05 (bT_’) (7.21)

Round up 4 to the nearest inch, if needed. The minimum thickness
commonly used for column spread footings is 12 in.
Calculate and check the shear.

The factored Load, P,, is:

P, =12Pp + 1.6P, +0.5P,, (if P, > 1.83P.,)
or
P, =12Py + 1.6P,, + 1.0P, (if P, < 1.83Py,)

Pp is the total dead load. P; and P;, are the applied service floor and roof
live loads, respectively.
The factored pressure on the footing from the soil, ¢, is:

Py

= (7.22)

G

Step 3a. Check the two-way (punching) shear.

Typically, the two-way (punching) shear (refer to Chapter 6) is the
controlling factor in determining the required thickness.

The critical sections for the two-way shear action are located at the
distance d/2 from the faces of the concrete column. For a steel column this
distance is measured from the midpoint between the face of column and
the edge of the base plate, as shown in Figure 7.25.

The footing bends in two perpendicular directions, so it requires rein-
forcement in the form of a grid. The average effective depth, d, may be
taken from the top of footing (which is in compression) to the location
between the two layers of bars as follows:

d = h — cover — diameter of bar

The concrete cover for footings is 3 in. Assuming #8 bars, the distance
d can be calculated as:


http://dx.doi.org/10.1007/978-3-319-24115-9_6
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t
-

L~ Concrete column

~

Critical section for two-way shear —\
i

/— Critical section for moment
Critical section for one-way shear —\l
I

TN

<
N

c

Q
Q

I

Steel column
Critical section for two-way shear \

" . Base plate
Critical section for one-way shear —\4'
|

M— d2

Critical section for moment

!

Figure 7.25 Critical sections for square spread footings: (a) concrete column, and (b) steel column

d=h—-3in.—1lin.=h—4in.

Compute the length of the critical section, B. Then cut the footing at the
critical sections to determine the shear by satisfying the equilibrium of
forces in the vertical direction, as shown in Figure 7.26a:

B = length of the critical section (one side)

7.23
B:r+2<§):t+d (7.23)
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q”/ITZTL/

a,— L1 L/
k—-c

qu/ITLT/

Figure 7.26 Shear forces and bending moments at the critical sections: (a) two-way shear, (b)
one-way shear, (c¢) bending moment

The total factored shear acting on the critical shear surface is:
Vio = q,(b* — B?) (7.24)

According to the ACI Code (Section 22.6.5.2), the nominal shear
strength of concrete, V., for two-way action is the same as that for slabs:

Vi = min{ <2 + ;;)x b,d, (Ol‘;d + 2>x\/ffbod, 40 ﬁ,’bod} (7.25)
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where

larger dimension of column

B

b, = perimeter of critical section (b, = 4B for square columns)

= - : =1 for square columns
shorter dimension of column b 4 )

oy = 40 for columns in the center of footing
= 30 for columns at an edge of footing
= 20 for columns at a corner of footing

A = 1.0 (typically, normal weight concrete is used for footings).

The footing is adequate in punching shear if:
W=V  (6=0.75) (7.26)

Otherwise, the footing thickness, 4, has to be increased, and the process
is repeated.

Step 3b. Check one-way or beam shear.

The requirements for one-way (beam action) shear must be satisfied in
addition to those for the two-way shear. As shown in Figure 7.25, the
critical section for one-way shear is at the distance d from the face of the
concrete column. Therefore, cutting the footing at this location and
writing the equilibrium equation of forces (see Figure 7.26b) allows us
to calculate the shear as follows:

Va = q,bC (7.27)
where for the case of concrete columns

c=2""1_4 (7.28)

The nominal one-way shear strength of concrete is (ACI Code,
Section 22.5.5.1):

Vor = 20/f! bd

(7.29)
A = 1.0 for footings
For the footing to be adequate in one-way shear:
dVer = Vi (¢ =0.75) (7.30)

If the above equation is not satisfied, increase the footing thickness, #,
and repeat the process.
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Step 4.

Step 5.
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Determine the required reinforcement.

The footing bends in both directions like a dish when subjected to soil
pressure from below. Therefore, we can consider bending of the footing
from one side and find the moment at the critical section. Cutting the
footing at the critical section for moment, as shown in Figure 7.26¢, and
setting the sum of moments to zero, we can calculate the moment at the
critical section as follows:

abD?

M, = qb(D)(D/2) =4

(7.31)

The required resistance coefficient, R, is:

12,000M,
R=———
bd

Using the Tables A2.5 through A2.7, we obtain p for R. The required area
of steel (Ay) then is:

Ay = pbd

Use Table A2.9 to select the number and size of bars. The minimum area
of steel is:

A min = 0.0018bh

Check the bar development length by using Table A3.3 and the applica-
ble modification factors of Table A3.1. The bar length from the critical
section for moment has to be more than ¢,. Otherwise, the bars have to be
hooked at their ends. Thus:

D —3in. (cover) > ¥,

Note that we can use (3.64) and the corresponding modification factors
of Table A3.1 instead of using Table A3.3 to obtain the bar development
length. This method usually results in a smaller required development
length.

Determine the required dowel bars.

The column at its base transfers the load to the footing on an area equal to
the column’s cross-sectional area (A,). This generates a bearing pressure
that the footing must resist.

The bearing capacity of the concrete at the column footprint, Nycaring, 15
given by the ACI Code (Section 22.8.3.2):

Ny = ¢(0.85f/A;) (7.32)

Ny = min{q)(O.SSf(,’Ag)\/%, 24(0.85/A, )} (7.33)
1
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a | |
| b Ay, = b?
A1 = tz b
I L I
b ¢
L Column
P Column longitudinal reinforcement
Dowels

€SC

/— Footing reinforcement
edc

[ ] [ . (] ) (] ) ]

Figure 7.27 Dowel reinforcements: (a) bearing areas A; and A,, and (b) dowel bars between the
column and footing

Nbearing = min{Nl,NZ} (734)
where
0} =0.65 (ACI Code, Section 21.2.1)
Ay = column bearing area, which for a column directly bearing on
the footing is equal to A, of the column
Ay = area of the part of the footing that is geometrically similar to,

and concentric with the column bearing area, A; (see
Figure 7.27a)

N, = bearing capacity of the column

N> = bearing capacity of the footing
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Design of Reinforced Concrete
Square Spread Footing

I

Determine the required size of the footing.

P
Find the footing area: Aequired = TET

For a square footing byequired = VA . Select b.

required

2. Estimate the footing thickness:
h=05 (b !

2
" Calculate and check the shear:

P,

u

b2

l

Check two-way shear:
Vo = q(b?—B?);d = h—4in.

qQu=

3a.

) . 4 ad
Increase the thickness (h). |—> Vo= m|n{(2 + E)M/f_c'bod'(bio + 2)7»\/Zbod,47»\/fjbod,}

3

A=1.0,¢$ =075

No

dVeo = V2 ?

Yes

30. Check one-way shear:
Vs = qubC
V4 = 2XVEbd
A=1.0,¢=0.75

No

5-Determine the
required dowel
bars.

l—]

¢ Vc1 = Vu1?

Yes

Determine the required reinforcement:
W = 9ubD? 12,000M,
u bd2
Use Tables A2.5 to A2.7 to find p, A= pbd.
Select the size and number of bars.

;R=

Check bars' development length using Tables A3.1 and A3.3 or Equation 3.64.

Figure 7.28 Flowchart for the design of reinforced concrete square spread footings
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Nyearing = bearing capacity of the concrete at the base of the footing

1! =the specified strength of concrete in the column, when evalu-
ating N;; and the specified strength of concrete in the footing,
when evaluating N,

Equation (7.33) is used when the supporting surface is wider on all sides than the
loaded area.

Because the compressive strength of concrete in columns is usually larger than it
is in footings, we must compute both N; and N, to determine Nyeqring. Dowel bars
must resist the difference between the load transferred from the column to the
footing, P, and the bearing capacity of concrete, Nyearing. The required area of these
bars, Ay, is calculated as follows:

Pd = Pu - Nbearing (735)

P
Ay = max{]Td, 0.005Ag} (7.36)
3

The ACI Code, Section 16.3.4.1 requires a minimum amount of dowel rein-
forcement equal to 0.005A, (A, is the gross area of column) to transfer the loads
from the column to the footing. This is in the form of a minimum of four bars
placed at the corners of the column. A minimum development length for the
dowels in compression equal to £, is required. This minimum length has to be
provided from the column bearing area extending into the column and the footing,
as shown in Figure 7.27b. The dowels are commonly hooked and tied to the
footing main reinforcements for ease of construction. The dowels have to be lap
spliced in compression to the column reinforcement based on requirements given
in Chapter 3. The length of the dowel in the column is the larger of the compres-
sion lap splice for the dowel bars (¢;.), as given in Section 3.4.5 of Chapter 3, and
the development length for the compression reinforcements in the column (¢,.).
Use Table A3.6 to obtain the development length for compression bars, ¢,. and
Table A3.5 to obtain the applicable modification factors.

Example 7.3 Design a square reinforced concrete footing for the 16 in. square
interior concrete column shown below. The dead load is 200 kip, the floor live load
is 80 kip, and the roof live load is 20 kip. The allowable net soil pressure (bearing
capacity) is 3,500 psf. Use f/ = 3,000 psi for the footing, f! = 4,000 psi for the
column, and f, = 60,000 psi. Assume the column has 4 #7 bars. Concrete is normal
weight.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_3
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16 in.

f—1
4,

Solution

Step 1. Determine the required size of the footing.

Pr = Pp + P, + Pr, =200 4 80 + 20 = 300 kip

Pr 300 5
Arequired = — =—5—=285.71t
equired 4 35

brequired =v85.7=9.261t

Round b to the nearest even inch and select b = 9'—4".
Step 2. Estimate the footing thickness.
The estimated depth of the footing is:

17(9%x1244)—16

3 > = 241n.

hesl =

Step 3. Calculate and check the shear.
Since 1.83P;, = 1.83(20) = 36.6 k < P, = 80 k, the factored load, P,,, is:

P,=12x200+ 1.6 x 80+ 0.5 x 20
P, = 378 kip

The factored pressure on the footing from the soil is:

_PM
qu_?

378
qu—w

q, = 4.34 ksf
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3-0"
T
Viz ) 24 in.
30" -
L
94"
q, = 4.34 ksf — i i i

| 94"

Figure 7.29 Two-way shear in the spread footing

Step 3a. Check the two-way shear.
The average effective depth, d, is:

d = h — cover — estimated diameter of bar

d=24-3—-1=20in.

The critical section for the two-way shear is at a distance d/2 from
the face of the concrete column. Therefore, one side of the critical
section, B, is:

B=t+d=16+20=36in. =3-0"

The shear at the critical sections, V,,, is shown in Figure 7.29, and is
calculated as follows:

Vuz =4, (b2 — BZ)
Vio = 4.34(9.33* - 3%)
Vi2 = 339 kip

The nominal two-way shear strength of the concrete, V,,, is:
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Vio = min{ (2 + %) M/flbod, (o;)—d + 2) M/f bod, 4x\/ﬁbod}
p=16/16=1.0
oy = 40 (column in the center of footing)
by = 4B =4 x 36 = 144 in.
A=1.0
Vi = min{(2 +4)(1.0)y/3,000 (144)(20)/1,000, (% + z) (1.0)
/3,000 (144)(20)/1,000, 4(1.0)4/3,000 (144)(20)/1,000}
V.o = min{946 kip, 1,192 kip, 631 kip} = 631 kip
V.o = 0.75(631) = 473 kip > 339 kip .. ok

The two-way shear capacity of this footing is acceptable. The estimated
depth could be reduced, as the shear capacity is about 40 % more than the
applied shear force. However, we will conservatively continue with the
assumed depth of 24 in.

Step 3b. Check one-way shear.

The critical section for one-way shear is at a distance, d, from the face

of the column:

b—t
C=——-d
2
933 x 12 —-16
c=2BXRI6

C=28in.=2'-4" =233 1t

20

If we cut the footing at the critical section, as shown in Figure 7.30, the
shear at this location, V,,, is:

lvm

s

g
Gy = 4.34 ksf /bl/ (9.33f)
oo
(2.33 ft)

Figure 7.30 One-way shear in the spread footing
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Vul - qubc
Vi1 = 4.34(9.33)(2.33)
Vi = 94.5 kip

The nominal one-way shear strength of concrete, V.., is:

V.1 = 2h/fibd
V1 = 2(1.0)4/3,000 (9.33 x 12)(20)/1,000
V1 = 2453 kip

V.1 = 0.75(245.3) = 184 kip > 94.5kip ... ok

Therefore, the footing has enough capacity against the one-way shear.
Step 4. Determine the required reinforcement.
To calculate the required reinforcement, we first calculate the bending
moment at the critical section for moment (the face of the column):

b—1 933x12-16
2 2
D =48 in. = 4.00 ft

D=

The moment at the critical section as shown in Figure 7.31 is:

M, = q,bD*/2
M, = 4.34(9.33)(4.0)*/2
M, = 324 ft-kip
12,000M,
R=—-—>—
bd
12,000(324 .
o 1Z000B2) g
(9.33 x 12)(20)
MU
q, = 4.34 ksf
b/
1 e
k—nb

4-0"

Figure 7.31 Bending moment in the spread footing
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From Table A2.6a (f; — 3,000 psi, f, = 60,000 psi) — p=0.0017

(conservatively) and the required area of steel, A, is:

Ay = pbd
A; =0.0017(9.33 x 12)(20)
Ay =3.8in.?

Ag.min = 0.0018 bh

Ag min = 0.0018(9.33 x 12)(24)

Ag.min = 4.84in.2 > 3.8in.2
Therefore, the required area of steel is:

A, = 4.84in.?

Table A2.9 — .".Use 9 #7 bars each way (A, =5.40 in.z)
Check the bars development length.

From Table A3.2, because cover >0.875in. and clear space >
2(0.875 in.), condition A is applicable, and from Table A3.3:

ly =48 in. (#7 bars)

A .
From Table A3.1, /4 can be reduced by L required. , therefore :
s, provided

3.8 )
gd =48 x %— 33.8in.

The bar length measured from the critical section for moment is:
D—3in.=48in. —3in. =45in. > 33.8in. .. ok
Step 5. Determine the required dowel bars.

Ni = $(0.85(/A1); (£ cotumn = 4-0 ksi
N; = 0.65[0.85(4.0)(16 x 16)] = 565.8 kip


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Niy = min{q)(O.SSﬁ,’Ag) \/2‘—?, 2¢(0.85f(,'A1)}; () ooting = 3-0 ksi

112 x 112
N, = mm{%s [0.85(3.0)(16 x 16) ﬁ]

x 2(0.65)[0.85(3.0)(16 x 16)]}
N, = min{2,970, 848.6} = 848.6 kip
Nbearing = min{N, N>} = 565.8 kip
P, =378 kip < 565.8 kip
.. Use minimum area for dowels.

A = 0.005 A, = 0.005(16 x 16) = 1.28 in.?
(Table A2.9 — use 4 #6 (A, = 1.76 in.?)

It has to be noted that for practical purposes the dowel bar size is usually
selected to match the column main reinforcements, which for a
16 in. X 16 in. column it is expected to be larger than #6 bars. We have,
however, selected #6 bars here for consistency and clarity in the solution.

The required development length in the footing from Table A3.6 (com-
pression bars) for £/ = 3,000 psi is:

by = 17 in. (#6 bars)

Adjusting the dowel length using Table A3.5:

Av required 1.28 .
liowel = Lae | =) =17 —=- | = 13in.
dowel e <Ax, provided> (176> n

This is the length of dowel to be extended in the footing. From Table A3.6
the development length for #7 main reinforcements in the column
(f. =4,000 psi) is £z = 17 in.

The required lap splice length, /., for #6 dowels in the column is
(Chapter 3 Section 3.4.5):

s = 0.0005f,dp > 12 in.
= 0.0005(60,000)(0.75) = 22.5 in. ~ 23 in.
We use the larger of 17 and 23 in., which is 23 in. for the dowel extension in

the column.
Figure 7.32 shows the final design of this footing.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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16 in

f—>
Av
N 4 #6 Dowels
23 in.

J (
9 #7 each way — 13 in. J L T
| \ * 24 in.
3in4clear—'......00._l_

cover

T Fig*_zp x 9’_4”4.|
Final sketch for Problem 7-6

Figure 7.32 Final design of the spread footing of Example 7.3

Example 7.4 Design the square reinforced concrete footing shown in Figure 7.33
for the interior column of Example 5.3. The bearing capacity of the soil is 8,000 psf,
f! = 3,000 psi for the footing and f, = 60,000 psi. Concrete is normal weight.

c

16in.
/1,

Figure 7.33 Spread footing of Example 7.4

Solution From Example 5.3:

Column = 16 in. X 16 in.

Pp = 387 kip
P, = 90 kip
P, = 27 kip

£/ = 4,000 psi


http://dx.doi.org/10.1007/978-3-319-24115-9_5
http://dx.doi.org/10.1007/978-3-319-24115-9_5
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Step 1. Determine the required footing size.

Pr =387+ 90+ 27 = 504 kip
504
Are uired — =~ — 630 ft2
auired 78 0
brequired = V63.0 = 7.94 ft  Round to 8'—0".

Step 2. Estimate footing thickness.

b1 0x12—1
hew = 0.5 (T) —05 (L26) —20in.

Step 3. Calculate and check shear.
Since 1.83P;, = 1.83(27) = 49.4k < P, =90k, therefore,
P, = 1.2(387)+ 1.6(90) + 0.5(27) = 621.9 kip

P 6219
W= (8.0)
Gy = 9.72 kst

Step 3a. Check two-way shear.
d=20—-4=16in.

The critical sections, as shown in Figure 7.34, are at distanced d/2 from the
face of the column.

B=t+d=16+16=232in. = 2'—8" = 2.67 ft
b, = 4 x 32 = 128 in.

Paind 4

2/ [

IZO in

80"

qy = 9.72 ksf —] i i i i

| 8'-0" |

Figure 7.34 Two-way shear action
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From Figure 7.34:

Via = q,(b* — B*) = 9.72(8.0* — 2.67%)
V.o = 553 kip

The nominal shear capacity of the concrete for the two-way action is:

Vo = min{ (2 + %) M/T bod, (‘%d + 2) M/ bod, 40\/F! bod}

16
p= 6= 1, &g = 40 (column at the center of footing), A = 1.0

Voo = min{ <2 + ‘T‘) (1.0)/3,000(128) (16) /1,000,

FEE

3 +2)(1.0)\/m(128)(16)/1,000,

x 4(1.0)4/3,000 (128) (16) /1,000 }
V.o = min{673, 758, 449}
Vo =449 kip
&V = 0.75(449) = 337 kip < V,p =553 kip .. N.G.
Therefore, we need to increase the footing thickness, which is usually
done through a trial-and-error process. The difference between the shear

capacity and the shear demand is quite large, so we try to increase the
footing thickness by 7 in.

S Try h=27in. = 2'-3"

Step 3R (Repeat) Calculate and check shear.
Step 3R (a) Check two-way shear.
As shown in Figure 7.35:

q, = 9.72 kst
d=27—-4=23in.
B=t+d=16+23

=39in. =3-3" =325t
b, =4(39) = 156 in.
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P

Iﬂ in.
3/ lvug
gy = 9.72 ksf —1] Tt t 71 /
| 8-0"

8-0"
1

Figure 7.35 Two-way shear action (second trial)

Using Figure 7.35:

Vi = q,(b* — B?) = 9.72(8.0> — 3.25%)
Vi2 = 519 kip

Again, calculating the shear capacity of concrete:

Voo = min{ <2 + ?) (1.0)4/3,000(156)(23)/1,000,

40 x 23
X (% + 2) (1.0)4/3,000(156)(23)/1,000,
x 4(1.0)4/3,000(156)(23)/1,000, }

V., = min{1,179 kip, 1,552 kip, 786 kip}

V., = 786 kip

V.2 = 0.75(786) = 590 kip > 519kip .. ok

The new footing is deep enough, and we continue with checking the
one-way shear action.

Step 3b. One-way shear.
The critical section for the one-way shear, as shown in Figure 7.36, is at a
distance d(23 in.) from the face of the column.

c:w_m:nm.:mzﬂ
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16in.

f—
\l\
Critical section for
one-way shear ~
.
C=17in; g=23in.
! ]
|
|
i 271in.
i
|
I 8-0" I

Figure 7.36 Ceritical section for one-way shear

Figure 7.37 shows the shear acting on the section. Thus:

Vi = ,bC = 9.72(8.0)(1.42)
Vi = 110 kip

g, = 9.72 ksf

C=1421t

Figure 7.37 One-way shear force

The one-way shear capacity of the concrete, V., is:

Vi = 20/ bd
= 2(1.0)1/3,000(8.0 x 12)(23)/1,000
V,q = 242 kip
GV = 0.75(242) = 182 kip > 110kip .. ok
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16 in.

f—
\I\
Critical section for moment N
f——D=40in.—]
I
I
i
i
[
I
I 80" |

Figure 7.38 Critical section for bending moment

pZg-0"

qu = 9.72 ksf
D=333ft

Figure 7.39 Bending moment at the critical section

Step 4. Determine the required reinforcements.
The critical section for moment, as shown in Figure 7.38, is at the face of
the column:

bt
T2

D:8.0><12—16
2

Figure 7.39 shows the moment acting on the critical section. Thus:

D

M, = 9.72(8.0)(3.33) (%)

=40in. =3.33 ft

M, = 432 fi-kip
~12,000M,
- bd?

12,000 x 432 .
R=——"D X200 100 psi
(8.0 x 12)(23)
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From Table A2.6a (fg — 3,000 psi, £, = 60,000 psi) — p = 0.0020

Ay = pbd = 0.0020(8.0 x 12)(23)

Ay =4.42in?

As, min = 0.0018 bh

Ay, min = 0.0018(8.0 x 12)(27) = 4.67 in.> > 4.42 in.2

From Table A3.2 .". Use 8 #7 (A, =4.80 in.z)
This reinforcement is required for both direction.

Check the bars’ development length:

From Table A3.2, because cover>d,=0.875 in. and clear
space > 2d;, =2(0.875 in.), we use condition A. From Table A3.3, the
required development length is:

Ly =48 in. (#7 bars)

As, required

From Table A3.1, ¢, can be reduced by a to get the required

s, provided

length (£,cq). Therefore,

4.42 .
Ereq =48 x m =44 in.

The bar length measured from the critical section for moment is:
D—-3in.=(333x%x12)-3=37in. <44in. .. N.G.

Use Equation (3.64) to calculate the more accurate required bar develop-
ment length:

0.875

K, = 0(conservatively)
o +K, 344

=—— =23, 2.5 . 2.
d, 0375 393 >25 ".Use2.5

3 f) LA As, required .
b= EX\/]? (Cb +Ktr> b (As, provided) = 12in.
dp
~[3 60,000 (1.0)(1.0)(1.0) 4.67
B [E (1.0)4/3,000 25 } b <M
=31.97(0.875) =28 in. > 12 in.
D —3=37in. > 28in. .. The bar development length is adequate.

> = 31974,


http://dx.doi.org/10.1007/978-3-319-24115-9_3
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-6_BM1
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Step 5. Determine the required dowel bars.
Using Equations (7.32) to (7.36):

N1 = ¢(0.85f'A,)
Ny = 0.65[0.85(4.0)(16 x 16)] = 565.8 kip

N, = min{q)(O.SSﬁ.’Ag) \/i?, 2¢(O.85ﬁ,’A1)}
1

96 x 96
16 x 1

N, = min{0.65 {0.85(3.0)(16 % 16) } 2(0.65)[0.85(3.0)(16 x 16)]}

N, = min{2,546 kip, 848.6 kip} = 848.6 kip

Nearing = min{N1,N,} = min{565.8 kip, 848.6 kip} = 565.8 kip
P, = 621.9 kip > 565.8 kip
Py = P, — Nocaring = 621.9 — 565.8 = 56.1 kip

y

P
A = max{}Td : 0.005Ag}

56.1
= ——, 0.005(16 x 16
max{ %0 (16 x )}
=max{0.94in.%, 1.28in.?} =1.28in.?

Table A2.9 — Use 4 #6 (A,= 1.76 in.?)

Refer to the comment regarding the selection of size of dowels in the
solution for Example 7.3.

From Table A3.6 the required development length of #6 bars in the
footing for £/ = 3,000 psi is:

lae = 17 in.
Av required 1.28 .
Ciowel = bge | —2 ) =17( = | = 13in.
dowel d (Ax, pmvided> (176) mn

Therefore, use 13 in. minimum dowel length in the footing. The compres-
sion lap splice in the column for f, < 60,000 is (see Chapter 3):

{y = 0.0005f,d), > 12 in.
= 0.0005(60,000)(0.75) = 22.5 in.

The column has 8#8 bars as the main reinforcement. The development
length for these compression bars per Table A3.6 is 19 in. Therefore, use a
23 in. splice in the column.

Figure 7.40 is a sketch of the final design.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_3
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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16in.

f—
)

23 in. min.
13in. min. 4 #6 dowels

8 #7 each way — - J L 23"

3in. clear cover

T

80" x 80—

Figure 7.40 Final design of the spread footing of Example 7.4

7.12 Rectangular Reinforced Concrete Footing

A square footing is sometimes impractical due to space limitations. For example, if
a building column is located close to a property line, the designer has to size the
footing to keep it within the property boundaries. A rectangular footing may be used
in such cases. The design method for rectangular footings is similar to that for
square footings. There are a few differences, however. The steps for the design of
rectangular reinforced concrete footings follow and are also summarized in the
flowchart of Figure 7.45.

Step 1. Determine the required area of the footing:

Pr=Pp+ P+ Pp,
Pr

Arequired =

a
If the footing area is by X b (b, is the longer dimension, and b, the
shorter, as shown in Figure 7.41) and the side (b;) is limited to a certain

A .
known value, then b, = = Round up b, to the nearest even inch and
\)

calculate the footing contact area (A):

) ) A =b;x by
Step 2. Estimate the footing thickness.
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A reasonable preliminary thickness is about 50 % of the overhanging
length for a square footing of equivalent area. Thus:

bh=+A

b—t
hest == 05 (2)

where ¢ is the column width. Round up the thickness to the nearest inch,
if necessary.
Step 3. Calculate and check shear.
The factored pressure on the footing from the soil is:

P,
9 =~

A
Step 3a. Check two-way (punching) shear.

The two-way shear requirements for a rectangular footing are similar to
those of a square footing. The critical sections are at a distance “/, from the
concrete column face (d=h—3 in. — 1 in.).

Figure 7.41 shows the critical two-way shear perimeter for a rectangular
footing with a square column. Cut the footing at the critical sections and
obtain the resulting shear force:

B:t+2(§) =t+d

Vio = q,(A — B?)

The nominal two-way shear capacity of concrete, V,,, is:

4 o
Vip = min{ <2 + B) M/f! bod, (O; + 2)x\/ﬁ7 bod, 4M\/f! bod}

The critical shear periphery
\

|
| ~
1 Ol

O

-

x
03]

I by I

Figure 7.41 Two-way shear in rectangular reinforced concrete footings
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which is the same equation (Equation (7.25)) as for square footings. (Refer
to the section on square footings for the definitions of the parameters.)

In order to satisfy the ACI Code’s requirements, the shear capacity of
the concrete has to be greater than the applied shear force:

q)VrZ Z Vu2

If this condition is not satisfied, we need to increase the footing depth, #,
and repeat the process.

Step 3b. Check one-way shear.

The one-way shear requirements for rectangular footings are also
similar to those for square footings. But, the rectangular shape of the
footing places the critical section for the one-way shear at the distance
d from the face of the column in the long direction, as shown in
Figure 7.42a. Therefore, the distance, C, from the edge of the footing to
the critical section is:

by —t
C=— —d
2
Figure 7.42b shows the applied loads at the critical section for shear,
V.1, which can be calculated as:
VM] = qubSC
The one-way shear strength of the footing is:
WV = ¢(2x\/]§ bd) - q)(zx\/f bsd)
a
Critical section for one-way shear
xS T
-
I
| T
by |t
4
: \ Column
|
e
~_ |
<—C—>|
by I

Figure 7.42 One-way shear in rectangular reinforced concrete footings: (a) plan view, and (b) cut
at the critical section
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Critical section for moment
(short direction)

a
Critical section for moment (long direction)
. T —
|
DS |
1 :
_____________________ AN
by \
| Column
|
|
X l
D, |
¢ 1
by I

3

f—n

Qu

b,

Figure 7.43 (a) Plan view of critical sections for moment; (b) moment at the critical section in the
long direction; (¢) moment at the critical section in the short direction

For the footing to be adequate in one-way shear:

OVer > Vi

If the above relationship is not satisfied, we increase the footing depth

and repeat the process.
Step 4. Determine required reinforcement.

Finding the required area of steel reinforcements for rectangular footings
is much different than for square footings, as the bending moments in the
footing are different in each direction. The critical sections for moments are
at the face of the column in each direction, as shown in Figure 7.43a.

Therefore, the distance in the long direction (D,) from the edge of the

footing to the critical section is:

by —t
D, = >
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and the moment at the critical section, M,,,, shown in Figure 7.43b, is:

D
Mu[ = qubSDf <7€>

2
Mué = ql,{bsjl
The coefficient of resistance, R, can be calculated as follows:

12,000M,,  12,000M
R = 5 = 5
bd bsd

Use Tables A2.5 through A2.7 to obtain p, and calculate the required
area of steel in the long direction:

A; = pbsd

This reinforcing is distributed uniformly across the width (b,) of the
footing. For the short direction, the location of the critical section, Dy, is:

and the moment at the critical section, M,;, shown in Figure 7.43c is:

D
Mus - qubﬁDs <7$)

D}
Mm = %@7

The coefficient of resistance, R, can be calculated as follows:

12,000M,s  12,000M
R = 2 - 2
bd bed

Using Tables A2.5 through A2.7, we obtain p. Then, the required area of
steel in the short direction is:

Ag = pbed

The reinforcement is not distributed uniformly in the short direction.
Figure 7.44 shows how the reinforcement is distributed in the short direc-
tion. According to the ACI Code (Section 13.3.3.3), a portion of the total
reinforcement equal to y,A; should be uniformly distributed over a band-
width equal to the footing width () under the column. The remainder of
the reinforcement [(1 — y,)A,] should be distributed uniformly outside this
bandwidth. vy, is defined as:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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B i 1 of reinforcement in this band

Column

k— by/2 —sh— by/2—|

I b, I

Figure 7.44 Rectangular footing plan for reinforcement distribution

2

Yszm

where

_ long side of footing @

P= short side of footing by
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(7.37)

(7.38)

We must check the development length of the reinforcements in both
directions, measured from the critical section for moment. The procedure is

similar to that used for square footings.
Step 5. Determine the required dowel bars.

The dowel requirements are the same as those for square footings.

Example 7.5 Design a rectangular reinforced concrete footing for the 16 in. square
reinforced concrete exterior column shown in Figure 7.46. The dead load is 100 kip
and the roof live load is 75 kip. The soil bearing capacity is 3,500 psf, £/ = 3,000
psi for the footing and the column, and f,, = 60,000 psi. The width of the footing is
limited to 6'~0" due to its proximity to the property line. Concrete is normal weight.

Solution

Step 1. Determine the required area.

Pr=Pp+ Py, =100+ 75 = 175 kip

Pr 175 )
A=—=—=50ft
q, 35
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Design of Reinforced Concrete
Rectangular Spread Footing

!

1. Determine the required area:

A

_ PT b, = Arequired
required = — M0 T T
a

bs
Round up b,, A = by X by

!

2. Estimate the footing thickness:

b=VA hog = 05 (%)

!

3. Calculate and check shear:

P
@
3a. Check two-way shear:
d=h-4in. V= q,A- B?
Increase the 4 ad
thickness () Ve = min((2 + ) W bod, (5= + 2) TG bod, 4RVE byd)
0
r=1.0,4=0.75

No

bVeo = Vi ?

Yes

3b.  Check one-way shear:
Vi = qubsC
V,y = 20Vf, bd
A=1.0,$ = 0.75

No

PVer = Vg ?

Yes

4. Determine the required
reinforcement.

! !

Long Direction Short Direction

_qubsD? _ qubD3
u= o us= T 5
12,000M,, 12,000M,,
=T 5. Determine the required =T
bd ™ dowel bars. N bed
From Tables A2.5 to A2.7 From Tables A2.5 to A2.7
find p; Ag = pbsd find p; Ag = pb,d
Select the size and number of bars. Select the size and number of bars.
Check the bar development length. Check the bar development length.
Distribute y, = B+1 of

reinforcement over b, centered
on the footing.

Figure 7.45 Flowchart for the design of reinforced concrete rectangular spread footing
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16 in.

ZS
40"
Figure 7.46 Rectangular spread footing of Example 7.5
The long dimension, by is:
A 50
byp=—=—=28.33ft
‘b6

Select an 8'—4" x 6'-0" footing
A=833x6=50ft

Step 2. Estimate the footing thickness.

b= +vA =+/50=7.07 ft

- . 12) — 1

S.h=181n.
Step 3. Calculate and check shear.
The factored load, P,, and the pressure acting on the footing from the
soil, ¢, are:
P, =1.2Pp + 1.6Py,
P, = 1.2(100) + 1.6(75) = 240 kip

P,
G = Z
240
9 = %
G, = 4.8 kst

Step 3a. Check two-way shear.

d=h—4in.=18—-4=141in.
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Figure 7.47 Two-way shear in the rectangular spread footing

The length of one side of the critical section for two-way shear, B, is:
B=t4+d=16+14=30in. =2.5ft

Figure 7.47 shows the forces acting at the critical two-way shear sections,
V2, which can be calculated as follows:

‘/142 =qy (A - Bz)
Vo =48 [50 - (2.5)2]
V.2 = 210 kip

The two-way shear capacity of the concrete, V., is:

4 o
Vi — min{ <2 + E)x Fbod, (“b— + z)x\/ﬁbod, 4M/f7b,,d}

16
B= 6= 1.0; oy = 40 (column at the center of the footing)

b, = 4B =4 x 30 = 120 in., A = 1.0 (normal weight concrete)

, 4 (120)(14) (40 x 14
H = 24+ -] (1. 2
Vo mln{( + 1)( 0)4/3,000 1000 120 +

(1.0)\/—3,000% ,4(1.0)4/3,000

V.o = min{552, 613, 368} = 368 kip
Vo = 0.75(368) = 276 kip > 210 kip .". ok

120 x 14
1,000

Therefore, the footing thickness is adequate for the two-way shear action.

Step 3b. Check one-way shear.
The critical section for one-way shear, as shown in Figure 7.48, is at a

distance d from the face of the column in the long direction:
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Figure 7.48 One-way shear in the rectangular spread footing

7bg—l‘

C 5~ d
Czwx—zlz_m—l4:28in.=2.33ft
Vi1 = q,b5C
Vi1 = 4.8(6.0)(2.33)
Vi1 = 67.1 kip

Vo =2A/f!bd
V1 = 2(1.0)+/3,000

V.1 = 110.4 kip
¢V, = 0.75(110.4) = 82.8 kip > 67.1 kip ... ok

(6 x 12)(14)
1,000

Therefore, the one-way shear is ok, and the footing thickness is
adequate.
Step 4. Calculate the required reinforcement.

Long Direction
The location of the critical section for moment, shown in Figure 7.49, is:

Cb—t 833x12-16

Dy 2 : > =42 in. = 3.50 ft
D
Muf = qubSTZ .
3.50
My = 4.86) B2 _ 176.4 fikip

12,000(176.4
R _ > ( ) _

- = 150 psi
(6 x 12)(14)? P



470 7 Foundations and Earth Supporting Walls

D, = 350 ft

Figure 7.49 Moment at the critical section in the long direction

From Table A2.6a (f ! = 3,000 psi, fy = 60,000 psi) — p =0.0029

c

(rounded up)
Ay = pbsd
Ay = 0.0029(6 x 12)(14)
A, = 2.92in2

Ag.min = 0.0018bsh
Ag.min = 0.0018(6 x 12)(18)
Agmin = 2.33in.2 < 2.92 in.?2

From Table A2.9 select 7 #6 (long direction).
(A, =3.08in?)

Short Direction
The location of the critical section for moment, shown in Figure 7.50, is:

p,=b =t _(6xX12)=16 e a3

2 2

Figure 7.50 Moment at the critical section in the short direction


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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The moment at the critical section (see Figure 7.50) is:

D?
M, = q,bi—=
4q, 52

2.33)?
M, = 4.8(8.33) (T) = 109 ft-kip

12,000M,,
R=-—""7C1
bud
12,000(109 .
(8.33 x 12)(14)

From Table A2.6a — p=0.0013

Ay = pbed = 0.0013(8.33 x 12)(14)
A, =1.82in?
Ag.min = 0.0018bh
Ay.min = 0.0018(8.33 x 12)(18)
Agmin=324in2 > 1.82in2

Therefore, we need the minimum required reinforcement.
From Table A2.9 — use 8 #6 (A, = 3.52 in.%)
For the distribution of reinforcement in the short direction:

b, 8.33
=—=——=139
b b 6

s

We must place a portion of reinforcement equal to y, of the total in a
band centered on the column and having a width equal to by:

2
S 2 _og4
TR 13941

Therefore, the number of bars to be distributed in this band is:
vAs = 0.84(8) = 6.7

Use 7 #6 bars in the 6’0" center bandwidth and one #6 bars on each
side. This results in 9 #6 bars (A;=3.96 in.z).
Check the bars’ development length:

Bar spacing in the long direction

_6(12)=2(3) = (075) _ 4.
- 9in.



http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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From Table A3.2, because cover >0.75 in. and clear space >2(0.75 in.),
use condition A. From Table A3.3:

¢y =33 in. (#6 bar)

A
From Table A3.1, £, can be reduced by —"44rd .
s, provided

For the long direction:

2.92 .
gd—33 Xﬁ—:;lln.

The provided bar length is:
Dy—3in. =3.5(12) —3=39in. > 31in. .. ok
For the short direction:

1.82 .
Ed =33 x ﬁ: 15.2 in.

The provided bar length in the short direction is:
Dy —3in. =233 (12) —3=25in. > 15.2in. .. ok

We demonstrate how to use Equation (3.64) and Table A3.1 to calculate
the development length more accurately:

cp, =3 —i—? = 3.38 in.
K, =0
¢, + K, 3.381n.
= =45>25 .. 2.5
d, 0.75 > use
0 = 36wy,

A, required .

40 /f (Cb +Kn~) b (As,’prcc)lvided> = 12in

dp

L [3 60,000 (1.0)(1.0)(0.8)] , [1.82
140 (1.0)+/3,000 2.5 ] b (ﬁ

12.08(0.75) = 9in. < 25in. ..ok

) = 12.084d,

.". The bars are long enough.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_3
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Step 5. Determine the required dowel bars.
Using Equations (7.32) to (7.36):

Ny = ¢(0.85£/A)
Ny = 0.65[0.85(3) (16 x 16)] = 424.3 kip

Ny = min{q) (0.8574,) \/ZTQ, 24(0.85 f;’Al)}
1

2x 72
Ny = min{0.65 [0.85 (3.0) (16 x 16) %} , 2(424.3)}

N, = min{1,909, 848.6} = 848.6 kip
Nyearing = min{N, No} = min {424.3, 848.6} = 424.3 kip
P, = 240 kip < 424.3 kip
.". Use the minimum area for dowels.
Az = 0.0054, = 0.005(16 x 16) = 1.28 in.?

Refer to the comment regarding the selection of size of dowels in the

solution for Example 7.3.
Table A2.9 — Use 4 #6 (A, = 1.76 in.”).
The required development length from Table A3.6 is:

l; =17 in.
As required 1.28 .
biowel = la| 2= ) =17 == ) = 12.4in.
dovel d<Ax,pr0vided 1.76 mn
.. Use 13 in. minimum.

Figure 7.51 shows the final design of the footing.

16 in.

f—
\

4 #6 dowels

13 in. minimum T #6 (typical)

||
e LS e

3in. clear cover

| |
I~| #GI #6 @ 12in.c/c I~| #GI

14in. 6-0" 4in.
) )

Figure 7.51 Final design of the rectangular footing of Example 7.5
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7.13 Earth Supporting Walls

Basement walls and retaining walls are two common concrete (plain or reinforced)
structural systems. Sometimes, however, they are made of concrete masonry units.
These structural elements have to resist lateral soil pressure. Therefore, it is
important to understand the action of soil on them. This section briefly explains
lateral soil pressure, then discusses the different aspects of the design and analysis
of basement and retaining walls.

7.13.1 Lateral Earth Pressure

Soil that is retained on one side of a wall is confined on the higher grade and
prevented from moving freely. Figure 7.52 shows a vertical section of a retaining
wall. A wedge-shaped part of the soil in this vertical cut is pulled downward by
gravity and tries to slide down along a plane of rupture. The wall, however, prevents
these downward and outward movements, resulting in a lateral pressure on the wall.

Frictional resistance occurs along the plane of rupture as the grains of the soil try
to slide by one another. If the soil has clay content, cohesion increases this sliding
resistance. The plane also supports part of the weight (W) of the wedge. The
combination of the weight support and the sliding resistance results in the force R.

The earth pressure (E) on the back of the wall is the resultant of the soil friction
on the wall and the lateral earth pressure. The reaction to this force, E’, acts on the
soil wedge, which is in equilibrium with the weight of the wedge (W) and the
R force. The inclination of force E is due to the frictional resistance the wall offers

Plane of rupture

Soil wedge lW

Retaining wall

R

2
<
ISOZS SIS SIS ZNZN

Figure 7.52 The retained soil wedge
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to the sliding wedge. If the wall surface is practically frictionless (e.g., smooth
waterproofing on a basement wall), then the earth pressure on the wall is horizontal.

The magnitude and the distribution of the earth pressure on the back of the wall
depend on many factors. The most important of these are the type of the retained
soil (granular or cohesive), its moisture content, and the slope of the backfill
(if any). In addition, there may be loads on the upper surface, called surcharge
loads. These are caused by stored materials, traffic, or permanent installations such
as neighboring building foundations. All these factors increase the gravity loads on
the sliding wedge, which in turn increase the pressure on the wall.

A detailed discussion of the theory of lateral earth pressure is beyond the scope
of this book, as it belongs to the field of soil mechanics. Our intention is to
familiarize you sufficiently with the results of the theory.

There are three different types of earth pressure, distinguished from each other
by their pressure coefficients. The first type is earth pressure at rest. This is the
theoretical pressure on an essentially immovable object. The second type is the
so-called active earth pressure. This occurs when the wall moves ever so slightly.
This very slight movement activates the sliding resistance along the plane of
rupture, which in turn reduces the pressure on the back of the wall. The active
earth pressure, which occurs in the direction of wall movement, is significantly less
than the at-rest earth pressure. The third type is the passive earth pressure. This
happens when the wall is moving against the soil.

This section of the text is concerned mainly with the active earth pressure. We use
Rankine’s theory here, which is the easiest and simplest theoretical solution for
calculating active earth pressure. The theory assumes that the rupture plane is a straight
line and the backfill material is cohesionless. It also assumes that the frictional resis-
tance at the back of the wall is nonexistent (i.e., the wall is smooth). Thus, our primary
concern is with the horizontal component of the pressure that is exerted on the wall.

The theory assumes that the distribution of the pressure on the back of the wall is
triangular, as shown in Figure 7.53. In the absence of surcharge loads, the pressure
is zero at the top and increases linearly with depth.

2N

Figure 7.53 Pressure distribution on the back of a wall (no surcharge)
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Level Backfill, No Surcharge The pressure at any depth (y) can be expressed as:
pa,y = KﬂYsoily (739)

where

K, = the coefficient of the active pressure
Ysoil = the unit weight of the soil in pcf
y = the depth measured from the surface

The maximum pressure at the base is:
Pa = Kavgoih (7.40)

The value of K, depends on the angle of internal friction within the soil (¢). This
relationship is:

K, = tan? <4s° — %) (7.41)

As the value of ¢ increases, K, decreases. Conversely, when the angle of internal
friction decreases, the value of K, increases. Thus, if water is present in the soil, the
friction between the solid particles is reduced, and K, increases. Hence, it is
important to have good drainage in the backfill. Footing drains (a drain tile system
at the bottom of the basement walls) and weep holes in retaining walls can provide
this drainage.

The value of K, changes within narrow limits of about 0.27-0.34 for level
backfill when it is evaluated for well-drained granular soils using the values listed in
Table 7.4.

Sloping Backfill When the backfill slopes, as shown in Figure 7.54, the formula
for K, is more involved. The equation is presented here for completeness. Using the
Rankine formula:

2 2
cosp — Ccos — COS
K, = cosp P P ¢ (7.42)
cos P+ 4/ cos 2B — cos 3¢
Table 7.4 Angle of internal Soil type ¢ (Degrees)
g)lﬁtslon for drained granular Gravel and coarse sand 33-36
Medium to fine sand 29-32
Silty sand 27-30
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L

Figure 7.54 Horizontal component of the pressure distribution, sloping granular drained backfill

Pmax = KaYsoith

The maximum pressure at the base is:
Pmax = Ka¥soilh

The Effect of Surcharge Any additional load surcharge atop the surface increases
the gravity force on the sliding wedge. This in turn increases the lateral pressure on
the back of the wall, as illustrated in Figure 7.55. The lateral pressure at any depth is
Pa= K ¥soi1y, Where the product y,.;y is the weight of the soil above level y, so the
increased lateral pressure from a distributed surcharge load (w,.) will be

Pa,y = Ka(Ysoily + Wsc') = KoYsoiy + KaWse (7-43)

The second part of the equation represents the increased lateral pressure from the
surcharge, which is independent of the depth. The surcharge may also be concep-
tualized as having an additional height (4,.) of soil atop the finish surface. If we
express the surcharge with the unit weight of the soil as

Wye = Yo (7.44)

then this fictitious height, as illustrated in Figure 7.56, is:

WSC
hsc =
Ysoil

(7.45)

Equivalent Fluid Pressure The triangular lateral earth pressure is similar to a
liquid pressure. The pressure in a liquid (like water) at a given depth is uniform in
every direction and is equal to the unit weight of the liquid multiplied by the depth.
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Psc = KaWse

Pa = Ka¥soilh

Figure 7.55 Additional lateral pressure from surcharge

| Pa = Ka¥soilh

Psc = KaWse = KgYsoihsc

Figure 7.56 Representation of surcharge by additional backfill height
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So if the unit weight of a fictitious liquid is v, = K,Ysoi, and we substitute this value
into Equations (7.39) and (7.40) that express the lateral pressure, we obtain what is
referred to as equivalent fluid pressure. Geotechnical engineers usually make their
recommendations regarding lateral pressures on walls in terms of the equivalent
fluid density (y,).

