COMPLETE ADVANCED LEVEL MATHEMATICS

# **Pure Mathematics**

FREE! CD-ROM

Advanced Level Mathematics Tutorials Sample inside this

DOOK

Andy Martin • Kevin Brown • Paul Rigby • Simon Riley

STANLEY THORNES

C Andy Martin, Kevin Brown, Paul Rigby, Simon Riley 2000

Illustrations © Stanley Thornes (Publishers) Ltd 2000

The right of Andy Martin, Kevin Brown, Paul Rigby and Simon Riley to be identified as authors of this work has been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical including plotscopy, recording, or any information storage and retrieval system, without permission in writing from the published retrieval system, without permission in writing from the published properties of the properties of the properties of the properties of "Purther details of such licenses (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited of 90 Tottenham Contra Root. London WP 10°E.

First published in 2000 by Stanley Thornes (Publishers) Ltd Ellenborough House Wellington Street CHELTENHAM GL30 1YW

A catalogue record for this book is available from the British Library.

ISBN 0 7487 3558 5

Book plus Advanced Level Mathematics Tutorials Pure Mathematics CD-ROM sample (Trade Edition) ISBN 0748745238

Advanced Level Mathematics Tutorials Pare Mathematics

CD-BOM Multi-user version ISBN 0 7487 3914 9 Single-user version ISBN 0 7487 3918 1

00 01 02 03 04 / 10 9 8 7 6 5 4 3 2 1

Cover photograph, STP Archive Photograph, p 106, STP Archive

Every effort has been made to contact copyright holders. The authors and publishers apologise to anyone whose rights have been overlooked and will be happy to rectify any errors or omissions at the earliest concertuality.

Typeset by The Alden Group, Oxford Printed and bound in Italy by STIGE, Turin

# Contents

| Examination Papers Melananed Level Mathematics Totorials Pare Mathematics Shamit Br. Authors Introduction  14 Algebra 1  14 Algebra 1  14 Per Number System and Surels 15 Per Number System and Surels 16 Simulations State Equations 16 Simulations State Equations 16 Simulations Paperson 17 Systems State Systems 18 Surelineary 18 Su |                                                                                                                                                                                                                                                        |                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| About the Authors  stateduction  stateductio | Examination Papers                                                                                                                                                                                                                                     |                                                    |
| Alleghers and the Comment of Nation  Alleghers and the Nation  Alleghers and the Nation  Alleghers and the Nation  Alleghers and Activities  Alleghers and Plantices  Alleghers and Plant | Advanced Level Mathematics Tutorials Pure Mathematics                                                                                                                                                                                                  | ¥                                                  |
| Algebra 1  May a more for know (work)  May be a more for know (work)  La facing for form of the form o | About the Authors                                                                                                                                                                                                                                      | vi                                                 |
| Whell you need to know  1. The Number System and Surels  1. Simulations the Equations  1. Simulations and Activities  1. Simulations And Advanced System and System an | Introduction                                                                                                                                                                                                                                           | vi                                                 |
| Whele you need to know  1. Lowellmake Geometry 1. The Dispussion of a Straight Line 1. The Dispussion of the Circle Consolidation of Consolidation  | Whal you need to know<br>Keriew<br>White System and Surels<br>12. Indicas<br>13. Polynomials<br>14. Partorisation<br>14. Partorisation<br>16. Simultaneous Equations<br>Committation. A.<br>Applications and Activities                                | 2<br>2<br>3                                        |
| 13. Trigonometric Functions 14. Trigonometric Functions 15. Compound and Daubir Augh Formulas 16. Teller State Rule and the Sine Rule 16. The Carlos Rule and the Sine Rule 17. The Carlos Rule and the Sine Rule 18. A Rules Advances 19. The Carlos Rules and Activities 19. The Carlos Rules and Activities 19. The Rundings 19. The R | What you need to know Noriew (mate Consulty 1.1 Correlation Consulty 2.2 More on the Consulty 2.3 More on the Straight Line 2.4 Inequalities 2.4 Inequalities Consolidation A Amplications and Activities                                              | 4<br>4<br>5<br>6<br>6<br>7<br>7<br>8<br>8          |
| What you need to know  130 Review  14.1 Mapping Huntiens  14.1 Mapping Huntiens  14.2 Mapping Huntiens  14.3 Composite Punciens  14.3 Composite Punciens  14.4 Transformations of Graphs and Functions  15.4 Transformations of Fernick Functions  17. Concolidation A  18. Deep Control Punciens  18. Deep Control Punciens  19. Deep Control Punciens   | Wisi you need to know<br>Kuramomoustic Paractions<br>13. Egnations and identities<br>3.1. Egnations and identities<br>4.4 The Caston Rule and the Sine Rule<br>4.4 The Caston Rule and the Sine Rule<br>5.4 Rule Language<br>Consolidation A           | 10<br>11<br>12<br>12<br>13<br>13                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | What you need to know Review program and Functions 4.1 Mappings and Functions 4.1 Composite Functions 4.3 Composite Functions 4.4 Transformations of Graphs and Functions 4.4 Transformations of Functions Consolidation A Applications and Activities | 13<br>13<br>14<br>14<br>15<br>16<br>17<br>18<br>18 |

| 5 Differentiation I                                                                      | 190        |
|------------------------------------------------------------------------------------------|------------|
| What you need to know                                                                    | 190        |
| Review                                                                                   | 190        |
| 5.1 Finding the Gradient of a Curve                                                      | 191        |
| 5.2 Stationary Points                                                                    | 204        |
| 5.3 Further Applications of Differentiation                                              | 217        |
| 5.4 The Chain Rule and Related Rates of Change                                           | 226        |
| 5.5 Differentiation of Trigonometric Functions<br>Consolidation A                        | 236<br>249 |
| Consolidation B                                                                          | 249        |
| Applications and Activities                                                              | 253        |
| Summary                                                                                  | 254        |
| •                                                                                        |            |
| 6 Algebra II                                                                             | 255        |
| What you need to know                                                                    | 255        |
| Review                                                                                   | 255        |
| 6.1 Polynomial Division                                                                  | 256<br>265 |
| 6.2 Algebraic Fractions<br>6.3 Partial Fractions                                         | 270        |
| 6.4 Curve Sketching                                                                      | 281        |
| Consolidation A                                                                          | 289        |
| Consolidation B                                                                          | 290        |
| Applications and Activities                                                              | 292        |
| Summary                                                                                  | 293        |
|                                                                                          |            |
| 7 Exponentials and Logarithms                                                            | 294        |
| What you need to know<br>Review                                                          | 294<br>294 |
| 7.1 The Exponential Function                                                             | 294        |
| 7.2 Logarithms                                                                           | 300        |
| 7.3 Laws of Logarithms                                                                   | 304        |
| 7.3 Laws of Logarithms 7.4 Solving a* = b                                                | 309        |
| Consolidation A                                                                          | 316        |
| Consolidation B                                                                          | 318        |
| Applications and Activities                                                              | 319<br>320 |
| Summary                                                                                  | 320        |
| 8 Sequences and Series                                                                   | 321        |
| What you need to know                                                                    | 321        |
| Review                                                                                   | 321        |
| 8.1 Sequences and Series                                                                 | 322        |
| 8.2 Arithmetic Progression                                                               | 328        |
| 8.3 Geometric Progression                                                                | 335<br>340 |
| 8.4 Convergence, Divergence and Oscillation<br>8.5 The Binomial Theorem and Power Series | 340        |
| Consolidation A                                                                          | 354        |
| Consolidation B                                                                          | 355        |
| Applications and Activities                                                              | 357        |
| Summary                                                                                  | 358        |
|                                                                                          |            |
| 9 Integration I                                                                          | 359        |
| What you need to know                                                                    | 359        |
| Review                                                                                   | 359        |
| 9.1 Indefinite Integration<br>9.2 The Area Under a Graph                                 | 360<br>367 |
| 9.3 The Area Between the Vertical Axis and a Curve                                       | 377        |
| 9.4 Area Between Two Curves                                                              | 380        |
| 9.5 Volumes of Revolution                                                                | 384        |
| 9.6 Integration of Sine and Cosine                                                       | 390        |
| Consolidation A                                                                          | 397        |
| Consolidation B                                                                          | 399        |
| Applications and Activities                                                              | 401        |
| Summary                                                                                  | 402        |

| 10 Trigonometry II                                                   | 403        |
|----------------------------------------------------------------------|------------|
| What you need to know                                                | 403        |
| Review                                                               | 403        |
| 10.1 The Factor Formulas                                             | 404        |
| 10.2 Functions of the Form $f(x) = a \sin x + b \cos x$              | 411<br>421 |
| 10.3 General Solutions of Trigonometric Equations<br>Consolidation A | 421<br>426 |
| Consolidation B                                                      | 427        |
| Applications and Activities                                          | 429        |
| Summary                                                              | 430        |
|                                                                      |            |
| 11 Differentiation II                                                | 431        |
| What you need to know                                                | 431        |
| Review                                                               | 431        |
| 11.1 Differentiating Products and Quotients                          | 433        |
| 11.2 Differentiating Exponentials and Logarithms                     | 438        |
| 11.3 Further Trigonometric Differentiation                           | 448        |
| 11.4 Using the Second Derivative                                     | 455        |
| 11.5 Implicit Differentiation<br>11.6 Parametric Differentiation     | 465<br>472 |
| 11.6 Parametric Differentiation<br>11.7 Maclaurin Series             | 481        |
| Consolidation A                                                      | 488        |
| Consolidation B                                                      | 490        |
| Applications and Activities                                          | 491        |
| Summary                                                              | 491        |
|                                                                      |            |
| 12 Integration II                                                    | 494        |
| What you need to know                                                | 494        |
| Review                                                               | 494<br>495 |
| 12.1 Standard Integrals                                              | 495<br>507 |
| 12.2 Rational Functions<br>12.3 Integration by Parts                 | 515        |
| 12.4 Integration by Substitution                                     | 521        |
| 12.5 The Area Under a Parametrically Defined Curve                   | 530        |
| 12.6 Differential Equations                                          | 536        |
| Consolidation A                                                      | 546        |
| Consolidation B                                                      | 547        |
| Applications and Activities                                          | 549        |
| Summary                                                              | 550        |
|                                                                      |            |
| 13 Numerical Methods<br>What you need to know                        | 551<br>551 |
| What you need to know<br>Review                                      | 551        |
| 13.1 Approximate Solutions of Equations                              | 552        |
| 13.2 Numerical Integration                                           | 571        |
| Consolidation A                                                      | 583        |
| Consolidation B                                                      | 585        |
| Applications and Activities                                          | 587        |
| Summary                                                              | 588        |
| 4477-4                                                               | 590        |
| 14 Vectors<br>What you need to know                                  | 390<br>590 |
| Review                                                               | 590        |
| 14.1 Vector Geometry                                                 | 591        |
| 14.2 Vectors in Two and Three Dimensions                             | 600        |
| 14.3 The Scalar Product                                              | 614        |
| 14.4 The Vector Equation of a Straight Line                          | 626        |
| 14.5 The Vector Equation of a Plane                                  | 643        |
| Consolidation A                                                      | 661        |
| Consolidation B                                                      | 663        |
| Applications and Activities                                          | 665        |
| Summary                                                              | 665        |
|                                                                      |            |

| 15 Proof and Mathematical Argument                       | 667 |
|----------------------------------------------------------|-----|
| What you need to know                                    | 667 |
| Review                                                   | 667 |
| 15.1 Mathematical Argument                               | 668 |
| 15.2 Proof by Exhaustion and Disproof by Counter Example | 673 |
| 15.3 Proof by Contradiction                              | 677 |
| 15.4 Proof by Induction                                  | 689 |
| Consolidation A                                          | 684 |
| Applications and Activities                              | 686 |
| Summary                                                  | 686 |
| Answers                                                  | 687 |
| Formulas                                                 | 724 |
| Indox                                                    | 727 |

### **Examination Papers**

We are grateful to the following Awarding Bodies for permission to reproduce questions from their past examination papers:

- Assessment and Qualifications Alliance (AQA), including Northern Examinations and Assessment Board (NEAB), Associated Examining Board (AEB), Secondary Mathematics Project (SMP) and Joint Matriculation Board (JMB).
- The Edexcel Foundation, including University of London Examinations and Assessment Council (ULEAC).
- Oxford, Cambridge and RSA (OCR), including University of Cambridge Local Examinations Syndicate (UCLES), Oxford & Cambridge Schools Examination Board (OCSEB) and Mathematics in Education and Industry (MEI).
- Northern Ireland Council for the Curriculum, Examinations and Assessment (NICCEA).
- Welsh Joint Education Committee (WIEC).