The unit weight of compacted granular backfill is between 105 and 115 pcf.
From the average values of K, the calculated equivalent fluid density for granular
backfills is between 30 and 40 pcf, with a mean value of about 35 pcf.

Note that these values hold for soils that are well drained. Clay soils or saturated
soils may produce much higher pressure values. The designer should always
consult with a geotechnical engineer to verify the most likely equivalent fluid
density prior to designing retaining structures.

7.13.2 Basement Walls

Basement walls are earth retaining walls that are supported laterally by the first
floor construction at their top and by the basement slab on grade at their bottom. In
addition, they are vertically supported on wall footings.

Figure 7.57 shows a schematic section through a basement wall. The wall will be
stable only after the first floor construction is complete, so no backfill (or only a
very limited height of backfill) should be placed against the wall until after the first

First floor

Backfill

Basement wall

Sealant and premolded filler
Basement floor (slab on grade)

Drain tile

o

| A o 7=

[ Footing

Crushed stone =

Figure 7.57 Schematic section through a basement wall
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floor is in place. The backfill should be a compacted granular fill that will drain well
into the footing drain. The footing drain (drain tile) is made of perforated tiles or
plastic drain pipes. This drain tile is then connected into either the storm drains or a
sump pit out of which the water is pumped. This prevents water from accumulating
behind the basement wall, and thereby prevents the increase of the lateral pressure.

Basement walls are usually made of concrete (either reinforced or unreinforced).
In residential construction they are sometimes built using concrete masonry units
(CMU) and hence are called CMU walls. These also may be reinforced or
unreinforced.

Design of Basement Walls The structural behavior of a basement wall is similar to
that of a simply-supported one-way slab spanning vertically between the slab on
grade at the base and the first floor at the top. Similar to slabs, only a 1-ft-long strip
of the wall, as shown in Figure 7.58, is considered in the design of these walls.
The minimum thickness commonly used for unreinforced concrete basement
walls is 10 in. It is difficult to properly consolidate the concrete within the forms for
thinner walls. In addition, basement walls have to be thick enough to provide width
for placement of members such as stud walls, brick veneer, and so on. In
unreinforced concrete walls, it is advisable to use vertical control joints at a
maximum spacing of 20 ft. The control joints prevent the random cracking of the
wall due to volumetric changes.
Unreinforced Concrete Basement Wall Design The steps to design unreinforced
(plain) concrete basement walls are as follows. They are summarized in
Figure 7.61:

10"

N

NN

Figure 7.58 Basement wall design is based on a 1-ft strip
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Step 1. Calculate the maximum moment.
To help with the analysis, Figures 7.59 and 7.60 show the four most
common loading cases with closed-form solutions. The ACI Code Section
5.3.8 requires a load factor of 1.6 when the lateral earth pressure acts alone or
adds to the primary load effects. Hence, we must multiply the moments that
are calculated from unfactored pressures by a load factor of 1.6 to get M, ax-

a
§ R (V) (M) | | R
N 2220 1
<
N~
~
0
e %
h EE
\
>

\ &
-«
pmax \\ RZ N~

Ri== R, =— Mpnax = (@0.577h from grade) = 0.128 Eh

b
Wse T
PN (v) (M) |
N
N NN +<_ H1
|
X
h g
S
> \
W %4— R,
< Ve
P2 Rz
P1=KaWse P2 = P1+ KaYsoill  Vinax = R Mnax (@ x from grade)
h
E=(p+p)y = 57 12 2Py + p2) = 3hpyx = (p2 = py)x?]
Ry = (2py + Pz)% R,=E- R X is found by solving:

(132;_131) X2+ 2px—2Ry=0

Figure 7.59 Shear force and bending moment in basement wall with full height backfill: (a)
without surcharge, and (b) with surcharge
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a —
Vi v) (M) ‘j’i
N 2
1 ol
hy
* PN
h X %
£
=
hy \
E
—
N <R
Ne—= |: 2
pma)( 4§ Hz -\_/
E= Pmathg Vinax = Rz
Eh,
_ Eh. 2 h
17 73h Mnax :Tﬁ(h1+§’() at x:hz\/s—f7
R,= E- R,
b -
R Fi (V) (M) ‘
\ ] —n,
N
h1 Wsc
P
NN
h
h =
2 L\ |
E
—
N <
—= |:'\_/ Fe
P2 R2
Py = KaWec Vinax = Rz
h
E=(p + p2)2—2 Mpax (@ );from grade) i
2 h X
R, = 2P p2) (2';}1 + P2) = 5 @P1 + Pa)(hy + X) = So-[3hapy + x (B2 = )]
R,=E- R x is found from solving:

(pzh;pﬁx2+2p1x7 2R;=0

2

Figure 7.60 Shear force and bending moment in basement wall with partial backfill: (a) without
surcharge, and (b) with surcharge

Step 2. Determine the wall thickness (7).
To determine the wall thickness, set the wall resisting moment,
Mg =0¢M,, equal to the maximum moment, M,, ., calculated in step 1.
ACI Code Equation 14.5.2.1a gives the nominal resisting moment of a
plain concrete section as:
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Design of Plain Concrete
Basement Walls

1. Calculate the maximum moment (M, may):

Use Figures 7.59 and 7.60

Determine the wall thickness (1):

t> %,X:LO
\} AV fe

(M, max = ft-Kip, f¢, = psi, { = inches)
Round up tto the nearest inch. Use a
minimum wall thickness of 10 in.

Figure 7.61 Flowchart for the design of plain concrete basement walls

M, — <5x \/E)S,,,

where A is the light weight concrete factor. Typically, basement walls are
made of normal weight concrete (A = 1.0). S, is the elastic section modulus
of 1-ft-long wall, or:

bt
Sw=r-c- b=12in.
Mg = q)Mn > Mu,max

where for an unreinforced concrete wall, ¢ =0.60 (ACI Code
Section 21.2.1).
Substituting ¢ and S, into the above equation:

2
0.60 (sx\/ﬁ) % > 12,000My max (7.46)

[12,000M,; max
t> W (7.47)

In this equation, M,, max is in ft-kip, f/ is in psi, and ¢ is in inches.
There is no need to check for shear. Shear is never critical in the design
of basement walls subject to lateral earth pressure.

Solving for :

Example 7.6 Design the plain concrete basement wall shown in Figure 7.62. The
backfill is made of granular material with a unit weight of yy.; = 120 pcf and the
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Figure 7.62 Basement wall of Example 7.6

coefficient of active soil pressure, K,=0.33. Consider two cases: (a) without a
surcharge; (b) with a surcharge of 100 psf acting on the backfill. Use f/ = 4,000 psi.

Solution
(a) Without Surcharge

Step 1 Calculate the maximum moment.
This is Case (a) on Figure 7.60, a basement wall with partial backfill
and without surcharge. The lateral soil pressure and resulting maxi-
mum moments are:

Equivalent fluid density =y, = K, v,,; = 0.33(120) = 40pcf
The pressure at the base of the wall, p,ax, is:
Poax = Yah2 = 40 x 7 = 280 Ib/ft>

Use the factored pressure, which is obtained by multiplying the actual
pressure by the soil pressure load factor (H) of 1.6, instead of using the
actual pressure. Then all of the results will be factored values.

Pu=1.6pya = 1.6 x 280 = 448 1b/fi> /1,000 = 0.45 kip/ft’

Figure 7.63 shows the wall with the factored pressures.
Using the equations for reactions and the maximum moment from
Figure 7.60:
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Figure 7.63 Factored pressure distribution on basement wall in Example 7.6

_pJn 0.45(7)

£~ — 1.58 kip/ft of wall
EJu  158(7) .
R = 222 = 2900 6 37 16p /it
' 30 T 3(10) ip/

R =E, — Ry = 1.58 —0.37 = 1.21 kip/ft

and the location of the maximum moment, x = A, ;l—;l:
7.0
=7.0,/—=23.381t
* 3(10)

E, h, 2

Mu max h ~
’ 3h ( v 3x>
M, = M 3 +% x 3.38
Lm0 3(10) 377

My, max = 1.94 ft-kip/ft

Step 2. Determine the wall thickness.
From Equation (7.47):
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. 12,000M,, max
- 6L /f!

. 12,000 (1.94)
= \/ 6(1.0) /4,000

t > 7.8 in.

.. Use ¢ = 10 in. (minimum wall thickness)

(b) With Surcharge

Step 1. Calculate the maximum moment.
This is Case (b) in Figure 7.60. Use the formulae from this figure to
calculate the lateral loads from the retained soil and the surcharge, and

the resulting maximum moment:

Py = Y.h = 40 x 7 = 280 Ib/ft>

Surcharge pressure = p, =K, w,. = 0.33(100) = 33 1b/ft>.
The factored pressures from the soil, p,, and the surcharge, p,,,, are:

P, = 1.6p, = 1.6 x 280 = 448 1b/ft> /1,000 = 0.45 ksf
Psy = 1.6p, = 1.6 x 33 = 53 1b/ft*/1,000 = 0.053 ksf

Obtain the equations for the reactions and the maximum moment
from Figure 7.60:

Dut = Psu = 0.053 ksf
DPuz = Pu + Dgu = 0.45 + 0.053 = 0.503 ksf

h 7
E,= (py + pu2)§ = (0.053 +0.503)7 = 1.95 kip/ft

R(2p. + Pu 7.0)*(2 x 0.053 + 0.503 .

R =E, — Ry = 1.95 — 0.50 = 1.45 kip/ft

To determine the location of the maximum moment (x), solve the
quadratic equation shown in Figure 7.60, Case (b):
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(puZ - pul)
ha

(0503 -0.053) ,
7.0

X+ 2px—2Ry =0

2(0.053)x — 2(0.50) = 0

0.0643x? + 0.106x — 1.0 = 0

~0.106 + \/(0.106)2 + 4(0.0643)(1.0)

o 2(0.0643)
x =3.20ft
2 2
Mu,max = /’l (zpul +pu2) (hl +X) - J [3h2pul +X(pu2 pul)]
_ (102
My max = 6 O) (2 x 0.053 4+ 0.503) (3 + 3.20)
(320

6(7.0) [3(7.0) (0.053)] 4+ 3.20(0.503 — 0.053)]

My max = 2.46 fi-kip/ft

Step 2. Determine the wall thickness.
Use the formula (Equation (7.47)) developed for calculating the
necessary wall thickness for a plain concrete basement wall.

o [12,000M,max
B L \/f!

12,000 (2.46)
6(1.0) v/4,000
t > 8.81in.
. Usetr=101n.

Reinforced Concrete Basement Wall Design The design of reinforced concrete
basement walls is often dictated by considerations other than the absolute minimum
wall thickness required by flexure. It is difficult to place and consolidate concrete
into the forms when the design contains at least two layers of reinforcing (vertical
and horizontal) near the inside face, especially with thin walls. To make matters
more difficult, often both faces of the wall may need reinforcement to better control
cracking induced by shrinkage and temperature changes.

Architectural requirements also influence the selection of an appropriate wall
thickness. The support of the exterior wall finish (e.g., a brick ledge), in addition to
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providing for adequate support for the first floor construction, often results in much
thicker walls than would be required by strict structural considerations only.

Hence, the thickness of reinforced concrete basement walls is usually
preselected by the designer, and the wall is strengthened by providing the needed
amount of reinforcement. An absolute minimum thickness in a reinforced concrete
wall is 8 in. As with plain concrete basement walls, only flexure needs to be
considered; the shear stresses in normal basement walls are never excessive.

The steps in the design are as follows and are summarized in the flowchart of
Figure 7.64.

Design of Reinforced
Concrete Basement Wall

A

1. Calculate the maximum moment
(M, max): Use Figures 7.59 and 7.60.

Select the wall thickness t:
Minimum wall thickness = 8 in.

Assume y = 1.13 in. (#6 bars with 3/4 in. cover)

y

3 Determine the required reinforcement.
(a) Design the vertical reinforcements:

12,000M,; max
bd?
Use Table A2.5 through A2.7 to find p. (Check for p,,;, from Table A2.4)

d=t-y Rieq =

req

Ag = pbd

Use Table A2.10 to find the size and spacing of the bars.
(b) Design the horizontal shrinkage and temperature
reinforcements:

Agn, = 0.002bt (#5 and smaller)
Agn, = 0.0025bt (otherwise)

Figure 7.64 Flowchart for the design of reinforced concrete basement walls

Step 1. Calculate the maximum moment.
Use the formulae listed in Figures 7.60 and 7.61 to calculate the factored
pressures, reactions, and the maximum moment, M, .x.

Step 2. Select an appropriate wall thickness (7).
Use a minimum wall thickness of 8 in. Keep in mind, however, that you
may need at least 10 in. or more thickness in some situations to provide
enough width at the top to place studs, brick veneer, and so on.
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Step 3. Determine the required area of vertical reinforcement.
The primary reinforcing will be located near the inside face of the wall, and

the ACT Code requires a minimum concrete cover of 3/, in. Assuming #6
bars for the vertical reinforcing, the effective depth (d) is:

d=1t—075-0.75/2=t—1.13 in.
The required resistance coefficient is:

_12,000M,
T bd?

Use the appropriate f and f, in Tables A2.5 through A2.7 to obtain the
steel ratio, p. Then the required area of vertical reinforcement, A; is:

As = pbd

According to the ACI Code (Section 9.6.1.2), the minimum area of the
vertical flexural reinforcements is:

3/ 200
A min = Pminbd = max{ Je ,—}ba’ (7.48)

hooh

Table A2.4 lists the corresponding pp,;, values.

Use Table A2.10 to select the size and spacing of the vertical reinforcements.
The horizontal shrinkage and temperature reinforcement is specified in the ACI
Code (Section 11.6.1) as:

Agn = 0.002bt (when #5 and smaller bars are used) (7.49)

Agn = 0.0025b¢ (when larger bars are used) (7.50)

The bar spacing for the vertical and horizontal reinforcements (ACI Code, Sections
11.7.2.1 and 11.7.3.1) is limited to:

s <min{3r, 18 in.} (7.51)

For basement walls with a thickness of 10 in. or less, shrinkage and temperature
horizontal reinforcement typically is placed on only one face. For thicker walls, we
distribute the required horizontal reinforcing evenly between the inside and the
outside faces.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Example 7.7 Design the reinforced concrete basement wall shown in Figure 7.65.
The unit weight of backfill is ys,; =115 pcf, and the coefficient of active soil
pressure is K, =0.33. The surcharge on the backfill is 150 psf. Use f/ = 4,000 psi
and f, = 60,000 psi.

Solution
Step 1. Calculate the maximum moment.
This basement wall is subjected to full backfill with surcharge. This is
Case (b) in Figure 7.59.
The equivalent fluid density and pressure are:

Yy = KaYeou = 0.33(115) = 38 pcf
DPa =Y, =38(12.5) = 475 psf

The pressure from the surcharge is:

Py = Kgwse = 0.33(150) = 50 psf

W, = 150 psf

2 |

NN

126"

Figure 7.65 Sketch of basement wall in Example 7.7

The factored pressures are:

Paw = 1.6p, = 1.6 x 475 = 760 pst /1,000 = 0.76 ksf
Po = 1.6p, = 1.6 x 50 = 80 psf/1,000 = 0.08 ksf
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Figure 7.66 shows the wall with the factored pressures.
Using the equations in Case (b) of Figure 7.59, we calculate reactions
and maximum moment.

Put = Psu = 0.08 ksf
P2 =Pau +Psu = 0.76 + 0.08 = 0.84 ksf
h 12.5 .
E,= (pui +pu2)§ = (0.08 + 0.84)7 = 5.75 kip/ft
h 12.5 .
Ry = (2py, +pu2)8 =(2x0.08 4+ 0.84)T = 2.08 kip/ft
Ry =E,— R, =5.75—-2.08 =3.67 kip/ft

To determine the location of the maximum moment, x, we solve the
following equation:

W, = 150 psf —l

R, = 2.08 kip/ft

Py1 = 0.08 ksf

x=7.05ft

126"

E, = 5.75 kip/ft

Location of M, max

R0 = 3.67 kip/ft

pyo = 0.84 ksfj

Figure 7.66 Factored pressure values and reactions in Example 7.7

(pu2 - pul)
h

0.84 — 0.08
(1275))8 +2(0.08)x — 2(2.08) = 0

X +2p x — 2R, =0

0.061x%* +0.16x —4.16 =0

—0.16 + \/(0.16)2 +4(0.061) (4.16)
T 2(0.061)

x="7.05ft
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The maximum factored moment is:

X
Mu,max = 6_h[h2(2pul +pu2) - 3hpulx - (puZ _pul)xz]

7.05 2 2
My max = m[uz.s) (2 % 0.08 + 0.84) — 3(12.5)(0.08)(7.05) — (0.84 — 0.08)(7.05) ]

My max = 9.15 ft-kip/ft

Step 2. Select a wall thickness.
Assume that there are no particular architectural requirements for the
thickness of the wall. Select =8 in.
Step 3. Design the required reinforcement.
(a) Design the vertical reinforcement.
Assume 3/4 in. cover and #6 bars; then

d=8-1.13= 6.87in.
Calculate the required resistance coefficient, Req:

~12,000M, _ 12,000(9.15)
bd> 12(6.87)*

= 194 psi

req

Obtain the required reinforcement ratio from Table A2.6b:

Preq = 0.0038

Check for the minimum flexural reinforcement required from
Table A2.4:

Pmin = 0.0033 < 0.0038 "ok
As = (0.0038)(12)(6.87) = 0.31 in.2 /ft

From Table A2.10 select 5@ 12 in.c/c (A;=0.31 in.2/ft).
(b) Design the horizontal reinforcements.

The horizontal reinforcement required for shrinkage and temperature,
based on the ACI Code (Section 11.6.1) is:

Ag, = 0.0020bt (assuming #5 or smaller bars)
Ag, = 0.0020(12)(8) = 0.19 in.2/ft

From Table A2.10 select #4 @ 12 in. (A;=0.20 in.z/ft).
Check for the maximum permitted bar spacing:

Smax = min{3z, 18 in.} = min{3(8), 18} = 18 in.

With 12 in. bar spacing, the requirement is satisfied.
Figure 7.67 shows the sketch of the final design.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Figure 7.67 Final design of Example 7.7

7.13.3 Retaining Walls

The behavior of retaining walls is very different from that of basement walls.
Basement walls are vertical simply-supported slabs bending between two supports
(i.e., the basement floor and the first floor). Unlike basement walls, retaining walls
are not supported at the top. They must have substantial weight to prevent toppling
over from the earth pressure.

Figure 7.68 shows the acting forces on a retaining wall. In addition to the weight
(W), the earth pressure (E) is applied to the back side of the wall. If the back of the
wall is smooth (i.e., frictionless), the E force is horizontal. The two forces, W and E,
are combined into the resultant (R).

The E force “wants” to overturn the wall, or to pivot it around the toe point. In
Figure 7.68 E exerts a counterclockwise moment on the toe. The W force (i.e., the
weight of the wall) “wants” to prevent the overturning by applying a clockwise
moment about the toe. As long as the resisting moment, M,., of W is greater than the
overturning moment, M,, , from E, the wall will be stable. Another way to express
the same concept is that the wall is stable as long as the resultant force, R, intercepts
the base of the wall inside the bottom width, as shown in Figure 7.68. On the other
hand, the wall will tip over if the R force intercepts the base line outside the bottom
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22 2

L~ E

The force polygon

Figure 7.68 Forces on a retaining wall

width. Figure 7.69 shows a typical gravity retaining wall, and the applied forces
(assuming a smooth wall), with their corresponding application locations.

Passive pressure

— Active pressure
(commonly neglected)

e

Figure 7.69 Forces on a retaining wall

The overturning moment, M, , can be calculated as follows:

h
And the resisting moment, M,, is:
M, =Wc (7.53)
Stability against overturning requires that:
M, > FSy x My, (7.54)

where FS, is the factor of safety against overturning. Section 1807.2.3 of the
International Building Code (IBC 2015) requires a minimum factor of safety
against overturning of

FSotmin = 1.5
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A second failure mode besides overturning exists. The earth pressure () tries to
push the wall (from right to left in Figure 7.69) to make it slide along its base.
Resistance against sliding comes from two sources. The first is frictional resistance
(F) at the bottom of the wall. The magnitude of this force is equal to the weight of
the wall (W) multiplied by the coefficient of friction (p) between the two materials
(i.e., the wall and the soil). The larger the weight, the larger is the frictional
resistance. The second force that resists sliding is the passive earth pressure in the
front of the wall. The bottom of the retaining wall, as with any other footing, is
usually placed below the frost line. The fill at the front provides passive resistance,
which can be considerable when the fill is there. Sometimes, however, this fill in the
front is removed for one reason or another. Thus, its continuous presence is not a
given, and most designers disregard it.

To ensure safety against sliding:

F=uW >FS, xE (7.55)

where

p = the coefficient of friction between the bottom of the wall and the soil
FS;=the factor of safety against sliding. (The recommended minimum safety
factor against sliding is 1.5, per IBC 2015, Section 1807.2.3)

All retaining walls in essence are gravity walls, although only one type is
designated as such. They differ only in the way we provide the mass needed to
safely retain the soil at the upper elevation. These differences in design, however,
increase the diversity of structural behavior within the wall structures themselves.
Figure 7.70 shows various types of retaining walls, and discussed as follows.

1. Gravity walls These walls are constructed of plain concrete, stone, or brick
masonry. Their extensive use of material and labor costs limit their economy
to relatively low heights of about 8 ft above the low grade (Figure 7.70a).

2. Cantilever retaining walls These are by far the most common type of retaining
wall. They are constructed with reinforced concrete or reinforced masonry, and
are economical to use for heights up to about 20 ft. Figure 7.70b shows a typical
cantilever retaining wall. The backfill above the heel provides much of the
weight needed for the stability of the wall. There are, however, variations of
these walls such as cantilever walls without heel or toe as shown in Figures 7.70c,
d. They are used when property lines or other limitations prevent the footing from
extending beyond one side of the wall. These walls are not as efficient as the
typical cantilever retaining walls.

3. Counterfort walls The wall stem will be subjected to very large bending
moments if a cantilever retaining wall is higher than 20 ft. In such cases it
may be economical to construct the wall with counterforts (walls perpendicular
to the stem, spaced about 12—15 ft apart) that attach the stem to the heel. The
reinforced counterforts act like tension members supporting the stem. They also
greatly increase the bending strength of the stem. Figure 7.70e shows a
counterfort wall.
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Counterfort wall Buttress wall

Figure 7.70 Different types of retaining walls (a) gravity wall (b) cantilever retaining wall (c)
cantilever wall without heel (d) cantilever wall without toe (e) counterfort wall (f) buttress wall

4. Buttress walls These walls are similar to counterfort walls, except that the
buttresses, which attach the stem to the toe, are located in front of the wall
(see Figure 7.70f). The buttersses are in compression

Vertical Soil Pressure Under the Base of a Retaining Wall So far we have
discussed only wall and column footings that are concentrically loaded (i.e., the
load acts at the centroid of the footing, and the distribution of the pressures on the
soil is uniform). In general, concentric loading cannot be achieved under retaining
walls. The resultant force (R), as shown in Figure 7.68, does not intercept the
footing at its center, but rather is eccentric to it.

Figure 7.71 shows three different possibilities of pressure distribution under a
footing. In Case I the load is concentrically applied to the footing. In Case II the
load is applied at a small eccentricity (e), which is less than 5/6. In Case III the load
is applied at an eccentricity larger than /6. Because a 1-ft-long strip is considered
in a wall footing:
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1 x b?

ft®
6

A=bx1=0bft> and S, =

The pressures for the individual cases then can be found as:

P P 6e 2P
fmax:_ fmax: Z(l—i_;) fmax:_

b 3¢
P 6e (7.56)
fmin = E 1 _;
(Case ) (Case II) (Case III)
Case | Case Il Case Il
b b Nmm— )
P
c=Db2 c Pe! c el
e=0 | —
Y v "30,
I I
[T frax | fg | T[T e |
e=0; c:g
b. b b. b
f:fmax:% e< g ¢>3 e= g5 c=73
P . P 3
fmax:7+s—z FromXV =0, P=Ffn,
f - P _Pe o= 2P
min A Sm max SC

Figure 7.71 Eccentric pressures under wall footings

If (1 - %e) < 0 in Case II, the expression for f;, becomes negative, which

indicates that theoretically there is tension between the footing and the soil. But
tension cannot develop between the bottom of the footing and the soil, as a gap
would appear. This is an impossible and inadmissible situation, so Case III applies.
With a straight-line pressure distribution, the pressure volume under the footing
must be in equilibrium with the P force. Hence, the resultant of the reaction pressure
must be colinear with the P force. Then the neutral axis (i.e., where the pressures
become zero) must be located at a distance 3¢ from the toe (see Figure 7.71).

Shear keys and weep holes We can easily increase inadequate sliding resistance
in a retaining wall by using a shear key at the bottom of the footing, as shown in
Figure 7.72. The passive earth pressure in front of the key provides a sure and
economical resistance.

As with basement walls, it is important to prevent water saturation of the backfill
behind retaining walls. Saturated backfill increases the earth pressure dramatically



498 7 Foundations and Earth Supporting Walls

A\VZANVZANVZANVZANZAN

Weep hole
|—>j
NN

|
Shear key 4>|_/

Figure 7.72 Weep hole and shear key in retaining walls

and may endanger the stability of the wall. Providing weep holes in the wall at
regular spacing is the easiest and safest way to drain the backfill. A typical retaining
wall weep hole is shown in Figure 7.72. Figure 7.73 shows a flowchart for the
stability analysis and design of cantilever retaining walls.

Stability Analysis and Design of Retaining Walls

l

* Calculate the lateral soil pressures and overturning moment.

l

Calculate the weight and the resisting moment.

l

- Determine the factor of safety against overturning and sliding.

l

w

4. Calculate the soil pressure under the footing.
|
5. Design the reinforcement required in the stem.
!
6. Design the reinforcement required in the heel and the toe.
7. l

Check the bar development length.

Figure 7.73 Flowchart for the stability analysis and design of retaining walls
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Example 7.8 Analyze the stability of the gravity retaining wall shown in
Figure 7.74. The backfill is sandy gravel, ys.; = 120 pcf; the coefficient of the
lateral active earth pressure is K, = 0.32; and the coefficient of friction at the base
is p=0.52. The wall is constructed of concrete, which weighs 150 pcf. A sur-
charge load of 150 psf exists on the upper elevation. Calculate the toe pressure on
the soil in addition to the stability analysis. Disregard the passive pressure in front

of the toe in the analysis.
40" 20"

W, = 150 psf
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W,

py = 48 psf po = 461 psf
Figure 7.74 Sketch for Example 7.8

Solution

Step 1. Calculate the lateral soil pressures and the overturning moment.

p1 = Kawse = 0.32 x 150 = 48 psf
E, =48 x 12 =576 1b/ft

applied at half the soil height.

Py = Kavenh = 0.32 x 120 x 12 = 461 psf
E, =461 x 12/2 = 2,766 1b/ft

applied at one-third of the soil height.

> E=576+2766 = 3,342 Ib/fit
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The overturning moment about the toe is the sum of the moments caused by
E, and E;:

M, = 576 x 12/2 + 2,766 x 12/3 = 14,520 ft-Ib/ft

Step 2. Calculate the weight and the resisting moment.
We divide the area of the wall into three component parts, as shown in
Figure 7.74, and do our calculations in a tabulated form.

Part No. w x (Distance of W from Toe) Wx
1 2 x 14 x 150 =4,200 1b/ft 5.00 ft 21,000 ft-1b/ft
2 (4 x 10/2) x 150 = 3,000 1b/ft 2.67 ft 8,000 ft-1b/ft
3 4 x 4 x 150=2,400 Ib/ft 2.00 ft 4,800 ft-1b/ft
> =9,600 b/t 33,800 ft-1b/ft

Step 3. Determine the safety factor against overturning and sliding:

M, 33,800
FSo[ - =

M, 14.520 =233—-233>15 .. ok

Calculate the factor of safety against sliding:
The friction force

F = pW = 0.52 x 9,600 = 4,992 Ib/ft
F 4992

- S E 334

Step 4. Calculate the soil pressure under the footing.
Figure 7.75 shows all the forces acting on the wall. Determine the
location where the R force (the reaction of the resultant of W and FE)

FS; =149 —-149=15 .. ok

R R,=W

Figure 7.75 The R force and its components at the base
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intercepts the base of the wall. The vertical component of the resultant is
R, =W, and the horizontal component is R, =E; (W, E, R, and R, are the
forces acting on the wall). The moment of a resultant about any point must
equal the sum of the moments of the composing forces about the same
point.

The moments of the composing forces are already known. The moment
of W about the toe is the resisting moment (M,). The moment of E is the
overturning moment (M,,).

Hence, from the equilibrium of forces acting on the wall:

We=M, — M, (7.57)

Substituting the calculated values, we obtain c:

33,800 — 14,520

9.600 =2.0ft

Because b=6.0 ft, this is Case III of Figure 7.71 (c :g) Find the

maximum pressure, fiax:

2%9,600

o — 3,200 psf
max = 737090 ps

Figure 7.76 shows the resulting soil pressure distribution.

ZNZN

RO

fnax = 3,200 psf

Figure 7.76 Soil pressure distribution below the wall in Example 7.8
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Example 7.9 Analyze the stability of the reinforced concrete cantilever retaining
wall shown in Figure 7.77. Calculate the reinforcement required in the wall and the
footing. Disregard the passive resistance of the soil in front of the toe. Assume
K,=0.32, ysi = 115 pcf, and p=0.50. Use f/ = 3,000 psi and f, = 60,000 psi.
Concrete is normal weight.

SIS ‘\\\Af\ S

W,
h,=12-0" Weoi

10-6"

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NN |
|
|
|

Whg
for | | ——
|1 “o"|1-0" v 3.6" Prax
[
I 5-6" I

Figure 7.77 Sketch of the wall in Example 7.9

Solution
Step 1. Calculate the lateral soil pressure and the overturning moment:

P = KaVeqih = 0.32 x 115 x 10.5 = 386.4 psf

Pmach 3864 x 105
2 2

h 10.5
My = E§ = 2,029 x = = 7,102 ft-1b/ft

E=

= 2,029 Ib/ft

Step 2. Calculate the weight and the resisting moment. Include the weight of the
backfill atop the heel of the wall and treat that as an integral part of the
retaining wall.
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Item w x (From Toe) | Wx (Moment to Toe)
Wall 12 x 1 x 150 = 1,800 Ib/ft 1.50 2,700 ft-1b/ft
Footing 5.5 x 1 x 150 =825 Ib/ft 2.75 2,269 ft-1b/ft
Soil 3.5x 9.5 x 115=3,824 1b/ft 3.75 14,340 ft-1b/ft

> =6,449 Ib/ft 19,309 ft-1b/ft

Step 3. Determine the factors of safety against overturning and sliding:

M, 19,309
FSy =— = =272>15 .. ok
Sor M, 7.102 72 > 1.5 o
_pW 0.50 x 6,449 )
FS_Yf—E =" 2.0 =159>15 .. ok

Step 4. Calculate the soil pressure under the footing. Determine the location at
which the resultant force intersects the bottom of the footing and calculate
the resulting soil pressures.

M, —M, 19,309 — 7,102
W 6,449

c

= 1.89 ft from the toe

So the eccentricity is

b 5.50
:——‘:——1. = . f
e=5-¢ 5 89 = 0.86 ft

Because

b 55
=086 <-=—=0.921t
e < 6 6

Therefore, Case II (see Figure 7.71) is applicable. The soil pressures under
the footing are:

W 6¢ 6,449 6 x 0.86
—T(142E) =2 14222 = 2273 psf
Fnax b( b) 5.50( 7550 ) 273 ps

W/ 6\ 6449/ 6x086
fmi“‘b<1_b) ~ 550 <1_ 5.50 )‘72p5f

Step 5. Design the required reinforcement in the stem. Calculate the factored
bending moment in the stem, as illustrated in Figure 7.78. The maximum
pressure at the base of the stem is:

Pa=0.32x 115 % 9.5 =349.6 psf
D, = 1.6 x 349.6 = 559.4 psf

The factored design moment at the bottom of the stem is:
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AN\ A\NVZANNZAN
gem = 9-6" 106"
Location of the maximum

moment in wall

TN TN NN 72

= 559.4 psf

Figure 7.78 Pressures on the stem

M = uhslem hstem _ 559.4 x 9.5 % 9.5
T\ 2 3 ) 2 3

= 8,414 ft-1b/ft = 8.41 ft-kip/ft

The minimum concrete cover required for #6 or larger bars (ACI Code,
Section 20.6.1.3.1) is 2 in., as the back of the wall is exposed to the soil.
Thus (assuming #6 bars):

d=12—-2-(0.75/2) = 9.63 in.

For a 1-ft length of the wall:

_ 12,000M, 12,000(8.41)
bd> (12)(9.63)*

=91 psi

Using f! = 3,000 psi concrete and f, = 60,000 psi steel from Table A2.6a:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Preq = 0.0018  (conservatively)

From Table A2.4:

Poin = 0.0033 > 0.0018 .. use p,;, = 0.0033
Agreq = 0.0033 x 12 x 9.63 = 0.38 in.2/ft

From Table A2.10 select

#5 @9in. c/c (A, =0.41in.%/ft)
or

#6 @12in. c/c (A, = 0.44in?/ft)

We place some vertical reinforcements to support the horizontal bars on the
exterior face of the wall. Use #4 @ 18 in. for walls with a height, 4,, < 14 ft,
and use #5 @ 18 in. where h,, > 14 ft. Therefore, here we use #4 @ 18 in.
since h,, = 12 ft. The horizontal shrinkage and temperature reinforcement
required in the stem and footing is:

Ag, = 0.002b1 = 0.002 x 12 x 12 = 0.288 in.% /ft

From Table A2.10 select #5 @ 12 in. c/c (A, =0.31 in.z/ft) for the footing.
Use #4 @ 16 in. on each face of the stem, as walls thicker than 10 in. require
two layers of reinforcement (total A;=2 x 0.15=0.30 in.%/ft).

Step 6. Design the reinforcement required in the heel and toe.

The heel acts like a cantilever from the back of the stem to the end of the
heel, as shown in Figure 7.79. The loads acting on it are the weight of the
soil from above, its self-weight, and the upward reaction pressures at its
bottom (found in step 4):

p; =72 psf
2273 -72
=72+ ———7— (35
P2 T 53 (35)
p, = 1,473 psf

The moment at the intersection of the heel and the stem is:


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1

9.

506 7 Foundations and Earth Supporting Walls
= X 115 = 1,093 psf
!

5
Location of maximum )
moment in heel 4’7l Vil Self-weight = 150 psf
72 psf
1,473 pst
f— 3.5 ft—

Figure 7.79 Forces on the heel in Example 7.9

W

35 35
M = [(1,093 + 150) x 3.5] x 7—72 X 3.5 x 5

35 35
— (1473 = 72) x = x 57 = 4312 fi-lb/ft

The factored moment is:
M, =16 x 4,312 = 6,900 ft-1b/ft = 6.9 ft-kip/ft

The reinforcement will be placed at the top of the heel. Thus, 2 in. cover
(as in the case of stem) is required, therefore, d =9.63 in. For a 1-ft length
of the heel:

12,0000, _ 12,000(6.9) _
bd*>  (12)(9.63)

R =

From Table A2.6a:

Preq = 0.0014 — A, = 0.0014(12)(9.63) = 0.16 in.? /ft

Per the ACI Code, Sections 13.3.2.1 and 7.6.1.1 the minimum reinforce-
ment is equal to the required shrinkage and temperature reinforcements.

Ay.min = 0.0018b7 = 0.0018bt = 0.0018 x 12 x 12
= 0.26 in.2/ft > 0.16 in.2/ft

From Table A2.10 select #5 @ 14 in. ¢/c (A, =0.27 in.%/ft).

Smax = min{3A, 18} = min{3 x 12, 18} = 18in. > 14in. .. ok


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1

7.13  Earth Supporting Walls 507

11-0°[ 10"
|

Self-weight = 150 psf — |

2,273 pst

—— 1,873 psf

Figure 7.80 Forces on the toe in Example 7.9

The toe is only 1'-0” long, so the reinforcement required will not be
significant. For the sake of thoroughness, however, we will also determine
the reinforcement in the toe.

p1 = 2,273 pst
2,273 =72

-7
P2 Tt 5s

(4.5) = 1,873 psf
Neglecting, conservatively, the soil on the toe, the moment at the intersec-
tion of the toe and the stem, as shown in Figure 7.80, is:

1.0 1.0\ /2
M = (1,873 —150)(1.0) <7> +(2,273 -1,873) (7> <§ X 1.0) =995 ft-1b/ft
M, =1.6(995) = 1,592 ft-Ib = 1.6 ft-kip/ft
d =12 —3(footing cover) — ? = 8.63 in.(assuming #6 bars)

For a 1-ft length of the toe:

12,000(1.6 .
R = 7(2) = 22 psi — Table A2.6a — p,, < 0.0010
12(8.63)

. use minimum steel
Ay = 0.0018(12 x 12) = 0.26 in.%/ft

Table A2.10 — Use 6 @ 12 in. c/c to dowel bars from the footing into the
stem (A, =0.44 in.z/ft). These bars will also serve for reinforcement in
the toe.

Step 7. Check the bar development length.

(a) Stem Reinforcement For the reinforcements in the stem, we must lap
splice the dowels in the footing to the main reinforcement. From
Table A3.3, for #6 bars, {;=33 in., which can be reduced by
Ax,required
As, provided '


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
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Therefore

0.38 .
grequired =33 x Oﬂ =29 in.

Using a Class B lap splice according to the requirements discussed
in Chapter 3, Section 3.4.5:

Required lap splice = 1.3¢, = 1.3(29) = 38 in. > 12 in.

The footing is too small to provide the above length, so the bars are
hooked into the toe. The development length (per Equation (3.65)) is:

A AAS

Lap = (7507»\/1? >dh

o ((60,000)(1.0)(0.7)(1.0)
a" 50(1.0)+/3,000

gdh = 153(075) =11.51n.

)db = 15.34d,

Av .
From Table A3.4, we can reduce {j, by As’reﬂ

s, provided

. Therefore, the

required length is:

v =/ As, required
required ~— “dh X A K
s, provided

0.38

l =11.5x——=9.91in. > min{8(0.75), 6 in.} ..ok
0.44

required
Ercquircd =99in. < [prnvidcd =24 - (3 + 2) =19in. c.ok
Toe cover Stem cover
We could also use a shear key with the dowels extended into the key
to provide the required bar length if needed (see Figure 7.81).

(b) Heel Reinforcement The development length for #5 bars, per
Table A3.3, is 28 in. The required length is:

0.26 .
ZdZZSXm:271n.

The provided reinforcement length in the heel is (cover =3 in.):

3.5(12) —3=39in. > 27in. .. ok

Hooks are required in the toe area, as the toe is not long enough.


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_3
http://dx.doi.org/10.1007/978-3-319-24115-9_3
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#4 @ 18 in. vertical
N

| ST 87

#4 @ 16 in. horizontal \ [

v
ry

L~ #6 @ 12 in. vertical

L~ #4 @ 16 in. horizontal

#6 @ 12in. dowels 4~ 1§
NN \ 3-2" #5 @ 14 in.

~

Possible use of shear key —»| k— Dowels could be

extended into the key

Figure 7.81 Final reinforcement results for Example 7.9

~ (AWewew,\ . (60,000)(1.0)(0.7)(1.0) o
ban = (750/1\#7 >db = 50(1.0)v/3.000 (0.625) = 9.6 in.

0.26
Crequired = 9.6 (ﬁ) = 9.2 in. > min{8(0.625), 6 in.}

Lorovided = 24 in. — 3in. = 21'in. > 9.21in. .. ok

(c) Toe Reinforcement The dowels from the stem are used as reinforce-

ment for the toe. From Equation (3.65), the required length of bars
with hook for #6 bars is:

AR 4
son /7 )

o ((60,000)(1.0)(0.7)(1.0)
e 50(1.0)y/3,000

)0.75 =115in.


http://dx.doi.org/10.1007/978-3-319-24115-9_3
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0.26
leguirea = 11.5 x 577 = 6.8 in. > min{8(0.75), 6 in.}

Lorovided = 12in. — 3 in. = 9in. > 6.8in. .. ok

Figure 7.81 shows the retaining wall and the details of the
reinforcements.

Problems

In the following problems assume concrete is normal weight unless noted
otherwise.

7.1. Design a plain concrete wall footing to support a 12 in. thick concrete wall.
The dead load, including the weight of the wall, is 5.0 kip/ft, and the roof live
load is 6.0 kip/ft. The bearing capacity of the soil is 2,500 psf and
f = 3,000 psi.

7.2. Redesign the footing of Problem 7.1 for a soil bearing capacity of 6,000 psf.

7.3. Rework Problem 7.1 for a reinforced concrete wall footing. Use
/3, =160,000 psi.

7.4. The following figure shows a partial section of a four-story office building. It is
constructed of 8 in.-thick precast hollow core planks for roof and floors,
supported by 12 in. block walls. The planks weigh 55 psf, and the block wall
weighs 80 psf. The floor superimposed dead load is 25 psf, and the floor live
load is 50 psf. The roofing weighs 15 psf, and the roof snow load is 30 psf. The
soil bearing capacity is 3,500 psf. Use f’ = 3,000 psi and f, =60,000 psi.
Design a reinforced concrete footing for the interior walls shown.

I 24'-Q" I 24'-Q" I
T % L L L %
1OI_OII E E E
3 — — — |
I = = = T
10-0" — — —
3 — — — |
? I I I ?
10-0" — — —
> - — — |
AI» L L L £
10-0" — — —
1 —] —] —] |
a0 — — NN
~ L 1 L 1 L |

Building section
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7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

A 16 in. x 16 in. reinforced concrete column supports 150 kip dead load and
75 kip roof live load. The allowable soil bearing pressure is 4,000 psf. Design a
square footing to support the column. Use f = 3,000 psi for the column and
the footing and f, = 60,000 psi. Assume the column to have 4 #6 bars as the
main reinforcement.

Design a square reinforced concrete spread footing for the interior columns of
Problem 5.11. The soil bearing capacity is 6,000 psf. Use f = 3,000 psi for the
footing, f/ = 4,000 psi for the column, and /3, =60,000 psi. Column has 8 #9
main reinforcement. Neglect the self-weight of column.

Design a square reinforced concrete spread footing to support a 24 in. x 24 in.
column carrying a 600 kip dead load and a 400 kip roof live load. The soil bearing
capacity is 10,000 psf. Use f/ = 3,000 psi for the footing, f = 4,000 psi for
the column, and f, = 60,000 psi. The column’s main reinforcements are 8 #11.
Redesign the footing of Example 7.3, if one of the horizontal dimensions of
the footing is limited to 7/—0" due to the proximity of an adjacent property line.
Redesign the footing of Problem 7.7 if one of the horizontal dimensions of the
footing is limited to 8'-0".

Determine the thickness of the unreinforced basement wall shown below for
the following cases. The unit weight of the backfill material is 120 pcf, and the
coefficient of active pressure K,=0.33. Show the soil lateral pressure and
draw the shear force and bending moment diagrams for the applied loads. Use
f/ = 4,000 psi.

(a) h, =8 —0", no surcharge (wye =0)  (c) by =7 —0", w,.= 200 psf
(b) h, =6'—0", no surcharge (d) hy=10'=0", wy. =200 psf

__/1,__

h=10-0"



http://dx.doi.org/10.1007/978-3-319-24115-9_5
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7.11. Rework Problem 7.10 for & = 12'-0". For case d, use h, = 12'-0".

7.12. Design the plain concrete basement wall shown. The equivalent fluid active
density of the backfill material is 36 pcf. The unit weight of the soil is 120 pcf.
Consider two cases: (a) without surcharge, and (b) a surcharge of 150 psf
acting on the backfill. Use £/ = 3,000 psi.

7.13. Redesign the basement wall of Problem 7.12 using reinforced concrete. Use
f3,=160,000 psi.

7.14. Check the adequacy of the 10-in.-thick reinforced concrete basement wall
shown below. Use f = 4,000 psi and f, = 60,000 psi. The clear cover is % in.
The unit weight of the backfill is 100 pcf, and the coefficient of active soil
pressure K, = 0.30.

I
|
I
120" 22
6-0"
| |
[ =
- " |
Figure for Problem 7.12
— A
{
S 22 I
t=10in. —> l—

\ #5 @ 12 in. horizontal

140"
N #6 @ 12 in. vertical

Figure for Problem 7.14
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7.15. What is the maximum allowable surcharge that can be placed on the outside
grade of the basement wall of Problem 7.14?

7.16. Check the stability of the concrete gravity retaining wall shown below. Also,
determine the soil pressure distribution on the base. The unit weight of the
backfill is 120 pcf, the coefficient of active soil pressure is 0.30, and the
coefficient of friction at the base is 0.50. The unit weight of the concrete is
150 pcf. The applied surcharge on the backfill is 100 psf. Disregard the
passive pressure action on the wall.

3-0" 6-0"

W, = 100 psf

LR .

120"
S 3:6
¥

7.17. Check the stability of the concrete gravity retaining wall shown below. Also,
determine the soil pressure distribution on the base. The unit weight of the
backfill is 115 pcf, the coefficient of active soil pressure is 0.33, and the
coefficient of friction at the base is 0.45. The unit weight of the concrete is
150 pcf. The applied surcharge on the backfill is 130 psf. Disregard the
passive pressure action on the wall.

W, = 130 psf

WU

DA

1'-0" (| |
TS0 60"
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7.18. Check the stability of the reinforced concrete cantilever retaining wall shown
below. Disregard the passive resistance of the soil in front of the toe. Assume
K,=0.3, ysi1=120 pcf, and p=0.52. The unit weight of the concrete is
150 pcf.

Wge = 200 psf

Ll

SVZSZSZSZSZNES

16'—6"

NN

1-6"
A4

ol_g" ‘1._6..‘ 6'—6"
I I

10-6"

7.19. Design the cantilever retaining wall of Problem 7.18. Use f = 3,000 psi and
fy=60,000 psi. Use the ACI Code-recommended minimum covers.

Self-Experiments

In this self-experiment we study the behavior of square spread column footings.
Include all the details of your tests such as sizes, times, concrete and ingredient
proportions, problems you encountered, and so on, together with images showing
the steps of the tests in your report.

Experiment 1

To study the behavior of spread footings, we will use a square piece of rubber
(about '/, in. thick) or any other flexible material. Put the rubber on some soft soil or
sand. Place a Styrofoam column on the center of the rubber. Press the column down,
as shown in Figure SE 7.1, and observe how the rubber mat reacts. Document all
findings and observations.
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Experiment 2
To gain a better understanding of the behavior of different types of soil under a
foundation, we repeat Experiment 1 in the following order:

1. Fill a dish with dry sand. Compact the sand by gently pounding it with the
bottom of a bottle. Smooth the top, and place a wood block (representing a
square footing) on the sand. Load the block with an increasing load. Note what
happens to the sand around the loaded block.

2. Repeat step 1 using wet sand.

. Repeat step 1 using wet clay. The clay must be wet enough to be moldable.

4. Repeat step 3 after letting the clay dry for a few days.

J

W

|,— Styrofoam column

Rubber footing

/

Soil Z

Figure SE 7.1 Spread footing under concentrated load

Experiment 3

Form and cast a reinforced concrete square spread column footing. We will
use wires to represent the two required sets of reinforcement, as illustrated in
Figure SE 7.2. Document all your problems and observations in casting the footing.
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Figure SE 7.2 Reinforced concrete spread footing

Experiment 4

Using the concrete footing of Experiment 3, repeat Experiment 1 by adding a
square reinforced concrete column at the center of the footing. Remember that you
need dowel bars to tie the column to the footing. Document all problems and your
observations in the construction of the column and footing model.

What is the approximate capacity of the footing if it is placed on a soil with a
bearing capacity of 2,000 psf?



Chapter 8
Formwork for Monolithic Concrete
Construction

8.1 Introduction

This Chapter discusses the issues that need to be studied and understood by an
aspiring architectural or construction engineer, regardless whether works as a
designer, or is engaged in construction.

We encourage the readers to consult the National Design Specification for Wood
Construction, which provides comprehensive instructions for the use and the
allowable values for metal connectors (nails, bolts, etc.) in wood construction.

Besides offering detailed guidance to the analysis and design of formwork
elements, this Chapter discusses the design of wood shores. We have also included
many useful Tables and step-by-step numerical examples for the easier compre-
hension and safe design of different wood and plywood formwork component
elements. The scope and available space unfortunately does not permit us to include
here the many, mostly patented, metal shoring and forming systems offered by a
large number of manufacturers. A search of the Internet will help those readers,
who may wish to expand their knowledge in the subject beyond wood materials
used in formwork and shoring.

Formwork and shoring that supports it are the largest cost-component in mono-
lithic concrete construction, often reaching 50 %-or more-of the total. Even more
important is to know that the formwork materials’ costs amount to about 1/6th of
that and labor cost associated with the formwork in the U.S.-and other countries
with relatively high wages-is about 5/6th.

Formwork should be thought of as a mold into which first the reinforcement is
assembled, then the freshly mixed concrete is poured, consolidated and cured. The
shoring should be thought of as the temporary structure necessary to support the
formwork, the weight of the workers during the construction process, the weight of
the fresh concrete and the weight of the equipment used during the concreting
operation.

© Springer International Publishing Switzerland 2017 517
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8.2 Planning for Formwork

The most important reference material for the design and construction of formwork
is the American Concrete Institute’s Guide to Formwork for Concrete, ACI 347R-
14. In addition, a much more comprehensive and authoritative treatment of the
subject may be found in the ACI SP-4 7th Ed., a book titled Formwork for Concrete,
written by Mary K. Hurd.

Shoring and formwork are essentially temporary structures that must be built to
provide a mold into which the fluid concrete is poured, consolidated and cured.
Thus they have to be carefully designed to provide for the essential attributes of all
structural designs, which are quality, safety and economy.

Quality in formwork means:

(a) the quality of the facing material, which is an important constituent in achiev-
ing the desired finish of the formed components;

(b) the formwork must be watertight. Butt joints, or corner joints between the
plywood sheets must be sealed to prevent leakage from the fresh concrete.
Leakage leads to unsightly cement fins at such locations, which when broken
off clearly show a discontinuity of appearance. It may also lead to
honeycombing in the concrete, which is rather difficult and expensive to
repair.

The sealing may be done by using a thin adhesive tape, or an appropriate
caulk. Corner joints are often protected from leakage by sealed wooden
(or plastic) chamfers.

(c) the accuracy, i.e. size, thickness, and geometrical conformance of the finished
concrete construct to the design documents. The reader is referred to ACI
Standard Specification for Tolerances for Concrete Construction, ACI
117, which lists the acceptable deviations from the dimensions provided for
in the Contract Documents.

Forms that are not designed and/or constructed to produce elements satis-
fying the tolerance requirements, or the finish requirements set forth in the
project specifications, may result in expensive refinishing (or in some cases
demolishing and re-construction)!

Safety refers to the requirements:

(a) that the temporary structure must be designed and built to safely withstand all
the loads (gravity and lateral) that it is subjected to during the construction
process;

(b) that it provides for the safety of the construction personnel.

Economy in the design and construction of the formwork looms huge among the
attributes, when one looks at the share of its cost in the overall concrete construction
cost. In the construction process there are three major components contributing to
the total cost of monolithic reinforced concrete construction in architectural struc-
tures (refer to Figure 8.1):
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concrete
materials 22%

formwork

labor 46% concrete

labor 8%

reinforcement

material 9%
ST einforcement
material 6% labor 9%

Figure 8.1 Average concrete construction cost distribution

— Concrete: materials, delivery, placement and finish;
— Reinforcement: materials, fabrication, accessories and placement;
— Formwork: materials for shoring and forming, construction and removal;

Each of these have a labor component, but the formwork, with its attendant
shoring that supports it, is the most labor intensive. So in countries where the cost of
skilled labor is expensive, the cost of formwork represents the largest percentage of
the total cost.

8.3 Loads on Formwork

8.3.1 Gravity Loads

For the purposes of design, Dead Loads are defined as the weight of the formwork,
shoring and scaffolding, the weight of the reinforcement and the freshly placed
concrete. In the authors’ experience an allowance of 10 psf to 15 psf is generally
sufficient to account for the weight of the formwork, scaffolds and shores. To
account for the weight of concrete and reinforcement, use the customary 150 pcf
for the design.

Live loads are more difficult to predict. Those represent the weight of workers,
concrete buggies or other concrete conveying equipment, pumping hoses,
generators, compressors, consolidating and finishing equipment, etc. The ACI
347 recommends the use of a minimum 50 psf uniformly distributed live load to
account for these, and minimum 75 psf, when motorized carts are used for the
conveyance of concrete.
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Example 8.1 Calculate the uniformly distributed load a formwork (and its
supporting post-shores) must be designed for a 10 in. thick normal weight concrete
slab. The concrete will be delivered via a concrete pump.

Solution

Weight of the concrete slab: (10/12) x 150 125 psf
Self-weight of formwork (estimate) 10 pst
Live Load (min. per ACI 347 recommendations) 50 psf
Total design load for the slab formwork 185 psf

8.3.2 Lateral Pressure on Formwork

Fresh concrete behaves like a fluid when placed, thus exerts hydrostatic pressure
against the sides of the forms. The value of the pressure depends upon many
variables. If the concrete is poured to full height of the form within a time that is
less than the initial set, then the formwork will experience full hydrostatic pressure
in the form of

p=wch (8.1)

where:

w. = unit weight of concrete, b/
h=depth of fluid or plastic concrete from top of placement to point of consider-
ation in the form, ft

However, when the rate of pour is slower than the time required for the initial set
of the concrete mix, the pressure at the bottom of the formwork will diminish from
the full hydrostatic pressure. The parameters influencing the magnitude are the
temperature of the concrete inside the form (higher temperature accelerates the
setting time) and the chemistry of the concrete mix (pozzolans used as cement
replacement, retarding admixtures, etc.). In combining all these effects into one
empirical formula, ACI 347 recommends

Pmax = CwCc(150 + 9,000R/T) > 600C,, lb/ft2 (8.2)
but not more than
Pmax = Weh (8.3)

where

R =rate of placement, ft/hr

T =temperature of concrete during placement, °F
C,, = unit weight coefficient (see Table 8.1)

C. =chemistry coefficient (see Table 8.2)
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Table 8.1 Unit weight coefficient C,,

Unit weight of concrete C,

Less than 140 1b/ft’ Cy = 0.5[1+ (w./1451b/ft*)] > 0.8
140-150 1b/ft® 1.0

More than 150 1b/ft® Cn =w./1451b/f63

Table 8.2 Chemistry coefficient C,.

Cement type or blend C,
Types 1, 11, and LI without retarders 1.0
Types I, II, and Il with a retarder 1.2
Other types or blends containing less than 70 % slag or 40 % fly ash without retarders 1.2
Other types or blends containing less than 70 % slag or 40 % fly ash with a retarder 1.4
Blends containing more than 70 % slag or 40 % fly ash 1.4

For walls higher than 14 ft, or for placement rates between 7 and 15 ft per hour
the following empirical formula is recommended:

P = CwCe(150 +43,400/T + 2,800R/T) 1b/ft> 8.4
max

Example 8.2 Assume a 24 in. x 24 in. column form 14 ft high. The project
specifications require normal weight concrete with Type I cement and allow the
use of maximum 25 % fly ash cement replacement. Calculate the maximum lateral
pressure at the base of the forms.

Solution The total volume of concrete will be 2 x 2 x 14 = 56 cubicfeet —
2.07 cubicyards. This is a small amount, hence it is more than likely that it will
be poured faster than the initial set—about 2 hours after mixing—regardless of the
temperature of the concrete. Thus Equation (8.3) will apply:

P = 150 x 14 = 2,100 psf

Example 8.3 Calculate the maximum pressure on a wall-form for an 18 in. thick,
60 ft long and 12 ft high wall. Normal weight concrete with Type I cement is
specified with a 40 % GBFS (Ground Blast Furnace Slag) cement replacement
without retarders. The average temperature during the pour is expected to be
about 80 °F and the rate of pour is estimated to be about 4 ft/hr.

Solution

C,=1.0

C. = 1.2 (From Table 8.2 (fourth row): blend with less than 70 % slag and no
retarder)

Using Equation (8.2): py.x = 1.0 x 1.2 x (150 + 9,000 x 4/80) = 720psf
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Since this is greater than 600 x C,,=600psf (refer to Equation (8.2)), use
720 psf for the design.

Example 8.4 Same data as in Example 8.3, but the rate of pour is 5 ft/hr and the
temperature is expected to be only 50 °F.
Then

P = 1.0 x 1.2 x (150 49,000 x 5/50) = 1,260 psf

A comparison of the results in Examples 8.2 and 8.3 shows, rather dramatically,
the importance of the R and T parameters. While the first, i.e. the rate of pour can be
more accurately planned and enforced on the field, the temperature on the date of
the pour is more difficult to assess with much accuracy. Hence, the designer should
always be cautious. Many authorities in the field recommend that unless the
economy of the formwork design absolutely forbids it, the most conservative
design, i.e. Equation (8.3) be used.

8.3.3 Lateral Loads on the Shoring and Forming Assembly

The temporary structure of the shoring, bracing and forming assembly also must be
designed for lateral loads, such as wind and/or seismic loads, just like any other
structure. For the evaluation of such loads, the reader is referred to the SEI/ASCE
37-10 Standard “Design Loads on Structures during Construction”.

ACI 347R-14 Paragraph 4.2.3.1 states the following:

“Formwork exposed to the elements should be designed for wind pressures
determined in accordance with ASCE/SEI 7 with adjustments as provided in
ASCE/SEI 37 for shorter recurrence interval. Alternatively, formwork may be
designed for the local building code-required lateral wind pressure, but not
less than 15 psf. Consideration should be given to possible wind uplift on
formwork.”

In addition, concrete formwork is subject to other horizontal loads from the
starting and stopping of motorized equipment, from the concrete dumping opera-
tions, and other not-easily-calculable effects. ACI 347 recommends a minimum
horizontal force of 100 Ib per linear ft (Ib/ft) of floor edge in any direction be used to
account for these effects. This force is an alternative requirement to the minimum
wind load cited above, for it is unlikely that concreting operations would occur
during a wind storm.

In concrete construction usually the vertical elements are poured first, thus they
are often available to provide lateral support to the shoring and forming elements.
The designer of the formwork must, however, carefully analyze the available
strength of the already-in-place elements when considering their utilization for
providing the necessary stability of the temporary structure.
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8.4 Materials for Formwork

8.4.1 Form Panels

Form panels should be thought of as the lining of the mold, i.e. the surface that will
be in intimate contact with the concrete. While many different materials may be
used as form panels, the overwhelming majority of them are APA (American
Plywood Association) Exterior type Plywood. These products are manufactured
using moisture resistant adhesives.

The industry also manufactures a trademarked special product known as
Plyform®™, manufactured for the specific purpose of forming for concrete.

Plyform®-and indeed almost all plywood-panels are manufactured in odd num-
ber of layers (also called plies). The layers are laid up with the grain perpendicular
in adjacent layers, and bonded together under high pressure using adhesives. The
adhesives are selected on the basis of intended use, i.e., interior (not exposed to
weather), or exterior use. Plyform® panels are always made with exterior quality
(waterproof) adhesives.

The alternating direction of the grain in the adjacent layers helps to minimize
the shrinking and warping of the panels. The typical plywood panels are
manufactured in 4 ft x 8 ft size, although they may be available in larger sizes
on special order. The grain orientation in the outer plies is always in the long
direction.

Plyform® panels are always manufactured with exterior bond classifications and
in three basic grades: Plyform Class I, Plyform Class II and Structural I Plyform.
The Class refers to the strength of the Plyform, which in turn depends upon the
Group wood species that form the outer ply.

Overlaid Plyform® panels are also manufactured for concrete form use. Two
types MDO (Medium Density Overlay) and HDO (High Density Overlay) are
available. During the fabrication process thermo-setting phenolic resins are
bonded-usually on one side only-to the surface of the plywood using high heat
and pressure. The overlay produces a smooth, hard, semi-opaque surface and
increases the durability, hence the re-use, of the forming panels manifold. It can
help to create concrete to appear nearly like a polished surface.

Since many different species of wood are used in manufacturing plywood and
due to its inner construction grains in adjacent layers are perpendicular to each other
and thus have different strength and stiffness characteristics, the cross-sectional
properties cannot be simply calculated like we do when using homogenous mate-
rials. Table 8.4 shows the calculated cross section properties of a 1 ft (12 in.) wide
section of Plyform®. Thus the designer may need to select only the appropriate
effective section properties and the allowable stresses for the face ply in order to
perform any required calculations.

Table 8.3 shows the allowable design stress values and the Modulus of
Elasticity of the various Plyform materials. Note that the listed values are adjusted
values, used specifically in concrete forming. In wood products the Codes require
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the application of several adjustment factors, like wet service factor, load duration
factor, etc. So, the values taken from the Plywood Design Specification’s allow-
able stress are adjusted to wet use (outdoor construction must assume that the
formwork is in “wet” condition); however the load duration is a relatively short
one, for as the concrete stiffens and begins to carry its own weight, the pressures
on the plywood diminish. Thus, a special C;=1.65 concrete setting factor was
applied together with the wet design stresses. Table 8.3 shows the allowable
design stresses already adjusted to account for the wet service and load duration
factors.

Table 8.3 Allowable stresses and moduli of elasticity used with Plyform®

Plyform Plyform Structural
Class I Class I I Plyform
Modulus of elasticity—E 1,650,000 psi 1,430,000 psi 1,650,000 psi

(adjusted, use for bending
and deflection calculation)

Modulus of elasticity—FE 1,500,000 psi 1,300,000 psi 1,500,000 psi
(unadjusted, use for shear
deflection calculation)
Bending stress—F; 1,930 psi 1,330 psi 1,930 psi
Rolling shear stress—F; 72 psi 72 psi 102 psi

The term Rolling Shear Constant (see Table 8.4) maybe unfamiliar to the reader.
The fibers in an inner layer of the plywood, laid perpendicular to the face layer, tend
to roll over each other, (not unlike a layer made out of toothpicks), when subjected
to horizontal shear due to bending.

Horizontal shear in members in bending is calculated as:

Ve v 5

Ib <Ib)
Q
The term in parenthesis in the denominator is referred as the rolling shear constant.
Due to the non-homogenous and non-isotropic nature of the plywood material,
calculations of the cross-sectional properties are far from being simple. Conve-

niently, however, all the design-applicable information is tabulated and made
readily available. (Refer to Table 8.4).
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Table 8.4 Section properties of plyform (courtesy of APA—The Engineered Wood Association)

Section properties for Plyform Class I and Class II, and Structural I Plyform®

Properties for stress applied Properties for stress applied
parallel with face grain perpendicular to face grain
Effective | Rolling Effective | Rolling
section shear section shear
Approx. | Nominal | Moment | modulus | constant | Moment | modulus | constant

Performance | weight | thickness | of inertia | KS Ib/ of inertia | KS Ib/
category (psf) t (in.) I (in/£t) | in2/ft) | (in/6t) | 1 (in/ft) | (in/66) | (in.*/f6)
Class 1
15/32 1.4 0.469 0.066 0.244 4.743 0.018 0.107 2.419
12 1.5 0.500 0.077 0.268 5.153 0.024 0.130 2.739
19/32 1.7 0.594 0.115 0.335 5.438 0.029 0.146 2.834
5/8 1.8 0.625 0.130 0.358 5.717 0.038 0.175 3.094
11/16 2.0 0.688 0.164 0.409 6.175 0.044 0.183 3.524
23/32 2.1 0.719 0.180 0.430 7.009 0.072 0.247 3.798
3/4 22 0.750 0.199 0.455 7.187 0.092 0.306 4.063
7/8 2.6 0.875 0.296 0.584 8.555 0.151 0.422 6.028
1 3.0 1.000 0.427 0.737 9.374 0.270 0.634 7.014
1-1/8 33 1.125 0.554 0.849 10.430 0.398 0.799 8.419
Class 11
15/32 1.4 0.469 0.063 0.243 4.499 0.015 0.138 2.434
1/2 1.5 0.500 0.075 0.267 4.891 0.020 0.167 2.727
19/32 1.7 0.594 0.115 0.334 5.326 0.025 0.188 2.812
518 1.8 0.625 0.130 0.357 5.593 0.032 0.225 3.074
11/16 2.0 0.688 0.164 0.409 6.020 0.036 0.236 3.496
23/32 2.1 0.719 0.180 0.430 6.504 0.060 0.317 3.781
3/4 2.2 0.750 0.198 0.454 6.631 0.075 0.392 4.049
718 2.6 0.875 0.300 0.591 7.990 0.123 0.542 5.997
1 3.0 1.000 0.421 0.754 8.614 0.220 0.812 6.987
1-1/8 33 1.125 0.566 0.869 9.571 0.323 1.023 8.388
Structural 1
15/32 1.4 0.469 0.067 0.246 4.503 0.021 0.147 2.405
12 1.5 0.500 0.078 0.271 4.908 0.029 0.178 2.725
19/32 1.7 0.594 0.116 0.338 5.018 0.034 0.199 2.811
5/8 1.8 0.625 0.131 0.361 5.258 0.045 0.238 3.073
11/16 2.0 0.688 0.167 0.418 5.621 0.051 0.249 3.493
23/32 2.1 0.719 0.183 0.439 6.109 0.085 0.338 3.780
3/4 22 0.750 0.202 0.464 6.189 0.108 0.418 4.047
7/8 2.6 0.875 0.317 0.626 7.539 0.179 0.579 5.991
1 3.0 1.000 0.479 0.827 7.978 0.321 0.870 6.981
1-1/8 33 1.125 0.623 0.955 8.841 0.474 1.098 8.377

“The section properties presented here are specifically for Plyform, with its special layup restric-
tions. For other grades, section properties are listed in the APA’s Plywood Design Specification,
Form Y510
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8.4.2 Lumber

Practically any formwork construction and consequently its design involve lumber.
Although the material selection may use any species listed in the National Design
Specification for Wood Construction and its Supplement: Design Values for Wood
Construction, published by the American Forest & Paper Association (AFPA) and the
American Wood Council (AWC), only a few species are typically used in the con-
struction industry. These are: Douglas Fir-Larch North; Douglas Fir South; Hem-Fir;
Spruce-Pine-Fir and Southern Pine. Within all these species each piece of cut-to-size
lumber is either visually or machine graded and classified as to their stress-grade.

Table 8.5 shows the sizes and section-properties of lumber typically used in
formwork construction. The listed values are for (S4S—Surfaced 4 Sides) “dressing”,
which means that after rough sawing from the timber, the boards are run through a
planing machine to obtain smooth surface on all four sides and uniform cross-section.

Table 8.6 shows the Reference Design Stress values for 2 in.—4 in. thick
lumber of selected species and grades. These values are subject to a number of
Adjustment Factors. We list only those factors that are typically used in formwork
design.

Table 8.5 Properties of selected lumber sizes, typically used in formwork construction

Area of
Nominal | Actual Approx. | cross- Moment | Section Moment | Section
size size weight section | of inertia | modulus | of inertia | modulus
(in.) (in.) (Ib/fty | (in%) I, (in% |[S,@Gn% |IG@nY |, (n?)
2x4 1.5x3.5 1.3 5.25 5.36 3.06 0.98 1.31
2x6 1.5x5.5 2.0 8.25 20.80 7.56 1.55 2.06
2x8 1.5%x7.25 2.6 10.87 47.63 13.14 2.04 2.72
2x10 1.5x9.25 3.4 13.87 98.93 21.39 2.60 3.47
2x12 1.5x11.25 4.1 16.87 177.97 31.64 3.16 4.21
3x4 25x%x3.5 2.1 8.75 8.93 5.10 4.56 3.65
3x6 2.5x5.5 34 13.75 34.66 12.60 7.16 5.73
3x8 2.5%x7.25 44 18.12 79.39 21.90 9.44 7.55
3x10 2.5%9.25 5.6 23.12 164.89 35.65 12.04 9.63
3x12 2.5x%x11.25 6.8 28.12 296.63 52.73 14.65 11.72
4x4 3.5x%x3.5 3.0 12.25 12.50 7.15 12.50 7.15
4%x6 35%5.5 4.7 19.25 48.53 17.65 19.65 11.23
4x8 3.5%x7.25 6.2 25.38 111.15 30.66 25.90 14.80
4x10 3.5%x9.25 7.9 32.38 230.84 49.91 33.05 18.88
4x12 3.5x%x11.25 9.6 39.38 415.28 73.83 40.20 22.97
6x6 55x%x5.5 7.4 30.25 76.26 27.73 76.26 27.73
6x8 55x17.5 10.0 41.25 193.36 51.56 103.98 37.81
8x8 7.5%x75 13.7 56.25 263.67 70.31 263.67 70.31

Notes: (1). Weights shown assume dry condition, approx. 35 1b/ft; (2). I and S, are about the
strong axis of the section; (3). /, and S, are about the weak axis of the section; and (4). 6x and
8 sizes are mostly used as shore-posts.
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Table 8.6 Reference design stresses for

2 in. to 4 in. thick

selected species of visually graded lumber

527

Shear Compression | Compression | Modulus
parallel | perpendicular | parallel to | of elasticity
Species and | Size Bending | to grain | to grain grain (psi)
grade classification | F, (psi) | F, (psi) | F., (psi) F, (psi) E (psi) E in (psi)
Douglas Fir-Larch (North)
No. 2 2 in. and wider 850 180 625 1,400 1,600,000 | 580,000
Construction | 2 in.—4 in. wide | 950 180 625 1,800 1,500,000 | 550,000
Douglas Fir (South)
No. 2 2 in. and wider 850 180 520 1,350 1,200,000 | 440,000
Construction | 2 in. and wider 975 180 520 1,650 1,200,000 | 440,000
Hem-Fir
No. 2 2 in. and wider 850 150 405 1,300 1,300,000 | 470,000
Construction | 2 in.—4 in. wide 975 150 405 1,550 1,300,000 | 470,000
Spruce-Pine-Fir
No. 2 2 in. and wider | 775 135 335 1,000 1,100,000 | 400,000
Construction | 2 in.—4 in. wide 875 135 335 1,200 1,000,000 | 370,000
Southern Pine
No. 2 2 in.~4in. wide | 1,500 175 565 1,650 1,600,000 | 580,000
5in—6in. wide| 1,250 175 565 1,600 1,600,000 | 580,000
8 in. wide 1,200 175 565 1,550 1,600,000 | 580,000
10 in. wide 1,050 175 565 1,500 1,600,000 | 580,000
12 in. wide 975 175 565 1,450 1,600,000 | 580,000
Construction | 4 in. wide 1,100 175 565 1,800 1,500,000 | 550,000

Note: E i, is used with the calculation of the Column Stability Factor, Cp

» Cp—Load Duration Factor. The stress level that wood may safely sustain for
short periods of time is higher than those from loads that are permanent. Thus for
concrete formwork a Cp = 1.25 (load duration 7 days or less) applies.

e CyWet Service Factor. The strength and stiffness of wood is adversely
affected, when the moisture content in the material is greater than about 19 %.
The reduction of the allowable stress is different from the type of stress, for
example perpendicular to grain compression is more affected than shear
stress, etc.

e C~Temperature Factor. Sustained temperatures above 100 °F adversely affect
some properties of wood. In very hot climates, the stresses and the Modulus of
Elasticity (used in deflection calculations) should be adjusted accordingly.

e Cp=Size Factor. The NDS Code permits the use of this adjustment factor (see
Table 8.8) for joists, beams and studs. As its name implies, the factor depends
upon the size of the member. The magnitude of the factor is based on probability
studies of reliability and is applicable to all species of timber used in formwork
construction, with the exception of Southern Pine, where the size factors are
already included in the tabulated reference design stresses.

e C,—Repetitive Members Factor. The NDS Code permits the increase of the
allowable bending stresses (only) for 2 in.—4 in. wide joists, beams, studs by
15 %, provided that there are at least three such members, spaced not more than
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24 in. apart and are joined by floor, roof or other load distributing elements.
Minimum two span, appropriately designed plywood qualifies for that role. Thus
C,=1.15. However, ACI 347 does not recommend the use of this factor for
dimensional lumber, when Cp and/or Cr factors are also utilized.

o C,—Column Stability Factor. This factor applies to elements (primarily
shoring posts) and applies to allowable compression parallel-to-grain stress values.

* CyxFlat use factor. This factor is applicable to the F, reference design bending
stress, when the load is applied to the wide face of the member. (See Table 8.8)

» Cy—Bearing Area Factor. Allowable perpendicular to grain compression stresses
are permitted to be multiplied by a factor of

4y +0.375

Cp 0

(8.6)

where ¢, is the bearing length measured in inches parallel with the grain, provided
the bearing length is less than 6 in. and it is not less than 3 in. from the end of the
member. C;, = 1.0 for bearing at the end of a member and/or ¢, > 6 in.

It can be disregarded conservatively.

To make it easier to comprehend, we summarize the use and applicability of
these adjustment factors in Table 8.9.

Thus the general formula to compute allowable stresses (F') is the reference
design stress (F') multiplied by all the applicable adjustment factors:

F' = (F) x (Cp) x (Cy) x (C;) x (Cr) x (C,) x (Cp) x (Cp) x (Cp)  (8.7)

Note that only a selected few adjustment factors are typically applicable,
depending on condition and type of stress involved. See Table 8.9. (Refer to the
NDS Code for additional information).

Table 8.7 Reference design stresses for selected species of visually graded lumber
Posts and Timbers 5 in. x 5 in. or larger

Shear Compression Compression | Modulus of elasticity
Species parallel perpendicular | parallel to
and Bending | to grain to grain grain
grade | F, (psi) | F, (psi) F.. (psi) F. (psi) E (psi) E min (psi)
Douglas Fir-Larch (North)
No.2 | 725 | 170 | 625 . 700 11,300,000 | 470,000
Douglas Fir (South)
No.2 | 675 | 165 | 520 | 650 1,000,000 | 370,000
Hem-Fir
No.2 | 575 | 140 | 405 . 575 1,100,000 | 400,000
Spruce-Pine-Fir
No.2 | 500 | 125 | 425 500 1,000,000 | 370,000

Southern Pine
No.2 | 850 | 165 | 375 | 525 1,200,000 | 440,000
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Table 8.8 Size and flat use adjustment factors for grades #1 and #2
(for construction grade lumber the size factor is 1.00 for all widths®)

Bending stress adjustment factor
Size factor Flat use factor
Width of 2in-3in. |4in. 2in-3in. |4in. Compression parallel
lumber thick thick | thick thick to grain adjustment factor
2 in. and 3 in. 1.50 1.50 1.00 - 1.15
4 in. 1.50 1.50 1.10 1.00 1.15
6 in. 1.30 1.30 1.15 1.05 1.10
8 in. 1.20 1.30 1.15 1.05 1.05
10 in. 1.10 1.20 1.20 1.10 1.00
12 in. 1.00 1.10 1.20 1.10 1.00

“Size and Flat use factors are not applicable for Southern Pine

Table 8.9 Tabulation of typical adjustment factors to basic material property values for dimen-
sion lumber used in formwork design

Type of stress (or property) | Adjustment factors Comment

Bending stress, F, Load duration factor, Cp =1.25 Typically used
Size factor, Cr. = see Table 8.8 Typically used
Flat use factor, Cs, = see Table 8.8 Used as applicable
Repetitive member factor, C,=1.15 Not recommended

by ACI 347

Shear stress, F, Load duration factor, Cp = 1.25 Typically used
Wet service factor, Cp; =0.97 Used as applicable

Compression Bearing area factor, C;, = see Used as applicable

perpendicular to grain, F, | Equation (8.6)
Wet service factor, Cp; =0.67 Used as applicable

Compression Load duration factor, Cp = 1.25* Typically used

parallel with grain, F, Wet service factor, Cy;=0.8 Used as applicable
Size factor, Cr = see Table 8.8 Typically used
Column stability factor, Cp = see Always used
Equation (8.9)

Modulus of elasticity, £ Wet service factor, Cy;=0.9 Used as applicable

*Cp = 1.0 for shoring posts

8.4.3 Formwork Accessories

Formwork accessories are hardware items that are typically used in the construction
of the formwork. The reader is encouraged to search the Internet, where numerous
companies list and exhibit their proprietary products.

TIES are used in holding the opposite sides of the form secure against the lateral
pressure from the fresh concrete. (See Section 8.3.2.) There are many different,
usually patented devices. Some typical form ties are shown in Figure 8.2. They pass
through the concrete and fastened onto the formwork on each side. Manufacturers
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provide information on the safe working loads, which may range from about
2,000 1b for light duty to in excess of 60,000 1b for some super-heavy duty ties.
The published working load values carry a typically used safety factor of 2.

After the concrete hardened, they are either fully, or partially withdrawn, usually
1224 hours after placement of the concrete. Snap ties (as the name implies) have a
weakened point about 1.5 in.—2 in. inside the concrete surface, called break-back
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points. The idea is that after breaking the tie, the outer part is withdrawn, but the rest
remains inside. A similar idea is represented by the so-called she-bolt type of tie,
where the outer parts are unscrewed from the inner tie-rod. The crimping in the ties
prevents the inner tie from rotating.

It is very important to note that the holes left in the concrete, whether just partial
on the surfaces, or all the way through, as in the case fully withdrawn types of ties,
be thoroughly filled with grout or pressure-grouted. ACI 347 recommends that no
corrodible metal be left in the concrete closer than 1.5 in. from the surface,
especially on concrete surfaces left exposed to view.

SPREADERS are used to keep the opposing sides of the formwork apart at a
fixed dimension during concrete placement. Sometime they are just wooden blocks,
or special adjustable metal products, not left in the concrete, but removed either
during, or immediately after the placement of the fresh concrete. Some tie systems
(see Figure 8.2) incorporate plastic cone or hemisphere shaped spreaders secured to
the tie. After the removal of these plastic appurtenances and the withdrawal of the
outside portions of the ties, the remaining indentations provide good base for the
grouting of the holes in a visually acceptable manner.

SPACERS are usually small plastic attachments that are snapped onto the
reinforcement and used to maintain the specified concrete cover distance from the
vertical form.

CLAMPS are used to secure column forms. (See Figures 8.3 and 8.4; also
Example 8.6 for more detailed explanation).

HANGERS are primarily used to hang slab formwork from steel or pre-cast
concrete beams. Their use eliminate the need for shoring under the slab forms.

In addition to these most often used accessories, many different purpose and
design inserts, anchors, etc. are offered by manufacturers. All aim to help with
building the temporary structure speedily and economically and to enable the

plywood sheeting

clamp

Figure 8.3 Three dimensional view of the formwork components for a concrete column
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chamfer
if req'd.

Figure 8.4 Plan view of Figure 8.3

contractor in forming the desired mold, regardless how complicated and/or unusual
is the designed concrete element. Discussion about these accessories is beyond the
scope of this chapter.

8.4.4 Release Agents

Fresh concrete will adhere to the surfaces of the formwork, unless a special coating,
or release agent is applied to the contact area. Coatings are differentiated from
release agents, for they also provide other sometimes desirable benefits.

Coatings (sealers) are used to:

— modify the texture of the concrete surface;

— enhance the durability of the finished concrete surface;

— prevent the fresh concrete adhering to the form material; and
— seal the concrete surface from moisture intrusion.

Release agents (often commonly referred to as form-oils, as a reference to the
past, when petroleum based products were used exclusively) serve only as a bond-
breaker between the fresh concrete and the form surfaces, thus facilitating the easy
removal and preservation of the formwork material. Release agents may be applied
to the form material during its manufacture, or applied in the field. Care must be
taken during field application to prevent the release agent from coating reinforcing
steel.

There are two different types of release agents available on the market:
(a) barrier release agents and (b) reactive release agents.
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(a) Barrier release agents, as the name clearly implies, develop a film (barrier)
on the contact surface, thus preventing bond from the fresh concrete to the
forms.

(b) Reactive release agents interact with the free lime in the cement matrix and
through a chemical reaction process a bond-preventing-film is created. This
film is considered bio-degradable, hence their use is better for the
environment.

8.5 Design of Formwork Elements

8.5.1 Typical Design Formulas

When designing formwork for vertical structural members, such as walls and
columns, four elements: sheathing, studs, wales and ties need to be carefully
analyzed and selected. (Refer to Figure 8.5 for the visual representation of these
designations used in the industry.) The sheathing (Plyform™®, or plywood) retains
the lateral pressure from the fresh concrete, the studs support the sheathing and the
wales support the studs. Finally, the ties are attached to the outside of the wales to
hold together the two faces. Figure B8.1 in Appendix B shows the process for a
large wall forming.

In the design of horizontal structural members elements (slabs and beams), the
elements that need to be carefully analyzed and selected are: sheathing, joists,
stringers (beams) and shores. The sheathing supports the weight of the concrete
(plus the construction loads), the joists support the sheathing, the stringers support
the joists and the shores support the stringers.

With the exception of the ties and the shores, all other elements are flexural
elements and conventional beam formulas are used in their analysis. Since form-
work design involves many assumptions about the loads, the quality of the mate-
rials used and the workmanship in the actual construction, a simplified design
approach 1is justified. Thus, the following assumptions are commonly accepted
and used:

(a) Assume that all loads are uniformly distributed. The loads (pressures) on the
sheathing are truly distributed (albeit not always uniformly). So are the loads
on the studs and the joists that support the sheathing.

(b) Wales and stringers are actually loaded by point loads (typically closely
spaced) and can be approximated by an equivalent distributed load.

(c) Flexural elements that are continuous over three or more spans can be safely
designed by the formulas that apply for the 3-span condition.

Three governing conditions need to be considered in the design of flexural
elements. These are: bending stresses, shear stresses and deflection.
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Figure 8.5 Typical formwork components for a concrete wall: (a) Section, (b) Three-dimen-

sional view
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8.5.1.1 Bending Members (Sheathing, Joists, Beams, Studs,
Wales, Etc.)

The formulas in Table 8.10 are for calculating the maximum bending moment and
shear-force that in turn are used in the analysis of the stresses in the member under
investigation. In additon, this table includes the equations to compute the maxi-
mum deflections. The numerical coefficients are adjusted to the fact that the load is
input in Ib/ft (pounds per lineal foot) units. The formulas for M., are those for the
absolute maximum that will occur; i.e. at mid-span for the simple span; at an
intermediate support for the two or three span condition. The formulas for V.,
include the fact, that the critical shear does not occur at the point support, but a “d”
distance away from it.

The formulas shown in Table 8.10 can be solved for the allowable maximum
span for a pre-selected type and thick Plyform sheathing, or a pre-selected size and
species of lumber. The resulting formulas are shown in Table 8.11. Among the

Table 8.10 Design formulas for bending members

Simple span Two spans Three or more spans
w |b/ft . w Ip/ft . w Ib/ft
+—L(in)—+ +—tlin)——Lln—+ | +—L (in)—— L{in) ———L{in)—+
wL? wL? wL?
Mmax:— Mmax = Mmax = TAn
96 96 120
Vinax = 0.5w(L — 2d) Vinax = 0.625w(L — 2d) Vinax = 0.6w(L — 2d)
4 4 4
Amax:ixixi Amaxzixlxi Amax:LXKXL;
384 12 EI 185 12 EI 145 12 EI

Note: In the formulas shown care must be taken to use the correct units for the variables. Thus:
w =uniformly distributed loads, 1b/ft

L = center-to-center span, in.

E =Modulus of elasticity, psi

I =Moment of inertia, in.* (effective moment of inertia for Plyform)

d = depth of section, in.

Table 8.11 Allowable maximum spans

Governing condition | Simple span Two spans Three or more spans
Allowable bending 96F, § 96F, S 120F, S
stress, max = W Lmax = W max = W
Allowable Shear 16F, A 12.8F, A 13.33F, A
Stress, F;'/ _ solid max =~ +2d Linax = " +2d Liax = — +2d
lumber
Allowable Shear 24 (@) 192F (m) 20, (@)
Stress, F‘/, — plywood Liax = _\e) +2d | Lpax = e +2d | Lypax = A YA +2d
w w w
Deflection = 5L El s[El s [EI
240 Linax = 1.57¢/— Linax = 2.104/ = Linax = 1.94y/—
w w w
Deflection = 5= El El EI
360 Linax = 1.37¢/— Linax = 1.83,/— Linax = 1.69¢/—
w w w
Deflection = Apax [EIA EIA EIA
ma: Lmax —551 4 max Lmax — 6.86 4 max Lmax — 6.46 4 max
w w w

$ = Section Modulus, in.? (Effective Section Modulus for Plyform)
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formulas for deflection check, we list three different cases, the first two are
applicable when the deflection limit is specified as a fraction of the span, i.e.,
L/240 or L/360. The third case provides for when the deflection limit is specified
as a definite value, for example A« = 1/16 in.

8.5.1.2 Axially Loaded Compression Members (Shoring Posts, Etc.)

The allowable compression load on a solid wood post is:
P = AF/ (8.3)

where

A = cross-section area of the solid post;
F! =allowable compression stress, which is an adjusted reference design stress
parallel with grain in compression (F.) for the selected species and grade;

The following adjustment factors apply:

Cp = 1.0 (Load Duration Factor)-Shoring posts may be left in place for an extended
period of time, hence ACI 347 does not recommend an increased value for the
design of posts.

Cy (Wet Service Factor) C);=0.8 when used in Equation (8.10), Cy;=0.9 for
Equation (8.12). This is a conservative approach, again due to the likelihood that
shoring posts may be used for an extended period of time.

C,=1.0 (Temperature Factor)-It is unlikely that the shoring will serve in temper-
atures in excess of 150 °F.

Cr (Size factor)-Applicable species listed in Table 8.7, except Southern Pine. Refer
to Table 8.8 for applicable values.

Cp (Column Stability Factor):

NONNCI
F L+ (— F.
Cp=—0 — E - (8.9)
2c I c
2c
where
E = F.Cp CyC/Cr (8.10)
0.822Ehin
Fp=—7-—"— (8.11)
(le/d)

¢ =0.8 for sawn lumber
¢, = the effective length of compression member
d = least dimension of rectangular compression member
Efnin = EminCp CyC:Cr (8.12)

¢, /d = slenderness ratio of compression member
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Note: while in wood construction the maximum slenderness ratio for solid
columns is limited to 50, during construction this limit may be raised to 75.
Equation (8.9) may be simplified by introducing:
Fp
a=— 8.13
- (8.13)

c

Then

14+a 1—|—a2 a
Cp = — —— 8.14
i 2c |:2(,‘:| c ( )

Example 8.5 Find the maximum allowable load on a 10.0 ft high 6 x 6 shore post
using Douglas Fir-Larch (North) No. 2 grade material.

Solution
le/d=10x%x12/55=21.8<75 ..ok

From Table 8.7, F.= 700 psi, and E;, =470,000 psi

Adjustment Factors: Cp = 1.0, Cy;=0.8 (for F:), Cy=0.9 (for E}in), C,=1.0,
Cr=1.1 (Table 8.8)

E =F.CpCyC,Cr=700x 1.0 x 0.8 x 1.0 x 1.1 = 616psi
Elin = 470,000 x 1.0 x 0.9 x 1.0 x 1.1 = 465,300 psi

0.822E5;,  0.822 x 465,300
E'E = 5 = 2
(6o/d) 218

= 805 psi

805
~ P 131
“=g6 - 13

c 2x08

o, _lta_ 1+al> a 1413l 1+131]> 131
P 2%0.8

—— =0.775
2c 2c 0.8

F =F xC,=616 x 0.775 = 478 psi

Paiiow = AFX =30.25 x 478 = 14,4601b

8.6 Wall Formwork Design

Example 8.6 Design the formwork for the wall in Example 8.3. The wall’s face
will be exposed to view, hence a maximum allowable deflection for the sheathing
and the studs of span/360 is desired. Use % in. Structural I Plyform for the
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sheathing and Douglas Fir-Larch - North #2 for the studs and wales. The maxi-
mum internal formwork pressure of 720 psf was found in Example 8.3. Assume
dry service conditions for the design of all formwork elements, i.e., C);=1.0.
Design the necessary lateral bracing for the ACI recommended 15 psf minimum
wind load on the formwork, or the alternate lateral load of 100 1b/ft. (See
Figure 8.5).

Solution
1. Sheathing design

The sheathing is pre-selected in the problem statement, hence the first element of
the design requires the finding of the stud-spacing, i.e., the maximum span that the
sheathing can safely span. Since stud spacing rarely exceeds 24 in., the sheathing
will span over three or more spans.

Three criteria must be satisfied: bending strength, shear strength and deflection.

Step 1. Using the sheathing to span horizontally between the studs, the
section properties of the % in. Structural I Plyform from Table 8.4 are:

1=0.202 in./ft
KS = 0.464 in.%/ft
Ib/Q = 6.189 in.?/ft

Step 2. The Material Properties from Table 8.3:

F,=1,930psi
F,=102psi
E =1,650,000 psi

Step 3. From Table 8.11 for 3-span condition, the maximum allowable span for the
sheathing:

(a) Based on bending:

\/120F;,’S \/120 x 1,930 x 0.464 .
max — - =12.2in.
w 720
(b) Based on rolling shear:
Ib
20F) —
v 20 x 102 x 6.189
Lmax = Q +2d = —X X +2x0.75 =19.0in.
w 720

(c) Based on deflection:

El 1,650,000 x 0.202
Lo = 1.694/22 = 1.69 x {/ OO0T00 X — 13.1in.
w 720

Bending strength governs the maximum span selection. Select 12 in.
c/c spacing for the studs.
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2. Studs design

In most wall forming the studs are 2 x 4 (rarely 2 x 6) lumber, because the
spacing of the wales is limited by the form-tie layout. So the design of the studs,
after pre-selecting the species and the size of the lumber, is simplified into
finding the maximum allowable span of the studs between the wales,
i.e., finding the wales’ spacing.

Step 1. Select 2 x 4 and find its section properties from Table 8.5:

A=525in?
I =536in*
§ =3.06 in.?

Step 2. Find the material properties applicable to Douglas Fir-Larch (North)
No. 2 grade lumber.

(a) From Table 8.6, reference design bending stress: Fj, = 850 psi.
Applicable adjustment factors from Tables 8.8 and 8.9
CF: 1.50 and CD =1.25
Thus

F =850 x 1.25 x 1.50 = 1,594 psi

(b) From Table 8.6, reference design shear stress: F, = 180 psi.
Applicable adjustment factors:
Thus

F/ =1.25 x 180 = 225psi
(¢) Modulus of elasticity: E = 1,600,000 psi
No adjustment factor applies.

Step 3. Find the loads on the stud.
Since the studs are 12 in. ¢/c, the maximum load on the studs is 720 Ib/ft.

Step 4. As stated above, in finding the maximum wales-spacing, based on the
strength of the studs, 3-span condition will apply. Using the formulas
listed in Table 8.11, the maximum allowable span for the studs is:

120F/ 1,594 x 3.06
Based on bending: Lp,x = \/ ) = \/120 X 97X =28.5in.
w 720

Based on shear:

13.33 x 225 x 5.25 .
2d = 70 +2 x3.5=289in.

Lmax -

13.33F/A
—
w

Based on deflection:

Lo = 1695/ — 1,69 x 3/ 1L000.000 2536 _ 3¢ 3
w 720

The maximum wale spacing is governed by bending. For practical
purposes select 24 in. spacing.
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Check the bearing stress (compression perpendicular to the grain) at the
interface of the stud and the wales.