All answers and worked solutions provided for examination questions are the responsibility of the authors.

### Graphical calculator support

An ixon [w] is shown in the margin feature of this book to denote areas where the work can be further developed or demonstrated with a graphical calculator. A Graphical Calculator Support Prox is also available to use alongside this book (SISN: 07447-4324 6), containing key sequences and calculator settings for Texas, Sharp and Casio machines. Additional questions that build on the activities are also provided. Where there is a link on the page of this book to the pack this is indicated nort to the icon in the margin.

#### Advanced Level Mathematics Tutorials Pure Mathematics

Advanced Level Mathematics Tutarials Pura Mathematics is a new CD-ROM resource. It is designed to provide further and valuable extra practice and additional support to your Pura Mathematics work. There are two versions of this programme, each providing Live Authoried <sup>Na</sup> worked solutions to exercises from this book. Live Authoried <sup>Na</sup> worked solutions to reserve from the book the Single-user version provides worked solutions to 75 exercises the Single-user version provides worked solutions to 75 exercises. Live Authories worked to the supported by an additional two reservises to Irv.

An icon is shown in the margin feature of the pages in this

book to denote where a worked solution to an exercise on that page is provided on the CD-ROM. The relevant exercise number(s) is shown with the icon.

For further details of this new resource, contact Stanley Thornes (Publishers) Ltd, Ellenborough House, Wellington Street, Cheltenham, Glos GL50 1YW. Tel: 01242 267272. Fax: 01242 253695. e-mail: cservice@thornes.co.uk

Multi-user version: A set of three identical disks containing 120 Live Authored<sup>TM</sup> worked solutions. Each disk is licensed to three users. ISBN 0 7487 3914 9

Single-user version: A single disk containing 75 Live Authored  $^{\rm TM}$  examples. The disk is licensed to one user.

ISBN 0 7487 3918 1

#### About the Authors

- Andy Martin is currently Head of Mathematics in a Doncaster school. He has also been a Pure Mathematics Examiner and Coursework Moderator since 1994 as well as a member of the Examination Board's subject committee. Andly is also the National Project Officer for a National Curriculum Development strategies.
- Kevin Brown is currently Head of Mathematics at a school in St Helens. Kevin has many years' teaching experience at a comprehensive school in Liverpool. He has also previously written material for a Mathematics multimedia package.
- Paul Rigby is currently Second in the Mathematics department of a high school in Bolton. Paul has worked previously at a comprehensive school in Oldham.
- Simon Riley is currently Head of Mathematics at a school in Leeds. He is also an assistant Examiner.

### Introduction

Complete Advanced Level Mathematics is an exciting new series of mathematics books, Tencher Resource Files and other support materials (see page visil) from Stanley Thorness for those studying the properties of the properties teachers, students and others. All the authors are experienced and practiting teachers and, in some cases, Advanced Level Mathematics Examiners. Chapters have been trialed in schools and Level Mathematics are movisided by this perioses in Advanced Level Mathematics are movisided by this perioses in Advanced

This book covers all the requirements for **Pure Mathematics** from all the latest Advanced Level specifications and course requirements for AS and A Level mathematics. It will provide you with:

- Material that builds on work done at GCSE level, where appropriate.
- Comprehensive coverage and clear explanations of all Pure Mathematics topics and skills.
- Numerous exercises and worked examples with questions and clear diagrams.
- Precise and comprehensive teaching text with clear progression.
   Margin notes that provide supporting commentary on key
- topics, formulas and other aspects of the work.

  In text highlighted 'hints' to assist with important areas, such as specific calculations in worked examples and key formulas.
- Margin icons for topics requiring the use of a graphical calculator or computer. Topics that can be developed with IT are included throughout.
- A comprehensive list of formulas that students need to know, with chapter references, and a full index.

Chapters in this book contain a number of key features:

What you need to know sections covering prerequisite

knowledge for a chapter.

- Review sections with practice questions on what you need to know.
   Worked Examples and supporting commentary.
- Worked Examples and supporting commentary.
   Technique and Contextual Exercises to give thorough practice in all Pure Mathematics concept areas and skills.
- Consolidation A and B Exercises, which include actual examination questions, to build on the work in a chapter and provide practice in a variety of question types.
- Applications and Activities as a support to coursework.
   A Summary of all the key concents covered.

(0 7487 3561 5) are also available in this series.

Companion volumes for Mechanics (0 7487 3559 3) and Statistics (0 7487 3560 7) and a Pure Mathematics Teacher Resource File COMPLETE ADVANCED LEVEL MATHEMATICS

# **Pure Mathematics**

FREE! CD-ROM

Advanced Level Mathematics Tutorials Sample inside this

DOOK

Andy Martin • Kevin Brown • Paul Rigby • Simon Riley

STANLEY THORNES

### COMPLETE ADVANCED LEVEL MATHEMATICS

# **Pure Mathematics**

Andy Martin • Kevin Brown • Paul Rigby • Simon Riley

STANLEY THORNES



# 1 Algebra I

### What you need to know

- How to use index form.
- How to evaluate  $\sqrt{a} \times \sqrt{a}$ .
- How to collect like terms.
- How to expand brackets.
- How to solve linear equations.
   How to factorise algebraic expressions.
- How to use a division algorithm (method) without a calculator.

## Review

1 Write the following in index form:

a  $x \times x$  d  $a \times a \times b \times b \times b$ b  $7 \times 7 \times 7$  e  $2x \times 2x$ c  $x \times x \times x$  f  $3a \times 2a \times 2a$ 

2 Find the exact value of the following:

a  $\sqrt{36} \times \sqrt{36}$  d  $\sqrt{16} \times \sqrt{16}$ b  $\sqrt{4} \times \sqrt{4}$  e  $\sqrt{a} \times \sqrt{a}$ c  $\sqrt{9} \times \sqrt{9}$  f  $\sqrt{x} \times \sqrt{x}$ 

By collecting like terms simplify the following expressions:

Multiply out, or expand, the following terms in brackets, simplifying the answer where possible:

### Irrationals and surds

There are some numbers that cannot be written in this form. Those numbers have a decimal expansion that doesn't terminate, but goes on forever without repeating. Those numbers are known as irrational numbers. Some examples of irrational numbers are  $\kappa$   $k_{\rm U} \sqrt{\kappa}$  and  $\sqrt{r}$ . They cannot be evaluated exactly; calculators simply give an approximation to h. In or 12 decimal places. The ancient Creeks called numbers like  $\sqrt{2}$ ,  $\sqrt{s}$  and  $\sqrt{r}$  incommensurables. Now they are often efferred to as surfle. Not all irrationals are surfle; in its of a surfl.

Surds are used to give exact answers instead of an approximation to many decimal places (in much the same way as fractions are preferred to decimals). Surds can also be manipulated using the following properties.

They were called incommensurables because although the could be constructed with a ruler and a pai of compasses they couldn't be measured exactly.



$$a\sqrt{b} + c\sqrt{b} = (a+c)\sqrt{b}$$
 Property
$$a\sqrt{b} - c\sqrt{b} = (a-c)\sqrt{b}$$
 Property

#### demonstrate how su behave in the proces factorisation.

### Example 3

Simplify:

a 
$$\sqrt{45}$$
 b  $\sqrt{24}$  c  $6\sqrt{7}+2\sqrt{7}$  d  $5\sqrt{3}-\sqrt{27}$  Solution

a  $\sqrt{45} = \sqrt{9 \times 5}$ 

b  $\sqrt{24} = \sqrt{4 \times 6}$ 

d 
$$5\sqrt{3} - \sqrt{27} = 5\sqrt{3} - \sqrt{9 \times 3}$$
  
 $= 5\sqrt{3} - (\sqrt{9} \times \sqrt{3})$ 
 $= 5\sqrt{3} - 3\sqrt{3} = 2\sqrt{3}$  
Using property 4.

Notice how 27 can be written as a product involving a square number.

### Example 4

Expand and simplify  $(\sqrt{8} - \sqrt{3})(\sqrt{8} + \sqrt{3})$ .

#### Solution

$$\begin{split} (\sqrt{8} - \sqrt{3})(\sqrt{8} + \sqrt{3}) &= \sqrt{8}(\sqrt{8} + \sqrt{3}) - \sqrt{3}(\sqrt{8} + \sqrt{3}) \\ &= (\sqrt{8})^2 + \sqrt{8}\sqrt{3} - \sqrt{3}\sqrt{8} - (\sqrt{3})^2 \\ &= (\sqrt{8})^2 - (\sqrt{3})^2 \\ &= 8 - 3 = 5 \end{split}$$

Remember that  $\sqrt{8}\sqrt{3} = \sqrt{3}\sqrt{8}$ 

Example 4 demonstrates the algebraic result for difference of two squares:

For example,  $(\sqrt{8} + \sqrt{3})(\sqrt{8} - \sqrt{3}) = (\sqrt{8})^2 - (\sqrt{3})^2$ , as demonstrated in Example 4. This technique will be very useful later.

### Rationalising the denominator

Division by square roots can appear daunting, but it can be avoided by writing 1 in a surd form and multiplying by it. This allows the following technique to be applied.