The reaction force on the stud equals (the pressure) x (stud
spacing) x (wales spacing). Thus:

R =720 x1x2=1,4401b

Wales are assumed to be made of two 2 x 4’s.
The bearing area A = 2 x 1.5 x 1.5 = 4.50 in.2
1,440 .
= 320psi

4.5
The reference design stress from Table 8.6 is 625 psi. The applicable

adjustment factor from Equation (8.6) is

The bearing pressure f},, =

4, +0.375 1.5+ 0.375

s 4 15

=1.25

Thus, considering Table 8.9: F/,= 625 x 1.25 = 781psi > 320psi
ok,

3. Wale design

Wales are typically double members with a gap between them to provide for the
ties to pass through and the double members also provide appropriate bearing
areas for the tie anchorages. The wale design is again finding the maximum span
length the wale can span between its supports: the form-ties (see Figure 8.5(b)).

Step 1.

Step 2.
Step 3.

Step 4.

Find the section properties for double 2 x 4 member.

From Table 8.5: A =2 x 5.25=10.50in.
[=2x536=10.72in.*
§=2x3.06=6.12in.>

The material properties are the same as for the studs.

Find the loads on the wale.

The loads on the wale are the reaction forces from the studs, which are
not distributed loads but concentrated loads on the wales. As an accepted
practice, for simplification it is customary to assume a uniformly dis-
tributed load on the wales. Hence it is assumed that the load on the wale
equals to the pressure multiplied by the wale spacing. Thus:

w = 720psf x 2ft = 1,440 Ib/ft

Find the maximum allowable span (the maximum allowable horizontal
tie-spacing) for the wales. From Table 8.11
Based on bending:

120F)'S 120 x 1,594 x 6.12 .
Lmax - \/ W - \/ 1’440 = 28.51n.
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Based on shear:

1333 x 225 x 10.50

13.33F/A
- 1 2d=
+ 1,440

Lmax = +2x3.5=289in.

Based on deflection:

s [El 31,600,000 x 10.72 .
Lunax = 1.69,/W — 1.69 x \/ 240 — 38.6in.

It appears that the bending strength of the selected size (double
2 x4 —s) and species of lumber governs the maximum tie spacing.
Therefore, the maximum horizontal spacing of the ties is 28.5 in.

4. Tie design

The ties act as supports for the wales. The selection of tie spacing is not
just a structural problem, but a visual problem as well. After the completion of
the construction, the locations of the ties (regardless of the type used) will
always show up on the exposed surfaces, hence a well-planned layout is
desirable.

The required strength of the ties depends upon the maximum tension force
during the concrete placement of the wall. The vertical spacing of the ties is
already set by the selected wale-spacing. The horizontal spacing of the ties is up
to the designer as long as it is not more than the maximum wales’s span. One can
select the spacing, then calculate the tie force and then select a tie, whose
strength at least equals to the force. Alternatively, one can select a tie and use
its allowable strength to calculate the horizontal spacing. The spacing should not
exceed the maximum span of the wales found in Step 4 above, i.e., 28.5 in.

Step 1. Calculate the tie-force:
T = (pressure on the formwork) x (wale spacing) x (horizontal tie-
spacing)
Thus, if we select a horizontal tie spacing of 2 ft (to match the vertical
spacing), the tie must safely withhold:

T = (720psf) x (2ft) x (2ft) = 2,8801b

Step 2. Checking the bearing stress at the interface of the tie anchorage (wedge
or other device) is also required. As it was mentioned before, ties and
their anchorages are proprietary items and thus the bearing area at the
surface of the wales and the selected anchorage becomes known only
after the selection of the tie system.
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If, for example, the anchor wedge is 3.50 in. high and 1.5 in. wide,
then the bearing area equals 2 x 1.5 in. x 1.5 in. = 4.50 in.? and

2,880

fbearing = m = 640 pSI

The reference design stress from Table 8.6 is 625 psi. The applicable
adjustment factor from Equation (8.6) is (¢, = 1.5in.)

1540375

Cy= G =125

Thus:

=625 x 1.25 = 781 psi > 640psi ..ok

5. Lateral bracing design

4-0"

As mentioned in Section 8.3.3, wall forms must be adequately braced
against wind and horizontal construction loads. With reference to Section 8.3.3,
the minimum required wind-load on wall forms is 15psf, or an alternative
horizontal load of minimum 1001b/ft applied at the top of the formwork.
These are shown in Figure 8.6.

80"

15 psf

b
» 100 |b / ft
=C,>
<
————H f—— fk——H
-~ -~
. <
o@ O@
Vv i Vv
e
©
6I_OII 6'_0”
[
\Y Vv

Figure 8.6 Minimum lateral loads and brace forces: (a) Lateral wind pressure (15 psf), (b)
Horizontal force (100 1b/ft)
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The effect of the wind load to the base of the 12 ft high formwork per ft of
wall is:

W =15x 12 =180 1b/ft

12
Its overturning moment to the base is M = 180 x 5= 1,080 ft-1b/ft

This moment needs to be kept in equilibrium by the horizontal component of
the strut force (H) by providing a balancing moment with its moment arm = 8 ft.
Hence:

H x (8ft) = 1,080 1b-ft x (strutspacing)
1 Ib-f
b ,080 1b-ft

YRR (strutspacing) = 135 x (strut spacing) 1b

From Figure 8.6, the length of strut is:

0=V6>+8 =100 ft

And the force in the strut (from similar triangles-see Figure 8.6) is:
C =135 x 10/6 x (strut spacing) = 225 x (strutspacing) 1b

The effect of the alternative 100 Ib/ft horizontal force to the base of the 12 in.
high formwork of wall is:

M =100 x 12 = 1,200 Ib-ft
Then the horizontal component of the strut force is:

H =1,200/8 x (strutspacing) = 150 x (strutspacing) 1b
And

C =H x 10/6 = 250 x (strutspacing) 1b

Since this is greater than the force from the 15 psf wind-load, we will use this
as the basis of designing the bracing strut.

When we follow the flow of forces, we find the following: the 100 Ib/ft force at
the top creates bending in the studs, which in turn create bending in the double
wale at the level where the strut is connected. The available bending capacity of
those wales then is used to determine the strut spacing.

1. Bending in the studs:
The cantilever length of the studs is 4 ft as shown on Figure 8.6(b). They are
spaced at 1 ft centers, hence the bending moment in each stud will be
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M =100 x 4 = 400 Ib-ft

2 x 4 studs § =3.06 in.> (from Table 8.5)
Then

400 x 12

306 = 1,569 psi

Previously, when designing the studs, we found
F} = 1,594psi > 1,569 psi — studs are o.k.

2. Bending in wales between the lateral support struts:
As a simplification, instead of using the concentrated loads from the studs, we
will assume that the loads on the wales may be represented by a uniformly
distributed load of 150 1b/ft. Refer to the calculation on the effect of the
100 1b/ft required alternative lateral load on the previous page:

100 Ib/ft x 12ft

H
8ft

=150 Ib/ft

With reference to earlier calculations in this design example (see 3. Wale
design) we now use the available bending and shear strengths of the wales to
calculate the maximum strut spacing.

For the calculation we will use the formulas for Two Spans from
Table 8.11. The strut spacing is expected to be several feet, hence it is
unlikely to have sufficiently long wales for continuous Three Spans
condition.

Thus:

Based on bending: Sections are: 2 — (2 x 4)

, 96F;S \/96 x 1,594 x 6.12 :
trut = = =T79in.
(strutspacing ). \/ " 150 in
Based on shear:
12.8F/A 12.8 x 225 x 10.50 .
(strut spacing) .. = T 2d = . ISOX +2 x3.5=209in.

The bending strength governs. Select the strut spacing as 6’-0” (72 in. <
79 in. .".0k).

3. Design of the lateral bracing struts:
Since the struts are spaced at 6 ft, the horizontal component of the force in a
strut will be:

H = 150 x 6 =9001b
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The strut-force is

C =250 x 6 =1,5001b

Try 2 x 4 Douglas Fir-Larch (North) #2 Grade. (1.5 in. X 3.5 in. dressed
sizes or true dimensions.)

Step 1. Check for maximum allowable slenderness.
4, 10 x 12 )
(d1> =15 = 80 > 75 .".N.G.

Introduce a secondary brace (as shown on Figure 8.6) to the midpoint
of the strut, thereby reducing its slenderness by half in the weak direc-
tion. Additionally it will help to reduce the deflection of the strut due to
its self-weight. Thus:

b, 5x12 l, 10 x 12
<d1> 15 an (dg) 35

Step 2. Calculate the allowable force in the strut.

From Equation (8.10) F = F.CpCyC,Cr

From Table 8.6 F. =1,400 psi and E;, = 580,000 psi

From Table 8.9 Cp = 1.25 (load duration factor)
Cy;=1.0 (wet service factor)
C, = 1.0 (temperature factor)

From Table 8.8 Cr = 1.15 (size factor)

thus

E' = 1,400 x 1.25 x 1.0 x 1.0 x 1.15 = 2,013 psi

From Equation (8.12)
Enin =580,000 x 1.25 x 1.0 x 1.0 x 1.15 =833,750psi

0.822 x 833,750

From Equation (8.11) F.p = — = 428 psi
F 428
F Equation (8.13 =—= ——=0.213
rom Equation ( ) a E-* 2,013

From Equation (8.14)

o, 1t 1+(@]* a  1+0213 1+0213]* 0213 0203
e 2c ¢ 2x08 2%0.8 08

The allowable stress F/ = Ef*Cp = 2,013 x 0.203 = 409 psi
From Equation (8.8)
Poiow =F! x A =409 x 5.25 =2,1471b>1,5001b .".0.k.
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8.7 Column Formwork Design

Reinforced concrete columns are built in many different cross-sectional shapes:
rectangular, square and round are the most typical, but L shapes, polygonal shapes,
etc. are not infrequent. In this short introductory chapter on the design of formwork,
we cannot deal with the intricacies involved with all these shapes. Hence, we
restrict ourselves to an example for a rectangular cross-section. Figure B8.2 in
Appendix B shows the forming of rectangular reinforced concrete columns.

As it was discussed in Section 8.3.2, column forms contain a relatively small
amount of concrete, hence they are filled and the concrete consolidated in a short
time, well before the concrete begins to set. Thus ACI 347 recommends that the
formwork for columns should be designed for the full hydrostatic pressure of the
fluid concrete, i.e.

p =150 x b where h is measured from the top.

The plywood sheathing is usually cut in such a way that the face grains are
vertical. Flat 2 x 4 — s (called battens) are used to stiffen the plywood in the vertical
direction and the sheathing is subject to bending in its weak direction,
i.e., perpendicular to the face grains. Steel scissor clamps are used to hold the
sides together and resist the outward pressure. There are several manufacturers
supplying patented adjustable scissor clamps and the safe load capacities may be
obtained from their product catalogs. Figures 8.3 and 8.4 show the typical compo-
nents for a rectangular column formwork.

Example 8.7 An 11 ft high, 20 in. X 28 in. cross section column formwork is
planned using % in. thick Structural I Plyform sheathing, and Douglas Fir-Larch
(North) No. 2 grade material for the battens. Assume that the sheathing will span
three or more spans. Assume dry service condition for the design of all the
elements. Design the required maximum batten spacing and the safe clamp spacing.
Limit the deflection in the plywood and the battens to a maximum of 1/16 in.

Solution

Step 1. Calculate the maximum pressure at the base. This value will be used to plan
the batten spacing.

pmax == 150 x 11 = l,650pSf
Step 2. From Table 8.3 the allowable stresses and the modulus of elasticity for the

specified Plyform Structural I sheathing material are:

Allowable bending stress F,=1,930psi
Allowable rolling shear stress F; = 102 psi
Modulus of elasticity E =1,650,000 psi

Step 3. From Table 8.4 the section properties of the specified sheathing in its weak
direction are:
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Moment of inertia
Section modulus

1,=0.108 in.*/ft
S,=0.418in. /ft
Rolling shear constant  (Ib/Q) =4.047 in.*/ft

547

Step 4. Using the formulas given in Table 8.11, we now calculate the maximum
length the plywood can safely span, which is the same as the maximum
spacing of the battens, considering three or more spans:

120 x 1,930 x 0.418

1,650

120F/
Based on bending: Lpyax = 0Fy S = \/
w

Based on rolling shear:

20F, (I—b

Lmax -

Based on deflection:

EIA
Linax = 6.46 ¢/ ——2% — 6.46 x
w

) 2 102 x 4.04
(0] Py 0 x 102 x 4.047
w

1,650

=7.66in.

+2 % 0.75 = 6.50in.

1
411,650,000 x 0.108 x <E)

1,650

=10.41in.

Step 5. It appears that the rolling-shear-strength will govern the design. However,
the listed formulas used in the calculations are based on the theoretical
“knife-edge” (or at least “narrow width”) supports concept. The flat 2 x 4
battens are not such, but will provide support to the plywood in a wider
zone than the center-to-center span dimensions would imply. Thus, the use

of 6.5 in. span is quite conservative.

After a bit of “trial and error” type of deliberations, the batten layout

shown on Figure 8.7 was adopted.

1.3/4"
s

6"

6"

6"

61/2"

& 1
>
o

61/2"

61/2"

61/2"

-1 3/4"

1.3/4" —/

Figure 8.7 Batten layout for the concrete column formwork of Example 8.7
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Step 6. Design the clamps’ spacing.

The battens that carry the largest pressure are the ones located along the
long side of the cross-section having a tributary width of 6.5 in. Assuming
the battens are 2 x 4 sections, the section properties of the battens from
Table 8.5 are:

I, =098in* §,=131in> A=525in?

The reference design stresses for Douglas-Fir (North) No. 2 Grade mate-
rial from Table 8.6 are:

F, =850psi F, = 180psi E = 1,600,000 psi

The applicable adjustment factors are
From Table 8.9 Load duration factor Cp=1.25

From Table 8.8 Flat use factor Cp=1.10
From Table 8.8 Size factor Cr=1.50
Thus

F/ =F, x Cp x Cgy x Cp =850 x 1.25 x 1.10 x 1.50 = 1,753 psi
F/ =F, x Cp =180 x 1.25 = 225psi

Now we would be ready to apply the formulas listed in Table 8.11,
except we realize that the load on the battens is (1) not uniform between the
clamps, and (2) it varies along the height of the form from a maximum at
the base to zero at the top.

While a computer program could be written to solve the non-linear
problem of calculating the varying spacing of the clamps, we adopt a
much simpler method. We arbitrarily select a small distance for the first
clamp from the bottom, say 6 in. Since the formwork is restrained at its base
by 2 x 4 toe members anchored into the floor (or footing), the first span on
the battens will be 6 in. Then, conservatively, we’ll assume that the pressure
in the next span will be constant and equal to the value at its lower end.

Thus the space between the first and second clamp will be calculated by
using the formulas given in Table 8.11.

If z denotes the distance from the top of the pour to the clamp, then the
pressure at the level of the first clamp is:

p; =150 x z; = 150 x (11 — 0.5) = 1,575 psf
and the load on the most-loaded batten is:

6.5 in.

" “ 2./t

=853.11b/ft
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Then using the Three or more spans case from Table 8.11:
120F}S \/120 x 1,753 x 1.31

= 18.01in.

853.1

Based on bending: Lp.,x = \/
w

Based on shear:

13.33F/A 4 2d— 13.33 x 225 x 5.25

_ 2% 1.5=21.5in.
W 853.1 tex n

Lmax =

Based on deflection:

JEIAmax 4/1,600,000 x 0.98 x (& _
Liyax = 6.46 N B 6.46 x (16) =21.1in.
w 853.1

Bending strength governs. Select this spacing of 18 in.. Thus the second
clamp from the bottom is at (6 in.+ 18 in.), i.e. 2/-0". Thus the distance
from the top to the second clamp from the bottom is:

=11 -2=09ft

and
P> =9 x 150 = 1,350 psf
and
6.5 in.
= 1,350 - =731.31b/ft
"2 % 12 in./ft /

Using this load to calculate the maximum spacing between the second
and third clamps, we obtain the following:
120F)S \/120 x 1,753 x 1.31
B 731.3

= 19.4in.

Based on bending: L., = \/

Based on shear:

w

13.33F/A 4 2d— 13.33 x 225 x 5.25

" 7313 +2x1.5=245in.

Lmax =

Based on deflection:

16

4[EITA ) )
Linax = 6.46\/% =6.46 x 13 = 22.0in.

1
411,600,000 x 0.98 x <—
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The process now should be clear. Using a rounded-down—from 19.4
in.—value of 18 in. as the space between the second and third clamps, the
third clamp will be 3’ — 6” from the bottom. Then

z3=11-35="75ft

and
p3 =17.5 x 150 = 1,125 psf
and
6.5 1n.
=1,125 x ———— = 609.4 b /ft
3 “12in./ft /

Using this load to calculate the maximum spacing between the third and
fourth clamps, we obtain the following limitations:

=21.3in.

120F/ 12 1 1.31
Based on bending: Lmax:\/ ObS:\/ 0x1,753x1.3

w 609.4

Based on shear:

13.33F/A _ 13.33 x 225 x5.25

Lax = v +2d = 6094 +2x 1.5 =28.8in.

Based on deflection:

1
4/ 1,600,000 x 0.98 x (—>
[EIA
Linax = 6.46 1/ ———M3% _ 6 46 x 16 _ 23.0in.
w

609.4

Working our way up, we developed an acceptable design as shown on
Figure 8.8.

8.8 Floor Slab Formwork Design

Example 8.8 Design the formwork elements: decking, joists, beams and shores
required for an 8 in. thick flat slab floor. The bay sizes are 24’ — 0" x 24’ — 0", the
floor to floor height is 12 ft. Assume normal weight concrete. Use % in. thick Class
II Plyform decking (face grain perpendicular to the joists) and No. 2 Grade Hem-Fir
sawn lumber for the joists, beams and shore-posts. Assume dry service condition for
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6"

70"

4x21"

110"

clamps
N

30"

2x18"

toe

6"

Figure 8.8 Final design of formwork for Example 8.7

the design of the joists and the beams (stringers). Limit the maximum allowable
deflection to L/360 in the decking, joists and beams. (Refer to Figure 8.9)

Solution
Step 1. Find the loads

Weight of concrete slab (8 in.)/(12 in./ft) x 150 pcf 100 psf
Weight of forms estimate (conservatively) 10 psf
Minimum construction live load (see Section 8.3.1) 50 psf
Total: 160 psf

Step 2. Find the section properties and the allowable stresses for the selected
decking material. This will enable the selection of an appropriate joist
spacing.

The section properties of % in. Class II Plyform from Table 8.4
Moment of inertia 1=0.198 in.*/ft

Section modulus S =0.454in.>/ft
Rolling shear constant /b/Q = 6.631 in.%/ft
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N

N
x-bracing

N

@® oY
SRR
° 693,0 \\0\ S

Q?'@ e"‘f“(\

R\

Figure 8.9 Typical formwork components for a concrete floor slab

The allowable stresses in the plywood from Table 8.3

Bending F,=1,330psi
Shear F,=72psi
Modulus of elasticity E = 1,430,000 psi

Step 3. Find the maximum allowable joist spacing, i.e. the maximum allowable
spans for the deck.
w=160 x 1 =160 Ib/ft
From Table 8.11—assuming minimum three span condition—

=213 in.

120F'S \/120 x 1,330 x 0.454

ing: Lmax =
(a) Based on bending \/ 160

w
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(b) Based on shear:

Ib

208 (5) 20 x 72 x 6.631
Ly = ———=442d =—"""""""412x0.75=61.2in.
w 160

(c) Based on deflection:

El 1,430,000 x 0.198
Liax = 1.691/ = = 1.69 x i/ 430,000 < 0.198 ) 4 oo,
w 160

The deflection criterion governs the maximum allowable joist spac-
ing. Plywood typically is manufactured in 8 ft (96 in.) length, hence
for practical reasons we may select 96/5 =19.2 in., or 96/6 =16 in.
spacing. For best economy (using fewer joists) we select 19.2 in. joist
spacing.

Step 4. Joist design, assume the beams (sometime referred to as stringers) are
spaced at 4 ft on centers.

Try 2 x 4 joists. If they turn out to be inadequate for the spacing, span and
load, then we could make adjustments either by reducing the spacing (thereby
reducing the load a joist has to carry), or increasing the size to 2 X 6 —s.

The uniformly distributed load on a joist equals the (psf floor load) X
(joist spacing). Thus:

19.2
w =160 X % = 2561b/ft

The Section Properties from Table 8.5
Area: A=525in?
Moment of inertia [=35.36in.*
Section modulus S, =3.06in.?

The allowable stresses for the selected Hem-Fir No. 2 from Table 8.6

F, =850psi F, = 150psi E = 1,300,000 psi

Applicable adjustment factors

Cp =1.25 (load duration factor from Table 8.9)
Cr=1.50 (size factor from Table 8.8)

Thus:

F =F, x Cp x Cr = 850 x 1.25 x 1.50 = 1,594 psi
F/ =F, x Cp = 150 x 1.25 = 187psi
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The maximum allowable spans for the joists from Table 8.11 (assuming
three span conditions) are:

(a) Based on bending:

!
L = \/120F;,S _ \/120 x 1,594 x 3.06 _ 478 i,
w 256

(b) Based on shear:

13.33 x 187 x 5.25 .
2d = 756 +2x35=>58.1in.

13.33F/A
4
w

Liyax =

(c) Based on deflection:

El 1 .
Liax = 1.69 (/== = 1.69 x 3/1.300.000x 536 _ 5 ¢ 4.
w 256

While the maximum allowable length obtained from the governing crite-
rion—bending—is a tiny bit less than the planned span of 48 in., the
difference amounts to less than %2 %, the use of the 2 x 4 joists at 19.2 in.
spacing and 48 in. span can be accepted.

Step 5. Beam (Stringer) design.

As shown in Figure 8.9, the beams support the joists. We may approach this
problem either by assuming a size and then calculate the maximum allow-
able span, which is the same as finding the spacing of the shores under the
beams, or arbitrarily assume a shore spacing and then find an acceptable
beam section. We will select the first route, as it is the easier approach. In
the given bay size (24 ft) the beam spacing (which is based on the joists
spans) of 4 ft can provide an orderly layout of the shore-posts in one
direction.

Hence, we will select a trial beam size of 4 x 6, No. 2 Hem-Fir. This is
still small enough to likely be available in length sufficient for 3-span
condition.

The reaction forces from the joists do not produce a “uniformly distrib-
uted” loading pattern on the beams. However, since the joists are closely
spaced, it is customary to assume an equivalent distributed load derived
from the total loads.

Thus, the design loads on the beams will be the (psf floor loads) x (beam
spacing).

w = 160psf x 4ft = 6401b/ft

The section properties for a 4 x 6 cross-section are (from Table 8.5):
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Step 6.

Area: A=19.25in.2
Moment of inertia I=48.53in.*
Section modulus S, =17.65in.>

The reference design stresses for the selected Hem-Fir No. 2 from
Table 8.6:
F, =850psi F, =150psi E = 1,300,000 psi

Applicable adjustment factors

Cp =1.25 (load duration factor from Table 8.9)
Cr=1.30 (size factor from Table 8.8)

Thus:

Fb, = Fb X CD X CF =850 x 1.25 x 1.30 = 1,381[)81
F/ =F, x Cp =150 x 1.25 = 187 psi

The maximum allowable spans for the beams from Table 8.11 (assuming
three span conditions) are:

120 x 1,381 x 17.65 .
(a) Based on bending L. = \/ % 640 x = 67.6 in.
13.33 x 187 x 19.25
(b) Based on shear: Liax = X 640 X +2x%x55=286.0in.
1,300,000 x 48.53 .
(c) Based on deflection: L,x = 1.69 x \3/ 640X =78.1in.

Studying the results we realize that 67.6 in. is a somewhat awkward
value, when we try to fit it somehow into the 24 ft bay spacing. One simple
solution is to space the shores under the beams at 4.8 ft (57.6 in.), which
will produce five rows of shores in a 24 ft bay.

We select this as the best compromise.

Check the supporting shore-posts using 4 x 4 Hem-Fir No. 2 material.
From the previous calculations, each shore post has a tributary area of

4% 4.8 =19.2ft

Thus the load is: 19.2 ft* x 160 psf =3,072Ib.
Since the floor-to-floor height was given as 12 ft, with reference to
Figure 8.10, the unsupported length of the shore post is:

b, =144 — 17.75 = 126.25 in.

and the slenderness ratio is

l 12625

te —361<75 ok
4 35 < °
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—«— concrete:....... 8.00"
plywood:....... 0.75"
—<— joists............. 3.50"
|~«— beams:.......... 5.50"
total............. 17.75"
- shore post

Figure 8.10 Section through the formwork for the concrete floor slab in Example 8.8

The reference design values for compression parallel with the grain for
the selected No. 2 Hem-Fir material from Table 8.6:

F.=1,300psi E = 1,300,000 psi Emin = 470,000 psi

The applicable adjustment factors (refer to discussion in Section 8.5.1.2)
are

Cp = 1.0 (load duration factor)

Cy = 0.8 (wet service factor) for £ and 0.9 for E,

Cr=1.15 (size factor from Table 8.8)

C,=10

Following the calculations shown in Example 8.5, we obtain:

From Equation (8.10):

E = F.CpCyC,Cr =1,300 x 1.0 x 0.8 x 1.0 x 1.15 = 1,196 psi
From Equation (8.12):
Epin = EninCpCyC:Cr = 470,000 x 1.0 x 0.9 x 1.0 x 1.15 = 486,450 psi
0.822Epmin  0.822 x 486,450

From Equation (8.11): F.p = = 307 psi

(0./d)? (36.1)
F, 307
Calculate the ratio a = % = 119 = 0.257

Then the column stability factor from Equation (8.9) is:

2
c, L +0257 {{1+0.257] _0.257} o2

2x0.8 2x0.8 0.8
Thus the allowable compression stress in the 4 x 4 shore post is:

E = Cp x F' =0.242 x 1,196 = 289 psi

From Table 8.5 the cross-section area of the post is A = 12.25 in.>
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Then the allowable load on top of the shore-post is:

Paiow = F/ x A =289 x 12.25 = 3,540 1b > 3,072 1b

The 4 x4 shore post is safe for the load and height.

8.9 Beam Formwork Design

557

Beam forms can be developed in many different ways, depending on how the
formwork designer decides to integrate it within the slab forms. Figure 8.11
shows only one possible formation, however the issues that are associated with
the design of the elements involved therein are quite similar to any other type of
formwork layout for beams. Figure B8.3 in Appendix B shows the forming of

reinforced concrete beams and slabs.

The important items that will require our attention are the design of: (1) the
bottom form; (2) the side forms; (3) the runner joists; and (4) the kicker. [Refer to
Figure 8.11 for the identification of these elements.] The design (or checking) of the
other elements should be familiar by now, if the reader already studied the floor-

slab form design in Example 8.8.

4-0"

4'-0"

joists for slab forms —

YF top of concrete slab

/] side sheathing H < »

bottom sheathing H
chamfer strip
if required

L runner joists

/.

| |~«——— ledger

H |~e—— blocking

kicker

x-braces at
selected
locations.

A

— shore posts

oug"

Figure 8.11 Typical formwork components for a concrete beam

il
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Example 8.9 Design the formwork for a 16 in. wide, 24 in. deep beam as shown in
Figure 8.11. Slab is 6 in. thick. Use Class I Plyform for the sheathing and Grade
No. 2 Hem-Fir for the dimensional lumber. Assume dry service condition. Limit the
maximum deflection of bottom sheathing to L/360, and the kickers to 1/32 in.

Solution

Step 1. Bottom sheathing design.
The bottom form needs to be designed to support the weight of the fresh
concrete above it. (24 in.)

=1 fxX ——— = f
w 50pct x 12in./ft 300ps

24in.
in.

Note: No construction Live Load is used for the design of the beam
bottom, for there is highly unlikely within the confines of the small space of
the beam forms. One may wish to add here the self-weight of the ply-
wood—approximately 3.3 psf—but it can be safely neglected in the design
of this element.

The bottom forms are usually cut in such a way that the plywood bends
in its strong direction. As it is shown in Figure 8.11, this bottom form spans
between the runner joists, which in turn are supported by beams. Assuming
a minimum 3-span condition, we will try to work with the thickest Plyform
decking available, 1-1/8 in. thick.

The section properties, i.e. the moment of inertia, the effective
section modulus and the rolling shear constant respectively from Table 8.4 :

[ =0.554in*/ft  KS =0.849in.3/ft Ib/Q = 10.43in.%/ft

The material properties, i.e. the allowable bending stress, the allowable
rolling-shear stress and the modulus of elasticity from Table 8.3:

F, =1,930psi F; =72psi E = 1,650,000 psi

From Table 8.11 the maximum allowable spans for the 1-1/8 in. thick
bottom is the least of

=25.6in.

(a) Based on bending: L, = \/
(b) Based on shear:

120F/S \/120 x 1,930 x0.849

w 300

+2x1.125 =52.3 in.

(1)
0 +2d:20 x 72 x 10.43
w

Lmax =
300
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(c) Based on deflection:

Lo = 16972 = 169 6/1’650’000 <0558 _ 94 5in.
w 300

Based on these results we select 24 in. span for the bottom, which
will be used as the spacing of the runner joists.

Step 2. Design the side forms.
The most conservative assumption is that the side-forms span vertically
from the base to the sheathing under the 6 in. slab (24 in. — 6 in. = 18 in.) in
our case, and the bending is in the weak direction of the plywood. The
lateral pressure from the fresh concrete will not be uniform, but vary with
the depth as shown on Figure 8.12.

p; =150 x (6/12) = 75psf  p, = 150 x (24/12) = 300 psf

This type of loading condition on a simple span is analogous to the problem
of lateral pressure on basement walls, and the solution for the maximum
moment, reaction forces, etc. can be found from the formulas shown in Figure
7.59(b) of Chapter 7 of this book. Using that line of calculation, we obtain

Mmax = 53.2 ft-Ib/ft

Or we may want to use an approximation by using the average pressure
as a uniform load. This calculation results in

75 + 300 1.5%
M, — (%) X = = 527 fielb/fi

The two results are about 1 % different from each other.

75 psf —l

R1=11251b/ft

18" (1.50Y)

A

R2=168.8 Ib / ft

300 psf

Figure 8.12 Lateral concrete pressure on the beam formwork
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Try % in. plyform. The section properties of the assumed % in. Class I
Plyform from Table 8.4, bending perpendicular to grain:

[=0.092in*/ft KS =0.306in.>/ft 1b/Q = 4.063in.%/ft
The material properties from Table 8.3:
F, =1930psi F; =72psi E = 1,650,000psi
(a) Check for bending from the calculated M,,,,x = 52.7 Ib-ft

M 527 x12

= <= 70306 =2,067psi > 1,930psi .".N.G.

We have to select a thicker Plyform for the side-wall sheathing.
Try 7/8 in.
The section properties from Table 8.4 are

[ =0.151in*/ft KS =0.422in.°/ft 1b/Q = 6.028in.%/ft

M 527 x 12
Re-check for bending: f, = = Tiz — 1,499 psi < 1,930

psi ..ok.
(b) Check for deflection using the simplified assumption that the loads are
uniform:
From Table 8.10 for simple span

300 + 75
5 w L* 5 2 (1.5 x 12)*
= X X

Apax = g7 X5 X — =
384 12 EI 384 12 1,650,000 x 0.151
= 0.08571in.

This is about Span/210. (18/0.0857 =210). The slight bulge of the
side form may be acceptable if the beam will not be exposed to view in
the finished building.

(c) Check for rolling shear.

Since the reactions, consequently the shears, are significantly different
at the top and the bottom, we need to evaluate the maximum design
shear more accurately.

The larger reaction force is at the bottom and equal to
R, =168.81b/ft (see Figure 8.12). The critical section will be at a
d distance from the edge of the support. Since the lateral pressure on
the sides drops by
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1
T3 X 150 = 12.5psf

for each inch above the bottom, the lateral pressure at the location of
one inch above the bottom is 300 — 12.5 =287.5 psf. Assuming the
critical section to be 1 in. (plywood thickness = 7/8 in.), then

00 + 287.5 1
Vg = 168.8 — % x = = 144.31b/ft

And the rolling shear stress (Equation 8.5):

Vv 144.3
fi= (7 =608~ 24psi < Fy =T2psi  ..0ok.
o) °

Step 3. Design the runner joists.

It is clear from the shoring configuration shown on Figure 8.11 that the
spacing of the posts, and the span of the runner joists that result from that, is
somewhat arbitrary. In this example we select 2/-6".

(a) Calculate the loads that the runner joists must carry. Since the slab-
form joists also rest on the sides of the beam formwork, as shown on
Figure 8.11, in the load analysis we have to account for that as well.

Concrete in beam’s stem 150 x (16 x 18)/144 =300 Ib/ft
Concrete in slab from 4 ft tributary width 150 x 4 x (6/12) =300 1b/ft
Formwork, estimated 10 psf 4 x 10= 401b/ft
Minimum construction live loads (Section 8.3.1) 4 x 50 =200 Ib/ft
Total =840 1b/ft

At the conclusion of Step 1, we selected the spacing of the runner
joists as 2'—0". Thus, the total load on a runner joist is 1,680 1b. We
may assume that this load is distributed over an approximately 18 in.
width, (beam width=16 in. and 2 in. for the side sheathings),
resulting in a loading condition shown on Figure 8.13.

Then the maximum moment in the runner joist is:

Mmax = 840 x (2.5/2) — 1,120 x (1.5/2) x (1.5/4) = 7351b-ft

The reference design stresses in the selected Hem-Fir No. 2 Grade
material from Table 8.6 for the assumed 2 x 4 section

F, =850psi F, =150psi E = 1,300,000 psi
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1,680

>
>

16"

840 Ib
840 Ib

o16"

Figure 8.13 Load distribution on a runner joist supporting the beam formwork

The applicable adjustment factors

From Table 8.9 Load duration factor Cp=1.25
From Table 8.8 size factor Cr=1.50
Hence, the allowable design stresses

Fj =850 x 1.25 x 1.50 = 1,594psi and F/ = 150 x 1.25 = 187psi

Thus the allowable maximum moment in the 2 x4 section
(S =3.06 in.%) is:

Fj x S =1,594 x 3.06 = 4,8771b-in. = 406.51b-ft < 7351b-ft .".N.G.

A single 2 X 4 is not sufficient!
Try double 2 x 4 — s for the runner joists: § =2 x 3.06 = 6.12in.’
Then the allowable moment is:

M, = 1,594 x 6.12 = 9,7551b-in. = 8131b-ft > 7351b-ft ..o.k.

(b) Check shear in the double 2 x 4 —s. (A =2 x 5.25 =10.50in.%)

= 120psi < F, = 187psi ..ok.

vV 3 840
fvmax: ngi

3
— >< e —
2 27 (2 x5.25)
(c) Check for deflection
The formula for a single span beam shown in Table 8.10 may be
resolved in term of M.,y as follows (subsituted M,,,x for wL>/8):

5  MyL?
Amax —- = X max

48 EI

Substituting the values calculated above, the maximum deflection
in the Double 2 X 4 runner joist is
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S (735 x 12) x 30%
48~ 1,300,000 x (2 x 5.36)

L/360 = 30/360 = 0.083in. > 0.059in. ..ok.

= 0.0591n.

Amax =

Step 4. Check the kicker
The kicker must hold the bottom edge of the side form in place. (See
Figure 8.11). From Figure 8.12 this lateral load is 168.8 Ib/ft. The kicker’s
span is 2.0 ft, the distance between the runner joists.
Using again 2 x 4 Hem-Fir No. 2 Grade and assuming three (or more)
span condition, the allowable span from Table 8.11 is the least of

(a) Based on bending:

120F;S \/120 x 1,594 x 3.06  _ .
Lmax - \/ w = 168.8 = 58.9in.

(b) Based on shear:

13.33F/A
= +

max — 2
w

_ 13.33 x 187 x 5.25

1688 +2x35=284.5in.

(c) Based on an allowable A, = 1/32 in. deflection:

EIA o 1,300, . 1/32 .
Loy = 6.46 ¢/ ——2% — 6.46 x ‘\‘/ 300,000 > 5.36 x (1/32) _ 50 70
W 163.8

38.7 in. > 24 in.—the 2 X 4 kicker is safe to use.

Problems

Assume dry service condition for all the following problems.

8.1. A 60 ft long, 16 ft high and 24 in. thick wall pour is planned. Concrete trucks
arrive at the site at 20 minute intervals, each carrying 8 cubic yards of
concrete. The concrete is planned to be placed in uniform horizontal layers.
Calculate the expected rate of pour in the wall.

8.2. The concrete in Problem 1 is normal weight. The cementitious materials in
the mix are 50 % Type I Portland Cement, 25 % Fly Ash and 25 % GBFS
(Granulated Blast Furnace Slag). A retarding admixture will be added since
the temperature is expected to be 80 °F. Calculate the pressures the wall
forms have to be designed for. Make a sketch of the vertical distribution of
the design pressures.

8.3. Calculate the maximum allowable pressure on % in. thick Class II Plyform
sheathing that spans over 2 x 4 studs placed at 16 in. center-to-center.
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8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

8 Formwork for Monolithic Concrete Construction

Assume minimum three span condition with the face grain perpendicular to
the supports. The maximum allowable deflection in the sheathing is L/360.
A9 fthigh 20 in. x 20 in. column form is planned. The form will be built from
% in. Class I Plyform material, face grain vertical, without battens. Calculate
the required clamp spacing for the first three clamps above the base. The
maximum deflection between the clamps may not exceed 1/16 in.

Calculate the allowable safe load on a Spruce-Pine-Fir No. 2, 4 x 4 shore
post, if the laterally unsupported height is: (a) 80" and (b) 12'-0".

A 10 in. thick floor slab using normal weight concrete is formed with 23/32
in. thick Class I Plyform decking on 2 x 6 Douglas Fir Larch (DFL) (North)
No. 2 joists. The face grain will be perpendicular to the supports. The
maximum allowable deflection of the decking may not exceed L/360. Calcu-
late the allowable joist spacing.

A 10 in. thick floor slab using normal weight concrete is formed with
plywood over 2 x 6 Douglas Fir-Larch (North) No. 2 joists at 16 in. center-
to-center. Assume 2-span condition. Calculate the maximum allowable spac-
ing of the beams made up from Double 2 x 10 DFL No. 2 material. The
maximum allowable deflection of the joists may not exceed L/360.

Design the bottom form for a 24 in. wide by 30 in. deep beam using 1 in. thick
Class I Plyform. Assuming three span condition, calculate the allowable
spacing of the runner joists. The maximum allowable deflection of beam
bottom form between the runner joists is 1/16 in.

Design the formwork components for a 10 ft high, 12in. thick wall.
Assume C,,= 1.0, C.= 1.0, temperature 75 °F and 4 ft/hour rate of pour.
Materials will be 23/32 in. Class I Plyform for the sheathing and Construc-
tion Grade Hem-Fir 2 x4 studs, double 2 x4 —s for wales. Limit the
deflection of all individual components to L/360. Calculate the maximum
tie force. Make a sketch of your design identifying all your selections.
The wall form described in Problem 8.9 is planned to be braced by 4 x 4
Construction Grade Hem-Fir struts, the top end attached at 9 ft above the base
and slopes 45°. The spacing between the braces will be 8 ft. Check the
adequacy of the brace for a minimum 15 psf wind-load, or alternately for
ACI 347 recommended 100 1b/ft horizontal distributed load at the top of the
forms.

Self-Experiments

Experiment 1

Following the details shown in Figure 8.5, construct the formwork for a 24 in.
high — 3 in. thick concrete wall. Calculate the required thickness of the plywood
sheathing and the size of the studs, wales, ties and struts. Remove the forms 2 days
after the pour. Discuss the various stages of this task and the challenges you were
faced with.
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Experiment 2

Following the details shown in Figures 8.3 and 8.4, construct the formwork for a
8 in. x 8 in. — 24 in. high concrete column. Construct the forms without battens.
Calculate the required thickness of the sheathing, size and spacing of the clamps.
Remove the forms 2 days after casting the concrete. Discuss the various stages of
the form construction and concrete placement along with any challenges that you
were faced with.



Chapter 9
Overview of Prestressed Concrete

9.1 Introduction

Concrete has a considerable compressive strength, but its tensile strength is quite
limited. Thus, designers use reinforcement in conjunction with concrete to make
useful elements in buildings.

Early on, researchers realized that tensile stresses could be eliminated in con-
crete structures by adding sufficient compressive stresses to balance them out. Then
the element would have a stress distribution throughout that consisted of
compression only.

Figure 9.1 shows a simply-supported beam with an applied distributed load
w =800 Ib/ft. The cross section of the beam is b=12 in. and # =18 in. If this
beam is made of a homogeneous elastic material, the stresses can be calculated as
follows:

0.8(20)?
Mmax = —(8 ) =40 klP-ft
The elastic section modulus is:
12(18)*
Sy = (6 ) _ 648 in.?

The maximum stress at the location of the largest moment is:

40 x 12,000

= = 741 psi

This value represents the compression at the top edge of the section, and a similar
magnitude of tension at the bottom edge. Based on the discussions on the tensile
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W = 800 Ib/ft
HERNRNRRRNRRENERERNRERERERERERNRERED

| 20'-0" |
Figure 9.1 Bending of a simply-supported beam

strength of concrete in Chapter 1, we conclude that a plain (unreinforced) concrete
beam would fail under this load.

Now imagine that the beam is precompressed (prestressed) before it is loaded
with the distributed load. Figure 9.2 shows this beam with a pair of forces acting on
the centerline.

}4 20'-0" }

Figure 9.2 Simply-supported beam subject to concentric axial load

The force P would produce uniform compressive stresses over the cross section.
The magnitude of the force P needed to eliminate any tension on this beam could be
determined as follows:

P
f:Z:74lpsi

Then

P =741 x (12 x 18) = 160,000 1b

Figure 9.3 shows a graphical representation of the superimposed stresses caused by
the axial load and the distributed load at the midspan of the beam.

As just mentioned, these are the stresses at midspan. At the bottom edge of the
section, the compression from the force P and the tension from the maximum
moment will exactly balance each other. At the top edge, the compression from
the moment is added to that from the force P. The rest of the beam will have
compressions at both the top and the bottom. For example, at 5'—0" from the
support, the moment is only M =30 kip-ft. Figure 9.4 shows the stresses at that
location.
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na.—-

na. —-1—-—-

from P force from 30 kip-ft bending

Figure 9.4 Stresses at 5'-0” from the support: (a) from force P, (b) from 30 ft-kip moment, (c)
superimposed

Now consider what will happen if the initial prestressing force is moved down-
ward at an eccentricity e from the centroid. As discussed in Chapter 5, an eccentric
force has the same effect as a concentric force plus a moment. See Figure 9.5. The
force P still causes a uniform compression on the section; however, the M =P X e
moment will cause tension at the top edge and compression at the bottom edge. So
how large an eccentricity is needed so that the tension from the moment and the
compression from the force P at the top edge cancel out each other? To answer this
question we must first algebraically make the stresses due to the force equal to the
stresses due to the moment. Mathematically this is expressed as follows:

P M 0 P Pxe
- = or ————=
A S, bd  bd*
6
Then we solve for e:
d
e=—
6

—_—~ -1 ——=—+———-(%—P——
T

Figure 9.5 Moment due to an eccentric axial force, P
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Returning to the numerical problem: Assume e = 3 in. and determine the amount of
eccentric prestress force, P, is needed to have zero tension after the application of
uniform loads of 800 1b/ft to the beam. The equation expressing this condition is:

P+P X e Mpax X 12,000 _
A S, S N

0

e . .
is the compressive

P . P x
where 71 the compressive stress caused by the force P,

m
stresses caused by the eccentricity of the force P, and w is the tensile
stress caused by the maximum moment. P is assumed to be in 1b, and M., is in
ft-kip. (Note that a positive value designates compressive stress and a negative
value designates tensile stress.)
Substituting e =3 in., A =12 x 18 =216 in?, S,, =648 in®, and M ax = 40 kip-ft
and solving for P:

P =80,0001b

This value is only half that needed to achieve the same result when the P force was
concentrically applied. So, providing a well-selected eccentricity to the prestressing
force can drastically reduce the magnitude of the force and still have the same effect
as a concentrically applied force.

Although the tensile strength of concrete is small compared to its compressive
strength, the ACI Code (Section 24.5.3.2) allows the section initially (at the time the
prestressing force is applied) to have tensile stress equal to f, = 3\/7 Here f; is
the specified compressive strength of the concrete at the time the prestress is
applied. This value is usually smaller than the final design strength of the concrete,
as prestressing is usually accomplished before the concrete is completely cured.
Similarly, the ACI Code permits a tensile stress of f, = 7.5./f! under full service
load condition in most applications.

For the final introductory example we examine the use of the allowable tensile
stress at the bottom of the section at midspan. Assume that £ = 5,000 psi. Then the
beam can have f, = 7.51/5,000 = 530.3 psi of tension in the final service load
condition. Using e =3 in., we obtain the following equation for the service load
condition at midspan after the substitutions:

P +P x3 40 x 12,000
216 648 648

= —530.3 psi

(Note: The negative sign in front of “530.3” indicates tension.) Solving for P:

P =227281b

This is the amount of prestress force that the beam needs at service load condition.



9.2 Advantages of Prestressed Concrete Structures 571

Some further refinements to these foregoing introductory examples will be
discussed later in this chapter.

9.2 Advantages of Prestressed Concrete Structures

One major advantage of prestressing is that it prevents cracks in the concrete
structure by either limiting or completely eliminating tensile stresses in the
structure. But prestressing has another very important advantage. Prestressed
structural elements can be much shallower than ordinary reinforced concrete
elements for the same span and loading conditions, while still maintaining good
span/deflection ratios. The shallower depths in turn result in lighter structural
elements, thus providing considerable savings in the dead loads the structure
must carry. The savings extend to reduced floor-to-floor heights and lighter
column and foundation loads as well. The reduced floor-to-floor height in
multistory buildings results in large savings in nonstructural building elements
such as walls. The reduced building volume also lessens the energy needed for
heating and cooling.

It is somewhat difficult to give precise span-depth ratios for prestressed concrete
structural elements, so you should use the values listed in Table 9.1 only as a
recommendation for preliminary selection of structural depth. In the authors’
experience, using these values as limits will result in structural elements that
perform well and without excessive camber, deflection, or bothersome vibration.

The ratios may safely be exceeded by about 10 % for roof structures. Thus,
prestressed hollow core slabs used for roofs will perform well with span-depth
ratios of 40.

Compare the values in Table 9.1 to those recommended in foregoing chapters for
elements using normal reinforced concrete, and note the depth and weight savings
the prestressing offers. For example, the 10 in. flat plate in Example 6.3 can be
designed with a thickness of 7.5-8 in. if prestressing is used, reducing the dead
loads by 20-25 %.

Table 9.1 Recommended maximum span-depth ratios for prestressed floor structures with mod-
erate live loads

Single span Continuous spans
(floor) (floor)

Prestressed hollow core slabs 36 N.A.
Prestressed double tees 32 N.A.
Posttensioned one-way solid slabs 44 48
Posttensioned solid slab cantilevers 18 N.A.
Posttensioned flat plates (supported on N.A. 45
columns)

Posttensioned waffle slabs (supported on N.A. 35
columns)
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9.3 Types of Prestressing

9.3.1 Pretensioning

In pretensioning, as the expression illustrates, the prestressing strands are tensioned
before the casting of the element by stretching and fixing them against two
bulkheads, as illustrated in Figure 9.6. The bulkheads are very strong and designed
to take the large forces from the initial stretching of the prestressing strands. The
strands are anchored at one end (the “dead” end) and then pulled from the other end
(the “live” end) one by one with a specially designed hydraulic jack. The force in
the strands can be measured directly on the jack or determined from the amount of
elongation. Elongation is directly related to the stress in the strand, so we can
readily determine the force in the strand if we know the cross-sectional area of the
strand. The strands are anchored at the live end as well once the appropriate force
has been reached.

In the next step we set up the forms around the stressed strands and cast the
concrete, as illustrated in Figure 9.7.

After the concrete has gained sufficient strength, the strands are released, as
illustrated in Figure 9.8. The bond established between the strands and the cured
concrete transfers the force in the strands into the concrete element. The tension in
the strands now becomes compression on the concrete. This transfer occurs within a
few inches from the ends of the members.

This method is applicable for precast and prestressed elements produced in
manufacturing plants. The production technique often involves the casting of

f Bulkhead / Prestressing strands Anchorage—l

I 1
V72277227272272272727227727722722772772277272772272272272727727777222777772722772722772272777222727727277772272272 27227

Figure 9.6 Prestressing process (step 1: placing strands)

—
7222227222222/ 7227727272277 2722772222772/

Figure 9.8 Prestressing process (step 3: releasing strands)
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elements in long (up to 600 ft) casting beds, which permits the simultaneous
fabrication of many elements with a single tensioning of the strands. A large saw
is used to cut each element to its individual required length. Accelerated curing
techniques permit the release of the strands in only 16—18 hours after the placement
of the concrete; thus, a 24 hours manufacturing cycle can be maintained. The
production is highly mechanized and provides great quality control. Many standard-
ized profiles are available in catalog form for spans and loading capacities. These
can be readily called out and specified by the designer. Figures 9.9 to 9.13 show
some typical profiles that are popular in building construction.

Hollow core decks are a popular precast and prestressed building element. They
are typically available in standard depths of 6, 8, 10, and 12 in., and are
manufactured mostly in 4’0" width, although some manufacturers may supply
them in 2/-0" or 80" widths. The shape of the cores may also differ from the
circles shown on Figure 9.9, as different patented manufacturing processes are used
to form them. Not all building designs can use the standard widths, so narrower
filler panels are made by slicing the panels lengthwise. Panels can also be cut at an
angle to accommodate supporting beams or girders that are not perpendicular to the
span of the panels.

Grout key

LO.0.0.0.0.0.0.0.0.0.0.0.0

Figure 9.9 Hollow core decks (without concrete topping)

A grout key is formed at the sides of the individual decks. As the name indicates,
the formed keyway is grouted solid after the erection of the panels. The keyways
prevent individual panels from deflecting differently after the grout cures. Thus, a
kind of lateral load transfer occurs if one of the floor panels is loaded much more
than its neighbors.

The top surface of hollow core decks is not smooth enough for floor structures,
which receive finish materials like tiles or carpets. Thus, in those types of applica-
tions, the decks usually receive a 2 in.-thick (nominal) concrete topping (see
Figure 9.10) that can be finished to the desired flatness and smoothness. The
concrete topping bonds to the surface of the decks and becomes a composite part
of the whole. It also makes the floor thicker, and consequently considerably stiffer
than one made of untopped decks.

/— Concrete topping

ﬁOOOOOOMXXXXXX

Figure 9.10 Hollow core decks (with concrete topping)




574 9 Overview of Prestressed Concrete

The topping thickness is a nominal thickness. Decks usually have an upward
deflection or camber when they are erected. This is a natural result of the
pretensioning process, in which the strands compress the bottom and sometimes
also cause tension on the top. Thus, the top elongates and the bottom shortens,
resulting in an upward curvature (i.e., camber). Calculation of the camber is a
somewhat complicated process. It requires a reasonable estimate of the concrete’s
modulus of elasticity, as the concrete continues to cure even after the prestress has
been applied. It also requires a knowledge of the rate of shrinkage and creep
deformation that take place as the concrete ages. For example, a typical 8 in.-
thick hollow core deck, 20-25 ft long, may exhibit a % in. camber at the time of its
erection. In order to eliminate midspan humps from the finished structure, engineers
may use only 1%2in. topping at the center of the span and 2% in. at the supports, or
some similar combination, to make the finished floor as flat as possible.

Another popular precast and prestressed building element is the double tee,
which is shown in Figure 9.11. These are also standard elements, although some
manufacturers may make them in only one width, or may not provide them in
depths beyond a certain dimension.

8I-O"

10-0"

12to 36 in.

2"
| 4-0"
5.0"

Figure 9.11 Double tee section

Double tees are quite light; the top slab is typically 2 in. thick only at the outer
edges. They are very economical for covering large spans (spans of 100 ft or more
are not uncommon). Such long elements, however, are difficult to transport in a
tight urban environment. Double tees are rather flexible, so their camber or deflec-
tion under load can be significant, especially on longer spans. So the designer must
carefully plan the interface of double tees with other building elements. A double
tee on an 80 or 90 ft span element may have an initial camber of 3—4 in. (or more),
with perhaps a similar magnitude of deflection under loads. That much movement
requires very careful consideration of details, such as when the design contemplates
a window-wall parallel with the span of a double tee.

Figures 9.12 and 9.13 show some other typical precast and prestressed elements
that are frequently used to support floor elements in building construction. The
shapes shown here are just a few of the many different shapes readily available to
the designer. Figure B9.1 in Appendix B shows prestressed I-Section beams.
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f Bearing pad

Figure 9.12 Inverted T-beam supporting double tees

Figure 9.13 Inverted T-beam and L-beam supporting hollow core decks

9.3.2 Posttensioning

Posttensioning is a technique used to prestress concrete structures on the job site
after the concrete has been cast into the forms and cured. It differs from
pretensioning, which is typically used to manufacture building elements away
from the building site. The posttensioning technique places flexible hollow metal
or plastic tubes into the formwork to form ducts. Tendons are inserted through the
ducts after the concrete has cured. Other techniques place plastic sheeted tendons
into the formwork. The plastic sheet prevents the tendons from bonding with the
cast concrete. The strand or tendon is anchored at one end to a device or plate cast
into the concrete (the “dead” end). Portable hydraulic jacks from the “live” end
provide tensioning. The jack leans against the concrete surface while pulling on the
tendon. A calibrated gage on the stressing jack shows the amount of force in the
tendon, while the elongation of the tendon is also measured to ensure quality
control. After the design force has been reached, the stretched tendon is anchored
to the concrete. Figure B9.2 shows the anchoring of a post-tensioned roof beam, and
Figure B9.3 shows the same beam after the post-tensioning process completed.

The space between the duct and the tendon is pressure grouted in certain
applications. The grouting not only creates a continuous bond between the tendon
and the duct, which is bonded to the concrete, but also provides enhanced corrosion
protection for the tendon. In other applications, the tendons are left ungrouted and
must rely on the continuing performance of the end anchorages throughout the
service life of the structure. These tendons are usually pregreased inside the ducts.
Greasing helps to minimize the frictional losses on curved tendons. (See discussion
later in this chapter.)
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Posttensioning has one vast advantage over pretensioning: It usually uses curved
tendons. This enables the designer to change the location of the prestressing force
from section to section along the length of the structure.

Figure 9.14 shows a single span beam with the strands draped in a parabolic
form. After tensioning, the eccentricity of the prestressing force to the neutral axis
is zero at the ends and maximum at the center. The moment resulting from the
prestressing causes compression at the bottom and tension at the top. The maximum
of these forces occurs at midspan, as illustrated in Figure 9.14. In fact, the forces
closely balance the effects of the gravity loads on the beam.

AN AN

Figure 9.14 Draped strands in a single span beam

Posttensioning also enables designers to use prestressing on continuous spans.
Pretensioned members, because of their straight strands, are used only as simply-
supported single spans, although short cantilevers can also be accommodated by
adding conventional reinforcing. Posttensioning, however, can use draped strands,
as shown in Figure 9.15, to follow the requirements of the bending moments from
the gravity loads. The strands are near the bottom of the section where the bending
moments are positive, and are near the top of the section where the bending
moments are negative.

e

Figure 9.15 Draped strands in continuous beams or slabs

9.4 Prestressed Concrete Materials

9.4.1 Concrete

Prestressed concretes generally are high-strength concretes with f = 5,000 to
6,000 psi. These high-strength concretes are better for many reasons. Chief
among these reasons is that these concretes have a smaller amount of shrinkage
and creep, which lessens the loss of prestress. Another reason is that in both pre- and
posttensioning, very highly stressed regions arise in compression at the anchorages;
high-strength concretes are needed to withstand these stresses.
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9.4.2 Prestressing Steel

The earliest experiments with prestressing failed mainly because they were
performed with ordinary steels (yield strength in the range of 3640 ksi). All, or
almost all, of the prestress was lost with the passage of time, due to a series of
contributory reasons. (Loss of prestress in normal applications may amount to
25-35 ksi, or higher.)

The use of very high-strength steel wires helped to solve this problem, as these
wires, even after the considerable prestress losses, retained sufficient stress levels.
Although many proprietary prestressing (mostly post-tensioning) systems use
large-diameter, high-strength bars, most systems employ prestressing strands
manufactured from cold-drawn wires conforming to ASTM A421. Usually six
wires are wound tightly around a seventh (and usually slightly larger-diameter)
wire into a uniform pitch helix, as illustrated in Figure 1.21. The pitch is 12—-16
times the diameter of the wires. After manufacture, the strands are put through a
stress-relieving heat treatment to make them conform to the requirements of ASTM
A216, “Standard Specifications for Uncoated 7-Wire Stress-Relieved Strand for
Prestressed Concrete.” They are also prestretched to increase their apparent mod-
ulus of elasticity. The strands may be manufactured in Grade 250 or in Grade
270, the numbers referring to the minimum ultimate strength of the strand in ksi.
Table 9.2 shows the properties of Grade 270 strands.

Table 9.2 Properties of grade 270 strands

Nominal diameter | Breaking (ultimate) Nominal steel area | Nominal weight
of strand (in.) strength of strand (kip) of strand (in.z) of strand (Ib/ft)
3/8 23.0 0.085 0.29
7/16 31.0 0.115 0.39
1/2 41.3 0.153 0.52
3/5 58.6 0.217 0.74

Figure 9.16 shows a typical stress-strain curve for prestressing strands. The
strands, unlike normal reinforcing steel, do not have a defined yield. They remain
elastic up to about 85 % of their ultimate strength. An arbitrary yield point is often
used for specification purposes. ASTM A216 requires a minimum value of 0.85f,,
at 1 % extension (or strain), where f,,, is the minimum guaranteed ultimate strength.
By this definition, the yield for Grade 270K strand may be taken as
0.85 x 270 =230 ksi.

9.5 Loss of Prestressing

The final service level stresses in the prestressing strands will be significantly lower
than they were at the time of the initial stressing. The contributory causes for this
prestress loss are numerous. The five major ones are discussed below.
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Prestressing strand

Normal reinforcing steel
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Figure 9.16 Stress-strain curve of prestressing strands versus reinforcing steel

9.5.1 Elastic Shortening of Concrete

When prestress is applied to concrete (i.e., when the prestressing strands are
released in the pretensioning type of application), the concrete shortens due to the
compressive stresses transferred to it. As the concrete shortens, so do the strands
bonded inside the concrete. This shortening lessens the stress in the steel, and
correspondingly lessens the compression on the concrete. How much the concrete
member shortens depends on the concrete’s modulus of elasticity, which in turn
depends on the concrete’s strength at the time the prestress was applied. The higher
the strength of the concrete, the lesser the loss due to elastic shortening. In
posttensioning, however, very little loss is caused by the elastic shortening; as the
stressing and the shortening of the concrete take place simultaneously; so when the
force in the strand is measured, the change in the concrete’s length has already
taken place. (This is not exactly true, because as the tendons are pulled one by one,
each stressed and anchored tendon will lose some of its stress when its neighboring
tendon is stressed).

9.5.2 Shrinkage of Concrete

If the concrete shrinks due to loss of moisture after prestressing, the shrinkage will
shorten the member. Correspondingly, the stretched strands will also shorten by the
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same amount. This shortening leads to a loss of stress in the strand. Nearly 80 % of
the shrinkage takes place in the first year of life of the structure. The magnitude of
shrinkage depends on many variables, but it can be estimated to a reasonable degree
of accuracy based on experimental data.

9.5.3 Creep of Concrete

Sustained compression shortens concrete over time. Creep, therefore, is a time-
dependent deformation. The magnitude of creep depends on many variables. The
most important of these are the strength of the concrete, the age of concrete at the
time of prestressing, and the average compressive stress in the concrete.

9.5.4 Relaxation of the Prestressing Steel

By definition, relaxation is the change in stress in a material held at a constant
strain. This phenomenon is a very complex, time-dependent characteristic of
prestressing wires and strands that are subject to high stresses. Relaxation contrib-
utes less than shrinkage or creep of concrete to the total sum of the losses, but it still
must be considered.

9.5.5 Friction Losses in Curved Tendons

Friction loss occurs only in posttensioning. Figures 9.14 and 9.15 show typical
paths of curved tendons. Sometimes posttensioned flat plates use tendons that curve
in the horizontal direction to accommodate floor openings or ducts. As a result,
when a tendon is pulled from one end, it leans against the duct. Figure 9.17
illustrates the problem.

If the tendon is pulled from the right, P, will be less than P,. The difference will
be the loss due to the frictional resistance at the contact surfaces. The loss depends
on the radius of curvature and the friction coefficient between the tendon and the
duct. Sharper curves and larger friction coefficients will result in larger loss of
prestress. In other words, the force in the tendon at locations away from the live end

PZ\
N

P

Figure 9.17 Friction between the tendon and the duct in posttensioning
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will be less than that measured at the stressing jack. In addition to the intentional
curving of the ducts, an unintentional curving also takes place during the concreting
operation. This is referred to as wobble. The so-called wobble (or wobble friction)
coefficient accounts for this curving, but is a rather vague value. In the past, the
ACI Code used to recommend a value between 0.0003 and 0.0020 for the wobble
coefficient of 7-wire pre-greased strands, and 0.05 to 0.15 for their curvature
friction coefficient. Values of the wobble and curvature friction coefficients to be
used for the particular types of prestressing reinforcement and ducts should be
obtained from the manufacturers of the tendons.
Equation (9.1) gives the formula for calculating frictional losses:

—(Klp+p,o
P = Py (Klrhon) ©.1)
where
K= | Wobble friction coefficient per foot of tendon

£,,= | Distance in feet from jacking end of prestressing steel element to the point under
consideration (point x)

u,= | Post-tensioning curvature friction coefficient

o, = | The total angular change in radians of the tendon profile from the jacking end to the point
X

P,= | Prestressing force at jacking end in pounds

P,,= | Prestressing force evaluated at distance ¢, from the jacking end in pounds

Example 9.1 Figure 9.18 shows a curved tendon between two inflection points in
an 8 in.-thick slab. The inflection points are 15 ft apart. Between these two points
the tendon rises 2.75 in. Assume K=0.001 and p, = 0.10. Find the prestress loss
within these two points.

— | 81

5 15 ft g

Figure 9.18 Part of a posttensioned slab for Example 9.1

Solution We use the given data to calculate the radius of curvature, which is
122.8 ft. The value of a,, is then equal to 7° =0.122 radians. Substituting these
values into Equation (9.1) we obtain the prestress loss due to friction between the
two points as a function of the prestressing force.
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_ p ,—(0.001x15+0.10 x 0.122)
x = Pye

PP
Py = P, x 0.9731

This means that the loss of force along the curve is 2.69 %. In multiple curves the
losses will combine, and may become very significant depending on the number of
spans.

Several techniques can be used to mitigate the frictional losses. One of them is to
stress the tendons from both ends. After the tendon has been stressed from the “live”
end, that end is anchored and the tendon is restressed by pulling from the former
“dead” end. Other techniques involve stressing very long tendons one section at a
time, coupling the next section to the already stressed segment.

9.5.6 Total Losses

Calculating the total losses of prestress is a very complex problem. Even with the
best available research information, we can obtain only approximate values. The
values of the parameters that influence the loss from any of the major sources are
only approximate ones. The values listed in Table 9.3 quite closely approximate the
true average prestressing losses (at least in building construction).

Table 9.3 Average prestressing losses

Jpu (ksi) | Initial prestress (ksi) | Loss (ksi) (w/o friction) | Remnant (ksi)
Pretensioning 270 216 4042 175
Posttensioning 270 189 28-30 160

For typical 270K strands that are initially stressed to the ACI Code-
recommended value of 0.7f,, for post-tensioning applications and 0.8f,, for
pretensioning applications, a good estimate of losses from volumetric changes for
average conditions (not including friction losses) is 18-20 % for pretensioning, and

15-16 % for posttensioning. This translates to the average loss values shown in
Table 9.3.

9.6 Ultimate Strength

Prestressed elements are designed to limit stresses at service load conditions. The
ACI Code, however, also requires that prestressed elements satisfy ultimate
strength requirements as well.

The ultimate moment strength is calculated using equations similar to those used
with ordinary reinforcement. But these familiar equations substitute a calculated
(somewhat fictitious) yield value for f;, in the calculations. This yield value, f,,;, can
be calculated using Equations in Section 20.3.2 of the ACI Code.
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This introductory chapter on prestressing includes only the formulae that deal
with unbonded tendons. The reader should consult the ACI Code for further
information on the ultimate strength calculations for bonded tendons.

Thus, Equation (9.2) (ACI Code Section 20.3.2.4.1) can be used to calculate the
yield strength for members with unbonded tendons and with a span/depth ratio of
35 or less:

!

= 1 < 2
fPs fYL’ + 0’000 + loopp (9 )

and Equation (9.3) (ACI Code Section 20.3.2.4.1) is applicable for members with
unbonded tendons and with a span/depth ratio greater than 35:

!

=f,, + 10,000 + === 9.3
f ps f.ve ’ 300 pp ( )
where
Sse the effective stress in the tendons after losses in psi
1 the specified compressive strength of the concrete in psi
Pp . . Aps
the ratio of the prestressed reinforcement, bd.
14
Aps the area of the prestressing steel
d, the distance from the compression edge to the centroid of the prestressing tendons

If the design uses unbonded tendons, the ACI Code (Sections 7.6.2.3 and 9.6.2.3)
require the addition of a minimum amount of bonded normal reinforcement. This
minimum amount is given below:

A; = 0.0044,

where A, is the area of the concrete section between the tension face and the
centroid of the gross concrete section.

The ACI Code also permits the use of nonprestressed reinforcing to help with the
required ultimate strength. The detailed discussion of this subject is beyond the
scope of this text.

9.7 The Concept of Load Balancing

In the simple numerical examples given in Section 9.1, the analyses of prestressed
sections were conducted by finding a sufficiently large concentric, or eccentric,
prestressing force that eliminated, or greatly reduced, unwanted large tensile
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stresses from the applied loads. This procedure is sometimes referred to as super-
position (i.e., adding axial compressive stresses to the ones caused by flexure).

In posttensioning there is a much more easily visualized method of analysis. The
load balancing method, introduced by T. Y. Lin in 1963, is the most widely used
and most powerful analytical tool for the design of prestressed structures. This
method provides prestressing by using a system of stressed tendons selected to
impose loads on the element in opposition to the acting gravity loads; hence, the
name load balancing method.

This concept is illustrated in Figure 9.19. If the path of the tendon is a parabola,
its effect, after stressed on the simple span beam, is equivalent to an upward acting
uniform load. The balancing loads, wy,, can be calculated using simple statics as
follows. The moment caused by the horizontal component of the prestressing force,
as shown in Figure 9.19b, is (P cos®)d. This prestress moment must balance the
moment caused by acting loads. Mathematically this is expressed as:

2
(Pcosd)d = PS = nglﬁ
Thus
o Wbalg2
P = 25 (9.4)
where 0 is the sag of the tendon.
a Acting loads (w)
poopsnel L UL LU L L) Lesne o
o b
Pcos ¢ -LH:H;T-T\.—T_T L 1—= Pcos ¢
| | Balancing loads (W) | |
b : ‘ |

Figure 9.19 (a) Balancing uniform load, (b) free body diagram of the tendon

A balanced beam theoretically has uniform compression, f= P/A, throughout.
The balanced load, wy,, can be equal to the acting loads, or only a part of the load
the designer wants to balance. This is normally the case when a certain amount of
tension is permitted at service load levels.
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The loads on the beam do not have to be uniformly distributed in order to apply
the load balancing concept. This is illustrated in Figures 9.20 and 9.21. If we use
similar notations for the loading conditions shown in Figures 9.20 and 9.21 and
change the tendon’s path from a parabola to those shown, the balancing forces for

the midspan point load and one-third span point load conditions are P = F4b%1€

and P = Fg—%lg, respectively. We can easily extend the load balancing concept to

continuous spans as well as to flat plates or flat slabs. The detailed discussion of the
intricacies involved, however, are beyond the scope of this text.

Acting load

| | Balancing load | |

Figure 9.20 Balancing a concentrated load at the center of the span

Acting loads

| | Balancing loads | |

Figure 9.21 Balancing two equal loads at the third points of the span

Example 9.2 The 30 ft-long, 12 in. X 16 in. simply-supported beam shown in
Figure 9.22 will support a superimposed distributed load of 400 1b/ft. A single
parabolic tendon is used to posttension the beam. Determine the required force in the
tendon using the load balancing method. Use f/ = 5,000 psi, and f; = 3,750 psi
and the unit weight of the concrete is 150 pcf.

Solution For efficiency select the largest sag permitted by the beam section,
0 =06 in. = 0.5 ft. The self-weight of the beam is:

12 x 16

=150
K X aa

=200 Ib/ft

To balance all the dead loads and one-half the live loads, wy, is
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w = 400 Ib/ft
HENRERRERRNRERERRARENRRRINRERENRAREEDE
S, I A
eSS T T T T T T T T T T T T T T T — - — . ST n= n.
|\ 4—/|- 6|n. Y AL
| " |
! 30-0 ‘ b=12in.

Figure 9.22 Elevation and section of the beam in Example 9.2

1
Wpar = 200 + 3 x 400 = 400 Ib/ft

and from Equation (9.4)

wpal> (0.4 kip/ft) x 307 .
P= = =90 k
85 8 x (0.5f1) P

Only the self-weight of the beam acts on the beam at the time of the transfer of
the prestressing force. Hence, the upward loads from the prestressing tendon and
the self-weight of the beam yield a net result of 200 1b/ft upward. So we calculate
the initial stresses due to prestress at midspan as follows:

0.2 x30°

o =225 fukip

The elastic section modulus of the beam’s cross section is:

b 12 x 167 ,
Sm:—6 =—< =512in’
and the area is A =12 x 16 =192 in?.
M 22.5 x 12,000 _
f=—=""""_ — 527 psi

Swm 512

tension at the top and compression at the bottom. (The net difference of wy,, and the
self-weight acts upward.)

From the 90 kip axial compression load at the time of transfer of the prestress
(transferred at the anchorages at the ends):
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P 90 x 1,000 . .
f= T 469 psi (compression)

Combining the axial compression (469 psi) and the flexural stresses due to the
net 200 1b/ft upward load, the initial stresses at midspan are:

fop = 469 —527 = —58 psi(tension)
= 469 + 527 996 psi (compression)

f bottom

Because these resulting stresses at the time of the load transfer are less than the
ACI Code (Sections 24.5.3.2 and 24.5.4.1) permits:

3/f =34/3,750 = 184 psi (tension)

and

0.6f. = 2,250 psi (compression)

respectively. The stress values at the time of transfer are acceptable.
From the 400 1b/ft = 0.4 kip/ft superimposed load:

4 2
Mg, = 04307 _ 45 ft-kip
M 45 x 12,000 )
f:§:7512 = 1,055 psi

compression at the top and tension at the bottom. Combining these stresses due to
total live load with the initial stresses gives us:

fiop = =38 + 1,055 = 997 psi (compression)
Soottom = 997 — 1,055 = —58 psi (tension)
Now check the stress after long-term losses have taken place.

Assume long-term prestressing losses of 15 %.
The final remaining prestressing force is only:

Prinal = 0.85 x 90,000 = 76,500 1b

and the adjusted upward-acting balancing load is:

8PS 8 x 76,500 x 0.5
Wt = = = . o — 340 Ib/ft

rather than the full 400 1b/ft that was first used.
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The net difference between the downward-acting gravity loads (self-weight of
the beam plus superimposed loads) and the upward-acting balancing loads is:

200 + 400 — 340 = 260 1b/ft (downward)
The moment caused by this load is:

0.26 x 307
Moy = =5 = 29.25 fi-kip

This moment causes compression at the top and tension at the bottom. These

stresses, combined with the compression stresses from the remaining
posttensioning force, will give the final stresses:

76,500 N 29.25 x 12,000
192 512
_ 76,500 29.25 x 12,000

Jrottom = 192 S0 = —287 psi (tension)

ftop

= 1,084 psi (compression)

These stresses are lower than those permitted by the ACI Code (Sections 24.5.2.1
and 24.5.4.1) for service load stage.

0.45f! = 0.45 x 5,000 = 2,250 psi compression > 1,084 psi
7.5\/]‘2 = 7.54/5,000 = 530 psi tension > 287 psi

Hence, the selected amount of prestressing is satisfactory.

Problems

9.1. A plain concrete beam has a width of 14 in. and a total depth of 24 in., and is
simply supported with a span of 24 ft. What is the maximum tensile stress
acting on the beam due to its weight?

9.2. The beam of Problem 9.1 is prestressed with a straight tendon at the centroid of
the section to produce a prestressing force of 200 kip.

1. What will be the maximum stresses on the beam at midspan (a) at the top,
and (b) at the bottom?

2. How much uniformly distributed load may be placed on the beam if no
tension is permitted in the beam?

9.3. Assume that the straight prestressing tendon of Problem 9.2 is placed 4 in.
from the bottom of the beam.

1. What are the maximum stresses on the beam at midspan (a) at the top, and
(b) at the bottom, when only the beam’s self-weight acts?

2. How much uniformly distributed load may be placed on the beam if 424 psi
maximum tension is permitted?
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9.4. The rectangular prestressed beam (16 in. x 32 in.) shown below is subject to a
total dead and live load of 2.2 kip/ft (including the beam weight). The
parabolic tendon will have a sag of 10 in., as shown, to provide an upward
balancing load of 1.6 kip/ft.

1. Calculate the required final prestressing force (after losses).
2. Calculate the final stresses in the beam at midspan and at the ends (a) at the
top of the section, and (b) at the bottom of the section.

w = 2.2 kip/ft
v ¥ ¥ | ¥ Woa = 1.6 kip/ft
_"'@:}_'_"{'_'T;jyt—"
777, d=10in %

Self-Experiments

In this self-experiment, you will study the behavior of prestressed and
posttensioned beams. Record all the details of the tests and include photos showing
different stages of the experiments in your report.

Experiment 1

In this experiment we study the behavior of prestressed beams using a styrofoam
beam. Place the beam between two supports. Apply a predetermined load (a few
pounds) on the beam and record the magnitude of the beam deflection.

Make a hole at the bottom of the beam and pass a few plastic strings through
it. Anchor the strings at one end. Pull the strings from the other side and anchor
them as shown in Figure SE 9.1. Place the beam on the same supports and apply the
same load. Determine how much the beam deflects. Compare the results with those
of the previous test.

A

1

T
T
[ )

pu &8

Figure SE 9.1 Prestressing a styrofoam beam
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Experiment 2

In this experiment, we study the behavior of prestressed beams using concrete
models. Cast two concrete beams of the same size. Reinforce one beam with regular
wires, and thread the ends of the wire for the other. Before placing concrete for the
prestressed beam, pull the wires from the one side as shown in Figure SE 9.2.
Compare the behavior of the two beams by placing them on two supports and
gradually loading them. Which one deflects more? Why? Discuss your
observations.

|

Figure SE 9.2 (a) Reinforced concrete beam, (b) prestressed concrete beam

Experiment 3

Here we use a styrofoam beam similar to that of Experiment 1 to study the behavior
of posttensioned beams. Make a hole of the same size as that of Experiment 1 on the
side of the beam using a hot wire. The hole should have a curved shape, as shown in
Figure SE 9.3. Pass a few plastic strings through this hole, anchor them to the beam
from one end, and pull and anchor to the other end. Now place the beam on the two
supports and apply the same load as in Experiment 1. Record the beam deflection at
the midspan. Compare the results with those of Experiment 1. Which case resulted
in less deflection?

P

o

__/1/__ __/1/__

Figure SE 9.3 Posttensioned styrofoam beam

Experiment 4

This experiment involves the use of a posttensioned concrete beam. As in Exper-
iment 2, cast two beams. One will use regular wire, and the other will be
posttensioned. For the posttensioned beam, place a plastic tube inside the beam



590 9 Overview of Prestressed Concrete

and cast the concrete. After the concrete is set (72 hours), insert steel wires,
anchor them to the beam from one end, and pull and anchor to the other end
(Figure SE 9.4). Place the two beams on the two supports and gradually load
them. Compare their behavior. Which one deflects more? Why? Any other
observations?

: 7

Figure SE 9.4 (a) Reinforced concrete beam, (b) posttensioned concrete beam




Chapter 10
Metric System in Reinforced Concrete Design
and Construction

10.1 Introduction

Efforts to change the U.S. measurement units to the metric system have been under
way for quite a while. This chapter briefly discusses this matter as it relates to
reinforced concrete structure design and construction. We present a few examples
using this system of units so that you will better understand how to make the
conversions.

10.2 Brief History of Metric System Adoption
in the United States

Historically, the United States has used the British system of measurements. Most
other countries, however, use variations of the metric system. To conform with the
rest of the world, and to increase the international competitiveness, productivity,
and quality of U.S. industry, the U.S. Congress enacted the Metric Conversion Act
of 1975. A version of the metric system called Le Systéme International d’Unites
(International System of Units), or the SI system, was adopted. Furthermore, in
1988, the U.S. Congress passed the Omnibus Trade and Competitiveness Act, which
resulted in the formation of the Construction Metrication Council. This council is
part of the National Institute of Building Sciences (NIBS) located in Washington,
DC. The Council has published documents on Construction Metrication, which
provide the latest efforts on system conversions. You can obtain a copy of these
documents from the NIBS Web site (www.nibs.org).

The American Concrete Institute has published an equivalent metric version of
the ACI Code since 1983. The current metric version of the ACI code is ACI
318M-14 (“M” stands for metric). Adopting the metric system has two major
ramifications: (1) using metric units for structural calculations, and (2) changing

© Springer International Publishing Switzerland 2017 591
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Table 10.1 Equivalent soft Equivalent soft
metric designation for rebars Bar size metric designation

#3 #10

#4 #13

#5 #16

#6 #19

#7 #22

#8 #25

#9 #29

#10 #32

#11 #36

#14 #43

#18 #57

the physical sizes of products based on the metric system of units. The first task can
be accomplished with relative simplicity, as this chapter will show. But the man-
ufacture of construction material for concrete structures, in particular reinforcing
bars, has been one of the major obstacles in the adoption of the SI system of units.

To prevent the costly maintenance of two different inventories of steel rein-
forcement (in British and SI units), the producers of reinforcing bars adopted a soft
metric conversion in 1997. This conversion allows mills to produce reinforcing bars
in the customary British unit sizes, but to designate them with their equivalent
metric values instead of multiples of 100 mm? as required in the hard metric
conversion. As a result, nearly all reinforcing bars currently produced are marked
with the soft metric equivalent sizes. Table 10.1 shows the equivalent soft metric
bar size designations for the customary British unit sizes.

10.3 Conversion to SI Units

A familiarity with the SI units is required to convert British units to their equivalent
SI units. Table 10.2 shows the main SI units along with the most common prefixes
used in the design of building structures.

Two important quantities that we need to understand well are mass and force.
The SI unit of mass is the kilogram, kg, which is used as the unit of force in other
versions of the metric system. The SI unit used for force is the newron, which is
equal to 1 kg-m/s>. Force is equal to mass (m) multiplied by the gravitational
acceleration (g). Thus,

F=mxg

F = (1.0 kg)(9.80665 m/s?)
F = 9.80665 kg-m/s? ~ 9.81 newtons (N)

Therefore, a one-kilogram mass generates 9.81 newtons (N) of force.
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Table 10.2 Principal ST units  ©ain SI units

and the common prefixes Quantity Unit Symbol (expression)
Length Meter m
Mass Kilogram kg
Time Second S
Force Newton N (kg-m/s?)
Stress/pressure Pascal Pa (N/m?)
Prefix SI prefixes symbol Value
Micro p 107¢
Milli m 107?
Kilo k 10°
Mega M 10°

The British units of pound-mass (Ibm) and pound-force (Ibf) are also defined.
These are related to each other as follows:

F =mxg
Ibf = (Ibm)(32.174 ft/s?)
Ibf = 32.174 Ibm-ft/s* ~ 32.2 Ibm-ft/s*

The relationship between Ibm and kg is:
1 Ibm = 0.45359 kg ~ 0.454 kg
The relationship between ft and m is:
1ft = 0.3048 m
Therefore, substituting:

11bf = 32.174 (0.45359)(0.3048) kg-m/s>
1 Ibf = 4.448 kg-m /s>
1 Ibf = 4.448 N

Note that weight is defined in units of mass. To use weight as load we need to
consider the gravitational acceleration of 9.81 m/s>. The following is an important
conversion:

Ibf  4.448N
—=—————=157.1N/m’
f*  (0.3048)’m?

This is in units of weight. In the SI units, however, it is defined in units of mass.
Therefore:
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Ibm  0.45359k
SR = T 6,02 kg/m?
6 (0.3048 m)

For example, the unit mass of concrete (normal weight) is:
150 Ibm/ft® = 150(16.02) = 2,400 kg/m>

Table 10.3 shows the complete set of conversion factors between the SI and
the British systems of units. The following examples solve problems posed by
examples in previous chapters using the equivalent SI units. Since we must use the
soft metric reinforcing bar sizes, Table 10.4 shows their designations along with
their properties.

Table 10.3 Conversion factors between the SI and the British system of units

Unit Multiply By To get:

Length inch (in.) 254 millimeter (mm)
foot (ft) 0.3048 meter (m)
millimeter (mm) 0.03937 inch (in.)
meter (m) 3.281 foot (ft)

Area square inch (in.z) 645.2 square millimeter (mmz)
square foot (ftz) 0.0929 square meter (mz)
square millimeter (mm?) 0.00155 square inch (in.%)
square meter (m?) 10.764 square foot (ft%)

Volume cubic inch (in.%) 16,387 cubic millimeter (mm?>)
cubic foot (ft*) 0.028317 cubic meter (m>)
cubic millimeter (mm?) 0.000061024 | cubic inch (in.”)
cubic meter (m>) 35.315 cubic foot (ft%)

Mass pound-mass (Ibm) 0.454 kilogram (kg)
kilogram (kg) 2.205 pound

Density pound per cubic foot 16.02 kilogram per cubic meter
(/) (kg/m®)
kilogram per cubic meter 0.06243 pound per cubic foot
(kg/m®) (Ib/ft)

Force pound-force (1bf) 4.448 newton (N)
kip 4,448 newton (N)
pound per foot (1b/ft) 14.594 newton per meter (N/m)
kip per foot (kip/ft) 14.594 kilonewton per meter

(kN/m)
newton (N) 0.2248 pound-force (1bf)
newton (N) 0.0002248 kip
newton per meter (N/m) 0.06852 pound per foot (Ib/ft)
kilonewton per meter 0.06852 kip per foot (kip/ft)
(kN/m)

Moment of | inch* (in.%) 416,231 millimeter* (mm®)

inertia millimeter* (mm®*) 0.000002403 | inch* (in.*)

(continued)
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Table 10.3 (continued)
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Unit Multiply By To get:
Bending pound-inch (Ib-in.) 0.113 newton-meter (N-m)
moment pound-foot (1b-ft) 1.356 newton-meter (N-m)
kip-inch (kip-in.) 0.113 kilonewton-meter (kN-m)
kip-foot (kip-ft) 1.356 kilonewton-meter (kN-m)
newton-meter (N-m) 8.851 pound-inch (Ib-in.)
newton-meter (N-m) 0.738 pound-foot (Ib-ft)
kilonewton-meter (kN-m) 8.851 kip-inch (kip-in.)
kilonewton-meter (kN-m) 0.738 kip-foot (kip-ft)
Pressure, pound per square inch (psi) 6,895 pascal (Pa)
stress kip per square inch (ksi) 6,895 kilopascal (kPa)
6.895 megapascal (MPa)
pound per square foot (psf) 47.88 pascal (Pa)
kip per square foot (ksf) 47.88 kilopascal (kPa)
pascal (Pa) 0.000145 pound per square inch
(psi)
kilopascal (kPa) 0.14503 pound per square inch
(psi)
megapascal (MPa) 0.14503 kip per square inch (ksi)
pascal (Pa) 0.020886 pound per square foot

(psf)

Table 10.4 ASTM standard metric reinforcing bars

Nominal dimensions
Bar size designation Area (mmz) Weight (kg/m) Diameter (mm)
#10 71 0.560 9.5
#13 129 0.994 12.7
#16 199 1.522 15.9
#19 284 2.235 19.1
#22 387 3.042 222
#25 510 3.973 254
#29 645 5.060 28.7
#32 819 6.404 323
#36 1,006 7.907 35.8
#43 1,452 11.38 43.0
#57 2,581 20.24 57.3

Example 10.1 (S Version of Example 1.2) A 75 mm x 150 mm, 2.70 m-long plain
concrete beam was simply supported at its ends and tested to determine the modulus
of rupture of the concrete. Two concentrated loads, P, were placed at the third
points. The beam failed at P =670 N. The specified compressive strength of the
concrete is f/ =28 MPa. The concrete weight (mass) is 2,400 kg/m® (normal
weight). Determine the modulus of rupture of the concrete using (a) the results of
the test, and (b) the ACI Code approximate equation.


http://dx.doi.org/10.1007/978-3-319-24115-9_1
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w =265 N/m
P=670N P=670N

IR
’4*0.90m | cz):jg: | 0.90m—>‘

Figure 10.1 Example 10.1

Solution
(a) Test results
Determine the loads acting on the beam shown in Figure 10.1:

(75)(150) s
= (2,400) ——2 " __ 270k 9.81 = 265N
W = (2:400) 77560 (1,000) g/mx 981 m/s /m
wl® Pt
Migta = e + 3
265(2.70)>  670(2.70
Mtotal == (8 ) + (3 )

Mot = 242 + 603 = 845 N-m = 845,000 N-mm

The maximum tensile stress at the bottom of the beam (f,) is:

Mc M
=T s
2 2
5 = 22 _T3USOT g1 250 mm?
6 6
M 845 x 1,000
== 300 N/mm’
S =g, T 281250 /mm

=3.00 x 10° N/m? = 3.00 MPa

(b) ACI approximate equation
From Equation 19.2.3.1 of ACI 318M-14:

A = 1.0 (normal weight concrete)
[ =0.704/f!
f. = 0.70(1.0)1/28 = 3.70 MPa
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Example 10.2 (SI Version of Example 2.8) Calculate My for the reinforced con-
crete section shown in Figure 10.2. Use f,=420 MPa, and f = 28 MPa.
A,=6#32=4,914 mm’.

b = 305 mm

d =795 mm d, = 825 mm

6 #32

Figure 10.2 Sketch of Example 10.2

Solution
Step 1.

LA, 4914
P = 5d 305 x 795

=0.0203
From Table A2.4:

Prmin = 0.0033 < 0.0203 .". ok
From Table A2.3:

Pmax = 0.0207 > 0.0203 .". ok

Step 2.
A
LA 4014H0)
0.85(/b _ 0.85 x 28 x 305
Step 3.
284 .
(=—=——= mm
B, 085
Step 4.
334
< — 0.405 > 0.375

d,~ 825


http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_2
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Because 0.405 > 0.375, the section is in the transition zone:

B
b=A+¢
d,
0.25
=0233+—
¢ +0.405
¢ = 0.850
Step 5.
mm?2  N/mm2(MPa) mm

M= A, f, (d —%j = (0.850)(4,914)(420) [795 _2_§4j
M= 1,145,556,594 N-mm/106 = 1,146 kN-m

Example 10.3 (SI Version of Example 4.2) Determine the spacing of #10 stirrups
at the critical section for a reinforced concrete beam with b,,=380 mm,

h =610 mm, and V, = 270 kN. Use /! =21MPa, and fyr=420 MPa. Concrete is
normal weight.

Solution
dest = h — 65 =610 — 65 = 545 mm

Using Equation 22.5.5.1 of ACI 318M-14:

A = 1.0 (normal weight concrete)

_aE

Vo=t bud
V, = % (380)(545)

Ve = 158,175 N = 158.2 kN

The shear force to be resisted by the stirrups at the critical section, Vs, is:

_ v,

S:——‘/‘.
¢

_ 270

= 1582
075 18

V, = 201.8 kN

So the required spacing of the bars is:


http://dx.doi.org/10.1007/978-3-319-24115-9_4
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Afyd

v,

(2 x 71)(420)(545)
201.8 x 1,000

= 161 mm

E:

Use 5 =160 mm.

Example 10.4 (SI Version of Example 5.4) Design a short square tied column to
carry an axial dead load of 1,300 kN, a floor live load of 800 kN and a roof live load
of 320 kN. Assume that the applied moments on the column are negligible. Use
fl=28 MPa, f, =420 MPa, and a concrete clear cover of 40 mm.

Solution

Step 1. The factored load, P,, is:

1.83 P, = 1.83(320) = 585.6 kN < P, = 800 kN, therefore,

P, =12Pp + 1.6P, + 0.5P,,
P, = 1.2(1,300) + 1.6(800) + 0.5(320)
P, = 3,000 kN

Step 2. Assuming p, = 0.03, the required area of column, A,, is:

p— Pu
=
0.8[0.857 (1 p,) +/p,]

s 3,000 x 1,000
£~ 0.8(0.65)[0.85(28)(1 — 0.03) + 420(0.03)]

A, = 161,667 mm?

A

Step 3. The column size, A, is:

h= /A, = /161,667

h=402mm .. Use h =400 mm
Therefore, the column is 400 x 400 mm, and the column gross area, A, is:
Ag =400 x 400 = 160,000 mm?

Step 4. The required area of reinforcement, Ay, is:

P —0.8¢(0.85f'4
= o 1A ,g) Conversion from MPa
08(])(/? -0.851£") / to kPa

_3,000-0.8%0.65(0.85x28x107* x160,000)
0.8%0.65(420x107° —0.85%28x107")

A,=4,950 mm”’



http://dx.doi.org/10.1007/978-3-319-24115-9_5
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Step 5. Using Table 10.4, select 8 #29 bars (A, =8 x 645 =15,160 mmz).

Step 6. Using #10 for the ties, the maximum spacing, s,.x, (ACI Code, Sections
10.7.6.1.2 and 25.7.2.1) is:

Smax = min{16dy,, 48d;, byin }

Smax = min{16(28.7), 48(9.5),400}
Smax = min{459,456,400}

Smax = 400 mm

Therefore, the ties are #10 @ 400 mm.
Use Figure 5.12 to check the arrangement of the ties. Determine the clear
space between the longitudinal bars:

Cover  #10 Ties #29 Bars

400 — 2(40) — 2(9.5) — 3(28.7)
2
Clear space = 107 mm < 150 mm

Clear space =

Therefore, one tie per set is enough, as shown in Figure 10.3.

} 400 mm >

400 mm
—— #10 @ 400 mm

(@)

8 #29

Figure 10.3 Final design of Example 10.4

Example 10.5 (SI Version of Example 7.1) A 300 mm load-bearing CMU wall
supports an outdoor canopy. The dead load is 150 kN/m (including the wall weight)
and the roof live load is 75 kN/m. Design the plain concrete footing shown in
Figure 10.4 to support this wall. The compressive strength of the concrete is
21 MPa, and the net bearing capacity of the soil is 150 kPa. The frost line is at
1.20 m from the outside grade. Concrete is normal weight.


http://dx.doi.org/10.1007/978-3-319-24115-9_7
http://dx.doi.org/10.1007/978-3-319-24115-9_5
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300 mm

—

/1,
Block wall
R / R
1.20m
, A
| b .

Figure 10.4 Sketch of Example 10.5

Solution

Step 1. Determine the footing width (b).

wr = wp + wy, = 150 + 75 = 225 kN/m

Approximate footing width (b)= M

a

kN/m
= 225 =1.50 m
150
/
kPa = kN/m?2
~bhb=15m
Step 2. Estimate the footing thickness (%).
:b—t: 1'5_0'30:0.60m

h
2 2
.. h =0.60 m (600 mm)
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Step 3. Calculate and check the moment.

wy, = 1.2wp + 1.6w;,
w, = 1.2(150) + 1.6(75) = 300 kN/m

p— WM
QM - b
300
9, =5 =200 kN/m? (kPa)

The distance from the edge of the footing to the critical section for moment

(D) is:
b—t t
D=—+-
2 '3
15X 1,000—300+@
B 2 4
D = 675 mm

( 675 )2
D? 1,000

M, = 45.6 kN-m
d=h—50=600—50 =550 mm

Considering a 1 m (1,000 mm) strip of footing:

o
6

~1,000(550)
=

Sm

= 50.42 x 10° mm®

m

The nominal resisting moment, M,,, (ACI 318M-14 Equation 14.5.2.1a) is:

A = 1.0 (normal weight concrete)
5
M, = | —= | A/ Sm
(&)

5
M, = E(1.0)\/2_1 (50.42 x 10°)

M, = 96.3 x 10° N-mm/10° = 96.3 kN-m
My = M, = 0.60 (96.3)
Mp = 57.8 kN-m > 45.6 kN-m ..ok

Figure 10.5 shows the final design of this footing.
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300 mm
f—
/1/
7 N AN
600 mm
600 mm
} 1.50 m |

Figure 10.5 Final design of Example 10.5

Problems

In the following problems assume concrete is normal weight unless noted
otherwise.