# Example 5

a 
$$\frac{5}{\sqrt{3}}$$

c 
$$\frac{1}{7-\sqrt{2}}$$

# Solution

$$\mathbf{a} \qquad \frac{5}{\sqrt{3}} = \frac{5}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$
$$= \frac{5\sqrt{3}}{3}$$

b 
$$\frac{15}{\sqrt{5}} = \frac{15}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$$
  
=  $\frac{15\sqrt{5}}{5}$ 

$$=3\sqrt{5}$$

This process is sometimes called **rationalising** the denominator because the original number is rewritten without the surd occurring in the denominator. Notice how 1 has written in surd for as  $\frac{\sqrt{3}}{\sqrt{3}}$ .

Notice how 1 has been written in surd form. Notice that 5 is a factor of both numerator and denominator. c The choice of surd form for 1 isn't obvious here. However the difference of two squares provides the answer.

$$\begin{split} \frac{1}{7-\sqrt{2}} &= \frac{1}{(7-\sqrt{2})} \times \frac{(7+\sqrt{2})}{(7+\sqrt{2})} \\ &= \frac{(7+\sqrt{2})}{(7)^2 - (\sqrt{2})^2} \\ &= \frac{7+\sqrt{2}}{49-2} \\ &= \frac{7+\sqrt{2}}{47} \end{split}$$

This choice of multiplier is by no means accidental. When more complicated expressions need rationalising the multiplier is simply the conjugate of the original denominator. (Think of the conjugate as having the same components, with one of the signs changed.)

## Example 6

Rationalise  $\frac{\sqrt{17} - \sqrt{5}}{\sqrt{17} + \sqrt{5}}$ .

### Solution

$$\begin{split} & \frac{\sqrt{17} - \sqrt{3}}{\sqrt{17} + \sqrt{3}} & \frac{\sqrt{17} - \sqrt{3}}{\sqrt{17} + \sqrt{3}} & \frac{\sqrt{17} - \sqrt{3}}{\sqrt{17} - \sqrt{3}} \\ & = \frac{(\sqrt{17} - \sqrt{3})(\sqrt{17} - \sqrt{3})}{(\sqrt{17})^2 - (\sqrt{3})^2} \\ & = \frac{(\sqrt{17})^2 - (\sqrt{17})^2 - \sqrt{3}(\sqrt{17} + (\sqrt{3})^2)}{17 - 5} \\ & = \frac{17 + 5 - 2\sqrt{3}\sqrt{17}}{12} \\ & = \frac{22 - 2\sqrt{36}}{12} & = \frac{11 - \sqrt{65}}{11 - \sqrt{65}} \end{split}$$
 Use surd property 1.

#### \_\_\_\_

The real number system
The set of real numbers contains all the irrational numbers in addition to all the rational numbers. This set is denoted by R. Real numbers can be represented by points on a line, called the real number line.

Notice the form of 1.

The denominator is now the difference of two squares.

Snot the conjugate

Spot the difference two squares. Multiply out the

llect like terms

rise the numerator.

Richard Dedekind (1831–1916) Dedekind showed that the real number line is continuous.

### 1.1 The Number System and Surds

# **Exercise**

# Technique

1 Simplify the following:

 $\sqrt{18}$  $\sqrt{125}$ b √27

 $\sqrt{153}$  $\sqrt{225}$ c √48 d √44  $\sqrt{72}$ 

2 Simplify the following and express each as a single surd:

a  $5\sqrt{3} - 2\sqrt{3}$  $5\sqrt{32} - \sqrt{200}$ b  $7\sqrt{2} + 2\sqrt{2}$  $2\sqrt{27} + 3\sqrt{3} - \sqrt{12}$ c  $3\sqrt{18} - \sqrt{32}$  $2\sqrt{20} - \sqrt{45} + \sqrt{500}$ 

3 Expand and simplify the following:

a  $(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})$ e  $(2\sqrt{5}+1)(\sqrt{5}-1)$ b  $(\sqrt{3} - \sqrt{2})(\sqrt{3} - \sqrt{2})$  $(4\sqrt{5}-1)(2\sqrt{5}-1)$ 

 $c (\sqrt{5} - \sqrt{3})(\sqrt{5} - \sqrt{3})$  $(\sqrt{7} - \sqrt{2})(\sqrt{7} + \sqrt{2})$  $(\sqrt{11}-3)(\sqrt{11}+3)$ d  $(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})$ 

4 Rationalise the denominator in each of the following fractions:

 $\sqrt{13} = \sqrt{11}$ 

 $\frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}}$ 

 $\frac{\sqrt{11} - \sqrt{7}}{\sqrt{11} + \sqrt{7}}$ 

### 1.2 Indices

We can write  $2 \times 2 \times 2 \times 2 \times 2 \times 2^3$ . The '5' is known as the **power** [sometimes called an exponent or index]; ' $\alpha$  to the power x' is written as  $a^x$ . So  $a^x$  is an expression in which  $\alpha$  is the **base** and x is the power.

### Multiplication and division using powers

Consider multiplying the same number raised to different powers.  $3^{2} \times 3^{2} = (3 \times 3 \times 3) \times (3 \times 3) = 3^{5}$ 

$$4^2 \times 4^5 = (4 \times 4) \times (4 \times 4 \times 4 \times 4 \times 4) = 4^7$$

Try some of your own examples. What do you notice about the powers?



summing the powers.

Now try multiplying a power by itself several times.

$$(3^3)^2 = 3^3 \times 3^3$$
  
=  $(3 \times 3 \times 3) \times (3 \times 3 \times 3)$   
=  $3^6$   
 $(4^2)^5 = 4^2 \times 4^2 \times 4^2 \times 4^2 \times 4^2$ 

$$= (4 \times 4) \times (4 \times 4) \times (4 \times 4) \times (4 \times 4) \times (4 \times 4)$$
  
=  $4^{10}$ 

Try some examples of your own. What is happening to the powers?

Notice that the powers are multiplying.

Now try division using powers, Remember to keep the base the same.

$$6^{5} \div 6^{3} = \frac{6 \times 6 \times 6 \times 6 \times 6}{6 \times 6 \times 6}$$
$$= 6 \times 6 = 6^{2}$$

Try some examples of your own. What do you think is happening to the powers?

$$a^p + a^q = \frac{a^p}{a^q} = a^{p-q}$$
 Property 3  $\blacktriangleleft$  Learn this property.

Notice how the powers now subtract.

### There are some special cases to consider.

### 1. Division when nowers are equal

$$6^3 \div 6^3 = 6^{3-3}$$
  
 $1 = 6^0$ 

This result leads to another property.

 $a^0 = 1$  provided  $a \neq 0$  Property 4

■ Learn this property.

2. Division when the second power is larger than the first

-1 . -1 \_ -1-5

 $\frac{7 \times 7 \times 7}{7 \times 7 \times 7 \times 7 \times 7} = 7^{-2}$ 

 $\frac{1}{7 \times 7} = 7^{-2}$ 1 - 7-2

Try some examples of your own. What does the negative power mean?



a<sup>-p</sup> = 1 Property 5 ◀ Learn this property.

A negative power indicates a reciprocal. (Think of a negative power as producing a fraction.)

### 3. Fractional powers Property 1 can be used to introduce a meaning for a fractional power.

Suppose that  $p = q = \frac{1}{4}$  in property 1. al = al = al+1

$$a^{i} \times a^{j} = a^{i+1}$$
  
 $(a^{\dagger})^{2} = a^{1} = a$   
 $\Rightarrow a^{\dagger} = \sqrt{a}$ 

The meaning of power 1 can be established in a similar way.

(ab) - al - a  $a^{\dagger} = \sqrt[3]{a}$ 

This means 'power 1' can be thought of as a cube root. Investigate powers 1. and so on in the same way. Notice how the fraction is related to the root.



nb

Property 6 ◀ Learn this property. Recall that any number divided by itself gives 1. except zero, which is a special case.

Think of this as 'any number raised to the nower zero must equal 1'

side (LHS) is a number

root of both sides

more concisely using

Property 6 can also be used to establish a meaning for fractional powers where the numerator isn't 1. For example,  $a^{2/3}$  can be written in other forms.

$$a^{\dagger} = (a^2)^{\dagger} = (a^{\dagger})^2$$
 

Use property 2.

The first version,  $a^{\frac{2}{3}} = (a^2)^{\frac{1}{3}}$ , allows the following interpretation.

$$a^{\frac{1}{4}} = (a^2)^{\frac{1}{4}} = \sqrt[3]{a^2}$$

Notice how the fractional power creates a root of a power.

These seven properties provide useful techniques for simplifying algebraic expressions.

### Example 1

Simplify:

$$b = \frac{18x^2y^5}{2x^4y}$$

#### Solution

$$\mathbf{b} = \frac{18x^2y^5}{3x^4y} = \frac{6x^2y^5}{x^4y}$$

c  $(3x^5)^2 = 3^2 \times (x^5)^2$ =  $9x^{10}$ 

$$= 6x^{(2-4)}y^{(5-1)}$$

$$= 6x^{-2}y^{4}$$
Use property 3 on x and y separately.

numbers.

Each term inside the bracket must be squared.

### Example 2

Write the following expressions in index form:

a 
$$\frac{2}{v^3}$$
 b  $\frac{1}{2x^4}$ 

$$\frac{1}{2x^4}$$
 c  $(x^4)^{\frac{1}{2}}$ 

Solution

$$b = \frac{1}{2x^4}$$

b 
$$\frac{1}{2x^4} = \frac{1}{2}x^{-4}$$
 Use property 5.

Notice in part b how the variable (x) is put into index form, but the fraction  $\binom{1}{2}$  is left as a multiplier.

$$(x^4)^{\frac{1}{2}} = x^{4 \times \frac{1}{2}}$$
  
=  $x^2$ 

$$\frac{54x^4}{3x} =$$

$$d \sqrt[3]{\frac{54x^4}{2x}} = \sqrt[3]{27x^{(4-1)}}$$

$$= \sqrt[3]{27x^3}$$

$$= \sqrt[3]{27x^3}$$
  
 $= \sqrt[3]{27} = \sqrt[3]{2}$ 

### Example 3

Without using a calculator, evaluate:

#### Solution

a 
$$9^{-\frac{3}{2}} = \frac{1}{9^{\frac{3}{2}}}$$
 

Use property 5.

$$= \frac{1}{(q_1^2)^3}$$
 $\checkmark$  Use property 2.

$$=\frac{1}{3^3}=\frac{1}{27}$$

$$b \quad (1\frac{11}{28})^{-\frac{1}{2}} = (\frac{26}{23})^{-\frac{1}{2}}$$

$$= \frac{1}{\binom{26}{3}!}$$

$$= \frac{1}{\sqrt{\frac{6}{35}}}$$

$$= \frac{1}{\sqrt{\frac{6}{35}}}$$

$$= \text{Use proj}$$

Divide the number terms, and use property 3 on the variable x.

 $(ab)^{\frac{1}{a}} = a^{\frac{1}{a}}b^{\frac{1}{a}}$ 

Since  $9^{\frac{1}{2}} = \sqrt{9} = 3$ , by property 6.

Remove the mixed number

Remember that division by a fraction means invert the fraction (and multiply).

The properties, or rules, of indices can also be used in equation solving.