10.1 (SI version of Problem 1.7) Draw the bending moment and shear force dia-

10.2

10.3

grams for a 300 mm x 600 mm concrete beam made of lightweight concrete
with a unit weight (mass) of 1,800 kg/m® and subjected to a uniformly
distributed load of 15 kIN/m. Assume that the beam is simply-supported and
has a 3.0 m span.

(SI version of Problem 1.10) Determine the maximum span for a 200 mm
x 300 mm simply-supported plain concrete beam constructed of normal-
weight concrete with a unit weight (mass) of 2,400 kg/m> and loaded by a
uniformly distributed load of 30 kN/m just before it fails. The specified
compressive strength of the concrete is 28 MPa. Use the ACI Code—
recommended value for the modulus of rupture.

(SI version of Problem 2.7) The rectangular reinforced concrete beam shown
below is subjected to a dead load moment of 250 kN-m and a live load moment
of 125 kN-m. Determine whether this beam is adequate for the applied
moment using the Method 1. Use f/ =28 MPa and f, =420 MPa. The
stirrups are #10 and the cover is 40 mm.


http://dx.doi.org/10.1007/978-3-319-24115-9_2
http://dx.doi.org/10.1007/978-3-319-24115-9_1
http://dx.doi.org/10.1007/978-3-319-24115-9_1
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300 mm

750 mm

4 #29

10.4 (SI version of Problem 2.11) Determine the moment capacity, Mg, of the
reinforced concrete section shown below if it is subjected to a negative
moment. Use the Method 1. The stirrups are #10 and the cover is 40 mm.
Use f, = 28 MPa and f,, = 420 MPa.

seooy L

4 #32

710 mm

330 mm-|

10.5 (SIversion Problem 4.2) A beam is subjected to a uniformly distributed load and
has a maximum shear of 270 kN at the face of its supports. The beam clear span
is 9.0 m, b,,= 300 mm, and d = 600 mm. Use f/ = 28 MPa, and fye=420 MPa.
Determine the shear at the critical section. Determine the spacing of #10 stirrups
at the critical section.

10.6 (SI version of Problem 4.5) The shear force at the critical section, V,,
of a reinforced concrete beam is 265 kN. If the beam has b,, =360 mm,
=21 MPa, and fyv=420 MPa, what is the required effective depth, d,
such that the minimum spacing of #10 stirrups is 230 mm?


http://dx.doi.org/10.1007/978-3-319-24115-9_4
http://dx.doi.org/10.1007/978-3-319-24115-9_4
http://dx.doi.org/10.1007/978-3-319-24115-9_2
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10.7 (SI version of Problem 5.4) The square reinforced concrete tied column
shown below is subjected to a dead load of 900 kN and a roof live load of
1,000 kN. Determine whether this column is adequate. The clear cover is
40mm and the load eccentricity is negligible. Use f!/ =28 MPa and
fy=420 MPa. Checking the ties is not required.

k——400 mm—

#10 @ 350 mm

400 mm

8 #25 —

10.8 (SI version of Problem 5.8) Design a square tied reinforced concrete column
subjected to a dead load of 1,100 kN, a floor live load of 1,000 kN, and a
roof live load of 675 kN. The moments due to the loads are negligible. Use
/] = 28 MPa, fy =420 MPa, and 40 mm clear cover.

10.9 (SI version of Problem 7.1) Design a plain concrete wall footing to support a
300 mm thick concrete wall. The dead load, including the weight of wall, is
70 kN/m, and the roof live load is 90 kN/m. The bearing capacity of the soil
is 120 kPa, and f/ = 21 MPa.

10.10 (ST version of Problem 7.3) Rework Problem 10.9 for a reinforced concrete
wall footing. Use f, = 420 MPa.


http://dx.doi.org/10.1007/978-3-319-24115-9_7
http://dx.doi.org/10.1007/978-3-319-24115-9_7
http://dx.doi.org/10.1007/978-3-319-24115-9_5
http://dx.doi.org/10.1007/978-3-319-24115-9_5

Appendix A
Tables and Diagrams

Table A1.1 Mechanical properties of steel reinforcing bars

Type of steel Grade | f, (ksi) €,
Carbon, A615 40 40 0.00138
60 60 0.00207
75 75 0.00259
80 80 0.00276
Low alloy, A706 60 60 0.00207
80 80 0.00276
Stainless, A955 60 60 0.00207
75 75 0.00259
Rail, A996 50 50 0.00172
60 60 0.00207
Axle, A996 40 40 0.00138
60 60 0.00207
Low carbon chromium, A1035 100 100 0.00345
120 120 0.00414

Table A1.2 Steel bar sizes

Bar size #3 #4 #5 #6 #7 #8 #9 #10 #11 #14 #18
Diameter (in.) | 0.375 | 0.500 |0.625 |[0.750 |0.875 |1.000 | 1.128 | 1.270 | 1.410 |1.693 | 2.257
Area (in?) 0.11 {020 |031 |044 |0.60 |[0.79 1.00 | 1.27 |1.56 |[2.25 |4.00
© Springer International Publishing Switzerland 2017 607
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Table A2.1 A

Appendix A: Tables and Diagrams

CI approximate design moments and shears for beams and one-way slabs

Positive End spans
moment Discontinuous end unrestrained w,l2/11
Discontinuous end integral with support wufﬁ/ 14
Interior spans wufﬁ/ 16
Negative At exterior face of the first interior support
moment Two spans w0219
More than two spans w,02/10
At other faces of interior supports wuﬂﬁ/ 11
At the face of all supports for SLABS with spans not exceeding | w,£2/12
10 ft; and BEAMS where ratio of sum of column stiffnesses to
beam stiffness exceeds 8 at each end of the span
At interior face of exterior support for members built integrally
with supports
Where support is a spandrel beam w0224
Where support is a column w,l2/16
Shear In end members at the face of the first interior support 1.15w,2,/2
At face of all other supports Wi lnl2
WU

Spandrel beam —]

Column —

| €n en €n
—AF— w,t, w6, w,(,

w, b,

2

_ L
C
C

:
|
|
|
|
l
l
|
|

(V)
—1.15w,,(, \u«n \wué,,

2 2 2

2
%’ (End unrestrained)

2
L;Lf" (End integral with with wilh
support) 16 16

ST R, oy A N N
(Spandrel beam) —g-" (Two spans) WTU(” WT"‘" (Two spans)

we? w2 w3 w2 —wyth w2 w8

(Column) ":;f" (Others) =34 71 (Others) = 11 11 11
—w,th w2 w2 —wy b A —w g

12 12 12 12 12 12

[ o o
(Slabs, ¢, = 10', (Slabs, €, = 10', (Slabs, ¢, = 10',

3 or more spans) 3 or more spans) 3 or more spans)
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Table A2.2a Values of A; and B, for commonly used reinforcing steels

Sy (psi) €y Ay B,

40,000 0.00138 0.555 69.1
60,000 0.00207 0.473 85.3
75,000 0.00259 0.381 103.7

Table A2.2b Values of A, and B, for commonly used reinforcing steels

Sy (psi) dcy, cpld, A, B,

40,000 1.460 0.685 0.345 0.208
60,000 1.690 0.592 0.233 0.250
75,000 1.863 0.537 0.067 0.312

Table A2.3 py.x and p, for common grades of steel and compressive
strength of concrete (single layer of steel, i.e., d=d,)

£, (psi) | f1=3,000psi | f.=4,000psi| f.=5000psi | ¢
Pmax (& = 0.004)
40,000 0.0232 0.0310 0.0364 0.83
60,000 0.0155 0.0207 0.0243 0.81
75,000 0.0124 0.0165 0.0194 0.80
Prc (£,=0.005)
40,000 0.0203 0.0270 0.0318 0.90
60,000 0.0135 0.0180 0.0212 0.90
75,000 0.0108 0.0144 0.0169 0.90

d
Note: For multiple layers of reinforcements, multiply the table values by —

Table A2.4 Minimum steel ratio (pyin)

. Pmin
Sy @S 3 000 psi | f1— 4,000 psi | f.—5,000 psi | f.— 6,000 psi
40,000 0.0050 0.0050 0.0053 0.0058
60,000 0.0033 0.0033 0.0035 0.0039
75,000 0.0027 0.0027 0.0028 0.0031
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Table A2.5a Resistance coefficient R (in psi) versus reinforcement ratio (p); £/ = 3,000 psi,
fy=40,000 psi (for beams pyin = 0.005)

[ R [ R [ R [ R [ R ] p | R| &
0.001 36 | 0.0051 | 176 | 0.0092 | 307 | 0.0133 | 429 | 0.0174 | 541 0.0215| 643| 0.87
0.0011 | 39 | 0.0052 | 180 | 0.0093 | 310 | 0.0134 | 432 | 0.0175 | 544 0.0216| 646/ 0.87
0.0012 | 43 | 0.0053 | 183 | 0.0094 |313 | 0.0135 | 435 | 0.0176 | 546 0.0217| 648/ 0.86
0.0013 | 46 | 0.0054 | 186 | 0.0095 | 317 | 0.0136 | 437 | 0.0177 | 549 0.0218] 651/ 0.86
0.0014 | 50 | 0.0055 | 189 | 0.0096 |320 | 0.0137 | 440 | 0.0178 | 551 0.0219| 653 0.86
0.0015 | 53 | 0.0056 | 193 | 0.0097 |323 | 0.0138 | 443 | 0.0179 | 554 0.022 | 655/ 0.86
0.0016 | 57 | 0.0057 | 196 | 0.0098 |326 | 0.0139 | 446 | 0.018 | 557 0.0221| 658/ 0.86
0.0017 | 60 | 0.0058 | 199 | 0.0099 |329 | 0.014 | 449 | 0.0181 | 559 0.0222| 660| 0.85
0.0018 | 64 | 0.0059 | 203 | 0.01 |332 | 0.0141 | 451 | 0.0182 | 562 0.0223| 662/ 0.85
0.0019 | 67 | 0.006 | 206 | 0.0101 |335 | 0.0142 | 454 | 0.0183 | 564 0.0224| 665/ 0.85
0.002 | 71 | 0.0061 | 209 | 0.0102 | 338 | 0.0143 | 457 | 0.0184 | 567 0.0225| 667/ 0.85
0.0021 | 74 | 0.0062 | 212 | 0.0103 | 341 | 0.0144 | 460 | 0.0185 | 569 0.0226| 669/ 0.84
0.0022 | 78 | 0.0063 | 216 | 0.0104 | 344 | 0.0145 | 463 | 0.0186 | 572 0.0227| 672/ 0.84
0.0023 | 81 | 0.0064 | 219 | 0.0105 | 347 | 0.0146 | 465 | 0.0187 | 574 0.0228| 674/ 0.84
0.0024 | 85 | 0.0065 | 222 | 0.0106 | 350 | 0.0147 | 468 | 0.0188 | 577 0.0229| 676/ 0.84
0.0025 | 88 | 0.0066 | 225 | 0.0107 | 353 | 0.0148 | 471 | 0.0189 | 580 0.023 | 679 0.84
0.0026 | 92 | 0.0067 | 229 | 0.0108 | 356 | 0.0149 | 474 | 0.019 | 582 0.0231| 681/ 0.83
0.0027 | 95 | 0.0068 | 232 | 0.0109 |359 | 0.015 | 476 | 0.0191 | 585 0.0232| 683 0.83

0.0028 | 99 | 0.0069 | 235 | 0.011 | 362 | 0.0151 | 479 | 0.0192 | 587
0.0029 | 102 | 0.007 | 238 | 0.0111 | 365 | 0.0152 | 482 | 0.0193 | 590
0.003 105 | 0.0071 | 241 | 0.0112 | 368 | 0.0153 | 485 | 0.0194 | 592
0.0031 | 109 | 0.0072 | 245 | 0.0113 | 371 | 0.0154 | 487 | 0.0195 | 595
0.0032 | 112 | 0.0073 | 248 | 0.0114 | 374 | 0.0155 | 490 | 0.0196 | 597
0.0033 | 116 | 0.0074 | 251 | 0.0115 | 377 | 0.0156 | 493 | 0.0197 | 600
0.0034 | 119 | 0.0075 | 254 | 0.0116 | 380 | 0.0157 | 496 | 0.0198 | 602
0.0035 | 123 | 0.0076 | 257 | 0.0117 | 383 | 0.0158 | 498 | 0.0199 | 605
0.0036 | 126 | 0.0077 | 260 | 0.0118 | 385 | 0.0159 | 501 | 0.02 607
0.0037 | 129 | 0.0078 | 264 | 0.0119 | 388 | 0.016 | 504 | 0.0201 | 610
0.0038 | 133 | 0.0079 | 267 | 0.012 |391 | 0.0161 | 506 | 0.0202 | 612
0.0039 | 136 | 0.008 | 270 | 0.0121 | 394 | 0.0162 | 509 | 0.0203 | 614 | p,.
0.004 | 139 | 0.0081 | 273 | 0.0122 | 397 | 0.0163 | 512 | 0.0204 | 617 | 0.90
0.0041 | 143 | 0.0082 | 276 | 0.0123 | 400 | 0.0164 | 514 | 0.0205 | 619 | 0.90
0.0042 | 146 | 0.0083 | 279 | 0.0124 | 403 | 0.0165 | 517 | 0.0206 | 622 | 0.89
0.0043 | 150 | 0.0084 | 282 | 0.0125 | 406 | 0.0166 | 520 | 0.0207 | 624 | 0.89
0.0044 | 153 | 0.0085 | 286 | 0.0126 | 409 | 0.0167 | 522 | 0.0208 | 627 | 0.89
0.0045 | 156 | 0.0086 | 289 | 0.0127 | 412 | 0.0168 | 525 | 0.0209 | 629 | 0.88
0.0046 | 160 | 0.0087 | 292 | 0.0128 | 415 | 0.0169 | 528 | 0.021 | 631 | 0.88
0.0047 | 163 | 0.0088 | 295 | 0.0129 | 417 | 0.017 | 530 | 0.0211 | 634 | 0.88
0.0048 | 166 | 0.0089 | 298 | 0.013 |420 | 0.0171 | 533 | 0.0212 | 636 | 0.88
0.0049 | 170 | 0.009 | 301 | 0.0131 | 423 | 0.0172 | 536 | 0.0213 | 639 | 0.87
0.005 173 | 0.0091 | 304 | 0.0132 | 426 | 0.0173 | 538 | 0.0214 | 641 | 0.87
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Table A2.5b Resistance coefficient R (in psi) versus reinforcement ratio (p); f.' = 4,000 psi,
fy=40,000 psi (for beams pyin = 0.005)

p R p R p R p R p R
0.001 36 0.0051 178 0.0092 313 0.0133 441 0.0174 | 562
0.0011 39 0.0052 181 0.0093 316 0.0134 444 0.0175 | 565
0.0012 43 0.0053 185 0.0094 320 0.0135 447 0.0176 | 568
0.0013 46 0.0054 188 0.0095 323 0.0136 450 0.0177 | 571
0.0014 50 0.0055 192 0.0096 326 0.0137 453 0.0178 | 574
0.0015 54 0.0056 195 0.0097 329 0.0138 456 0.0179 | 577
0.0016 57 0.0057 198 0.0098 332 0.0139 459 0.018 579
0.0017 61 0.0058 202 0.0099 336 0.014 462 0.0181 | 582
0.0018 64 0.0059 205 0.01 339 0.0141 465 0.0182 | 585
0.0019 68 0.006 208 0.0101 342 0.0142 468 0.0183 | 588
0.002 71 0.0061 212 0.0102 345 0.0143 471 0.0184 | 591
0.0021 75 0.0062 215 0.0103 348 0.0144 474 0.0185 | 594
0.0022 78 0.0063 218 0.0104 351 0.0145 477 0.0186 | 596
0.0023 82 0.0064 222 0.0105 355 0.0146 480 0.0187 | 599
0.0024 85 0.0065 225 0.0106 358 0.0147 483 0.0188 | 602
0.0025 89 0.0066 228 0.0107 361 0.0148 486 0.0189 | 605
0.0026 92 0.0067 232 0.0108 364 0.0149 489 0.019 608
0.0027 96 0.0068 235 0.0109 367 0.015 492 0.0191 | 610
0.0028 99 0.0069 238 0.011 370 0.0151 495 0.0192 | 613
0.0029 | 103 0.007 242 0.0111 374 0.0152 498 0.0193 | 616
0.003 106 0.0071 245 0.0112 377 0.0153 501 0.0194 | 619
0.0031 | 110 0.0072 248 0.0113 380 0.0154 504 0.0195 | 621
0.0032 | 113 0.0073 252 0.0114 383 0.0155 507 0.0196 | 624
0.0033 | 116 0.0074 255 0.0115 386 0.0156 510 0.0197 | 627
0.0034 | 120 0.0075 258 0.0116 389 0.0157 513 0.0198 | 630
0.0035 | 123 0.0076 261 0.0117 392 0.0158 516 0.0199 | 633
0.0036 | 127 0.0077 265 0.0118 395 0.0159 519 0.02 635
0.0037 | 130 0.0078 268 0.0119 398 0.016 522 0.0201 | 638
0.0038 | 134 0.0079 271 0.012 402 0.0161 525 0.0202 | 641
0.0039 | 137 0.008 274 0.0121 405 0.0162 528 0.0203 | 644
0.004 141 0.0081 278 0.0122 408 0.0163 531 0.0204 | 646
0.0041 | 144 0.0082 281 0.0123 411 0.0164 533 0.0205 | 649
0.0042 | 147 0.0083 284 0.0124 414 0.0165 536 0.0206 | 652
0.0043 | 151 0.0084 287 0.0125 417 0.0166 539 0.0207 | 654
0.0044 | 154 0.0085 291 0.0126 420 0.0167 542 0.0208 | 657
0.0045 | 158 0.0086 294 0.0127 423 0.0168 545 0.0209 | 660
0.0046 | 161 0.0087 297 0.0128 426 0.0169 548 0.021 663
0.0047 | 165 0.0088 300 0.0129 429 0.017 551 0.0211 | 665
0.0048 | 168 0.0089 304 0.013 432 0.0171 554 0.0212 | 668
0.0049 | 171 0.009 307 0.0131 435 0.0172 557 0.0213 | 671
0.005 175 0.0091 310 0.0132 438 0.0173 559 0.0214 | 673

(continued)
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Table A2.5b (continued)

[ R P R ) P R ¢
0.0215 | 676 0.0256 | 783 0.0297 | 835 | 0.85
0.0216 | 679 0.0257 | 785 0.02908 | 835 | 085
0.0217 | 681 0.0258 | 788 0.0299 | 83 | 085
0.0218 | 684 0.0259 | 790 0.03 837 | 0.85
0.0219 | 687 0.026 793 0.0301 | 837 | 0.84
0.022 690 0.0261 | 795 0.0302 | 838 | 0.84
0.0221 | 692 0.0262 | 798 0.0303 | 838 | 0.84
0.0222 | 695 0.0263 | 800 0.0304 | 839 | 0.84
0.0223 | 697 0.0264 | 803 0.0305 | 839 | 0.84
0.0224 | 700 0.0265 | 805 0.0306 | 840 | 0.84
0.0225 | 703 0.0266 | 808 0.0307 | 840 | 0.84
0.0226 | 705 0.0267 | 810 0.0308 | 841 | 083
0.0227 | 708 0.0268 | 813 0.0309 | 841 | 083
0.0228 | 711 0.0269 | 815 0.031 842 | 0.83

0.0229 713 0.027 818 Pre
0.023 716 0.0271 820 | 0.90
0.0231 719 0.0272 821 0.90
0.0232 721 0.0273 821 0.90
0.0233 724 0.0274 822 | 0.89
0.0234 726 0.0275 822 | 0.89
0.0235 729 0.0276 823 | 0.89
0.0236 732 0.0277 824 | 0.89
0.0237 734 0.0278 824 | 0.89
0.0238 737 0.0279 825 | 0.88
0.0239 739 0.028 825 0.88
0.024 742 0.0281 826 | 0.88
0.0241 745 0.0282 826 | 0.88
0.0242 747 0.0283 827 | 0.88
0.0243 750 0.0284 828 | 0.87
0.0244 752 0.0285 828 | 0.87
0.0245 755 0.0286 829 | 0.87
0.0246 757 0.0287 829 | 0.87
0.0247 760 0.0288 830 | 0.87
0.0248 763 0.0289 830 | 0.87
0.0249 765 0.029 831 0.86
0.025 768 0.0291 832 | 0.86
0.0251 770 0.0292 832 | 0.86
0.0252 773 0.0293 833 | 0.86
0.0253 775 0.0294 833 | 0.86
0.0254 778 0.0295 834 | 0.85
0.0255 780 0.0296 834 | 0.85
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Table A2.5¢ Resistance coefficient R (in psi) versus reinforcement ratio (p); £’ = 5,000 psi,
fy=40,000 psi (for beams pyin = 0.0053)

p R p R p R p R p R
0.001 36 0.0051 | 179 0.0092 | 317 0.0133 | 449 0.0174 | 575
0.0011 39 0.0052 | 183 0.0093 | 320 0.0134 | 452 0.0175 | 578
0.0012 43 0.0053 | 186 0.0094 | 323 0.0135 | 455 0.0176 | 581
0.0013 47 0.0054 | 189 0.0095 | 327 0.0136 | 458 0.0177 | 584
0.0014 50 0.0055 | 193 0.0096 | 330 0.0137 | 461 0.0178 | 587
0.0015 54 0.0056 | 196 0.0097 | 333 0.0138 | 465 0.0179 | 590
0.0016 57 0.0057 | 200 0.0098 | 337 0.0139 | 468 0.018 593
0.0017 61 0.0058 | 203 0.0099 | 340 0.014 471 0.0181 | 596
0.0018 64 0.0059 | 207 0.01 343 0.0141 | 474 0.0182 | 599
0.0019 68 0.006 210 0.0101 | 346 0.0142 | 477 0.0183 | 602
0.002 71 0.0061 | 213 0.0102 | 350 0.0143 | 480 0.0184 | 605
0.0021 75 0.0062 | 217 0.0103 | 353 0.0144 | 483 0.0185 | 608
0.0022 78 0.0063 | 220 0.0104 | 356 0.0145 | 486 0.0186 | 611
0.0023 82 0.0064 | 223 0.0105 | 359 0.0146 | 489 0.0187 | 614
0.0024 85 0.0065 | 227 0.0106 | 363 0.0147 | 493 0.0188 | 617
0.0025 89 0.0066 | 230 0.0107 | 366 0.0148 | 496 0.0189 | 620
0.0026 92 0.0067 | 234 0.0108 | 369 0.0149 | 499 0.019 623
0.0027 96 0.0068 | 237 0.0109 | 372 0.015 502 0.0191 | 626
0.0028 99 0.0069 | 240 0.011 376 0.0151 | 505 0.0192 | 629
0.0029 | 103 0.007 244 0.0111 | 379 0.0152 | 508 0.0193 | 632
0.003 106 0.0071 | 247 0.0112 | 382 0.0153 | 511 0.0194 | 635
0.0031 | 110 0.0072 | 250 0.0113 | 385 0.0154 | 514 0.0195 | 638
0.0032 | 113 0.0073 | 254 0.0114 | 388 0.0155 | 517 0.0196 | 641
0.0033 | 117 0.0074 | 257 0.0115 | 392 0.0156 | 520 0.0197 | 643
0.0034 | 120 0.0075 | 260 0.0116 | 395 0.0157 | 523 0.0198 | 646
0.0035 | 124 0.0076 | 264 0.0117 | 398 0.0158 | 527 0.0199 | 649
0.0036 | 127 0.0077 | 267 0.0118 | 401 0.0159 | 530 0.02 652
0.0037 | 131 0.0078 | 270 0.0119 | 404 0.016 533 0.0201 | 655
0.0038 | 134 0.0079 | 274 0.012 408 0.0161 | 536 0.0202 | 658
0.0039 | 138 0.008 277 0.0121 | 411 0.0162 | 539 0.0203 | 661
0.004 141 0.0081 | 280 0.0122 | 414 0.0163 | 542 0.0204 | 664
0.0041 | 145 0.0082 | 284 0.0123 | 417 0.0164 | 545 0.0205 | 667
0.0042 | 148 0.0083 | 287 0.0124 | 420 0.0165 | 548 0.0206 | 670
0.0043 | 152 0.0084 | 290 0.0125 | 424 0.0166 | 551 0.0207 | 673
0.0044 | 155 0.0085 | 294 0.0126 | 427 0.0167 | 554 0.0208 | 676
0.0045 | 159 0.0086 | 297 0.0127 | 430 0.0168 | 557 0.0209 | 678
0.0046 | 162 0.0087 | 300 0.0128 | 433 0.0169 | 560 0.021 681
0.0047 | 165 0.0088 | 304 0.0129 | 436 0.017 563 0.0211 | 684
0.0048 | 169 0.0089 | 307 0.013 439 0.0171 | 566 0.0212 | 687
0.0049 | 172 0.009 310 0.0131 | 443 0.0172 | 569 0.0213 | 690
0.005 176 0.0091 | 314 0.0132 | 446 0.0173 | 572 0.0214 | 693

(continued)
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Table A2.5¢ (continued)

[ R [ R P R ) P R ¢
0.0215 | 696 | 0.0256 | 811 | 0.0297 | 920 0.0338 | 987 | 0.87
0.0216 | 699 | 0.0257 | 813 | 0.0298 | 922 0.0339 | 988 | 0.87
0.0217 | 701 | 0.0258 | 816 | 0.0299 | 925 0.034 989 | 0.87
0.0218 | 704 | 0.0259 | 819 | 0.03 928 0.0341 | 989 | 0.86
0.0219 | 707 | 0.026 | 821 | 0.0301 | 930 0.0342 | 990 | 0.86
0.022 | 710 | 0.0261 | 824 | 0.0302 | 933 0.0343 | 991 | 0.86
0.0221 | 713 | 0.0262 | 827 | 0.0303 | 935 0.0344 | 991 | 0.86
0.0222 | 716 | 0.0263 | 830 | 0.0304 | 938 0.0345 | 992 | 0.86
0.0223 | 719 | 0.0264 | 832 | 0.0305 | 940 0.0346 | 992 | 0.86
0.0224 | 721 | 0.0265 | 835 | 0.0306 | 943 0.0347 | 993 | 0.86
0.0225 | 724 | 0.0266 | 838 | 0.0307 | 946 0.0348 | 994 | 0.85
0.0226 | 727 | 0.0267 | 840 | 0.0308 | 948 0.0349 | 994 | 0.85
0.0227 | 730 | 0.0268 | 843 | 0.0309 | 951 0.035 995 | 0.85
0.0228 | 733 | 0.0269 | 846 | 0.031 | 953 0.0351 | 995 | 0.85
0.0229 | 736 | 0.027 | 848 | 0.0311 | 956 0.0352 | 996 | 0.85
0.023 | 738 | 0.0271 | 851 | 0.0312 | 958 0.0353 | 997 | 0.85
0.0231 | 741 | 0.0272 | 854 | 0.0313 | 961 0.0354 | 997 | 0.84
0.0232 | 744 | 0.0273 | 857 | 0.0314 | 963 0.0355 | 998 | 0.84
0.0233 | 747 | 0.0274 | 859 | 0.0315 | 966 0.0356 | 998 | 0.84
0.0234 | 750 | 0.0275 | 862 | 0.0316 | 968 0.0357 | 999 | 0.84
0.0235 | 752 | 0.0276 | 865 | 0.0317 | 971 0.0358 | 1000 | 0.84
0.0236 | 755 | 0.0277 | 867 | 0.0318 | 973 | p, 0.0359 | 1000 | 0.84
0.0237 | 758 | 0.0278 | 870 | 0.0319 | 976 | 0.9 0.036 | 1001 | 0.84
0.0238 | 761 | 0.0279 | 873 | 0.032 | 976 | 09 0.0361 | 1001 | 0.84
0.0239 | 764 | 0.028 | 875 | 0.0321 | 977 | 09 0.0362 | 1002 | 0.83
0.024 | 766 | 0.0281 | 878 | 0.0322 | 977 | 0.89 0.0363 | 1002 | 0.83
0.0241 | 769 | 0.0282 | 880 | 0.0323 | 978 | 0.89 0.0364 | 1003 | 0.83
0.0242 | 772 | 0.0283 | 883 | 0.0324 | 979 | 0.89
0.0243 | 775 | 0.0284 | 886 | 0.0325 | 979 | 0.89
0.0244 | 778 | 0.0285 | 888 | 0.0326 | 980 | 0.89
0.0245 | 780 | 0.0286 | 891 | 0.0327 | 981 | 0.89
0.0246 | 783 | 0.0287 | 894 | 0.0328 | 981 | 0.88
0.0247 | 786 | 0.0288 | 896 | 0.0329 | 982 | 0.88
0.0248 | 789 | 0.0289 | 899 | 0.033 | 983 | 0.88
0.0249 | 791 | 0.029 | 902 | 0.0331 | 983 | 0.88
0.025 | 794 | 0.0291 | 904 | 0.0332 | 984 | 0.88
0.0251 | 797 | 0.0292 | 907 | 0.0333 | 984 | 0.88
0.0252 | 800 | 0.0293 | 909 | 0.0334 | 985 | 0.87
0.0253 | 802 | 0.0294 | 912 | 0.0335 | 986 | 0.87
0.0254 | 805 | 0.0295 | 915 | 0.0336 | 986 | 0.87
0.0255 | 808 | 0.0296 | 917 | 0.0337 | 987 | 0.87
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Table A2.6a Resistance coefficient R (in psi) versus reinforcement ratio (p); f = 3,000psi,

fy=160,000 psi (for beams pyin = 0.0033)

p R P R P R P R ¢
0.001 53 0.0051 259 0.0092 443 0.0133 606
0.0011 59 0.0052 | 264 0.0093 447 0.0134 | 610
0.0012 64 0.0053 268 0.0094 451 0.0135 613 Pre
0.0013 69 0.0054 | 273 0.0095 456 0.0136 | 615 | 0.90
0.0014 74 0.0055 278 0.0096 460 0.0137 | 615 | 0.89
0.0015 80 0.0056 | 282 0.0097 464 0.0138 | 616 | 0.89
0.0016 85 0.0057 | 287 0.0098 468 0.0139 | 616 | 0.88
0.0017 90 0.0058 | 292 0.0099 472 0.014 616 | 0.88
0.0018 95 0.0059 | 296 0.01 476 0.0141 616 | 0.87
0.0019 | 100 0.006 301 0.0101 481 0.0142 | 616 | 0.87
0.002 105 0.0061 306 0.0102 485 0.0143 | 617 | 0.86
0.0021 | 111 0.0062 | 310 0.0103 489 0.0144 | 617 | 0.86
0.0022 | 116 0.0063 315 0.0104 493 0.0145 617 | 0.86
0.0023 | 121 0.0064 | 320 0.0105 497 0.0146 | 617 | 085
0.0024 | 126 0.0065 324 0.0106 501 0.0147 | 617 | 085
0.0025 | 131 0.0066 | 329 0.0107 505 0.0148 | 618 | 0.84
0.0026 | 136 0.0067 | 333 0.0108 509 0.0149 | 618 | 0.84
0.0027 | 141 0.0068 | 338 0.0109 513 0.015 618 | 0.83
0.0028 | 146 0.0069 | 342 0.011 517 0.0151 618 | 0.83
0.0029 | 151 0.007 347 0.0111 521 0.0152 | 618 | 0.83
0.003 156 0.0071 351 0.0112 525 0.0153 | 619 | 0.82
0.0031 | 161 0.0072 | 356 0.0113 529 0.0154 | 619 | 0.82
0.0032 | 166 0.0073 360 0.0114 533 0.0155 619 | 081
0.0033 | 171 0.0074 | 365 0.0115 537
0.0034 | 176 0.0075 369 0.0116 | 541
0.0035 | 181 0.0076 | 374 0.0117 | 545
0.0036 | 186 0.0077 | 378 0.0118 | 549
0.0037 | 191 0.0078 | 383 0.0119 | 553
0.0038 | 196 0.0079 | 387 0.012 557
0.0039 | 201 0.008 391 0.0121 560
0.004 206 0.0081 396 0.0122 | 564
0.0041 | 211 0.0082 | 400 0.0123 | 568
0.0042 | 216 0.0083 | 404 0.0124 | 572
0.0043 | 220 0.0084 | 409 0.0125 | 576
0.0044 | 225 0.0085 | 413 0.0126 | 580
0.0045 | 230 0.0086 | 417 0.0127 | 583
0.0046 | 235 0.0087 | 422 0.0128 | 587
0.0047 | 240 0.0088 | 426 0.0129 | 591
0.0048 | 245 0.0089 | 430 0.013 595
0.0049 | 249 0.009 435 0.0131 598
0.005 254 0.0091 439 0.0132 | 602




616 Appendix A: Tables and Diagrams

Table A2.6b Resistance coefficient R (in psi) versus reinforcement ratio (p); £/ = 4,000 psi,
fy=160,000 psi (for beams pyin = 0.0033)

P R P R P R P R p R ¢
0.001 54 | 0.0051 | 263 | 0.0092 | 456 | 0.0133 | 634 0.0174 | 795
0.0011 59 | 0.0052 | 268 | 0.0093 | 461 | 0.0134 | 638 0.0175 | 799
0.0012 64 | 0.0053 | 273 | 0.0094 | 465 | 0.0135 | 642 0.0176 | 803
0.0013 69 | 0.0054 | 278 | 0.0095 | 470 | 0.0136 | 646 0.0177 | 807
0.0014 75 | 0.0055 | 283 | 0.0096 | 474 | 0.0137 | 650 0.0178 | 810
0.0015 80 | 0.0056 | 287 | 0.0097 | 479 | 0.0138 | 654 0.0179 | 814
0.0016 85 | 0.0057 | 292 | 0.0098 | 483 | 0.0139 | 659 0.018 818 | pre
0.0017 90 | 0.0058 | 297 | 0.0099 | 488 | 0.014 663 0.0181 | 820 | 0.90
0.0018 96 | 0.0059 | 302 | 0.01 492 | 0.0141 | 667 0.0182 | 820 | 0.89
0.0019 | 101 0.006 307 | 0.0101 | 497 | 0.0142 | 671 0.0183 | 820 | 0.89
0.002 106 | 0.0061 | 312 | 0.0102 | 501 0.0143 | 675 0.0184 | 821 | 0.89
0.0021 | 111 0.0062 | 316 | 0.0103 | 506 | 0.0144 | 679 0.0185 | 821 | 0.88
0.0022 | 116 | 0.0063 | 321 | 0.0104 | 510 | 0.0145 | 683 0.0186 | 821 | 0.88
0.0023 | 122 | 0.0064 | 326 | 0.0105 | 514 | 0.0146 | 687 0.0187 | 821 | 0.88
0.0024 | 127 | 0.0065 | 331 0.0106 | 519 | 0.0147 | 691 0.0188 | 822 | 0.87
0.0025 | 132 | 0.0066 | 336 | 0.0107 | 523 | 0.0148 | 695 0.0189 | 822 | 0.87
0.0026 | 137 | 0.0067 | 340 | 0.0108 | 528 | 0.0149 | 699 0.019 822 | 0.87
0.0027 | 142 | 0.0068 | 345 | 0.0109 | 532 | 0.015 703 0.0191 | 822 | 0.86
0.0028 | 147 | 0.0069 | 350 | 0.011 536 | 0.0151 | 707 0.0192 | 822 | 0.86
0.0029 | 153 | 0.007 355 | 0.0111 | 541 0.0152 | 711 0.0193 | 823 | 0.86
0.003 158 | 0.0071 | 359 | 0.0112 | 545 | 0.0153 | 715 0.0194 | 823 | 0.85
0.0031 | 163 | 0.0072 | 364 | 0.0113 | 549 | 0.0154 | 719 0.0195 | 823 | 0.85
0.0032 | 168 | 0.0073 | 369 | 0.0114 | 554 | 0.0155 | 723 0.0196 | 823 | 0.85
0.0033 | 173 | 0.0074 | 374 | 0.0115 | 558 | 0.0156 | 726 0.0197 | 823 | 0.84
0.0034 | 178 | 0.0075 | 378 | 0.0116 | 562 | 0.0157 | 730 0.0198 | 824 | 0.84
0.0035 | 183 | 0.0076 | 383 | 0.0117 | 567 | 0.0158 | 734 0.0199 | 824 | 0.84
0.0036 | 188 | 0.0077 | 388 | 0.0118 | 571 | 0.0159 | 738 0.02 824 | 0.83
0.0037 | 193 | 0.0078 | 392 | 0.0119 | 575 | 0.016 742 0.0201 | 824 | 0.83
0.0038 | 198 | 0.0079 | 397 | 0.012 579 | 0.0161 | 746 0.0202 | 824 | 0.83
0.0039 | 203 | 0.008 402 | 0.0121 | 584 | 0.0162 | 750 0.0203 | 825 | 0.82
0.004 208 | 0.0081 | 406 | 0.0122 | 588 | 0.0163 | 754 0.0204 | 825 | 0.82
0.0041 | 213 | 0.0082 | 411 0.0123 | 592 | 0.0164 | 757 0.0205 | 825 | 0.82
0.0042 | 218 | 0.0083 | 415 | 0.0124 | 596 | 0.0165 | 761 0.0206 | 825 | 0.82
0.0043 | 223 | 0.0084 | 420 | 0.0125 | 601 | 0.0166 | 765 0.0207 | 825 | 0.81
0.0044 | 228 | 0.0085 | 425 | 0.0126 | 605 | 0.0167 | 769
0.0045 | 233 | 0.0086 | 429 | 0.0127 | 609 | 0.0168 | 773
0.0046 | 238 | 0.0087 | 434 | 0.0128 | 613 | 0.0169 | 777
0.0047 | 243 | 0.0088 | 438 | 0.0129 | 617 | 0.017 780
0.0048 | 248 | 0.0089 | 443 | 0.013 621 | 0.0171 | 784
0.0049 | 253 | 0.009 447 | 0.0131 | 626 | 0.0172 | 788
0.005 258 | 0.0091 | 452 | 0.0132 | 630 | 0.0173 | 792
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Table A2.6c Resistance coefficient R (in psi) versus reinforcement ratio (p); £/ = 5,000psi,
fy=160,000 psi (for beams pyin = 0.0035)

P R P R [ R [ R P | R & p R ®
0.001 | 54 |0.0051|265 |0.0092 |465 | 0.0133 |651 | 0.0174 824 0.0215| 976 0.89
0.0011 | 59 |0.0052 |270 | 0.0093 | 469 |0.0134 | 655 | 0.0175 | 828 0.0216| 976 0.89
0.0012 | 64 |0.0053 | 275 | 0.0094 | 474 | 0.0135 | 660 | 0.0176| 832 0.0217| 977/ 0.89
0.0013 | 70 | 0.0054 | 280 | 0.0095 | 479 | 0.0136 | 664 | 0.0177 | 836 0.0218| 977/ 0.88
0.0014 | 75 | 0.0055 | 285 | 0.0096 | 483 | 0.0137 | 668 | 0.0178 | 840 0.0219]977/ 0.88
0.0015 | 80 | 0.0056 | 290 | 0.0097 | 488 | 0.0138 | 673 | 0.0179 | 844 0.022 978/ 0.88
0.0016 | 85 |0.0057 | 295 | 0.0098 | 493 | 0.0139 | 677 | 0.018 | 848 0.0221] 978/ 0.87
0.0017 | 91 |0.0058 | 300 | 0.0099 | 497 |0.014 | 681 | 0.0181|853 0.0222] 978 0.87
0.0018 | 96 |0.0059 | 305 |0.01 |502 |0.0141 | 686 | 0.0182| 857 0.0223| 978 0.87
0.0019 | 101 |0.006 |310 |0.0101 |507 |0.0142 | 690 |0.0183|861 0.0224| 979/ 0.86
0.002 | 106 |0.0061 | 315 |0.0102 | 511 | 0.0143 | 694 | 0.0184 | 865 0.0225] 979/ 0.86
0.0021 | 112 |0.0062 [ 320 |0.0103 | 516 |0.0144 | 699 |0.0185|869 0.0226| 979/ 0.86
0.0022 | 117 |0.0063 | 325 |0.0104 | 520 |0.0145 | 703 |0.0186| 873 0.0227 | 980/ 0.86
0.0023 | 122 | 0.0064 | 330 | 0.0105 | 525 | 0.0146 | 707 | 0.0187| 877 0.0228 | 980/ 0.85
0.0024 | 127 |0.0065 | 335 |0.0106 | 530 |0.0147 | 711 |0.0188 | 880 0.0229 980/ 0.85
0.0025 | 133 | 0.0066 | 340 |0.0107 | 534 |0.0148 | 716 | 0.0189 | 884 0.023 | 980/ 0.85
0.0026 | 138 |0.0067 | 345 |0.0108 | 539 |0.0149 | 720 | 0.019 | 888 0.0231| 981/ 0.85
0.0027 | 143 |0.0068 [ 350 |0.0109 | 543 |0.015 |724 |0.0191 892 0.0232 981/ 0.84
0.0028 | 148 | 0.0069 | 354 |0.011 |548 | 0.0151 | 728 | 0.0192| 896 0.0233| 981 0.84
0.0029 | 153 [0.007 [359 [0.0111|552 |0.0152|733 |0.0193|900 0.0234| 981/ 0.84
0.003 | 159 |0.0071 | 364 |0.0112 | 557 | 0.0153 | 737 | 0.0194 | 904 0.0235| 982/ 0.83
0.0031 | 164 |0.0072 | 369 |0.0113 | 562 | 0.0154 | 741 | 0.0195 | 908 0.0236 | 982/ 0.83
0.0032 | 169 | 0.0073 | 374 | 0.0114 | 566 | 0.0155 | 745 | 0.0196| 912 0.0237| 982/ 0.83
0.0033 | 174 | 0.0074 | 379 | 0.0115 | 571 | 0.0156 | 750 | 0.0197 | 916 0.0238 | 982/ 0.83
0.0034 | 179 | 0.0075 | 384 | 0.0116 | 575 | 0.0157 | 754 | 0.0198 | 920 0.0239| 983 | 0.82
0.0035 | 184 | 0.0076 | 388 | 0.0117 | 580 | 0.0158 | 758 | 0.0199 | 924 0.024 |983]0.82
0.0036 | 189 |0.0077 | 393 | 0.0118 | 584 | 0.0159 | 762 | 0.02 | 928 0.0241 983 0.82
0.0037 | 195 | 0.0078 | 398 | 0.0119 | 589 | 0.016 |766 | 0.0201| 931 0.0242 | 983 0.82
0.0038 | 200 | 0.0079 | 403 |0.012 |593 | 0.0161 | 771 | 0.0202| 935 0.0243 | 984 0.81
0.0039 | 205 | 0.008 | 408 |0.0121 |598 | 0.0162 | 775 | 0.0203| 939 0.0244 | 984 0.81
0.004 | 210 |0.0081 | 412 |0.0122 | 602 | 0.0163 | 779 | 0.0204 | 943
0.0041 | 215 | 0.0082 | 417 | 0.0123 | 607 | 0.0164 | 783 | 0.0205 | 947
0.0042 | 220 | 0.0083 | 422 | 0.0124 | 611 | 0.0165 | 787 | 0.0206| 951
0.0043 | 225 | 0.0084 | 427 | 0.0125 | 615 | 0.0166 | 791 | 0.0207 | 954
0.0044 | 230 | 0.0085 | 431 | 0.0126 | 620 | 0.0167 | 795 | 0.0208 | 958
0.0045 | 235 | 0.0086 | 436 | 0.0127 | 624 | 0.0168 | 800 | 0.0209 | 962
0.0046 | 240 | 0.0087 441 [0.0128 | 629 |0.0169 | 804 |0.021 |966
0.0047 | 245 | 0.0088 | 446 | 0.0129 | 633 | 0.017 | 808 | 0.0211| 970
0.0048 | 250 | 0.0089 [ 450 [0.013 |638 |0.0171 |812 |0.0212|973| p,.

0.0049 | 255 | 0.009 |455 [0.0131 |642 |0.0172 | 816 |0.0213|976]0.90
0.005 | 260 | 0.0091 [ 460 |0.0132 | 646 |0.0173 |820 |0.0214|976]0.90
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Table A2.7a Resistance coefficient R (in psi) versus reinforcement ratio (p); £/ = 3,000 psi,
fy="75,000 psi (for beams pyi, = 0.0027)

p R p R P R ¢
0.001 67 0.0051 318 0.0092 537
0.0011 73 0.0052 324 0.0093 542
0.0012 80 0.0053 330 0.0094 547
0.0013 86 0.0054 336 0.0095 552
0.0014 93 0.0055 341 0.0096 557
0.0015 99 0.0056 347 0.0097 561
0.0016 105 0.0057 352 0.0098 566
0.0017 112 0.0058 358 0.0099 571
0.0018 118 0.0059 364 0.01 576
0.0019 125 0.006 369 0.0101 580
0.002 131 0.0061 375 0.0102 585
0.0021 137 0.0062 380 0.0103 590
0.0022 144 0.0063 386 0.0104 595
0.0023 150 0.0064 391 0.0105 599
0.0024 156 0.0065 397 0.0106 604
0.0025 163 0.0066 402 0.0107 609
0.0026 169 0.0067 408 0.0108 613 Pre
0.0027 175 0.0068 413 0.0109 615 0.90
0.0028 181 0.0069 418 0.011 614 0.89
0.0029 187 0.007 424 0.0111 613 0.88
0.003 194 0.0071 429 0.0112 613 0.87
0.0031 200 0.0072 435 0.0113 612 0.87
0.0032 206 0.0073 440 0.0114 611 0.86
0.0033 212 0.0074 445 0.0115 611 0.85
0.0034 218 0.0075 450 0.0116 610 0.85
0.0035 224 0.0076 456 0.0117 609 0.84
0.0036 230 0.0077 461 0.0118 609 0.83
0.0037 236 0.0078 466 0.0119 608 0.83
0.0038 242 0.0079 471 0.012 608 0.82
0.0039 248 0.008 476 0.0121 607 0.81
0.004 254 0.0081 482 0.0122 606 0.81
0.0041 260 0.0082 487 0.0123 606 0.80
0.0042 266 0.0083 492 0.0124 605 0.80
0.0043 272 0.0084 497
0.0044 278 0.0085 502
0.0045 284 0.0086 507
0.0046 289 0.0087 512
0.0047 295 0.0088 517
0.0048 301 0.0089 522
0.0049 307 0.009 527
0.005 313 0.0091 532
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Table A2.7b Resistance coefficient R (in psi) versus reinforcement ratio (p); £/ = 4,000 psi,

fy="75,000 psi (for beams pyi, = 0.0027)

p R p R P R p R ¢
0.001 67 0.0051 325 0.0092 558 0.0133 | 766
0.0011 73 0.0052 | 331 0.0093 563 0.0134 | 771
0.0012 80 0.0053 | 337 0.0094 569 0.0135 | 776
0.0013 86 0.0054 | 343 0.0095 574 0.0136 | 780
0.0014 93 0.0055 | 349 0.0096 579 0.0137 | 785
0.0015 100 0.0056 | 355 0.0097 585 0.0138 | 790
0.0016 106 0.0057 | 361 0.0098 590 0.0139 | 794
0.0017 113 0.0058 | 366 0.0099 595 0.014 799
0.0018 119 0.0059 | 372 0.01 601 0.0141 804
0.0019 126 0.006 378 0.0101 606 0.0142 | 808
0.002 132 0.0061 384 0.0102 611 0.0143 | 813
0.0021 138 0.0062 | 390 0.0103 616 0.0144 | 818 Pre
0.0022 145 0.0063 | 396 0.0104 621 0.0145 | 820 | 0.90
0.0023 151 0.0064 | 402 0.0105 627 0.0146 | 819 | 0.89
0.0024 158 0.0065 | 407 0.0106 632 0.0147 | 818 | 0.89
0.0025 164 0.0066 | 413 0.0107 637 0.0148 | 818 | 0.88
0.0026 170 0.0067 | 419 0.0108 642 0.0149 | 817 | 0.87
0.0027 177 0.0068 | 425 0.0109 647 0.015 816 | 0.87
0.0028 183 0.0069 | 430 0.011 652 0.0151 816 | 0.86
0.0029 189 0.007 436 0.0111 658 0.0152 | 815 | 0.86
0.003 196 0.0071 | 442 0.0112 663 0.0153 | 815 | 0.85
0.0031 202 0.0072 | 447 0.0113 668 0.0154 | 814 | 085
0.0032 208 0.0073 | 453 0.0114 673 0.0155 | 813 | 0.84
0.0033 215 0.0074 | 459 0.0115 678 0.0156 | 813 | 0.84
0.0034 221 0.0075 | 464 0.0116 683 0.0157 | 812 | 0.83
0.0035 227 0.0076 | 470 0.0117 688 0.0158 | 811 | 0.83
0.0036 233 0.0077 | 476 0.0118 693 0.0159 | 811 | 0.82
0.0037 240 0.0078 | 481 0.0119 698 0.016 810 | 0.82
0.0038 246 0.0079 | 487 0.012 703 0.0161 809 | 0.82
0.0039 252 0.008 492 0.0121 708 0.0162 | 809 | 081
0.004 258 0.0081 | 498 0.0122 713 0.0163 | 808 | 0.81
0.0041 264 0.0082 | 503 0.0123 718 0.0164 | 808 | 0.80
0.0042 270 0.0083 | 509 0.0124 723 0.0165 | 807 | 0.80
0.0043 276 0.0084 | 514 0.0125 727
0.0044 283 0.0085 | 520 0.0126 | 732
0.0045 289 0.0086 | 525 0.0127 | 737
0.0046 295 0.0087 | 531 0.0128 | 742
0.0047 301 0.0088 | 536 0.0129 | 747
0.0048 307 0.0089 | 542 0.013 752
0.0049 313 0.009 547 0.0131 | 756
0.005 319 0.0091 553 0.0132 | 761
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Table A2.7¢ Resistance coefficient R (in psi) versus reinforcement ratio (p); £/ = 5,000psi,
fy="75,000 psi (for beams py, = 0.0028)

[ R p R p R P R ¢ p R | ¢
0.001 67 | 0.0051 | 329 | 0.0092 | 571 | 0.0133 | 792 0.0174 | 973 | 0.88
0.0011 | 74 | 0.0052 | 335 | 0.0093 | 576 | 0.0134 | 798 0.0175 | 973 | 0.88
0.0012 | 80 | 0.0053 | 341 | 0.0094 | 582 | 0.0135 | 803 0.0176 | 972 | 0.87
0.0013 | 87 | 0.0054 | 347 | 0.0095 | 587 | 0.0136 | 808 0.0177 | 971 | 0.87
0.0014 | 93 | 0.0055 | 353 | 0.0096 | 593 | 0.0137 | 813 0.0178 | 971 | 0.86
0.0015 | 100 | 0.0056 | 359 | 0.0097 | 599 | 0.0138 | 818 0.0179 | 970 | 0.86
0.0016 | 106 | 0.0057 | 365 | 0.0098 | 604 | 0.0139 | 823 0.018 | 970 | 0.85
0.0017 | 113 | 0.0058 | 371 | 0.0099 | 610 | 0.014 | 828 0.0181 | 969 | 0.85
0.0018 | 120 | 0.0059 | 378 | 0.01 | 615 | 0.0141 | 833 0.0182 | 969 | 0.85
0.0019 | 126 | 0.006 | 384 | 0.0101 | 621 | 0.0142 | 838 0.0183 | 968 | 0.84
0.002 | 133 | 0.0061 | 390 | 0.0102 | 627 | 0.0143 | 843 0.0184 | 967 | 0.84
0.0021 | 139 | 0.0062 | 396 | 0.0103 | 632 | 0.0144 | 848 0.0185 | 967 | 0.83
0.0022 | 146 | 0.0063 | 402 | 0.0104 | 638 | 0.0145 | 854 0.0186 | 966 | 0.83
0.0023 | 152 | 0.0064 | 408 | 0.0105 | 643 | 0.0146 | 859 0.0187 | 966 | 0.82
0.0024 | 159 | 0.0065 | 414 | 0.0106 | 649 | 0.0147 | 864 0.0188 | 965 | 0.82
0.0025 | 165 | 0.0066 | 420 | 0.0107 | 654 | 0.0148 | 869 0.0189 | 965 | 0.82
0.0026 | 171 | 0.0067 | 426 | 0.0108 | 660 | 0.0149 | 874 0.019 | 964 | 0.81
0.0027 | 178 | 0.0068 | 431 | 0.0109 | 665 | 0.015 | 878 0.0191 | 963 | 0.81
0.0028 | 184 | 0.0069 | 437 | 0.011 | 670 | 0.0151 | 883 0.0192 | 963 | 0.81
0.0029 | 191 | 0.007 | 443 | 0.0111 | 676 | 0.0152 | 888 0.0193 | 962 | 0.80
0.003 | 197 | 0.0071 | 449 | 0.0112 | 681 | 0.0153 | 893 0.0194 | 962 | 0.80

0.0031 | 204 | 0.0072 | 455 | 0.0113 | 687 | 0.0154 | 898
0.0032 | 210 | 0.0073 | 461 | 0.0114 | 692 | 0.0155 | 903
0.0033 | 216 | 0.0074 | 467 | 0.0115 | 697 | 0.0156 | 908
0.0034 | 223 | 0.0075 | 473 | 0.0116 | 703 | 0.0157 | 913
0.0035 | 229 | 0.0076 | 479 | 0.0117 | 708 | 0.0158 | 918
0.0036 | 235 | 0.0077 | 484 | 0.0118 | 714 | 0.0159 | 923
0.0037 | 242 | 0.0078 | 490 | 0.0119 | 719 | 0.016 | 928
0.0038 | 248 | 0.0079 | 496 | 0.012 | 724 | 0.0161 | 932
0.0039 | 254 | 0.008 | 502 | 0.0121 | 730 | 0.0162 | 937
0.004 260 | 0.0081 | 508 | 0.0122 | 735 | 0.0163 | 942
0.0041 | 267 | 0.0082 | 513 | 0.0123 | 740 | 0.0164 | 947
0.0042 | 273 | 0.0083 | 519 | 0.0124 | 745 | 0.0165 | 952
0.0043 | 279 | 0.0084 | 525 | 0.0125 | 751 | 0.0166 | 956
0.0044 | 285 | 0.0085 | 531 | 0.0126 | 756 | 0.0167 | 961
0.0045 | 292 | 0.0086 | 536 | 0.0127 | 761 | 0.0168 | 966
0.0046 | 298 | 0.0087 | 542 | 0.0128 | 766 | 0.0169 | 971 | p,.

0.0047 | 304 | 0.0088 | 548 | 0.0129 | 772 | 0.017 | 975 | 0.90
0.0048 | 310 | 0.0089 | 554 | 0.013 | 777 | 0.0171 | 975 | 0.90
0.0049 | 316 | 0.009 | 559 | 0.0131 | 782 | 0.0172 | 974 | 0.89
0.005 323 | 0.0091 | 565 | 0.0132 | 787 | 0.0173 | 974 | 0.89
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Table A2.8 b, and b, for reinforced concrete beams (in.)
Number of bars bumin
in single layer #3 or #4 #5 #6 #7 #8 #9 #10 | #11 b max
2 6.0 6.0 6.5 7.0 7.0 7.5 8.0 85 | 14.0
3 7.5 8.0 8.0 9.0 9.0 | 10.0 | 10.5 | 11.0 | 24.0
4 9.0 9.5 | 10.0 | 10.5 | 11.0 | 12.0 | 13.0 | 14.0 | 340
5 10.5 11.0 | 11.5 | 125 | 13.0 | 145 | 155 | 17.0 | 440
6 12.0 125 | 135 | 145 | 150 | 16,5 | 18.0 | 19.5 | 54.0
7 13.5 145 | 150 | 165 | 17.0 | 19.0 | 20.5 | 22.5 | 64.0
8 15.0 16.0 | 17.0 | 18.0 | 19.0 | 21.0 | 23.0 | 25.5 | 74.0
9 16.5 17.5 | 18.5 | 20.0 | 21.0 | 235 | 26.0 | 28.0 | 84.0
10 18.0 19.0 | 20.5 | 22.0 | 23.0 | 255 | 28.5 | 31.0 | 94.0
Table A2.9 Areas of multiple reinforcing bars (in”)
Bar size
Number of bars #3 #4 #5 #6 #7 #8 #9 | #10 | #11
1 0.11 | 020 | 031 | 044 | 0.60 | 0.79| 1.00| 1.27| 1.56
2 0.22 | 040 | 0.62 | 0.88 | 1.20 | 1.58| 2.00| 2.54| 3.12
3 033 | 0.60 | 093 | 132 | 1.80 | 2.37| 3.00| 3.81| 4.68
4 044 | 0.80 | 1.24 | 1.76 | 2.40 | 3.16| 4.00| 5.08 6.24
5 0.55 | 1.00 | 1.55 | 2.20 | 3.00 | 3.95| 5.00| 6.35| 7.80
6 0.66 | 1.20 | 1.86 | 2.64 | 3.60 | 4.74| 6.00| 7.62| 9.36
7 0.77 | 140 | 2.17 | 3.08 | 420 | 553| 7.00| 8.89| 10.92
8 0.88 | 1.60 | 2.48 | 3.52 | 480 | 6.32| 8.00|10.16| 12.48
9 099 | 1.80 | 2.79 | 396 | 540 | 7.11| 9.00|11.43| 14.04
10 1.10 | 2.00 | 3.10 | 4.40 | 6.00 | 7.90|10.00| 12.70| 15.60
11 1.21 | 220 | 341 | 484 | 6.60 | 8.69/11.00|13.97| 17.16
12 1.32 | 240 | 3.72 | 528 | 7.20 | 9.4812.00|15.24| 18.72
13 143 | 2.60 | 403 | 572 | 7.80 |10.27|13.00| 16.51| 20.28
14 1.54 | 2.80 | 434 | 6.16 | 840 |11.06|14.00|17.78| 21.84
15 1.65 | 3.00 | 4.65 | 6.60 | 9.00 |11.85/15.00|19.05| 23.40
16 1.76 | 3.20 | 496 | 7.04 | 9.60 |12.64| 16.00|20.32| 24.96
17 1.87 | 340 | 527 | 7.48 |10.20 |13.43/17.00|21.59| 26.52
18 198 | 3.60 | 5.58 | 7.92 |10.80 |14.22|18.00|22.86| 28.08
19 2.09 | 3.80 | 5.89 | 836 |11.40 |15.01|19.00|24.13| 29.64
20 220 | 4.00 | 6.20 | 8.80 |12.00 |15.80|20.00|25.40| 31.20
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Table A2.10 Areas of reinforcement in one-foot-wide sections

Bar sizes

Spacing (in.) #3 #4 #5 #6 #7 #8 #9 #10 #11
3 044 | 080 | 1.24 | 1.76 | 240 | 3.16 | 4.00 | 5.08 | 6.24
4 0.33 | 0.60 | 0.93 1.32 | 1.80 | 237 | 3.00 | 3.81 | 4.68
5 0.26 | 048 | 0.74 | 1.06 | 144 | 190 | 240 | 3.05 | 3.74
6 022 | 040 | 0.62 | 0.88 1.20 | 1.58 | 2.00 | 2.54 | 3.12
7 0.19 | 034 | 053 | 0.75 1.03 135 | 1.71 | 2.18 | 2.67
8 0.17 | 030 | 047 | 066 | 090 | 1.19 | 1.50 | 1.91 2.34
9 0.15 | 027 | 041 | 059 | 0.80 | 1.05 1.33 1.69 | 2.08
10 0.13 | 024 | 037 | 053 | 0.72 | 0.95 1.20 | 1.52 | 1.87
11 0.12 | 022 | 034 | 048 | 065 | 0.86 | 1.09 | 1.39 | 1.70
12 0.11 | 020 | 031 | 044 | 0.60 | 0.79 | 1.00 | 1.27 | 1.56
13 0.10 | 0.18 | 029 | 041 | 055 | 073 | 092 | 1.17 | 144
14 0.09 | 0.17 | 027 | 038 | 051 | 0.68 | 0.86 | 1.09 | 1.34
15 0.09 | 0.16 | 025 | 035 | 048 | 063 | 0.80 | 1.02 | 1.25
16 0.08 | 0.15 | 023 | 033 | 045 | 0.59 | 0.75 | 095 1.17
17 0.08 | 0.14 | 022 | 031 | 042 | 056 | 0.71 | 090 | 1.10
18 0.07 | 0.13 | 021 | 029 | 040 | 0.53 | 0.67 | 0.85 1.04

Areas of steel are given in square inches for one-foot-wide sections of concrete (slabs, walls,
footings) for various center-to-center spacings of reinforcing bars
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Table A3.1 Description of factors used in embedment length formulae

623

Symbol | Name Condition Value
As calculated,
Development
Ly length but.not less than
12 in.
Horizontal reinforcement placed so that more
. than 12 in. of fresh concrete is cast in the 13
A Remforcement member below the development length or ’
location factor splice
Other reinforcement 1.0
Epoxy-coated or zinc and epoxy dual-coated
reinforcement with cover less than 3d,, or 1.5
clear spacing less than 6d,,
We Coating factor Epoxy-coated or zinc and epoxy dual-coated 12
reinforcement for all other conditions ’
Uncoated or zinc-coated (galvanized) 10
reinforcement ’
Reinforcement #6 and smaller bars and deformed wires 0.8
Ws size factor #7 and larger bars 1.0
Lightweight When lightweight aggregate concrete is used 0.75
A aggregate con- ‘When normal-weight concrete is used 1.0
crete factor .
Use the smaller of either distance from the
¢ Spacing or cover | center of the bar to the nearest concrete sur-
b dimension, in. face, or one-half of the center-to-center
spacing of the bars being developed.
It is permitted to use K, =0 as a design
simplification, even if transverse reinforce-
K Transverse rein- | ment is present. 404,
i forcement index | (s =spacing of the transverse reinforcement; o
and n = number of bars being developed or
lap spliced along the plane of splitting).
Excess Reinforcement in a flexural member is in Ay, required
reinforcement excess of that required by analysis. Ay, provided

Note: y X y, not to exceed 1.7
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Table A3.2 Simplified expression of development length, ¢,, for bars in tension based on ACI

code Section 25.4.2.2

Conditions

#6 and smaller bars
and deformed wires

#7 and larger
bars

A. Clear spacing of bars or wires being developed or
spliced not less than d,, clear cover not less than
dy,, and stirrups or ties throughout ¢, not less than
the ACI Code minimum; or clear spacing of bars
or wires being developed or lap spliced at least

2d,, and clear cover at least d;,

fywve \
250 /F )"

fywve \
2007 )

B. Other cases

Fowve )
son/f )"

Fwve )
aon g )

Note: The development length used may not be less than 12 in.

Table A3.3 Development length for tension bars ({4q) with f, =60 ksi (y, =y, =A=1.0) [in.]

Lg (in.)
fi=3 ksi fe=4 ksi
Bar size Condition A Condition B Condition A Condition B
#3 17 25 15 22
#4 22 33 19 29
#5 28 41 24 36
#6 33 50 29 43
#7 48 72 42 63
#8 55 83 48 72
#9 62 93 54 81
#10 70 105 61 91
#11 78 116 67 101

Note: Conditions A and B are based on Table A3.2
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Table A3.4 Factors for development of hooked bars in tension [ACI Section 25.4.3.2]

Symbol | Name Condition Value
Epoxy-coated or zinc and epoxy dual-coated 12
Coatine factor reinforcement ’
We oating Uncoated or zinc-coated (galvanized) 1.0
reinforcement )
#11 Bar and smaller hooks with side cover (normal
to plane of hook) >2.5 in., and for 90° hook with 0.7
We Cover factor cover on bar extension beyond hook >2 in.
Other 1.0
#11 Bar and smaller 90° hooks:
(1) enclosed along ¢, within ties or stirrups per-
pendicular to ¢, at spacing <3d,,, or
(2) Enclosed along the bar extension beyond hook
including the bend within ties or stirrups per- 08
Yy Confining factor pendicular to the hook extension at spacing ’
<34,
(3) #11 and smaller bars 180° hooks
Enclosed along ¢, within ties or stirrups per-
pendicular to £, at spacing <3d,,
Other 1.0
N Lightweight aggre- | Lightweight concrete 0.75
gate concrete factor | Normal weight concrete 1.0
Excess Reinforcement used by excess of that required by | Ay, required
reinforcement analysis Ay provided
Note: The development length used may not be less than the smaller of 8dy, or 6 in.
Table A3.5 Factors for development of bars in compression [ACI Section 25.4.9.3]
Symbol | Name Condition Value
Reinforcement enclosed within one of the
following:
(1) A spiral
X (2) A circular continuously wound tie with 0.75
Wr Confining factor dy >1/4 in., and pitch <4 in.
(3) #4 Ties spaced <4 in. on center
(4) Hoops spaced <4 in. on center
Other 1.0
A Lightweight aggregate | Lightweight concrete 0.75
concrete factor Normal-weight concrete 1.0
. Reinforcement used in excess of that required | Ay, required
Excess reinforcement b lysi R
Yy analysis As, provided

Note: The development length used may not be less than 8 in.
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Table A3.6 Development length for compression bars (¢,.) with
f, =160 ksi and various f{ values (in.) [A = y, = 1.0]

Bar size fi=3 ksi fi=4ksi Je> 5 ksi
#3 9 8 7
#4 11 10 9
#5 14 12 12
#6 17 15 14
#7 20 17 16
#8 22 19 18
#9 25 22 21
#10 28 24 23
#11 31 27 26
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Table Ad.1a Values of V.. in kips (£’ = 3,000psi) [d=h—2.5 in. (+/—)] (A= 1.0)
f£=13,000 psi

b,, (in.)

h (in.) 6 8 10 12 14 16 18 20 22 24 26 28 30

10 4.9 6.6 8.2 99 | 11.5 | 13.1 | 148 | 164 | 18.1 19.7 21.4 23.0 24.6
12 6.2 83| 104 | 125 | 146 | 16.7 | 18.7 | 20.8 | 229 | 250 27.1 29.1 31.2
14 7.6 | 10.1 | 12.6 | 15.1 | 17.6 | 20.2 | 22.7 | 25.2 | 27.7 | 30.2 32.8 353 37.8
16 89| 11.8 | 148 | 17.7 | 20.7 | 23.7 | 26.6 | 29.6 | 32.5 | 355 38.5 41.4 44.4
18 102 | 13.6 | 17.0 | 204 | 23.8 | 27.2 | 30.6 | 34.0 | 37.4 | 40.8 44.1 47.5 50.9
20 11.5 | 153 | 19.2 | 23.0 | 26.8 | 30.7 | 34.5 | 38.3 | 422 | 46.0 49.8 53.7 57.5
22 128 | 17.1 | 214 | 25.6 | 299 | 342 | 385 | 42.7 | 47.0 | 513 55.5 59.8 64.1
24 14.1 | 18.8 | 23.6 | 283 | 33.0 | 37.7 | 424 | 47.1 | 51.8 | 56.5 61.2 65.9 70.7
26 154 | 20.6 | 25.7 | 309 | 36.0 | 41.2 | 463 | 51.5 | 56.6 | 61.8 66.9 72.1 77.2
28 16.8 | 22.3 | 27.9 | 33.5 | 39.1 | 447 | 503 | 559 | 61.5 | 67.0 72.6 78.2 83.8
30 18.1 | 24.1 | 30.1 | 36.1 | 42.2 | 482 | 542 | 60.2 | 66.3 | 72.3 78.3 84.3 90.4
32 194 | 259 | 323 | 388 | 452 | 51.7 | 582 | 64.6 | 71.1 | 77.6 84.0 90.5 96.9
34 20.7 | 27.6 | 345 | 414 | 483 | 552 | 62.1 | 69.0 | 759 | 82.8 89.7 96.6 | 103.5
36 220 | 294 | 36.7 | 440 | 51.4 | 58.7 | 66.1 | 73.4 | 80.7 | 88.1 954 |102.8 |110.1
38 233 | 31.1 | 389 | 46.7 | 544 | 622 | 70.0 | 77.8 | 85.6 | 93.3 | 101.1 |108.9 |116.7
40 24.6 | 329 | 41.1 | 493 | 575 | 65.7 | 739 | 822 | 904 | 98.6 |106.8 |115.0 |123.2
42 26.0 | 34.6 | 433 | 519 | 60.6 | 69.2 | 77.9 | 86.5 | 95.2 | 103.8 | 1125 |121.2 | 129.8

Table A4.1b Values of V. in kips (£ = 4,000psi) [d=h—2.5 in. (+/—)] (A= 1.0)
F1=4,000 psi

b,, (in.)

h (in.) 6 8 10 12 14 16 18 20 22 24 26 28 30

10 5.7 7.6 95| 114 | 133 | 152 | 17.1 | 19.0 20.9 22.8 24.7 26.6 28.5
12 721 9.6| 120 | 144 | 16.8 | 19.2 | 21.6 | 24.0 264 | 288 | 312 33.6| 36.0
14 87| 11.6 | 145 | 17.5| 204 | 23.3 | 26.2 | 29.1 32.0 34.9 37.8 40.7 43.6
16 102 | 13.7 | 17.1 | 20.5 | 23.9 | 27.3 | 30.7 | 34.2 376 | 410 | 444 | 478| 512
18 11.8 | 157 | 19.6 | 23.5| 27.4 | 314 | 353 |39.2 43.1 47.1 51.0 | 549 | 588
20 133 | 17.7 | 22.1 | 26.6 | 31.0 | 35.4 | 39.8 | 44.3 48.7 | 53.1 57.6 | 62.0| 664
22 148 | 19.7 | 24.7 | 29.6 | 345 | 39.5 | 444 | 49.3 543 | 592 | 64.1 69.1 74.0
24 16.3 | 21.8 | 27.2 | 32.6 | 38.1 | 43.5 | 49.0 | 544 59.8| 653 | 70.7| 76.1 81.6
26 17.8 | 23.8 | 29.7 | 35.7 | 41.6 | 47.6 | 53.5 | 59.5 654 | 713| 773 832 | 892
28 19.4 | 25.8 | 32.3 | 38.7 | 452 | 51.6 | 58.1 | 64.5 71.0 | 774 | 839 903 96.8
30 20.9 | 27.8 | 34.8 | 41.7 | 48.7 | 55.7 | 62.6 | 69.6 76.5 835 904 | 974 | 1044
32 2241299 | 373 | 448 | 522 | 59.7 | 67.2 | 74.6 82.1 89.6 | 97.0| 1045 | 1119
34 239 | 319 | 39.8 | 47.8 | 55.8 | 63.8 | 71.7 | 79.7 87.7| 95.6 | 103.6 | 111.6 | 119.5
36 254 | 339 | 424 | 50.8 | 59.3 | 67.8 | 76.3 | 84.7 93.2 | 101.7 | 110.2 | 118.6 | 127.1
38 269 | 359 | 449 | 539 | 629 | 71.8 | 80.8 | 89.8 98.8 | 107.8 | 116.8 | 125.7 | 134.7
40 28.5 | 379 | 474 | 569 | 66.4 | 759 | 854|949 | 1044 | 113.8 | 1233 | 132.8 | 142.3
42 30.0 | 40.0 | 50.0 | 60.0 | 69.9 | 79.9 | 89.9 {99.9 | 109.9 | 119.9 | 1299 | 139.9 | 149.9
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Table Ad.1c Values of V. in kips (£’ = 5,000psi) [d=h—2.5 in. (+/-)] (A=1.0)

f£=15,000 psi

h b,, (in.)

(in.) 6 8 10 12 14 16 18 20 22 24 26 28 30
10 6.4 851|106 | 12.7 | 148 | 17.0 | 19.1 21.2 233 25.5 27.6 29.7 31.8
12 8.1 10.7 | 134 | 16.1 | 18.8 | 21.5 | 24.2 26.9 29.6 322 34.9 37.6 40.3
14 98| 13.0| 163 | 19.5| 228 | 26.0 | 29.3 325 35.8 39.0 423 45.5 48.8
16 11.5 | 153 | 19.1 | 229 | 26.7 | 30.5 | 344 38.2 42.0 45.8 49.6 53.5 57.3
18 132 | 17.5 | 219 | 263 | 30.7 | 35.1 | 395 43.8 48.2 52.6 57.0 61.4 65.8
20 14.8 | 19.8 | 24.7 | 29.7 | 34.6 | 39.6 | 445 49.5 54.4 59.4 64.3 69.3 74.2
22 16.5 | 22.1 | 27.6 | 33.1 | 38.6 | 44.1 | 49.6 55.2 60.7 66.2 71.7 77.2 82.7
24 182 | 243 | 304 | 36.5 | 42.6 | 48.6 | 54.7 60.8 66.9 73.0 79.1 85.1 91.2
26 19.9 | 26.6 | 33.2 | 39.9 | 46.5 | 53.2 | 59.8 66.5 73.1 79.8 86.4 93.1 99.7
28 21.6 | 28.8 | 36.1 | 43.3 | 50.5 | 57.7 | 649 72.1 79.3 86.5 93.8 | 101.0 | 108.2
30 233 | 31.1 | 389 | 46.7 | 544 | 622 | 70.0 77.8 85.6 93.3 | 101.1 | 108.9 | 116.7
32 25.0 | 33.4 | 41.7 | 50.1 | 584 | 66.8 | 75.1 83.4 91.8 | 100.1 |108.5 | 116.8 | 125.2
34 26.7 | 35.6 | 445 | 53.5| 624 | 71.3 | 80.2 89.1 98.0 | 106.9 | 1158 | 124.7 | 133.6
36 284 (379 | 474|569 | 663 | 758 | 853 948 | 104.2 | 113.7 | 123.2 | 132.7 |142.1
38 30.1 | 40.2 | 50.2 | 60.2 | 70.3 | 80.3 | 90.4 |100.4 |110.5 |120.5 |130.5 | 140.6 | 150.6
40 31.8 | 424 | 53.0 | 63.6 | 742 | 849 | 955 |106.1 |116.7 |127.3 | 137.9 | 148.5 | 159.1
42 335|447 | 559 | 67.0 | 782 | 89.4 | 100.6 | 111.7 | 1229 |134.1 | 1452 | 1564 |167.6

Table Ad4.2a Values of V in kips, with 2 legs of #3 stirrups (f,, = 60,000 psi)

#3 Stirrups-2 legs
Spacing s (in.)
h (in.) 2 3 4 5 6 8 10 12 14 16 18
10 49.5 33.0 | 248
12 62.7 | 418 | 314 | 25.1
14 759 | 50.6 | 38.0 | 304 | 253
16 89.1 594 | 446 | 35.6 | 29.7
18 1023 | 682 | 51.2 | 409 | 34.1 | 25.6
20 1155 | 770 | 57.8 | 46.2 | 38.5 | 289
22 128.7 | 858 | 644 | 51.5 | 429 | 322 | 25.7
24 1419 | 946 | 710 | 56.8 | 473 | 355 | 284
26 155.1 | 1034 | 77.6 | 62.0 | 51.7 | 38.8 | 31.0 | 259
28 1683 | 1122 | 842 | 67.3 | 56.1 | 42.1 | 33.7 | 28.1
30 181.5 | 121.0 | 90.8 | 72.6 | 60.5 | 454 | 36.3 | 30.3 | 259
32 1947 | 129.8 | 974 | 779 | 649 | 48.7 | 389 | 32.5 | 27.8
34 207.9 | 138.6 | 104.0 | 83.2 | 69.3 | 52.0 | 41.6 | 34.7 | 29.7 | 26.0
36 221.1 | 1474 | 110.6 | 88.4 | 73.7 | 553 | 442 | 369 | 31.6 | 27.6
38 2343 | 1562 | 117.2 | 93.7 | 78.1 | 58.6 | 46.9 | 39.1 | 33.5 | 29.3 | 26.0
40 2475 | 165.0 | 123.8 | 99.0 | 82.5 | 61.9 | 49.5 | 41.3 | 354 | 309 | 275

Note: Multiply table values by 2 for #3 stirrups with 4 legs
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Table A4.2b Values of V in kips, with 2 legs of #4 stirrups (f;, = 60,000 psi)

#4 Stirrups-2 legs

Spacing s (in.)

h (in.) 2 3 4 5 6 8 10 12 14 16 | 18
10 90.0 | 60.0 | 45.0

12 114.0 | 76.0 | 57.0 | 45.6

14 138.0 | 92.0 | 69.0 | 55.2 | 46.0

16 162.0 |108.0 | 81.0 | 64.8 | 54.0

18 186.0 [124.0 | 93.0 | 744 | 62.0 | 465

20 210.0 |140.0 |105.0 | 84.0 | 70.0 | 525

22 2340 [156.0 [117.0 | 93.6 | 78.0 | 58.5 |46.8

24 258.0 [172.0 [129.0 |103.2 | 86.0 | 645 |51.6

26 282.0 |188.0 |141.0 |112.8 | 94.0 | 70.5 |56.4 |47.0

28 306.0 [204.0 |153.0 |122.4 |102.0 | 76.5 |61.2 |51.0

30 330.0 [220.0 |[165.0 |132.0 |110.0 | 82.5 |66.0 [55.0 |47.1

32 354.0 [236.0 [177.0 |141.6 |118.0 | 88.5 |70.8 [59.0 |50.6

34 378.0 [252.0 [189.0 |151.2 |126.0 | 94.5 |75.6 |63.0 |54.0 |47.3

36 402.0 |268.0 |201.0 |160.8 |134.0 |100.5 |[80.4 |67.0 |57.4 |50.3

38 426.0 |284.0 |213.0 | 1704 |142.0 |106.5 |85.2 |71.0 |60.9 |53.3 |47.3
40 450.0 |300.0 |225.0 |180.0 |150.0 |[112.5 |90.0 |75.0 |64.3 |56.3 |50.0

Note: Multiply table values by 2 for #4 stirrups with 4 legs
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Table A5.1 Maximum number of bars in columns

> &8 9

h 80 e h
e Qo
{1.5 in. for #5 to #8 1.5 in. for #5 to #8
1.5dy, for #9 to #11 1.5dj, for #9 to #11

(d;, = diameter of longitudinal bars)

Square tied column Round spiral column
h(in) | #5 | #6 | #7 | #8 | #9 | #10 | #11 | #5 | #6 | #7 | #8 | #9 | #10 | #11
10 8 4| 4] 4| 4| - - 6| — | - | - | - - -
11 8 8 8 4 4 4 7 6| — | - | - — -
12 12 8 8 8 4 4 4 8 7 6 6| — - -
13 12 | 12 8 8 8 4 4 10 9 8 7| - - -
14 12 | 12 | 12 8 8 4 10| 9 8 7 - -
15 12 | 12 8 8 8 1210 9 8 6 -
16 16 | 12 | 12 8 8 12 | 11 9 7 6
17 16 | 16 | 12 | 12 8 13 | 12 | 10 8 7
18 16 | 16 | 12 12 14 | 13 | 11 9 8
19 20 | 16 | 12 12 14 ] 12| 10 9
20 20 | 16 | 16 12 16 | 13 | 11 10
21 20 | 20 | 16 12 15| 12 11
22 20 | 16 16 16 | 13 12
23 20 | 20 16 17 | 14 13
24 20 16 18 | 15 13
25 20 20 16 14
26 20 20 17 15
27 20 18 16
28 20 17
29 24 18
30 24 19

Note: Values are based on 11/2 in. cover, #4 ties or spirals, with clear space of 11/2 in. for #5 to #8,
and 1.5 times bar diameter for #9 to #11
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Figure A5.1 (a) ACI column interaction diagram [SP-17(11)], Courtesy of American Concrete
Institute. (b) K, versus ¢ relationship
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Figure A5.2 (a) ACI column interaction diagram [SP-17(11)], Courtesy of American Concrete
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Figure A5.5 (a) ACI column interaction diagram [SP-17(11)], Courtesy of American Concrete

Institute. (b) K,, versus ¢ relationship
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Concrete Structure and Construction Images

Figure B1.1 Boston city Hall, Boston, Massachusetts

© Springer International Publishing Switzerland 2017 643
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Figure B1.2 Women Psychiatric Hospital, Chicago, Illinois
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Figure B1.4 Concrete placement by chute and test cylinders in preparation



Figure B2.2 An exposed
reinforced concrete beam
Courtesy of Professor

Jack Davis, Virginia Tech
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Figure B2.3 Beams supporting a one-way slab

Figure B5.1 Lyon Train Station, Lyon, France
Courtesy of Professor Jack Davis, Virginia Tech
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Figure B5.3 Reinforcements in a reinforced concrete column
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Figure B6.1 A high-rise building with flat plate floor system
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Figure B6.2 Forming for flat slab with drop panels

Figure B6.3 An exposed waffle slab floor system
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Figure B6.4 Construction of a waffle slab floor system

Figure B6.5 Forming of a one-way joist floor
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Figure B6.6 An exposed one-way joist system

Figure B7.1 A large square spread footing under construction
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Figure B8.1 Large wall forming
Courtesy of Mr. Doug Peters PE, President, Christman Constructors, Inc.

Figure B8.2 Column forming
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Figure B8.3 Beam and slab forming
Courtesy of Mr. Doug Peters PE, President, Christman Constructors, Inc.

Figure B9.1 Prestressed I-Section concrete beams
Courtesy of the William G. Godden Collection, NISEE-PEER, University of California, Berkeley
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il

Figure B9.2 End anchor for a post-tensioned concrete beam
Courtesy of the William G. Godden Collection, NISEE-PEER, University of California, Berkeley

Figure B9.3 Post-tensioned concrete beams
Courtesy of the William G. Godden Collection, NISEE-PEER, University of California, Berkeley






Appendix C
Standard ACI Notations

a Depth of equivalent rectangular stress block

A Cross-sectional area of a structural member measured out-to-out of
transverse reinforcements

Ay Area of that part of the cross section between the flexural tension face and
the center of gravity of the gross section

A, Gross area of concrete section. For a hollow section, A, is the area of the
concrete only and does not include the area of the void(s)

Aps Area of prestressing steel in flexural tension zone

A Area of nonprestressed longitudinal tension reinforcement

Al Area of longitudinal compression reinforcement

Agmin  Minimum area of flexural reinforcement

Ay Total area of nonprestressed longitudinal reinforcements

A, Area of shear reinforcement within spacing s

A, min Minimum area of shear reinforcement within spacing s

Aq Loaded area

Ay Area of the lower base of the largest frustum of a pyramid, cone, or tapered
wedge, contained wholly within the support and having for its upper base
the loaded area, and having side slopes of 1 (vertical) and 2 (horizontal)

b Width of the compression face of a member

b, Perimeter of the critical section for shear in slabs and footings

b,, Web width, or diameter of a circular section

c Distance from extreme compression fiber to the neutral axis

cp Smaller of (a) the distance from the center of a bar to the nearest concrete
surface, and (b) one-half the center-to-center spacing of the bars being
developed

Ce Clear cover of reinforcement

C Cross-sectional constant to define torsional properties of slab and beam

C. Chemistry coefficient

C, Concrete setting factor

C, Unit weight coefficient

© Springer International Publishing Switzerland 2017 657
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Appendix C: Standard ACI Notations

Distance from extreme compression fiber to the centroid of longitudinal
tension reinforcement

Maximum aggregate size

Distance from extreme compression fiber to the centroid of longitudinal
compression reinforcement

Nominal diameter of a bar, wire, or prestressing strand

Distance from extreme compression fiber to centroid of prestressing steel
Distance from extreme compression fiber to the centroid of the extreme
layer of longitudinal tension steel

Dead loads, or related internal moments and forces

Load effects of earthquake, or related internal moments and forces
Modulus of elasticity of concrete

Modulus of elasticity of beam concrete

Modulus of elasticity of slab concrete

Modulus of elasticity of reinforcement and structural steel

Specified compressive strength of concrete

Specified compressive strength of concrete at time of initial prestress
Average splitting tensile strength of lightweight concrete

Stress in prestressing steel at nominal flexural strength

Specified tensile strength of prestressing steel

Modulus of rupture of concrete

Calculated stress in reinforcement at service loads

Effective stress in prestressing steel (after allowance for all prestress
losses)

Extreme fiber stress in tension in the precompressed tensile zone
calculated at service loads using gross section properties

Specified yield strength of reinforcement

Specified yield strength, f;, of transverse reinforcement

Loads due to weight and pressures of fluids with well-defined densities and
controllable maximum heights, or related internal moments and forces
Overall thickness or height of member; depth of fluid concrete

Loads due to weight and pressure of soil, water in soil, or other materials,
or related internal moments and forces

Moment of inertia of section about the centroidal axis

Moment of inertia of gross section of beam about the centroidal axis
Moment of inertia of cracked section transformed to concrete

Effective moment of inertia for computation of deflection

Moment of inertia of gross concrete section about the centroidal axis,
neglecting reinforcement

Moment of inertia of gross section of slab about the centroidal axis defined
for calculating o and B,

Effective length factor for compression members

Transverse reinforcement index
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Span length of beam or one-way slab, clear projection of cantilever
Length of clear span measured face-to-face of supports

Unsupported length of a compression member

Length of span in the direction that moments are being determined,
measured center-to-center of supports

Length of span in the direction perpendicular to ¢;, measured center-to-
center of supports

Live loads, or related internal moments and forces

Roof live load, or related internal moments and forces

Maximum unfactored moment in a member at the stage deflection is
computed

Cracking moment

Nominal flexural strength at section

Total factored static moment

Factored moment at section

Smaller factored end moment on a compression member; taken as positive
if member is bent in single curvature, and negative if bent in double
curvature

Larger factored end moment on a compression member, always positive
Factored axial force normal to a cross section occurring simultaneously
with V,, or T,; taken as positive for compression and negative for tension
Nominal axial strength at balanced strain conditions

Nominal axial strength of cross section

Maximum allowable value of P,

Nominal axial strength at zero eccentricity

Factored axial force; taken as positive for compression and negative for
tension

Factored load per unit area

Radius of gyration of cross section of a compression member

Rain load, or related internal moments and forces; Rate of replacement
Center-to-center spacing of items, such as longitudinal reinforcement,
transverse reinforcement, prestressing tendons, wires, or anchors

Snow load, or related internal moments and forces

Elastic section modulus

Wall thickness of a hollow section

Cumulative effect of temperature, creep, shrinkage, differential
settlement, and shrinkage-compensating concrete

Strength required to resist factored loads or related internal moments and
forces

Nominal shear stress

Nominal shear strength provided by concrete

Nominal shear strength

Nominal shear strength provided by shear reinforcement
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Appendix C: Standard ACI Notations

Factored shear force at section

Unit weight of concrete

Factored load per unit length of beam or one-way slab

Wind load, or related internal moments and forces

Shorter overall dimension of rectangular part of a cross section

Longer overall dimension of rectangular part of a cross section

Distance from the centroidal axis of the gross section, neglecting
reinforcement, to a tension face

Ratio of the flexural stiffness of a beam section to the flexural stiffness of a
width of slab bounded laterally by centerlines of adjacent panels (if any)
on each side of the beam

oy in direction of ¢,

ay in direction of 4,

Constant used to compute V, in slabs and footings

Ratio of long to short dimensions: clear spans for two-way slabs; sides of
column, concentrated load, or reaction area

Ratio of the torsional stiffness of an edge beam section to the flexural
stiffness of a width of slab equal to the span length of the beam, center-to-
center of supports

Factor relating the depth of the equivalent rectangular compressive stress
block to the neutral axis depth

Factor used to determine the portion of reinforcement located in the center
band of a footing

Net tensile strain in extreme tension steel at nominal strength, excluding
strains due to effective prestress, creep, shrinkage, and temperature

Net tensile yield strain used to define a compression-controlled section
Development length modification factor related to the unit weight of the
concrete

Multiplier for additional deflection due to long-term effects
Time-dependent factor for sustained load

Ratio of A, to bd

Ratio of A to bd

Ratio of A, to bd producing balanced strain conditions

Ratio of Ay, to A,

Ratio of A to bd,

Ratio of the volume of spiral reinforcement to the total volume of core
confined by the spiral (measured out-to-out of spirals)

Ratio A, to b,,d

Factor used to modify development length based on reinforcement cover
Factor used to modify development length based on reinforcement coating
Factor used to modify development length based on reinforcement
confinement
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Wy Factor used to modify development length based on reinforcement size

W, Factor used to modify development length based on reinforcement
location

¢ Strength reduction factor

® Tension reinforcement index
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A columns subject to, 56, 282, 283, 285, 288,
Accelerators, 10 316, 318, 324, 362, 366
ACI. See American Concrete Institute maximum factored, 298, 343, 366
ACI Journal, 3 nominal strength, 56
ACI Manual of Standard Practice, 3 strength, 55, 295, 317-319, 334-337
Active earth pressure, 475, 499 Axial tension, 262-264, 415
Admixtures Axially loaded columns, 282, 287
accelerating, 10 defined, 282
air-entraining, 9, 10, 34 failure, 285
defined, 9 illustrated, 283
retarding, 10, 520, 563 load-deformation relationship, 287
superplasticizers, 8, 10, 13 strength calculation, 296
Aggregates
coarse, 47
fine, 4-6 B
good gradation, 6 Backfill
lightweight, 6 level, 476
Analysis steps sloping, 475, 476
beams and, 53 Balanced failure, 67, 71, 72, 77, 318, 323, 327
design, 53 condition, 67, 318, 323, 327
Air, 3,4, 7-9, 11, 403, 408 strain distribution at, 67, 71
Air-entraining admixtures, 9, 10, 34 Bar spacing
Allowable bearing soil pressure, 410411 longitudinal, 291
American Concrete Institute (ACI). See also main reinforcement, 119
Specific ACI Code rectangular reinforced footing,
51committees, 3 460-462, 465
Design Handbook, 334 reinforced concrete beams, 94
model codes, 2, 3 reinforced concrete slabs, 119
standards, 3, 11 shrinkage and temperature
Axial compression, 16, 73, 240, 262, 358, 585 reinforcement, 119
Axial force, 48, 235, 318, 358, 569 Basement walls. See also Earth
Axial loads, 55, 75, 263, 278, 282, 285, 286, supporting walls
295, 298, 303, 310, 316-319, 324, defined, 479
327, 332, 334-337, 339, 341-344, design, 480, 483, 487, 488
362, 364-367, 369, 568 reinforced concrete design, 487489
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Basement walls (cont.)
schematic section, 488
unreinforced concrete design, 480, 483
Battered piles, 415, 416
Beam-girder floor system, 140, 142, 151, 152
Beams, 398-399
Bending
elastic, 60
failure, 62
maximum stress, 62, 567
reinforced concrete beams, 58-65, 71
stress, 62, 282, 317
Bending moment
plain concrete wall footings, 421428
reinforced concrete beams, 58-65, 71
square spread footings, 436
unreinforced basement wall design, 511
Bernoulli-Navier hypothesis, 60
Bilinear stress-strain diagram, 65, 66
Bleeding, 8, 35
Bond stresses
changes, 217
magnitude, 216, 217
Braced column. See also Columns
defined, 284, 361
illustrated, 285
as one without sidesway, 361
Braced frames, 284, 362
Brackets, 87, 207, 264-274, 283
British system of units, 594, 595
Buckling
column, 358-362
Euler stress, 358, 359
illustrated, 359
Building Code Requirements for Structural
Concrete, 3
Building Officials and Code Administrators
(BOCA), 2
Buttress walls. See also Retaining walls
defined, 496
illustrated, 496

C
Caisson. See Pier foundations
Cantilever retaining walls. See also Retaining
walls
bar development length, 432
heel reinforcement, 508
heel reinforcement bar development
length, 508
illustrated, 495, 496
lateral soil pressure, 499