### Example 4

Find the value of x when:

- a 5<sup>x</sup> = 125 Solution
- Solution
  - a  $5^x = 125$

This type of problem can sometimes be solved using a trial and improvement approach, as follows, although this may be time consuming for very large numbers, and for non-integer solutions.

h v1 - 4

$$5^1 = 5$$
  
 $5^2 = 5 \times 5 = 25$ 

$$5^3 = 5 \times 5 \times 5 = 125$$

So 
$$x = 3$$

b  $x^{\frac{1}{2}} = 4$  Use property 7.

$$\sqrt[3]{x^2} = 4$$

$$x^2 = 4^3$$

$$x^2 = 4^{\prime}$$
$$x^2 = 64$$

$$x = \pm \sqrt{64}$$

$$x = \pm 8$$

Cubing both sides.

Taking the square roc

# 1.2 Indices

# Exercise

# Technique

# 1 Simplify the following expressions:

a 
$$\frac{4^2 \times 4^7}{4^3}$$
  
5<sup>3</sup> × 5<sup>4</sup>

b 
$$\frac{5^3 \times 5^4}{5^2}$$
 e  $\frac{8x^3y^2}{4xy}$   
c  $\frac{5^9}{5^2 \times 5^7}$  f  $\frac{12x^5y^4}{6x^2y^3}$ 

711

 $7^{3} \times 7^{4}$ 

 $3(x^5)^3$ 

 $(2x^4)^3$ 

 $12x^2y^3$ 

Simplify the following expressions:  

$$\mathbf{a} = (x^3)^4$$

$$(x^2)^3$$
  
 $(x^2)^3$   
 $(x^3)^2$ 

c 
$$2(x^3)^2$$
 f  $(3x^2)^3$   
Write the following expressions in index form:

Write the following expressions in index form:  
**a** 
$$\frac{3}{x^7}$$
 **d**  $\frac{5^3 \times 5^5}{5^{10}}$ 

b 
$$\frac{1}{3x^2}$$
 e

b 
$$\frac{1}{3x^2}$$
 e  $\frac{124x^4y^2}{24x^4y^2}$   
c  $\frac{4^2 \times 4^7}{x^{1/2}}$  f  $\frac{3x^2y^3}{6x^2+3}$ 

Write the following expressions in their simplest form:  

$$\mathbf{a} = \frac{(x^4)^{\frac{1}{2}}}{(x^6)^{\frac{1}{2}}} \qquad \qquad \mathbf{d} = \sqrt{\frac{5x^6}{220x^2}}$$

a 
$$\frac{1}{(x^n)!}$$
 d  $\sqrt{\frac{20x^2}{20x^2}}$   
b  $\frac{(x^n)!}{x^{-2} \times x^4}$  e  $\sqrt[3]{\frac{16x^3}{2x^2 \times x}}$ 

b 
$$\frac{\langle x \rangle^2}{x^{-2} \times x^4}$$
 e  $\sqrt[3]{\frac{10x^2}{2x^2 \times x}}$   $\sqrt[6]{9x^4}$  4  $\sqrt[6]{x^3}$ 

c 
$$(-27)^{-\frac{1}{2}}$$
 g  $(3\frac{3}{9})^{\frac{1}{2}}$  d  $(-27)^{\frac{1}{2}}$  h  $(2\frac{1}{4})^{-\frac{1}{2}}$ 

these equations:  
**a** 
$$2^x = 8$$
 **b**  $3^x = 9$  **c**  $7^x = \frac{1}{2}$   
**e**  $x^{-3} = \frac{1}{4}$  **f**  $x^{-3} = \frac{27}{44}$  **g**  $x^{-\frac{7}{3}} = \frac{1}{4}$ 

$$x = \frac{1}{2}$$

c 
$$7^x = \frac{1}{7}$$
 d  $12^x = 1$   
g  $x^{-\frac{1}{3}} = \frac{1}{4}$  h  $x^3 = 343$ 









0 11

# 1.3 Polynomials

An expression is a combination of numbers, variables (usually represented by the letters x and y) and mathematical operations (+, -, x, +). Some examples of expressions are 3x + 2,  $7x^2 + 3y$ , and  $x^2 - 5x + 6$ . When two expressions are linked by the symbol of equality an equation is formed.

For example, the following are all equations:

$$3x + 2 = 5$$
  $7x^2 + 3y = x + 2$   $x^2 - 5x + 6 = 0$ 

The general form of a simple equation can be written in various ways.

$$y = ax + b$$
,  $y = mx + c$  and  $y = a_1x + a_0$ 

are all forms of linear equations.

Why are these equations linear? Try drawing their graphs for some values of a and b, m and c, or  $a_1$  and  $a_0$ . Notice how the graph is always a straight line.

For example, y = 2x + 1 is one version of y = ax + b, with a = 2 and b = 1. It is illustrated here.



An equation of the form  $y = x^o$ , where n is a positive integer, is known as a polynomial. The general form of this type is written  $y = a_n x^o + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_3$ , where  $a_n \neq 0$ . This is called a polynomial equation of degree n.

$$y = x^2 + 3x - 1$$

is a polynomial of degree 2, because its highest power is 2.

$$y = 2x^5 + 7x^3 - 8x + 4$$

is a polynomial of degree 5, because its highest power is 5.

What about the numbers in the polynomials? Notice how each term of the equation is distinct, separated by the operators + and -. The number in front of each variable (letter) is called a coefficient.

Robert Recorde (1510–1558) Recorde suggeste the equals sign, in 1557.

 $a, b, m, c, a_1$  and  $a_0$  a constants distinct fro x and y, which represent variables.

The word polynomic Greek, from 'poly' meaning many and 'nomial' meaning ten or names.

 $x^2 + \sqrt{x} - 3$  is not a polynomial. This is because  $\sqrt{x} = x^{\frac{3}{2}}$  and isn't a positive integer Consider the polynomial  $y = 2x^3 + 7x^3 - 8x + 4$ . This is a quintic equation (order 5, because the highest power of x is 5, the numbers 2, 7 and -8 are coefficient exist 2 is the coefficient of the  $x^3$  term, x is the coefficient of x is the coefficient of the x term. x is the coefficient of the x term. x is called a constant because it remains the same (its value is constant), whatever the value of x.

#### Addition and subtraction

In order to simplify polynomials, like terms are collected together. Like terms can then be added or subtracted algebraically. Notice the distinction between like and unlike terms.

- Examples of like terms
  - $x^2$ ,  $-3x^2$ , and  $2x^2$  are like terms, because they all have the same variable,  $x^2$ xy and 3yx are like terms, because they both have the same variable, xy
- xy and syx are like terms, because they both have the same variable,

  Examples of unlike terms
  - x and xy are unlike terms, because they contain different variables  $x^2y$  and  $y^2x$  are unlike terms, because they contain different variables

## Example 1

Simplify:

a 
$$(3x^2 + 8x - 2) + (5x^2 + 3x + 8)$$
  
b  $(6x^2 + 8x - 2) - (5x^2 + 2x - 7)$ 

### Solution

a  $(3x^2 + 8x - 2) + (5x^2 + 3x + 8) = 3x^2 + 8x - 2 + 5x^2 + 3x + 8$ =  $3x^2 + 5x^2 + 8x + 3x - 2 + 8$ 

$$= 8x^2 + 11x + 6$$

$$\mathbf{b} \quad (6x^2 + 8x - 2) - (5x^2 + 2x - 7) = 6x^2 + 8x - 2 - 5x^2 - 2x + 7$$

$$= 6x^2 - 5x^2 + 8x - 2x - 2 + 7$$

$$= x^2 + 6x + 5$$

### Multiplication

Multiplication of polynomials is achieved by applying the **distributive** law. In algebra this law can be stated,

a(b+c)=ab+ac

and

(a+b)(c+d) = a(c+d) + b(c+d) = ac + ad + bc + bd

Remember like terms contain the same variables (letters) raised to the same powers.

Collect together the like

Combine the like terms.

Recall that a minus sign outside the bracket

changes the sign of each term inside the bracket, and collect together like terms.

Verify this law for yourself using numbers. For example, 23 × 17 can be written

$$(20+3) \times (10+7) = 20(10+7) + 3(10+7)$$

$$= 200 + 140 + 30 + 21 = 391$$

What is the effect of this law? Notice that every term in the second bracket has been multiplied by each of the terms in the first bracket. This is the principle used in polynomial multiplication.

# Example 2

Expand and simplify:

a  $(2x+3)(4x^3+3x^2-2x+5)$ 

**b**  $(3x^3 - x^2 + 7)(2x^3 + 2x^2 - 3x + 2)$  **c**  $(x + 2)^3$ 

### Solution

a Recall the structure of the distributive law. Each term in the second bracket must be multiplied by each term in the first bracket.

$$(2x+3)(4x^3+3x^2-2x+5)$$

 $=2x(4x^3+3x^2-2x+5)+3(4x^3+3x^2-2x+5)$  $= 8x^4 + 6x^3 - 4x^2 + 10x + 12x^3 + 9x^2 - 6x + 15$ 

 $= 8x^4 + 6x^3 + 12x^3 - 4x^2 + 9x^2 + 10x - 6x + 15$ 

 $= 8x^4 + 18x^3 + 5x^2 + 4x + 15$ 

b Recall the structure of the distributive law.

$$(3x^3 - x^2 + 7)(2x^3 + 2x^2 - 3x + 2)$$
  
=  $3x^3(2x^3 + 2x^2 - 3x + 2) - x^2(2x^3 + 2x^2 - 3x + 2)$ 

 $+7(2x^3+2x^2-3x+2)$ 

 $= 6x^5 + 6x^5 - 9x^4 + 6x^3 - 2x^5 - 2x^4 + 3x^3 - 2x^2$  $+14x^3+14x^2-21x+14$ 

 $-6v^5 + 6v^5 - 2v^5 - 9v^4 - 2v^4 + 6v^3 + 3v^3 + 14v^3 - 2v^2 + 14v^2$ -21v + 14

 $=6x^{5}+4x^{5}-11x^{4}+23x^{3}+12x^{2}-21x+14$ 

 $(x+2)^3 = (x+2)(x+2)(x+2)$ **◄** Using the distributive law on the second pair of =(x+2)[x(x+2)+2(x+2)]

brackets.  $=(x+2)[x^2+2x+2x+4]$ 

 $=(x+2)(x^2+4x+4)$  $= x(x^2 + 4x + 4) + 2(x^2 + 4x + 4)$ 

 $=x^3+4x^2+4x+2x^2+8x+8$ 

 $= x^3 + 6x^2 + 12x + 8$ 

Collect like terms.

combine. Collect like terms

crossing out can help collect and combine l terms quickly.

#### Division

Before attempting division of polynomials think back to division with integers (whole numbers). Numerical division can be represented by fractions.

Fractions in the form  $\frac{2}{4}$ ,  $\frac{1}{10}$ ,  $\frac{2}{5}$ ,  $\frac{3}{6}$  are known as **proper fractions**. Here the numerator (top number) is less than the denominator (bottom number).