Index

resisting moment calculation, 414
safety factors, 500
soil pressure under footing, 500
stability analysis, 498
stem reinforcement bar development
length, 507
stem reinforcement design, 503
toe reinforcement, 505
toe reinforcement bar development
length, 508
without heel/toe, 495
Cast-in-place construction, 151, 291, 383, 385
Center-to-center distance, 97
Checker-board pattern loading, 49
Circular columns, 278, 281, 291, 332, 359
Clear cover limit, 289
Coarse aggregates, 4—7
Coarse-grained soils. See also Soils
contents, 404
particle size, 404
Cohesive soil, 404, 408, 412, 417
Column(s)
ACI Code requirements, 288-293, 296
analysis flowchart, 338, 340
axial load capacity, 295,317, 319, 327,332,
342, 344
axially loaded, 282, 283, 285, 287, 296,
316, 348
bars, maximum number of, 291, 297, 299,
301, 308
based on length, 285
based on loading, 282-284
based on reinforcement, 277-280
based on shape, 280-281
based on structural system, 284
braced, 284, 285, 360, 361
circular, 278, 281, 289, 291, 300, 314, 332,
356, 359
clear cover limit, 289
composite, 280
design considerations, 294
eccentrically loaded, 282, 283, 316, 317
effective length, 285, 359, 361
factored loads, 301, 302, 378
high-strength material use, 294
isometric view, 320, 409
loads, determining, 308
longitudinal bar spacing limits, 291
longitudinal reinforcements limit, 288
maximum capacity, 286
nominal load capacity, 295
number of bars limit, 289
pedestals, 277, 278
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punching, 375
shape illustrations, 281
short, 285-287, 294-330, 336-358
size, 294, 302, 308, 310, 315, 347, 349, 350,
353, 354, 356, 360, 376, 378, 599
slender, 285, 358-370
slenderness ratio, 285, 358-362
spiral, 277, 278, 282, 285, 289, 298, 300,
301, 303, 304, 309, 312, 314, 333,
335, 337, 339, 343, 354, 356
spiral reinforcement spacing/amount
limits, 291
square, 278, 285, 291, 303, 310-313, 350,
352, 369, 445, 461, 514, 515, 599
tie spacing limit, 289
tied, 277, 278, 282, 285, 286, 289, 295, 297,
298, 302-305, 309-312, 318, 332,
333, 335, 339, 341, 344, 352, 369,
370, 599
types, 277-285, 316
unbraced, 284, 285, 360-362
Column interaction diagrams
ACI, 330-333
compression-controlled sections, 327
computer-generated, 333
defined, 327
illustrated, 328, 331
maximum capacity, 330, 332
tension-controlled sections, 327
Column size, 379
Column strips
at exterior support, 384
calculating, 384, 386, 402
negative moments, 381, 383-384, 386, 402
negative reinforcements, 386
positive moments, 381, 383
positive reinforcements, 387
Combined footings. See also Footings
defined, 414
designing, 414
illustrated, 414
Composite columns. See also Columns
defined, 280
illustrated, 280
Compression bars, development length, 223,
445, 451
Compression-controlled failure, 73, 74
Compression-controlled sections, 74, 335, 338
Compression reinforcement, strain, 181
Compression splices, 225
Compression steel, 185, 186
doubly-reinforced beams, 176, 177, 200
failure, 199
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lateral support, 199, 200
required, calculation, 198
strain, 177, 182, 188, 198, 319, 322,
323, 329
strain levels, determining, 192
stress, 177, 182, 183, 189, 325, 326
Compression stress, 22, 23, 64, 66, 151, 238,
282, 317, 528, 536, 556, 587
Compression zone
centroid, 159, 162
depth calculation, 82, 121, 124, 179
doubly-reinforced beams, 176-199
negative moment regions, 155
T-beam, 152, 155, 167
within flange, 161, 162, 164, 166, 170, 172
Compressive force, 61, 72, 263
Compressive strength, 8, 14, 16-21, 38, 65, 66,
80, 89, 244, 294, 298, 300, 319, 332,
426, 445, 567, 570, 582, 595, 600
Concentric load, 317, 496
Concrete, 460. See also Reinforced concrete
admixtures, 3, 4, 9-10
aggregates, 3, 5
in compression, 1, 16-20, 53, 64, 65, 76,
179, 200, 201, 295, 323, 327, 332
construction overview, 2
creep, 23, 27-28, 201, 288, 576, 579
curing, 10, 11, 14, 38
inelastic behavior, 200
ingredients, 3—-10
ingredients illustration, 4
long-term loading, 28
modulus of elasticity, 16, 201, 206, 213,
359, 383, 574, 578
modulus of rupture, 62, 79
portland cement, 4-5
prestressed, 567, 568, 570-574, 576, 577,
579-588, 590
secant modulus, 18-19
short-term loading, 16, 18
shrinkage, 23, 25-27, 288, 576, 578, 579
strength, acceptable, 14
temperature change, 23-24
in tension, 1, 20-22, 28, 100, 217, 241, 582
testing, 11-16, 20
volume changes in, 23-28, 116
water and air, 4, 6-9
Construction joint, 26, 27
Continuous media, 111, 372
Control joints, 27, 480
Corbels
in concurrence with proposed design
model, 267
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Corbels (cont.)
illustrated, 264—-266
minimum primary reinforcement, 267
reinforcing required in, 265, 266
Core-cylinder test, 16
Counterfort walls. See also Retaining walls
defined, 495
illustrated, 495, 496
Crack(s)
concrete cover relationship, 96
controlling, 95-97, 247, 487
width, limitation, 95
Cracked section moment of inertia
rectangular section, 205, 207, 211
transformed section concept, 205, 206, 209
T-section, 208
Cracking
moments, 201, 202, 204-212, 214
strains/stresses after, 63
Creep
causes, 28
defined, 28
deflection, 27, 28, 201, 214
deformation, 27, 28, 201, 214, 574, 579
Curing
technique, 10, 26, 573
vibrators, 11
Cylinder test
core, 16
defined, 14-16
field-cured cylinders, 14
illustrated, 14, 15
lab-cured cylinders, 14
results, 14, 15

D
Dead loads, 54. See also Loads
balancing, 584
defined, 39, 49, 519
live load moments combined with, 49, 341
maximum moments due to, 52
one-way slabs, 123
superimposed (SDL), 28, 40, 41, 101, 140,
144, 193, 378, 392, 401, 510
Deep foundations
load transfer, 414, 415, 417
pier, 417
pile, 414, 416, 417
Deflections
applications, 212-214
calculation coefficients, 211
calculation formula, 200

Index

cracked section moment of inertia,
205-211, 214
creep behavior uncertainty, 201
effective moment of inertia, 202—-205,
212,214
inelastic behavior uncertainty, 200
instantaneous, 201, 213-215, 228
of interior bay under load, 374
live load, calculating, 214
long-term, 92, 176, 214-216, 372
maximum permissible, 216
minimum one-way slab thickness, 122
reinforced concrete beams, 200-216
uncertainties, 200, 201, 208
Deformation(s)
creep, 28, 574
joist, 44
three-bay/three-story monolithic
structure, 47
in two-span beam, 45
Deformed bars, 30, 34, 216, 218, 291
Depth. See also Effective depth
beam, 93, 106, 108, 109, 158, 160, 163,
165, 167, 170, 171, 173, 174, 184,
222, 396, 400
compression zone, 82, 121, 124, 158, 162,
179, 189, 198
equivalent stress block, 68, 70, 72, 78, 81,
83, 86, 155, 158, 166, 183, 185, 187
one-way slabs, 92
prestressed concrete, 571, 573, 574
web, 165, 174
Depth of frost penetration
defined, 418
Design aid tables, 86
Design resisting moment
doubly-reinforced beams, 181, 184,
187, 196
L-beam, 163, 170
T-beam, 165, 172
Design strength, 14, 570
Development length
calculation, 218, 219, 221, 228, 472
compression bars, 223, 445
defined, 218
for bars in tension, 218-219
hook terminated bars, 221
tensile bar, 219
tension bars, 220
Diagonal tensile stresses, 239
Diagonal tension, 238, 241, 242, 244, 375
Diagram of maximum moments, 49
Differential settlement, 38, 410, 414
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Direct design method. See also Flat slabs
defined, 381
flexure analysis, 382
plan geometry conformance, 381
Double tees, 571, 574
Doubly-reinforced beams, 179
advantages, 176
analysis, 176-190
analysis illustration, 178, 180
analysis steps, 179, 181-184
compression force, 177
compression reinforcement strain
determination, 181
compression steel, 176, 177, 181, 182, 185,
186, 188, 192, 193, 198, 200
compression zone, 176, 189, 198
compression zone depth, 179, 189, 198
concrete-steel couple, 177
defined, 176
design, 190-199
design illustration, 191
design resisting moment, 181, 184, 187,
190, 196
design steps, 190, 193
equivalent stress block, 183, 185, 187, 188
factored loads, 194
lateral support for compression steel,
199, 200
maximum factored moment, 184, 190, 197
maximum tension-controlled steel ratio,
190, 195
nominal resisting moment, 177, 181, 184,
186, 189
required area of steel, 175, 303, 304
resistance coefficient, 190, 195
steel-steel couple, 177
strain distribution, 185
strain levels, determining, 179
tensile force, 176, 177
total area of steel, 193
Dowel reinforcement
ACI Code, 445
bar length, 450
determining, 442, 459
footings, 443
illustrated, 443
Drop panels
flat slabs with, 373, 374
minimum plan dimension, 391
minimum thickness, 373, 391
total thickness, 392
use of, 390-392
Drying shrinkage, 26, 28

E
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Earth pressure

active, 475, 499

at rest, 475

coefficients, 475, 499

defined, 474

distribution, 475

effect of surcharge, 477
equivalent fluid pressure, 477
lateral, 474-479

lateral earth pressure, 474-479
level backfill, no surcharge, 476
magnitude, 475, 495

passive, 475, 495, 497

sloping backfill, 476

Earth supporting walls

basement walls, 474, 479-493
retaining walls, 474, 493-516

Eccentrically loaded columns. See also

Columns
definition, 282
illustrated, 283, 317

Effective depth

L-beams, 171

reinforced concrete beams, 59

reinforced concrete wall footings, 59, 433
T-beams, 172

Effective flange width

calculation, 156, 161, 170, 172
L-beam, 154, 155
T-beam, 154

Effective length

column with sidesway, 361
column without sidesway, 361
defined, 359

Effective moment of inertia

average of values, 202
calculation, 212, 213
comments, 214
defined, 202
T-beams, 213

Elastic bending, 60
Embedment length

defined, 218

Engineered backfill, 420
Epoxy-coated bars, 32
Equivalent fluid pressure, 477
Equivalent frame method, 381
Equivalent stress block

defined, 67

depth, 68

illustrated, 69

true stress block relationship, 68
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Euler buckling stress, 358, 359
Expansion joints, 24, 27
Expansive soil, 420

F
Failure
“balanced”, 67, 71, 72, 77, 318, 323, 327
compression-controlled, 73, 74, 327
modes, 65-67, 71-73, 495
primary cause, 66
simultaneous, 67
tension-controlled, 66, 73, 78
Fine aggregates, 5, 6
Fine-grained soils, 404, 405
Fixity, 44, 46, 48, 360, 361, 384
Flange
defined, 153
effective width, 153—-156, 161, 164, 166,
170, 172, 173
neutral axis below, 156
Flat plate floor system
flexure, 375, 380-390
illustrated, 373
interior bay reinforcement design, 385
use, 373, 390-392
Flat slabs. See also Slabs
ACI Code minimum slab thickness, 373
column strips, 381, 383-385
defined, 111
economy, 373
flexure, 380-390
flexure analysis, 382-385
gravity load shear transfer, 375
middle strips, 381, 383-385
moment transfer, 379
plan, 376
recommended minimum thickness, 373
shear periphery, 376-378
shears, 375-380
slab width, 385
with drop panels, 374, 390-392
with drop panels and column capitals, 374
Flexural stiffness, 46, 383, 384
Flexural strength, 57, 58
Flexure
direct design method, 381
flat slabs, 380-390
reinforced concrete beams, 20, 58-65, 79
Floor beams, 41, 151, 258
Floor load, 39, 55, 305, 307, 553, 554
Floor systems
beam-girder, 101, 112, 140, 142, 151, 152

Index

beams and one-way slabs, 398-399
cost, 371, 372
drop panels, 373, 374, 390-392
flat slabs and plates, 372-373
introduction to, 371-372
one-way joists, 395-398
superimposed dead loads, 378, 401
two-way joists with slab band beams, 400
two-way slabs on beams, 381, 399—400
waffle slabs, 392-395
Footings
pressure bulb under, 409
pressure distribution, 408—410,
420-421, 496
rectangular, 418, 438, 460463, 465, 473
soil failure under, 406407
square spread, 436459, 514, 515
wall, 228, 411, 412, 421-437, 479, 496,
497, 510, 605
Force distribution
column, 325, 329
Formwork
accessories, 529-532
design
Adjustment Factors, 526, 528,
529, 536
Reference Design Stresses, 527
design of, 533-537
beam forms, 557-563
column forms, 546-551
slab forms, 550-557
wall forms, 537-545
lateral pressure on, 520-522
loads on, 519-520, 522
materials for, 523-533
section properties, 525, 526
Foundations
adjacent property lines, 418
combined footings, 411, 414, 418
depth of frost penetration, 418
elevations of adjacent footings, 418
expansive soil, 420
isolated spread footing, 413
mat, 411, 414
organic layers, 420
pier, 414, 417, 420
pile, 414417
placement, 418-420
shallow, 411414, 418
strap footings, 411, 414
types of, 411-420
wall footings, 412, 421-436, 479, 496
Friction loss, 581
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G defined, 62, 69
Geometrical proportioning, of beams, 104 propagation of, 4648
Girders, 38, 42, 44, 101, 111-113, 140, 142, on short length reinforced concrete
151, 264, 277, 360, 361, 372, 398, beam, 237
399, 573 Internal forces
Gravity loading, 284 on a section of, 235, 236
Gravity walls. See also Retaining walls propagation of, 4648
defined, 495 International Building Code (IBC), 2
illustrated, 496 International Conference of Building
lateral soil pressures, 474, 502 Officials (ICBO), 2
resisting moment calculation, 500 Isolated spread footing, 413, 414
safety factor, 500
soil pressure under footing, 500
stability analysis, 498 K
Grout key, 573 Kilograms (kg), 592-594

H L

High-range water reducing agents, 8 Lab-cured cylinders, 14

Hinge support, 43, 44 Lateral

Hollow core decks earth pressure, 474-479, 483

defined, 573 loads, 39, 283, 284, 347, 361, 399, 415,
illustrated, 573, 575 486, 522, 538, 544, 563, 573
shape, 573, 575 L-beams. See also T-beams

Hook actual effective depth, 103

ACI Code standard, 220

bars developed by, 220

bars in compression and, 223

defined, 220

90-degree, 223

illustrated, 220

tension bars terminated in, 220-223
Hooke’s law, 17, 29, 60, 63, 200
Hydration. See also Water

defined, 3, 6

exothermic process, 10

hardening, 7, 8, 10

setting, 7, 9, 10

stages, 7

strength development, 7

1
Influence area, 42, 43

analysis illustration, 155-165
analysis steps, 166, 168
compression zone, 154
compression zone centroid, 155
defined, 154

deflection check, 158, 160
depth, 154

design example, 166, 168
design flowchart, 168

design resisting moment, 158
design steps, 166

effective flange width, 154
moment arm calculation, 159
neutral axis location, 155
required area of steel, 155
resistance coefficient, 158
tensile force calculation, 156
total area of steel, 155

total compression force, 154

In situ tests, 16 Linear elements, 111, 371
Instantaneous deflections. See also Line supports, 49, 111
Deflections Live loads (LL)

additional deformations, 213, 215 defined, 40, 49
calculations, 228 effects, 39, 49, 50
defined, 201 "fickleness”, 49-52
values, 213, 214 illustrated, 51

Internal couple negative moments due to, 49
after cracking, 64 one-way slabs, 111
components, 205 reduced, determining, 43
cracked rectangular section, 205 reduction factors, 41-43
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Load(s)
assumed, 122
axial, 55, 75, 263, 278, 282, 285, 286, 295,
298, 303, 310, 316-319, 324, 327,
332, 334-336, 339, 341-344, 362,
364-367, 369, 568
column, determining, 299, 308, 414
concentric, 317
dead, 28, 38, 39, 41, 49, 52-55, 106,
110, 123, 139, 140, 142, 143,
165, 193, 196, 213-215, 271,
272, 300, 312, 365, 366, 401,
410, 426, 445, 465, 510, 511,
571, 599, 600, 603, 604
floor, 55, 101, 307
gravity, 39, 151, 347, 380, 414, 475, 519,
520, 576, 583, 587
lateral, 39, 283, 284, 347, 361,
399, 415, 486, 522, 538, 544,
563, 573
live (LL), 28, 39-43, 49-52, 54-58, 80,
101, 122, 123, 125, 127, 130,
139-142, 144, 160, 193, 195, 196,
213-215, 272, 274, 282, 300, 305,
312, 341, 365, 366, 378, 392, 401,
410, 422, 426, 437, 445, 465, 510,
511,519
one-way slabs, determining, 53, 113
propagation of, 46
service, 54, 57, 58, 96, 200, 201,
207, 208, 212, 366, 398, 570,
581, 583, 587
slab behavior under, 111, 371
superimposed dead (SDL), 40, 101, 140,
193, 378, 392, 401, 510
working, 54, 57, 64, 96, 530
Load balancing
at center of span, 584
concept, 582, 584
equal loads at third points of span, 584
method, 583
uniform load, 583
Load factors, 54, 55, 57, 481, 484
Load-path, 371
Longitudinal bars
diameter of, 278, 290, 291
minimum number, 289
spacing, 290, 291, 297, 299, 308
spacing limits, 289, 291
Long-term deflections
additional, 215
multiplier, 215
Long-term loading, 17

Index

M
Main reinforcement
allowable spacing, 122
defined, 115
deflection control thickness, 119
maximum bar spacing, 118, 119
minimum, 98, 117-119, 132, 166, 506
one-way slabs, 96, 115-119, 132, 144
at supports, 129
Mat Foundation, 411, 412, 414
Maximum beam width (bmax), 96
Maximum bending stress, 22
Metric system. See also SI system
adoption ramifications, 591
ASTM standard reinforcing bars, 595
United States adoption history, 591-592
Middle strips. See also Column strips
calculating, 386, 402
negative reinforcing, 386
positive reinforcing, 387
Minimum reinforcements
bar spacing, 119
concrete cover, 94, 118
main, 118, 132
one-way slabs, 117-119
shrinkage and temperature, 118, 132,
134, 506
Minimum steel ratio, 79-80, 155, 156, 288
Modular ratio, 63, 206
Modulus of elasticity
defined, 18, 20
example, 19, 63
Modulus of rupture, 20, 21, 34, 62, 79, 146,
148, 202, 204, 595, 603
Moment(s)
with ACI Code coefficients, 101, 108,
125, 133
ACI Code design, 53
bending, 34, 55, 59-64, 75, 100, 108, 115,
161, 184, 187, 195, 235, 236, 277,
283, 284, 288, 317, 344, 380, 423,
440, 449, 457, 463, 481, 482, 495,
511, 535, 543, 576, 603
design resisting, 57, 69, 73, 82, 159, 163,
165, 170, 172, 181, 184, 187, 190,
196, 334, 335
diagram of maximum, 49
expression, 69, 222
flat panel bay, 382
maximum bending, 108, 535
maximum, due to dead loads, 52
negative, 47, 49-52, 108, 116, 129, 140,
141, 152, 155, 194, 195, 202, 205,
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381-384, 386, 388-390, 395,
396, 400
nominal resisting, 56, 69, 161, 177, 181,
184, 186, 189, 243, 426, 428,
482, 602
positive, 47, 49, 51, 52, 104, 116, 126, 128,
141, 155, 161, 164, 170, 173, 204,
208, 215, 225, 381, 383, 384, 386,
388, 389, 394, 395, 399, 402
resisting, 80-83, 122, 123, 125, 181, 197,
350, 427, 482, 493, 494, 500-502
Moment capacity, 79, 100, 137-140, 142, 166,
190, 225, 326, 328, 334-336, 339,
396, 604
Moment envelope, 49

N
Negative moment, 47, 49-52, 116, 129, 140,
141, 194, 195, 205, 381-384, 388,
393, 402, 604
Net tensile strain, 72-75, 177, 183, 189, 335
Neutral axis
defined, 75-76
location, 75-77, 81, 83, 121, 162, 179, 182,
183, 185, 188, 192, 206-208, 325,
329, 330
maximum depth, 77
principal tension orientation, 241, 242
T-beams, 155, 156, 208, 211
Nominal load capacity, 295
Nominal moment
calculating, 323, 326
strength, 56, 318
Nominal resisting moment
doubly-reinforced beams, 177, 181
plain concrete wall footings, 428
Nominal strength, 56, 243
Noncohesive soils, 404
Notations, ACI, 288

(0]
One-way joists. See also Floor systems
ACI Code designation, 395
beam sections, 397
square-/tapered-end pan layouts, 397
standard pans, 396
One-way shear
rectangular footing, 462, 469
square spread footing, 440, 441, 448
One-way slab. See also Slabs
analysis, 53, 120
analysis flowchart, 121
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beams and, 95-97, 398—400
beams and girders, 398
behavior, 111, 113, 148
bend direction, 113
compression zone depth calculation,
121, 124
continuous construction reinforcement,
116, 117
crack-control, 95-97
dead and live loads, 127
defined, 37
depth selection, 92-93
design, 115, 132
design flowchart, 99, 105, 121
dimension selection, 92-95
effective depth calculation, 100, 109,
134, 138
factored applied moment, 124
loads calculation, 43, 106
main reinforcement, 96, 115, 120
maximum permitted steel ratio, 120
minimum depth, 92-94, 130
reinforcement, 37, 95, 115-119
reinforcement ratio, 123
reinforcing bars, 37, 94, 96, 116, 120
resistance coefficient calculation, 100,
123, 134
shrinkage and temperature reinforcement,
115, 119, 124, 125, 128, 130, 144
shrinkage and temperature reinforcement
design, 118, 137
simple span reinforcement, 116, 117
span/depth ratio, 92, 397
thickness, 119, 122, 397, 399
thickness selection, 378
Organic layers, 420
Overreinforced sections, 67
Overturning. See also Retaining walls
defined, 493
moment, 493, 494, 499-502, 543
safety against, 494, 500, 503

P
Passive earth pressure, 475, 495, 497
Pedestals, 277, 278
Pier foundations
caissons, 417
defined, 417
illustrated, 417
Pile foundation
battered piles, 415, 416
defined, 414
end-bearing piles, 415
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Pile foundation (cont.)
illustrated, 415, 416
pile layouts, 415, 416
Plain bars, 30
Plain concrete wall footings
ACI Code recommendations, 425, 426
bending moment, 423
design, 421, 422, 424, 426, 428
design flowchart, 424
dimensions, 422, 423, 427
illustrated, 426
moment, 423, 425, 427, 428
nominal resisting moment, 426, 428
pressure on supporting soil, 425
strength reduction factor, 426
thickness, 422, 423, 425-428
width, 421-423, 427
Plastic shrinkage, 25, 26
Point supports, 111, 372, 535
Portland cement
defined, 4
expense, 5
materials, 4, 5
particle size, 5
Positive moment, 49, 51, 52, 104, 116, 126,
141, 155, 161, 164, 170, 173, 204,
208, 215, 225, 402
Posttensioning
advantages, 576
curved tendons, 575
defined, 33, 575
draped strands, 576
load balancing, 583
pretensioning vs., 574
Pound-force (Ibf), 593, 594
Pound-mass (Ibm), 593, 594
Pressure bulb, 408, 409
Prestressed concrete
advantages, 571
beams, 567, 568, 570, 573, 576,
583-585, 587
concrete, 567, 568, 570-574, 576, 577,
579-588, 590
elastic shortening, 578
friction losses in curved tendons, 579, 580
introduction to, 567-571
load balancing, 582-584, 587
loss of prestressing, 576-578, 580
materials, 577
prestressing steel, 577, 582
shallow depths, 571
shrinkage, 574
span-depth ratios, 571

Index

total losses, 581
ultimate strength, 577, 581, 582
Prestressing, 572, 574
average losses, 581
loss of, 576, 577, 579-581
posttensioning, 572, 574-576
pretensioning, 572-574
process, 572
types, 572, 574-576
Prestressing steel, 33. See also Steel
high-strength wire use, 577
relaxation of, 579
stress-strain curve, 577, 578
Pretensioning
defined, 33, 572
double tees, 574
grout key, 573
hollow core decks, 573
prestressing strands, 572, 578
Principal planes, 240
Principal stress, 240, 241
Principal tensions
orientation above neutral axis, 240, 241
orientation below neutral axis, 241, 242
potential cracks perpendicular to, 241, 242
Propagation
of forces/moments between beams/
columns, 48
of internal forces, 46—48
Proprietary mechanical splices, 225
Punching shear
rectangular footing, 438, 461
P-A effects
ACI Code, 362
defined, 362
on columns with sidesway, 362, 364
on columns without sidesway, 362, 363

R
Raft foundation, 412, 414
Rankine theory, 475
Ratio, 312
Reaction forces, 44, 47, 540, 554, 559, 560
Rebound hammer test, 16
Rectangular reinforced footing
bar spacing in long direction, 471, 472
bar spacing in short direction, 472
critical sections, 468, 469, 471
design example, 465
design flowchart, 466
design steps, 460, 466
dowel bars, 465, 473
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long direction reinforcement, 463
one-way shear, 462, 468
reinforcement distribution plan, 465
required area determination, 460, 465
required reinforcement, 463, 464, 469
shear, 467
short direction reinforcement, 464
thickness, 460, 467-469
two-way shear, 461, 468
use, 460
Reinforced concrete
advantages, 37
disadvantages, 38
heavy structural members, 38
integrity, 37, 216
low maintenance, 37
material, 1, 3
resistance to fire/water, 37
shoring/forms requirement, 38
tensile strength, 20, 38
Reinforced concrete basement wall design
architectural requirements, 487
bar spacing, 489
flowchart, 488
maximum moment calculation, 488, 490
reinforcement requirement, 489, 492
steps, 488
thickness, 487489
vertical reinforcement requirement, 489
Reinforced concrete beams
amount of reinforcement, 98
analysis, 80-92
deflection, 200-216
depth selection, 92-93
design, 98-110
design examples, 101-110
design flowchart, 98, 99
dimension selection, 92-95
economy, 104
effective depth, 59
flexural design, 58-65
geometrical proportioning, 104
materials, 98
maximum bending moment, 108
method I, 80-86
method II, 86-92
minimum bar spacing, 94
minimum depth, 93
minimum steel ratio, 79-80
minimum width, 95
parameters, 80
preliminary weight estimate, 106
recommended depth, 92, 94
required area of steel, 98, 106
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section dimensions, 98
shear, 235-241
strain distribution, 60, 61
stress distribution, 60, 61
subject to flexure and shear only, 262
total depth calculation, 106
ultimate strength, 59, 74
width, 94-96
Reinforced concrete structures
ACI Code, 3
continuity, 93
monolithic construction, 93
self-weight, 106
structural design, 38—41
Reinforced concrete wall footings
design, 429, 430, 432
design example, 432, 433, 435, 436
design flowchart, 431
design steps, 429
effective depth, 430
factored pressure, 430
minimum required reinforcement, 435
moment calculation, 432
shear, 429431
shear strength, 431
thickness, 429
Reinforcement, 72
Reinforcement development, 216-233
Reinforcing bars
center-to-center distance, 97
maximum spacing, 96
multiple layers, minimum space, 94
one-way slabs, 115-119
single layer, minimum space, 94
Reinforcing steel
area requirement calculation, 132
deformed, 30
price, 98
steel bars, 30
WWR, 30
Resistance coefficient
defined, 87
doubly-reinforced beams, 190, 195
one-way slabs, 123
T-beams, 158
Resisting moment
calculating, 69, 80, 83, 122, 123, 159
design, 57, 69, 73, 82, 159, 163, 170, 172,
181, 184, 187, 190, 196, 334, 335
doubly-reinforced beams, 177, 181,
184, 186
L-beam, 159, 161
nominal, 56, 69, 161, 177, 181, 184, 186,
189, 426, 428, 482, 602
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Resisting moment (cont.)
retaining walls, 493, 494
short columns with large eccentricity,
336-347
T-beam, 165, 172
Retaining walls. See also Earth supporting
walls
behavior, 493
buttress, 496
cantilever, 495
counterfort, 495
design, 493
examples, 493, 499
forces on, 493, 494
gravity, 494, 495
overturning moment, 493, 494
resisting moment, 494
safety against overturning, 494
safety against sliding, 495
shear key, 497
stability analysis, 498
types of, 496
vertical soil pressure under, 496
weep hole, 476, 497
Retarders, 10, 521
Roller support, 44

S
Secant modulus, 18, 19
Self weight, 6, 21, 28, 39, 41, 106, 107, 139,
143, 253, 258, 273, 305, 307, 366,
373, 392, 505, 520, 545, 558, 584,
585, 587
Service loads
defined, 54
maximum stress in reinforcement, 96
Settlement, soil
differential, 38, 410, 414
uniform, 25, 410
Shallow foundations. See also Foundations
combined footings, 411
illustrated, 411
isolated spread footing, 413
mat, 411
strap footings, 411
wall footings, 411
Shear(s)
in beams, 241, 274, 275
capacity, 166, 251, 263, 396, 448, 454456,
461, 462, 468
carried by stirrups, calculating, 253
distribution, 379
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duality, 238
factored, 247, 254, 376, 378, 380, 440
flat slabs and plates, 375-380
force, 47, 235, 245, 248, 250, 253, 265, 272,
375, 440, 448, 456, 461, 462, 481,
482, 511, 598, 604
force diagrams, 34, 251, 254, 255, 259,
260, 603
horizontal stress, 237
maximum, 271, 272, 380, 604
punching, 375, 378, 438, 441, 461
rectangular reinforced footing, 461, 462
reinforced concrete wall footings, 428-436
reinforcement design, 242-249, 269
resistance, 243, 244, 407, 429
resolution into diagonal components, 238
square spread footing, 436-459
strength against, 244
strength calculation, 262-264, 402
substituted by diagonal components, 238
total resisting, 247
on unit-size cube within beam, 237
vertical, 238, 244, 275
Shear key, 497, 498, 508
Shear periphery
at corner, 377
critical, 376, 378
defined, 376, 377
lost effective, 377
Shear reinforcement
ACI Code requirements, 245
concept, 242
critical section for stirrup design, 176,
249, 250
defined, 242-249
design, 242-249, 269
design yield strength, 250
stirrup spacing, 176, 246
zone 1, 246
zone 2, 246
zone 3, 246-249
Short columns
defined, 285, 294
failure, 285, 294, 302
Short columns with large eccentricity
analysis flowchart, 338, 340
analysis of compression-controlled
columns, 337
analysis of non-compression controlled
columns, 339-347
analysis with interaction diagrams,
336-347
axial load capacities, 342, 344
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behavior assumption, 353
capacity, 339, 348
convergence determination, 352
design, 347-358
design flowchart, 348, 349, 351
design of compression-controlled columns,
347, 348, 350, 352
design of non-compression-controlled
columns, 349-358
factored loads and moments, 347, 352, 368
interaction diagram selection, 336-347
nondimensional parameters, 357
required area of steel, 349, 352, 353
resisting load and moment, 341
resizing, 350, 357
size, 347, 349-351
size estimation, 353, 354, 356
spirals, 337, 339, 341, 343, 350, 352,
354-356, 358
steel ratio, 337, 342, 343, 345, 350,
352-354, 356-358
strength reduction factor, 337, 345
ties, 339, 341, 342, 344, 346, 350, 352-354
Short columns with small eccentricity
analysis, 294-302
analysis flowchart, 297
analysis steps, 296
axial load strength, 295
balanced failure condition, 318
bar selection, 303, 304
behavior, 285-287
design cost reduction, 302
design flowchart, 304, 311
design steps, 301-316
factored axial loads, 298, 303, 310
load capacity, 295, 299, 302
longitudinal bar spacing, 291
maximum capacity, 286
minimum practical size, 310
nominal load capacity, 295
required area, 303, 304, 307, 308, 310,
312,313
required area of steel calculation, 303,
304, 310
safety requirement, 289
steel ratio, 288, 291, 292, 296, 298, 299,
301, 304, 308-310, 312, 315
ties, 289, 290, 298-300, 302, 303
under load, 285-287
useful capacity, 302
Short-term loading, 16, 18
Shrinkage
compensating cement, 26
cracks, 26, 27
defined, 25-27
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drying, 25, 26
effects mitigation, 26
prestressed concrete, 576, 577, 581
reinforcement, 116-117, 144, 146
setting, 25
Shrinkage and temperature reinforcement
amount of spacing, 122
design, 118, 132, 137
maximum bar spacing, 119
minimum, 130, 435
one-way slabs, 144
Similarity of triangles, 179, 181
Simultaneous failure, 67
SI system. See also Metric system
British system of units conversion, 594
defined, 591
examples, 591
kilogram, 592
prefixes, 592
units, conversion to, 592, 605
Size, minimizing, 95
Slab(s)
in beam girder floor system, 112
behavior under loads, 113115
dimensions, 111, 116, 371
edge supported, 114
flat, 372-373, 380, 381, 383, 390-392, 584
flat plate, 111, 113, 372-373, 375-381, 383,
402, 584
geometry, 113
load distribution, 114, 399, 400
minimum cover, 118
one-way, 37-149, 151, 372, 397-399, 480
supported by walls, 113
supports, 111, 113, 372, 400
support types, 43, 420
two-way, 111, 113, 148, 372, 381, 399400
waffle, 392-395, 400402, 571
Slab bands, 402
Slender columns. See also Columns
braced, 284, 285, 360-362
buckling, 285, 289, 358-362
defined, 358
design complexity, 362
slenderness ratio, 285, 358-362
unbraced, 284, 285, 360-362
Slenderness ratio
defined, 358
effective length, 285, 359
Sliding. See also Retaining walls
defined, 497
resistance, 474, 475, 495, 497
Slump test
defined, 12-13
slump cone, 12
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Soil
allowable bearing pressure, 410, 511
classification, 404
coarse-grained, 403, 405
cohesive, 404, 408, 412, 417, 475
constituents, 408
expansive, 420
failure under footings, 406407
fine-grained, 404, 405
lateral pressures, 511
noncohesive, 404
settlement, 408—410
Standard Penetration Test (SPT), 404—405
test borings, 404—405
types, 410, 411, 476
vertical pressure under retaining wall,
496, 497
wedge, 407, 474
Soil pressure
allowable bearing, 403, 410411
lateral, 474, 484, 499, 502
under footing, 420421
vertical, under retaining walls, 496
Soil pressure under footings
distribution, 420421
failure, 406—407
Southern Building Code Conference
International (SBCCI), 3
Span/depth ratio, 92, 393, 397, 582
Spiral(s)
clear space between, 302
composition, 277, 278
diameter, 315, 355
maximum pitch, 316
pitch, 293, 305, 312, 315, 316, 356
short columns with large eccentricity, 337,
339, 341, 350, 352, 354-356, 358
steel design, 304, 312
steel ratio, 291, 292, 298, 301, 304,
312, 315
Spiral columns. See also Columns
defined, 304, 312
design steps, 288, 304, 356
failure, 285
gross area calculation, 288, 293, 310,
312, 349
illustrated, 286, 289, 293
minimum number of bars, 289, 304, 312
required area of steel, 303, 304, 308, 312
required column area, 309
size, 312
Spiral reinforcement, spacing/amount
limits, 291
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Splices
compression, 225, 445, 459
of reinforcement, 224-233
proprietary mechanical, 225
tension, 218-219, 224
welded, 224, 225
Split-barrel sampler, 405, 406
Square column, 303, 310, 313, 350, 352, 366,
379, 461
Square spread footing. See also Footings
bending moment, 440, 449
critical sections, 438, 439
design, 436459
design examples, 451, 452
design flowchart, 466
design steps, 437
nominal shear capacity, 454
one-way shear, 440, 441
required area of steel, 438, 439, 442, 450,
463, 464
required reinforcement, 442, 449, 457,
463, 469
shear, 438441
shear capacity calculation, 455
size determination, 446, 453
thickness, 438
two-way shear, 438, 440, 441, 447
use, 436, 438, 442, 445, 450
Standard Penetration Test (SPT), 404—406
Steel. See also Reinforcing steel
behavior under stress, 29
compression, 176, 177, 179, 181-186, 189,
190, 192, 193, 198-200, 319, 320,
322, 323, 325, 326, 329, 330
modulus of elasticity, 177, 206
net tensile strain, 72-75, 183, 189, 335
percentage, limitations, 70
prestressing, 580
reinforcing, 24, 26, 28-35, 38, 59, 63-66,
70, 72,75, 78,79, 97, 104, 120,
132, 147, 215, 216, 244, 398, 532,
5717, 578
spiral, 291, 292, 298, 301, 304, 312, 315
stress-strain diagram, 16, 17, 29, 65, 66
tensile, 60, 62-64, 75, 96, 239, 329,
424, 426
Steel bars
deformed, 29
epoxy-coated, 219, 229
identification, 31
mechanical properties, 30
plain, 30
sizes, 31
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Steel ratio
balanced, 71-72
calculation, 70, 72, 120, 123, 165, 432
defined, 70
design, 104, 356
minimum, 79-80, 155, 156, 288
short columns, 350
short columns with large eccentricity,
336-358
spiral, 291, 292, 298, 301, 304, 312, 315
T-beam, 155
Stirrups. See also Shear reinforcement
closed, 246, 266, 380
design flowchart, 252
design procedure, 251-261
design zones, 246, 250-261
floor beam, 258
horizontal, 270
layout illustration, 261
minimum amount, 245, 260
number of legs of, 251
shear resistance, 250, 259
size, limiting, 250
spacing, 220, 244, 245, 247, 253,
255-257, 260
spacing, calculating, 246, 247
spacing, maximum, 246, 247
Strain
after cracking, 63
columns, distribution, 325, 328, 329
compression steel, 177, 182, 185, 186, 188,
192, 198, 319, 320, 322, 323, 329
cracked rectangular section, 205
distribution, at failure, 67, 71, 320
doubly-reinforced beams, 177
net tensile, 72-75, 177, 183, 189, 335
tensile steel, 179, 188, 321, 322, 328,
330, 339
ultimate useful, 17, 65, 318, 335
Strain distribution
at balanced failure, 67, 71
doubly-reinforced beams, 177
on reinforced concrete section, 80
Strain hardening, 29, 65
Strap footing, 411, 414, 418
Strength
compressive, 8, 14, 16-21, 38, 65, 66, 80,
294, 298, 300, 319, 332, 426, 445,
567, 570, 582, 595, 600
design, 53-55
need for, 9, 54
nominal, 56
required, 57, 243, 541
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ultimate, 17, 33, 54-59, 65, 68, 74, 75,
77-80, 96, 98, 218, 296, 382,
581, 582
useable, 56, 57
Strength reduction factor
defined, 56
obtaining, 89, 345
value, 79, 100, 158
Stress
after cracking, 63
axial compressive, 282, 583
bending, 62, 282, 317, 524, 527-529, 533,
535, 539, 546, 558
bond, 216-218
column, distribution, 325
compression, 16, 64, 66, 151, 282, 295, 317
compression steel, 177, 182, 183, 189, 323,
325, 326, 330
cracked rectangular section, 205
distribution, 60-61, 64, 319
distribution, at failure, 320
Euler buckling, 358, 359
horizontal shear, 237
maximum bending, 22
prestressed beam, 581
principal, 241, 581
steel behavior under, 29-35
tensile, 20, 22, 24, 25, 27, 33, 60, 62, 63, 96,
151, 235, 239, 241, 329, 424, 426,
567, 570, 582, 587, 596
on unit cube, 240, 241
units of, 87
yield, 30, 70, 295, 322
Stress-strain diagram
bilinear, 65, 66
illustrated, 17, 29
zone, 29, 30
Structural design
iterative nature, 39
process, 38—41
Structural stiffness, 46
Structural Welding Code-Reinforcing
Steel, 224
Superimposed dead loads (SDL), 28, 3941,
59, 101, 140, 144, 193, 378, 392,
401, 510
Superplasticizers, 8, 10, 13
Superposition, 176, 177, 583
Support(s)
absolute conditions, 44
conditions, 44
continuous media, 111
hinge, 43
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Support(s) (cont.) neutral axis, 155, 159, 162, 179, 208
lateral pressure from, 478, 560 neutral axis below flange, 155, 156,
lateral, for compression steel, 199, 200 210, 211
line, 111, 372 resistance coefficient, 158, 166, 169,
one-way slab, 93, 115 172, 174
point, 111 steel ratio calculation, 156, 158, 165
roller, 44 tensile force calculation, 156, 161, 164
slab, 113, 115 total area of steel, 169, 177

Surcharge transformed section, 205, 206, 209
by additional backfill height, 478 types of, 151, 156
effect, 477 values of k, 206, 207, 210
plain concrete basement wall web depth, 165, 174

design with, 490 Temperature
pressure, 486 change, 23-24, 39, 487

one-way slab reinforcement, 114119
Tensile bars

T development length, 219
T-beams. See also L-beams terminated in hooks, 220-223

actual effective depth, 166, 171, 172 Tensile force

analysis, 155-165 amount of, 63

analysis illustration, 155, 160 doubly-reinforced beams, 176199

analysis steps, 156, 158—-160 for balancing compression force, 176

area of steel requirement, 155, 166, moments about the location of, 330
167, 174 Tensile steel

calculation of deflections, 208 strain, 177, 321, 322, 328, 330,

compression force determination, 156, 335, 339
158, 159 strain, calculating, 181

compression zone beyond bottom of flange,  Tensile stresses, 60, 62—-64, 96, 151, 238, 240,
155, 167 241, 329, 424, 426, 571

compression zone centroid, 159, 162 Tension bars

compression zone depth, 155, 158, 162, anchored to edge angle, 267, 268
166, 169 development length, 218-219, 223

compression zone in flange, 156, 166, 170,  Tension-controlled failure, 66, 73
174, 395 Tension-controlled section, 74, 75, 190

compression zone in web, 152, 153, 155, Tension splices, 224, 225
158, 174 Test borings. See also Soils

defined, 151-153 distribution, 404

deflection check, 163, 165, 170 sample log, 405

design, 165-175 SPT and, 404—405

design examples, 170, 173 Testing concrete

design flowchart, 166, 168, 170 at point of delivery, 12

design resisting moment, 159, 163, 165, goals, 11
170, 172 slump test, 13

design steps, 166, 167, 169, 170 Tied columns. See also Columns

effective flange width, 153-156, 161, 164, bars, size/number, 278, 288, 296, 311
166, 170, 172, 173 defined, 278, 333

gross moment of inertia, 202-204 design steps, 303

illustrated, 151, 152 failure, 285

inverted, supporting double tees, 574, 575 illustrated, 278

inverted, supporting hollow core decks, minimum number of bars, 289, 303, 311
574, 575 nominal moment, 318

maximum factored moment, 158, 163, 166 required area of steel, 303, 310

minimum area of steel, 155, 156 size determination, 288, 289, 304
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Ties
arrangement, 298, 300, 303, 308, 312, 314,
347, 600
arrangement illustrations, 290
defined, 278, 529
design, 266, 302, 303, 308, 311, 312, 350,
352, 353, 366, 541
short columns with large eccentricity,
336-358
spacing, 220, 289, 298, 303, 308, 311,
540, 541
spacing, maximum, 299, 313, 353
Transition-controlled section, 66, 74, 75,
181, 183
Transition zone, 73-75, 77, 79, 81, 83-85, 87,
88, 122, 159, 335, 337, 345, 346,
350, 598
Tributary area, 42, 305, 307, 555
Two-way joist system, 400. See also Waffle
slabs
Two-way shear
rectangular footing, 438, 461, 468
square spread footing, 436459
Two-way slabs
on beams, 110, 381, 399—-400
design and analysis, 111, 113
load distribution, 114, 400

U
Ultimate strength
beam, 56, 59, 78-80, 98, 296
defined, 29
flexural, 56-58, 73, 77
prestressed concrete, 582
reinforced concrete beams, 58—65
Unbraced columns. See also Columns
as one with sidesway, 361
defined, 284
illustrated, 284, 285
Unbraced frame, 284
Under-reinforced sections, 66
Unified soil classification system (USCS),
404, 405
Uniform Building Code (UBC), 2
Uniform settlement, 410
Unreinforced basement wall design. See also
Basement walls
bending moment, 481, 482
example, 483, 484, 486, 487
factored pressure distribution, 485
flowchart, 483

679

maximum moment calculation, 481, 482,
484486, 489

shear force, 481, 482

steps, 480-484, 486, 487

thickness, 482, 485, 487

with surcharge, 481, 482, 484, 486

without surcharge, 481, 482, 484,
485,512

Useable strength, 56

v
Volume changes
creep, 27-28
shrinkage, 27
temperature change, 23-24

w
Waffle slabs. See also Floor systems; Two-way
joist system
defined, 392
forming pans for, 393
illustrated, 392
negative moment zones
reinforcing, 394
plan view, 394
positive moment zones reinforcing, 394
sizes, 392, 393
structure, 392-395
Wall footings. See also Footings; Shallow
foundations
defined, 412
design strip, 421-437
eccentric pressures under, 497
illustrated, 412, 421
plain concrete, 421-428, 510, 605
reinforced concrete, 412, 421, 428-437,
510, 605
Water. See also Hydration
bleeding, 25
cementitious ratio, 6, 7
importance, 5
minimum amount of, 8, 26
reducing agents, 8
Wedge, soil, 474
Weep hole, 476, 497, 498
Welded splices. See also Splices
compression, 225
tension, 225
Welded wire reinforcements (WWR), 30, 32,
34, 250, 393, 397
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Width

beam, 95-96, 108, 139, 143, 250, 251,
271, 561

cracks, 25, 95, 96, 217, 250

effective flange, 153-156, 161, 164, 166,
170, 172, 173

flat slab, 111

plain concrete wall footings, 421, 422

reinforced concrete sections, 58

Workability, 7-10, 12, 13
Working load, 57, 64, 96
Working stress design (WSD), 54

Y

Yazoo clay, 420

Yielding, 29, 66, 72, 287, 327
Yield stress, 29, 70, 295, 322, 325

Index
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