How are improper fractions written? Here the reverse is true. The numerator is greater than the denominator. Some examples are  $\frac{1}{k}$ ,  $\frac{1}{k}$ ,  $\frac{1}{k}$ , and  $\frac{1}{k}$ . How else could these be written? Improper fractions can also be written as mixed numbers, that is a mixture of an integer (whole number) and a proper fraction.

$$\frac{7}{4} = 1\frac{3}{4}, \quad \frac{11}{10} = 1\frac{1}{10}, \quad \frac{16}{5} = 3\frac{3}{5} \quad and \quad \frac{19}{8} = 2\frac{3}{8}.$$

Similarly algebraic fractions (fractions involving polynomials) can be both proper and improper.

$$\frac{3}{x+1}, \ \ \frac{2}{x-5}, \ \ \frac{x+1}{x^2+5x+3} \ \ \text{are all proper algebraic fractions}.$$

$$\frac{x+2}{x+5}$$
,  $\frac{x^2+13}{x-4}$ ,  $\frac{x^2+5x+6}{x^2-7x+12}$  are all improper algebraic fractions.

What's the difference between proper and improper algebraic fractions? Look at the degree, or order, of the polynomials in the numerator and denominator. For an algebraic fraction to be proper the order of the numerator must be less than the order of the denominator. If not, the fraction is improper.

# Example 3

Make the expression  $\frac{x+3}{x+5}$  a proper algebraic fraction.

### Solution

Notice that  $\frac{x+3}{x+5}$  is improper (the numerator and denominator are both order 1, or linear). There are two techniques that could be used to make this a proper algebraic fraction.

Method 1: The division algorithm

Write  $\frac{x+3}{x+5}$  as a division problem, and try a division by x.

Here the 'x's cannot be cancelled because they are not factors of both numerator and denominator.

$$x+5)\frac{1}{x+3}$$

$$x+5)\frac{1}{x+3}$$

$$\frac{x+5}{-2}$$
So  $\frac{x+3}{x+5} = 1 - \frac{2}{x+5}$ 

Notice the positions of the remainder and the divisor in the result.

Method 2: Algebraic manipulation

Method 2: Algebraic manipulation
In this technique the numerator is written as a multiple of the denominator and a remainder.

$$\frac{x+3}{x+5} = \frac{(x+5)-2}{x+5}$$

Then the numerator is split into two distinct parts.

$$\frac{x+3}{x+5} = \frac{x+5}{x+5} - \frac{2}{x+5} = 1 - \frac{2}{x+5}$$

Notice how both techniques give the same result. The fraction in the answer is proper.

### Example 4

Write as proper fractions:

Solution

Using the division algorithm,

$$\begin{array}{r}
 -4 \\
 1 - x \overline{\smash)} \, 4x \\
 4x \\
 4 \\
 \hline
 4x - 4 \\
 4 \\
 \hline
 4x - 4 \\
 4 \\
 \hline
 4x - 4 \\
 \hline
 4 \\
 \hline
 4x - 3 \\
 \hline
 3x + 6 \\
 \hline
 3x + 3 \\
 \hline
 4x - 3 \\
 \hline
 3x + 3 \\
 \hline
 4x - 3 \\
 4x - 3 \\
 \hline
 4x - 4 \\
 \hline
 4x - 4 \\
 4x - 4 \\
 \hline
 4x - 4 \\
 \hline
 4x - 4 \\
 4x - 4 \\
 \hline
 4x - 4 \\
 x - 4x - 4 \\
 \hline
 4x - 4 \\
 \hline
 4x - 4 \\
 x - 4x - 4 \\
 \hline
 4x - 4 \\
 x - 4x - 4 \\
 \hline
 4x - 4 \\
 x - 4x -$$

$$= \frac{3(x+3)}{x+3} - \frac{3}{x+3}$$
$$= 3 - \frac{3}{x+3}$$

Because x in (x + 5) of divide into the x in (x + 3) once. Subtract  $1 \times (x + 5)$  from (x + 3). The remainder is 3 - 5 = -2.

Because a number, (x + 5), divided by its

Because  $4x \div -x = -$ Then  $-4 \times (1 - x) =$ -4 + 4x = 4x - 4. Finally, 0 - (-4) = 4

the numerator is 3, st (x + 3) is multiplied by 3. Multiplying out the bracket, the constant term in the numerator 9. We require it to be +6, so we subtract 3.

# 1.3 Polynomials

# Exercise

### Technique

1 For each of the following polynomials write down (i) the order (degree) and (iii) the coefficient of  $x^2$ :

 $f = 8x^2 - 2x + 3$ 

- a 3x3 + 2x2 1 d 3x2 - 7 h 5x4 - 2x2 + x  $e^{3y^3} - 6y + 9$
- $7x^5 3x^4 7x^2 + 9$ 2 Add:
  - a  $3x^2 + 7x 3$  and  $5x^2 2x + 8$ 
    - h  $6x^2 + 6x + 3$  and  $6x^2 + 3x 2$  $4x^3 + 2x^2 + 3x + 6$  and  $3x^3 + 7x - 3$
    - d  $12x^5 + 7x^3 3x + 9$  and  $-3x^5 + 2x^4 + 7x^2 + 7x$

### 3 Find y<sub>1</sub> - y<sub>2</sub> when:

- a  $v_1 = 5x^2 + 12x + 3$  and  $v_2 = 3x^2 + 7x 4$ b  $v_1 = 7x^2 + 12x - 2$  and  $v_2 = 2x^2 - 5x + 7$
- c  $y_1 = 5x^4 + 3x^3 2x^2 + 8x$  and  $y_2 = 7x^4 2x^3 2x^2 + 2x 5$ d  $y_1 = -3x^3 - 2x^2 + 7x + 13$  and  $y_2 = 5x^3 - 3x^2 + 6x + 12$

### 4 Multiply and simplify the following:

- a (2x+1) and (3x+2)d (3x-1) and  $(x^2-2x+1)$ (2x + 3) and  $(2x^2 + 1)$ e (3-x) and  $(x^2+3x-2)$ 
  - $\epsilon$  (2x 1) and (x<sup>2</sup> + 3x + 1) f = (4-x) and  $(2x^2 - 5x + 7)$

### 5 Expand and simplify the following:

- a  $(2x+3)(3x^2-2x+8)+(x+1)(x^2+3x+2)$ h  $(5x-1)(2x^2+3x+2)+(x+3)(2x^2+4x-3)$
- c  $(3x-2)(3+2x-x^2)+(x-5)(x^2-2x+1)$
- d  $(4x-3)(2x+7-2x^2)+(x-1)(x^2+5x-1)$ e  $(5x+1)(x^2+2x+2)-(x+1)(x^2+3x+1)$
- f  $(3x-2)(2x^3+7x-5)=(x-1)(x^3-3x+2)$

### 6 Expand and simplify the following:

a (2x+3)(2x+3)b  $(2x+3)(2x+3)^2$  $(2x + 3)^4$  $d(1+2x)^4$  $e^{-(x+1)^4}$  $f (x-1)^4$ 

# 7 Write the following as proper fractions:

- 2x + 24x + 10 $6v \pm 7$ 3v - 2 2x + 32x - 1



### 1.4 Factorisation

The distributive law a(b+c)=ab+ac has been used to demonstrate multiplication of polynomials. The same law can be used in reverse, so a sum of terms can be written as a product. Doing this often introduces brackets into the algebra. The process is called **factorisation**.

Factorisation can be shown with natural numbers. The integers that divide exactly into 8 are 1, 2, 4 and 8. These are called the factors of 8. Notice that 8 can be written as a product of some of these factors.

Polynomials too can sometimes be factorised. Consider first polynomials of degree 2. These are more commonly known as quadratics. One such quadratic expression is  $x^2 + 3x - 18$ . It can be factorised as follows.

$$x^2 + 3x - 18 = (x + 6)(x - 3)$$

Check this by multiplying out the brackets. We call (x+6) and (x-3) the factors of the quadratic  $x^2+3x-18$ .

Quadratics can be factorised using one of three basic techniques:

- extracting a common factor
- trial and improvement
- standard results difference of two squares.

### Extracting a common factor

### Example 1

Factorise  $4x^3y^2 - 8x^2y^3$ .

#### Solution

Solution

Here it is possible to extract common factors.

Here it is possible to extract common factors. 4 and 8 have the common factor 4 (4 is the largest factor of both numbers).  $x^2$  and  $x^2$  have the common factor  $x^2$  ( $x^2$  is the largest factor of both terms).  $y^2$  and  $y^2$  have the common factor  $y^2$  ( $y^2$  is the largest factor of both terms). So  $4x^2y^2 - 4xy^2y^2 - 4x^2y^2 - 4x^$ 

Notice how the common factors are extracted from both terms in the expression and appear outside the bracket. These form one part of the product. The bracket must contain the terms necessary to combine with the common factor to create the original expression.

$$4x^3y^2 - 8x^2y^3 = 4x^2y^2(x - 2y)$$

Check that  $4x^2y^2 \times x = 4x^3y^2$  and that  $4x^2y^2 \times (-2y) = -8x^2y^3$ .

Factorisation by extracting a common factor is not restricte quadratics. In order to factorise quadratics, first check the coefficients in the expression.

Consider again the quadratic expression,  $x^2 + 3x - 18$ . The coefficient of  $x^2$  is 1, the coefficient of  $x^2$  is 3 and the constant term is -18. So the three distinct numbers in this expression are 1, 3 and -18. Now book at the factors of that expression, (x + 6) and (x - 3). These contain the two distinct numbers and -3. How are these two sets of numbers connected? Notice that adding the numbers in the factors and multiplying the numbers in the factors cruently the two larger numbers given by the coefficients.

6 + (-3) = 3, which is the coefficient of x

 $6\times(-3)=-18, \mbox{which}$  is the constant term.

The general rule, for a quadratic expression where the coefficient of  $x^2$  is 1, is that the expression can be factorised if two numbers can be found that add to give the coefficient of x and multiply to give the constant term.

### Trial and improvement

# Example 2

Factorise: a  $x^2 + 7x + 12$ 

b 
$$x^2 - 8x + 15$$

# Solution a. The coefficient of x<sup>2</sup> is 1, so we know that we need to find two

numbers that add to make 7 and multiply to make 12. Notice that 4 and 3 work.

$$x^2 + 7x + 12 = (x+4)(x+3)$$

b The coefficient of x<sup>2</sup> is 1, so we need to find two numbers that add to -8 and multiply to 15. We find that -5 and -3 work

$$-5 + (-3) = -8$$
  
 $(-5) \times (-3) = 15$ 

So 
$$x^2 - 8x + 15 = (x - 5)(x - 3)$$
.

By finding the factors of the constant term first, much of the trial and improvement in these examples can be done quickly.

What happens when the coefficient of s<sup>2</sup> is greater than 1? This trial and improvement technique can then be modified. The method, or process, improvement technique can then be modified, The method, or process, sometimes known as PAFF, the letters P. A, F and F representing the four stages of the process Froduct. Addition, Factors and Factories. The idea is to change the algebra into smaller numerical problems leading to some less complicated factorisation.

Follow each stage of the technique in Example 3.

theck this by nultiplying out the actors.

Check this by multiplying out the

factors.

### Example 3

Factorise  $12x^2 + 17x - 14$ .

#### Solution

Notice that the coefficient of x<sup>2</sup> is 12 so the technique used in Example 2 won't work. Try PAFF, the stages of which are as follows.

#### 1. P - Product

Multiply the coefficient of  $x^2$  by the constant term.

Here 
$$P = 12 \times (-14)$$
  
 $P = -168$ 

$$=-168$$

This is the coefficient of x, something that factors need to add to.

### 3. F - Factors

Using the same technique as before, but this time find two numbers that multiply to give P and add to give  $\Lambda$ .

In this example -7 and 24 work.

$$(-7) \times 24 = -168$$
  
 $-7 + 24 = 17$ 

Use the factors identified in Step 3 to help factorise the expression.

These allow the coefficient of x to be split.

$$12x^2 + 17x - 14 = 12x^2 - 7x + 24x - 14$$

This new expression can now be factorised by extracting common factors. Imagine factorising the first pair of terms and the second pair of terms separately.

$$12x^2 - 7x + 24x - 14 = x(12x - 7) + 2(12x - 7)$$

Notice that (12x - 7) is a new common factor.

$$12x^2 - 7x + 24x - 14 = (12x - 7)(x + 2)$$
  
So  $12x^2 + 17x - 14 = (12x - 7)(x + 2)$ 

This process looks complicated and time consuming, but with practice can be a very effective algorithm for factorising quadratics where the coefficient of  $x^2$  is greater than 1. Notice how the facto in Step 3 are used to produce a four-term expression from the original three-term quadratic.

Check by multiplyi

### Example 4

Factorise  $4x^2 - 2x - 30$ .

#### Solution

The coefficient of  $x^2$  is 4, so use PAFF.

- P:  $4 \times (-30) = -120$
- A: the coefficient of x is -2
- F: the factors need to multiply to −120, and add to −2. Check that −12 and 10 work.
  - F:  $4x^2 2x 30 = 4x^2 12x + 10x 30$ 
    - = 4x(x-3) + 10(x-3)= (x-3)(4x+10)
  - So  $4x^2 2x 30 = (x 3)(4x + 10)$

What do you notice about the second factor? The numbers 4 and 10 have 2 as a common factor, so this bracket can be factorised further.

$$4x + 10 = 2(x + 5)$$

So the original quadratic expression has three distinct factors.

$$4x^2 - 2x - 30 = 2(x+5)(x-3)$$

#### Difference of two squares

Sometimes the coefficient of x can be zero. In this case the quadratic will contain an x<sup>2</sup> term and a constant term only. Factorisation of these expressions can often be achieved by extracting a common factor or using another standard result: the difference of two squares.

# Example 5

factorise x\*

### Solution

Notice that 49 is a square number; that is,  $49=7^2$ . The expression can therefore be rewritten.

$$x^2 - 49 = x^2 - 7^2$$

The right-hand side is now the difference of two squares. This factorises in a particular way.

$$x^2 - 49 = x^2 - 7^2$$

$$=(x+7)(x-7)$$

An alternative method here would be to extract the common factor first and use PAFF on a simpler equation.

Factorise the first and second pair of terms separately.

Notice that (x - 3) is a new common factor.

new common factor.

Check this by multiplying or factors.



The result demonstrated in Example 5 can be generalised as

$$a^2 - b^2 = (a+b)(a-b)$$

This result can be used as an aid to computation. Some 'difficult' problems can be done quickly without using a calculator.

### Example 6

- a Factorise 12x<sup>2</sup> = 3
- b Factorise 5 tan<sup>2</sup> θ 5.
- c Evaluate 101<sup>2</sup> 100<sup>2</sup>.

## Solution

a 
$$12x^2 - 3 = 3(4x^2 - 1)$$

$$= 3[(2x)^2 - 1^2]$$

$$= 3(2x + 1)(2x - 1)$$

b 
$$5 \tan^2 \theta - 5 = 5(\tan^2 \theta - 1)$$

$$= 5(\tan^2 \theta - 1^2)$$

$$=5(\tan\theta+1)(\tan\theta-1)$$

$$\epsilon = 101^2 - 100^2 = (101 + 100)(101 - 100)$$

$$= 201 \times 1$$

$$= 201$$

Extract the common factor 3. The brackete factor is the difference of two squares.

Use your calculator the check that  $101^2 - 100^2 = 201$ .

# 1.4 Factorisation Exercise

### Exercise

# Technique

### 1 Factorise the following quadratic expressions:

- a  $x^2 + 3x + 2$ b  $x^2 + 7x + 10$ e  $x^2 + 3x - 18$ f  $x^2 + x - 12$
- c  $x^2 x 20$  g  $x^2 + 6x 16$ d  $x^2 - 7x - 18$  h  $x^2 + x - 6$



- **a**  $x^2 16$  **e**  $\cos^2 \theta 1$  **b**  $y^2 - 9$  **f**  $\sin^2 \theta - 1$  **c**  $9x^2 - 1$  **g**  $4x^2 - 25y^2$
- d  $16y^2 1$  g  $4x^2 25y^2$ h  $81x^2 - 36y^2$
- 3 Factorise the following expressions completely:
- a  $2x^2 32$ b  $3y^2 - 27$ d  $50y^2 - 200$ e  $2t^3 - 450t$
- c  $20x^2 5$  f  $2\cos^2\theta 2$

# 4 Factorise the following expressions:

- a  $3x^2 + x 2$ b  $2x^2 - 5x + 3$ e  $10x^2 - 41x - 45$ f  $8x^2 - 21x - 9$ 
  - b  $2x^2 5x + 3$  f  $8x^2 21x 9$ c  $7x^2 + 22x + 3$  g  $8x^2 - 17x + 9$ d  $4x^2 - 12x + 5$  h  $6x^2 - 7x - 3$
- d  $4x^2 12x + 5$  h  $6x^2 7x 3$ 5 Factorise the following expressions:

### Factorise the following expression

- a  $4x^2 10x + 6$ b  $x^2 + 2xy - 8y^2$ e  $36x^2 - 33x + 6$ f  $16x^2 - 100x + 150$
- c  $x^2 + 5xy 36y^2$  g  $2x^2y 7xy + 3y$ d  $10x^2 - 18x - 4$  h  $60x^2y - 55xy - 25y$

•







# 1.5 Solving Quadratic Equations

As in a quadratic expression, a quadratic equation in one unknown has the variable occurring at least once raised to the second power. The variable doesn't occur to any higher powers. Some examples of quadratic equations are  $x^2-4=0$ ,  $a^2+4a-5=0$ ,  $2t^2-16t+36=0$ ,  $p^2+p=2$ .

Quadratic equations often occur in the solution of real-life problems, such as in echo sounding, calculating depths of wells and hardness testing.

Can all quadratic equations be solved? The main techniques used to solve quadratic equations are:

- factorising
- completing the square
- using the quadratic formula
   graphical methods,

### **Factorising quadratic equations**

### Example 1

Solve (x-5)(x+2) = 0.

Notice that the left-hand side of this equation is a product of two factors.

The result of multiplying these factors is zero. If two quantities multiply to zero then one of them must be zero.

Since (x-5)(x+2) = 0, then (x-5) = 0 or (x+2) = 0. These linear equations can now be solved.

 $x-5=0 \Rightarrow x=5$ 

and  $x + 2 = 0 \implies x = -2$ 

Check that these are solutions by substituting them back into the original equation. Notice that both of these values of x are solutions; there are two solutions.

### Example 2

Solve:

a  $x^2 - 4x - 5 = 0$ b  $2x^2 - 32 = 0$ 

 $x^2 - 3x = 0$ 

G reck mathematic solved algebraic problems like these us geometry. They could solve all quadratic equations that had rec mumber solutions. See Book X of the Temen of Euclid (450–380 to

Quadratic equations generally have two solutions, which can distinct or repeated.

The symbol ⇒ means implies'.

### Solution

- a First factorise the quadratic expression.
  - $x^2 4x 5 = 0$
  - (x+1)(x-5)=0
  - So (x+1)=0 or (x-5)=0x = -1 or x = 5
- 22-22-0
  - $2x^2 32 = 2(x^2 16)$ 
    - $=2(x^2-4^2)=2(x+4)(x-4)$
  - So  $2x^2 32 = 2(x+4)(x-4) = 0$
- Now there are three factors multiplying to give a zero result. Since  $2 \neq 0$ , (x + 4) = 0 or (x - 4) = 0
- So x = -4 or x = 4
- $y^2 3y = y(y 3) = 0$
- So x = 0 or (x 3) = 0
- v = 0 or v = 3

### Example 3

Solve the quadratic equation  $12x^2 + 17x - 14 = 0$ .

### Solution

- $12x^2 + 17x 14 = 0$
- This particular quadratic expression was factorised in Example 3 of Section 1.4
  - $12x^2 + 17x 14 = (12x 7)(x + 2) = 0$ So (12x - 7) = 0 or (x + 2) = 0
  - $x = \frac{7}{12}$  or x = -2
- Completing the square

- Sometimes the quadratic expression cannot be factorised easily. The equation may then be solved using a technique called completing the somare
- To complete the square we need to write the quadratic in the form  $(x+a)^2 = b$ , where a and b are real numbers. Then the value of x can be found by taking the square root of both sides of the equation. Writing the quadratic in this form requires some skill in algebraic manipulation.

- The coefficient of  $x^2$  is 1. (+1) + (-5) = -4
- Substitute both values of x separately into the original equation:

- solutions, 7, isn't an integer (whole number). Its fractional value is

using a calculator.

### Example 4

Solve the equation  $x^2 - 6x - 5 = 0$ .

### Solution

Try factorisation. What happens? Notice that no pair of integers add to give -6 and multiply to give -5. Don't despair: complete the square. First rewrite the equation, separating the variables from the constant term.

$$x^{2} - 6x - 5 = 0$$
So 
$$x^{2} - 6x = 5$$

$$x^{2} - 6x + 9 = 5 + 9 = 14$$
So 
$$(x - 3)(x - 3) = 14$$

 $(x-3)^2 = 14$ That is

 $x - 3 = \pm \sqrt{14}$ 

The solutions are therefore  $x = 3 \pm \sqrt{14}$ .

Notice that the steps in the process of completing the square are:

Step (1) Separate the constant term from the variable terms. Step 2 Add a value to each side of the equation to force one side to be a

perfect square. How did you know what value to add? There is a simple rule. Provided the coefficient of  $x^2$  is 1, simply halve the coefficient of x and then square

# this value. Example 5

Solve  $x^2 - 3x - 5 = 0$ .

#### Solution

$$x^2 - 3x - 5 = 0 \Rightarrow x^2 - 3x = 5$$
  $\blacktriangleleft$  ① Separate the terms.

The coefficient of  $x$  is  $-3$ . Half this is  $-\frac{3}{2}$ . Squaring that, we have  $\frac{9}{2}$ . So add

? to both sides of the equation.

 $x^2 - 3x + \frac{9}{4} = 5 + \frac{9}{4}$  
② Force one side to be a perfect square.

The left-hand side is now a perfect square, so we can factorise it.

$$(x-\tfrac{3}{2})^2 = 5 + \tfrac{9}{4} = \tfrac{29}{4}$$

Take the square root of both sides.

We need the LHS to b perfect square (we wa  $(x+a)^2$ ), so add 9 to

$$x - \frac{3}{2} = \pm \sqrt{\frac{29}{4}}$$
$$x = \frac{3}{2} \pm \frac{\sqrt{29}}{2} = \frac{3 \pm \sqrt{29}}{2}$$

Notice that written in this form (a surd), we have exact solutions and not decimal approximations. The solutions have also been written concisely with a common denominator.

Remember that this technique only works when the coefficient of  $x^2$  is 1. When it isn't, divide each term in the equation by the coefficient of  $x^2$ . This often creates equations with fractions as coefficients.

# Example 6

Solve  $3x^2 + 4x - 5 = 0$ .

#### Solution

The coefficient of  $x^2$  is 3, so divide each term by 3.

$$3x^2 + 4x - 5 = 0 \implies x^2 + \frac{4}{3}x - \frac{5}{3} = 0$$

Now the algorithm can be used as before.

Add  $\frac{4}{9}$  to both sides of the equation (recall that this number is reached by halving the coefficient of x, and then squaring the result).

$$x^2 + \frac{4}{3}x + \frac{4}{9} = \frac{5}{3} + \frac{4}{9}$$
  $\blacktriangleleft$  ② Force one side to be a perfect square.

$$(x + \frac{2}{3})^2 = \frac{19}{9}$$
  
 $x + \frac{2}{3} = \pm \sqrt{\frac{19}{9}} = \pm \frac{\sqrt{19}}{3}$   
 $x = \frac{-2 \pm \sqrt{19}}{3}$ 

Sometimes the quadratic equation doesn't have to be solved. It may be sufficient to write it in the form of a perfect square. Suppose that  $y = \alpha x^2 + bx + c$  can be written in the form  $y = a(x + p)^2 + q$ , where a, b, c and a are ill real number.

Then 
$$ax^2 + bx + c = a(x + p)^2 + q$$
  
=  $a(x^2 + 2px + p^2) + q$   
=  $ax^2 + bx + c = ax^2 + 2anx + ap^2 + q$ 

Recall the properties of surds.

Check with a calculator that these values satisfy the original equation. By comparing coefficients you should see a relationship between a, b, c and p, q. Compare the coefficients of x; that is, see how many 'x's there are on each side of the equation.

$$b = 2ap$$

Comparing the constant terms in the same way.

$$c = ap^2 + q$$

Since a, b and c are already known (directly from the quadratic) these two results can sometimes be used to establish p and q quickly.

# Example 7

Express the following in the form  $a(x + p)^2 + a$ :  $a \quad v^2 = 3v = 5$ 

b 
$$-5x^2 - 2x + 3$$

Solution

a Notice that a = 1, b = -3 and c = -5. We require  $x^2 - 3x - 5 = a(x + p)^2 + q$ . Since a = 1, this can be simplified to

$$\begin{split} x^2 - 3x - 5 &\equiv (x+p)^2 + q \\ &\equiv (x^2 + 2px + p^2) + q \\ &\equiv x^2 + 2px + p^2 + q \end{split}$$

Now comparing coefficients of x and constant terms,

$$-3 = 2p$$
 and  $-5 = p^2 + q$ 

Then 
$$p = -\frac{3}{2}$$

and 
$$q = -5 - p^2 = -5 - \frac{9}{4} = -\frac{23}{4}$$
  
So  $x^2 - 3x - 5 \equiv (x - \frac{3}{4})^2 - \frac{23}{4}$ 

b Let 
$$-5x^2 - 2x + 3 \equiv a(x+p)^2 + q$$

$$\equiv a(x^2 + 2px + p^2) + q$$

$$\equiv ax^2 + 2apx + ap^2 + q$$

Comparing coefficients of  $x^2$ , x and the constant terms.

$$-5 \equiv a - 2 \equiv 2ap$$
 and  $3 \equiv ap^2 + a$ 

Notice that when x = the quadratic express has a least value of - Since a=-5, -2=2ap becomes  $-2=2\times (-5)\times p=-10p$ So  $p=\frac{1}{6}$ 

$$-5x^2 - 2x + 3 \equiv -5(x + \frac{1}{6})^2 + q$$

Now 
$$3 = ap^2 + a$$

So 
$$3 = -5(\frac{1}{5})^2 + q$$
  
 $q = 3 + \frac{5}{12} = 3 + \frac{1}{2} = \frac{15}{2}$ 

So 
$$-5x^2 - 2x + 3 \equiv -5(x + \frac{1}{5})^2 + \frac{16}{5}$$

# The quadratic formula

By completing the square on the general quadratic expression  $\alpha x^2 + kx + c$ , we can create a formula that can be used to solve quadratic equations simply by substituting values for a,b and c. Suppose  $\alpha x^2 + kx + c \equiv 0$  for some real values of a,b and c.

Then 
$$x^2 + \frac{bx}{a} + \frac{c}{a} = 0$$
.

Now complete the square on this expression in the same way as before.

The value to add to both sides of the equation is found, as before, by halving the coefficient of the x term, and then squaring the result.

$$x^2 + \frac{bx}{a} + \left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a}$$
 Source one side to be a perfect square.

$$\left(x + \frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} = \frac{b^2}{4a^2} - \frac{c}{a}$$

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

$$x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

Once a,b and c have been identified, this formula can be used to solve quadratic equations.

Check this by multiplying out the bracket and collecting like terms

Verify that <sup>18</sup>/<sub>5</sub> is the maximum value of this expression.

Divide by a to make the coefficient of  $x^2$ 

Recall that the LHS is now a perfect square.



# Example 8

Solve 
$$x - 7 = \frac{4}{x}$$
.

#### Solution

This may not at first appear to be a quadratic equation, but multiplying both sides by x gives (x-7) = 4. Notice how the denominator has multiplied the whole of the left-hand side of the equation. Now multiply x(x-7) out to give  $x^2 - 7x = 4$ . Moving the constant term, the original equation has been rearranged to the form for which the formula works.

$$x^2 - 7x - 4 = 0$$

Now, 
$$a = 1$$
,  $b = -7$  and  $c = -4$ .

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{7 \pm \sqrt{49 - 4 \times 1 \times (-4)}}{2 \times 1}$$

$$= \frac{7 \pm \sqrt{49 - (-16)}}{2} = \frac{7 \pm \sqrt{65}}{2}$$

So the equation  $x - 7 = \frac{4}{5}$  has two distinct solutions,

$$x = \frac{7 + \sqrt{65}}{2}$$
 and  $x = \frac{7 - \sqrt{65}}{2}$ .

Evaluate these results using a calculator. What do you notice? Both answers are irrational so the calculator screen should give decimal expansions that do not recur. The numerical values correct to two decimal places are 7.53 and -0.53.

## Example 9

It is proposed that a new tunnel be built under the English Channel. This tunnel will be for cars to drive through. The road will be built on a concrete base inside the circular tunnel.



If the radius of the tunnel is 5.2 m and the width of the road surface is to be 9.2 m, what depth of concrete should be used?

#### Solution



Let d metres be the depth of concrete. From the diagram identify the right-angled triangle with the road surface as base.

Using Pythagoras' theorem,

$$OA^2 = AD^2 + OD^2$$

$$5.2^2 = 4.6^2 + (5.2 - d)^2$$
  
 $5.2^2 = 4.6^2 + (5.2^2 - 10.4d + d^2)$ 

So 
$$0 = 4.6^2 - 10.4d + d^2$$
  
That is,  $d^2 - 10.4d + 21.16 = 0$ .

This is a quadratic equation in d where a=1, b=-10.4 and c=21.16. Now use the formula.

$$\begin{split} d &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ &= \frac{10.4 \pm \sqrt{(-10.4)^2 - 4 \times 1 \times 21.16}}{2} \\ &= \frac{10.4 \pm \sqrt{23.52}}{2} \\ &= 5.2 \pm 2.425 \, (3 \, \text{d.p.}) \end{split}$$

Notice that there are two solutions. The first, 2.78 m, has the road in the lower half of the tunnel. The second, 7.63 m, has the road in the upper half of the tunnel.



The first step is to redraw the diagram using the given measurements.

Notice that AD is half the width of the road surface, and that OD is (5.2 - d) metres.

Multiply out the bracketed term. Notice the 5.2<sup>2</sup> on both sides of the equation.

Remember not to reduce working to the required number of decimal places until the final solution is written.

This example illustrates one use of the quadratic formula in a problem solving context. Remember that although in many applications both solutions can be interpreted in the context of the problem, one solution will usually be preferable. Notice also that this quadratic equation had decimals as coefficients. The quadratic formula has given solutions that have been rounded, to give answers correct to three significant figures.

#### Graphical methods

A graphical calculator can be used to solve quadratic equations. This is also a good method to use if you simply want to check solutions from factorisation, completing the square or the quadratic formula.

## Example 10

Using a graphical calculator, or graph plotting software on a computer, draw the graphs of the following.

a  $y = x^2 - 4x - 5$ c  $y = x^2 - 6x - 5$  b  $y = x^2 - 3x$ d  $y = 3x^2 + 4x - 5$ 

Using the trace facility, find the coordinates of the points of intersection with the x axis. Now compare these results with the axis from Energy 100 and 100 are 100

Notice that the graphs of these quadratic equations all have the same basic shape. This curve is known as a **parabola**, but can be transformed by changing the values of the coefficients a, b and c in the expression  $a a^2 + b x + c$ .

Notice also that all the graphs are symmetrical. Is this line of symmetry related to the coefficients a,b and  $c\bar{c}$  Think back to the quadratic formula. This gives the solutions to the equation  $\alpha x^2 + bx + c = 0$  in a form that helps answer this question.

The points of intersection with the x-axis are written as  $(\frac{b}{2a} \pm a \text{ square-root term}, 0)$ . This suggests that the line of symmetry for the quadratic is  $x = -\frac{b}{bc}$ .

What about the square-root term? What does  $\sqrt{b^2 - 4ac}$  represent? The expression  $b^2 - 4ac$  is known as the discriminant. It can be used to give an indication of how many times the graph will cross the x-axis, as follows.



Trace
The TRACE facility graphical calculator allows a point to mo along the last graph drawn, simultaneous showing either the x-coordinate or the y-coordinate of the

 $y = ax^2 + bx + c \operatorname{cros}$ 

the x-axis at v = 0.



- If  $b^2 4ac > 0$ , it has two real square roots and  $ax^2 + bx + c = 0$  has two distinct solutions: the graph will cross the x-axis twice - at  $(-b + \sqrt{b^2 - 4\infty}, 0)$  and  $(-b - \sqrt{b^2 - 4\infty}, 0)$ .
- If b<sup>2</sup> − 4ac = 0, ax<sup>2</sup> + bx + c = 0 has one (repeated) solution: the graph will touch the x-axis at  $(-\frac{b}{a}, 0)$ .
- If  $b^2 4ac < 0$ ,  $ax^2 + bx + c = 0$  has no (real) solutions: the graph will not cross the y-axis

# Example 11

Write down the equation of the line of symmetry of the graphs of the following quadratics, and predict the number of times the graph will cross the x-axis.

**a** 
$$y = x^2 + x + 3$$
 **b**  $y = x^2 + 5x + 6$  **c**  $y = x^2 + 2x + 1$ 

 $v = x^2 + x + 3$ When y = 0 (on the x-axis),  $x^2 + x + 3 = 0$ , and a = 1, b = 1 and c = 3

in the quadratic formula. The line of symmetry,  $x = -\frac{b}{c}$ , is  $x = -\frac{1}{c}$ .

To check to see if (and how many times) the graph crosses the x-axis, check the discriminant.  $b^2 - 4ac = 1^2 - (4 \times 1 \times 3) = 1 - 12 = -11 < 0$ , so the graph doesn't

cross the x-axis.



Draw the graph of each quadratic.

**b**  $y = x^2 + 5x + 6$ 

When y = 0, a = 1, b = 5 and c = 6 in the quadratic formula. The line of symmetry,  $x = -\frac{b}{2a}$ , is  $x = -\frac{c}{2}$ . The discriminant  $b^2 = 4ac$ ,  $b^2 = (4 \times 1 \times 6) = 25 = 24 = 1 \times 6$ .

The discriminant  $b^2 - 4ac = 5^2 - (4 \times 1 \times 6) = 25 - 24 = 1 > 0$ , so the graph will cross the x-axis at two places.



c  $y = x^2 + 2x + 1$ Here a = 1, b = 2 and c = 1. The line of symmetry,  $x = -\frac{b}{2a}$  is  $x = -\frac{1}{2}$ . That is, x = -1. The discriminant  $b^2 - 4ac = 2^2 - (4 \times 1 \times 1) = 4 - 4 = 0$ , so the

The discriminant  $b^x - 4ac = 2^x - (4 \times 1 \times 1) = 4 - 4 = 0$ , so the graph will touch the x-axis at one point. Check that  $x^2 + 2x + 1 = 0$  when x = -1 by factorisation (so the graph touches at (-1, 0)).



Check that the graph cuts the x-axis at x =and x = -2 using factorisation or the quadratic formula.

# 1.5 Solving Quadratic Equations

# Exercise

# Technique

1 Solve the following:

a(x-3)(x+2)=0e(2x+5)(2x+5)=0b (x-3)(x-4)=0f x(x+2) = 0

c (x-1)(x+3) = 0g = 12(x+3)(2x+1) = 0d (x+5)(x+1)=03(x-7)(3x+4)=0

# 2 Solve, by factorising, the following equations:

 $x^2 + 5x + 4 = 0$  $d x^2 - x - 6 = 0$  $x^2 + 2x - 15 = 0$  $4x^2 - 19x + 12 = 0$ 

 $x^2 - 6x + 5 = 0$  $9x^2 + 24x + 16 = 0$ 

3 Solve, by completing the square, the following equations:

 $x^2 - 6x - 16 = 0$  $d y^2 - 6y + 1 = 0$  $y^2 + 2y - 8 = 0$  $e^{-2x^2-2y-1}=0$  $x^2 - 2x - 3 = 0$  $f = -3x^2 + 8x + 7 = 0$ 

4 Solve, using the quadratic formula, the following equations:

 $3x^2 - 2x - 8 = 0$  $x^2 - 12x - 5 = 0$  $b \quad 3x^2 + 10x - 8 = 0$  $2x^2 + 15x + 6 = 0$  $c 2x^2 + x - 4 = 0$  $f = 3x^2 - 18x + 10 = 0$ 

5 Solve the following equations. In each case check the solutions by using a graphical calculator to find the points of intersection between the quadratic and the y-axis-

 $8x^2 - 24x + 6 = 0$  $d x^2 + 6x + 4 = 0$ b 3x(x-4)+5=-6 $2x^2 + 6x + 2 = 0$  $3(x^2-2)=2(9x-2)$ 

**6** Write the following expressions in the form  $a(x + p)^2 + q$ :

 $a x^2 - 2x + 3$  $d -x^2 + 8x - 19$ h v2 + 4v + 1 e -2v2 +5v - 3 c -v2 + 2v + 2  $f = 2v^2 - 3v - 2$ 



0 3a.e



## Contextual

- The formula  $h=ut-\frac{1}{2}gt^2$  gives the height h a body will reach after time t, when it is thrown vertically upwards with velocity u, where g is a constant. Calculate t when g=9.8, u=16 and h=6. Why are there two answers?
- What is the shaded area of the washer illustrated here, where the diameter of the washer is 4.2 cm and the diameter of the hole is 1.8 cm?



- The sum of the first n natural numbers (1+2+3+...+n) is given by the formula  $S = \frac{1}{2}n(n+1)$ . If the sum of the numbers is 78, how many numbers have been added?
- The formula  $\frac{1}{2}n(n-3)$  defines the number of diagonals in a polygon where n is the number of sides. A chef cuts a cake along its 65 diagonals. How many sides does the cake have?



- **5** By completing the square, find the minimum value of  $3x^2 12x + 13$ .
- 6 How deep is the water in this oil drum, given that the radius is 30 cm and AC is 20 cm?



Hint: Use Pythagora theorem in triangle OCA, and let OC = 30 - d.

# 1.6 Simultaneous Equations

Polynomial equations can be graphed. If two or more polynomials are graphed on the same axes then the graphs may cross. The coordinates of the point (or points) where the graphs cross satisfy both polynomial equations at the same time; that is, simultaneously.

#### Simultaneous linear equations

Linear equations may be put in the form  $v = a_1x + a_0$  where  $a_1$  and  $a_2$  are real numbers. The highest power of the variable x is 1, so they are of degree 1. When graphed, these equations produce straight lines, which is why they are called linear.

A system of two linear equations can sometimes be solved simultaneously, using:

- substitution
  - elimination
- graphical methods.

# Example 1

Solve the equations x + 2v = 7 and 2x + 3v = 10 simultaneously.

Solution Using the substitution technique gives a solution as follows.

```
x + 2y = 7
2x + 3y = 10
Make x the subject of equation [1].
```

call this equation [1] call this equation [2] ◆ ① Make one variable (letter)

2 Substitute.

the subject of one of the x = 7 - 2vequations.

Substitute for x in equation [2].

2x + 3y = 10, so 2(7 - 2y) + 3y = 10call this equation [3] Equation [3] now has only one variable (letter). Solve this (find the

variable) by multiplying out the bracket and collecting like terms. 14 - 4v + 3v = 10■ 3 Solve the new equation.

14 - v = 1014 - 10 = v4 = v

Substitute this value of v back into equation [1].

 Substitute this value into the first x = 7 - 2v $x = 7 - (2 \times 4) = 7 - 8$ equation to find the value of the other variable. v = -1

x = ... or v = ...

39

The values of x and y that simultaneously satisfy both equations are x=-1 and y=4. How can we check this? Substitute the values back into the original equations.

$$-1 + (2 \times 4) = 7$$
 and  $(2 \times -1) + (3 \times 4) = 10$ 

Since both of these numeric equations are valid, x = -1 and y = 4 are the simultaneous solutions to x + 2y = 7 and 2x + 3y = 10.

Using the elimination technique gives a solution of the following form.

x + 2y = 7 call this equation [1]

2x + 3y = 10 call this equation [2]

We want to make the coefficient of x the same in each equation. Multiplying equation [1] by 2,

2x + 4y = 14 call this equation [3]

Notice that x now has a coefficient of 2, the same as in equation [2].

We can eliminate the terms in the x variable from equations [2] and
[3] by subtracting corresponding terms in these equations.

2x+4y=14

2x + 3y = 10Taking each term separately, 2x - 2x = 0 (so the new combined equation has no x term), 4y - 3y = y (so the new combined equation simply has y on the left-hand sidel), and 4t - 10 = 4 (so the new

combined equation simply has 4 on the right-hand side). So v = 4.

Why were the equations subtracted? We have made the number of 'x's the same, and any number minus itself always gives zero. So subtracting the equation eliminates the x terms from the calculation.

Now substitute y = 4 back into one of the original equations to find x.

 $x + (2 \times 4) = 7$ x + 8 = 7

x = -1

As before, x = -1 and y = 4 are solutions.

We could have eliminated y instead of x in the first step, but both equations would have required multiplication because the coefficient of y in equation [1] is 2 and the coefficient in equation [2] is 3. ◆ ⑤ Check by substituting the values back into t original equations

◆ ① Multiply each
equation by a value
that will make the
coefficient of one
the variables the
same in both

◆② Combine the nequations to equations to eliminate the variable with the same coefficient (usually by subtraction), and solve the resulting equation.

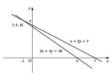
- ③ Substitute this into one of the original equations find the value of t other variable.
- ◆ ③ Check by substituting both variables in the original equations

Equation [1] multiplied by 3 gives 3x + 6y = 21

Equation [2] multiplied by 2 gives 4x + 6y = 20

The coefficients of y are now the same, so that term could be eliminated by subtracting one equation from the other.

3. Using a graphical method, on the same axes draw the graphs of x + 2y = 7 and 2x + 3y = 10. Notion that the two lines cross. The point where they cross is on both lines, and so satisfies both equations. Using a graphical calculator the 'trace' function can be used to find the coordinates of the point of intersection. In this example it is c'-1.4. as a before.



The graphical technique is a useful tool for checking the algebraic methods.

#### Simultaneous equations: linear and non-linear

A non-linear equation is a polynomial equation of degree 2 or higher. These can be solved using the same techniques as for linear equations. However, there is usually more than one solution.

### Example 2

Solve the simultaneous equations x - y + 3 = 0 and  $x^2 + y^2 = 29$ .

#### Solution

Using the substitution technique, make y the subject in the first equation.

 $x - y + 3 = 0 \implies y = x + 3$ 

Solve these equations simultaneously and show that you get the same solution.



① Make one variable (letter) the subject of one of the equations.

#### Now substitute for y in the second equation.

 $x^2 + (x+3)^2 = 29$   $\checkmark$  ② Substitute this result into the second  $x^2 + (x^2 + 6x + 9) = 29$  equation.

$$+(x^{2} + 6x + 9) = 29$$
$$2x^{2} + 6x - 20 = 0$$

$$2(x^2 + 3x - 10) = 0$$

Factorising the quadratic, 

Solve the new equation in one variable.

$$2(x+5)(x-2) = 0$$
  
Since  $2 \neq 0$  then  $(x+5) = 0$  or  $(x-2) = 0$ .

Therefore, x = -5 or x = 2.

Notice that there are two solutions for x. Substitute each of these into the equation where y is the subject.

So there are two distinct solutions: x=-5, y=-2 and x=2, y=5. These can be written in coordinate form as (-5,-2) and (2,5). Check these solutions graphically.

If you are using a graphical calculator it may not draw  $x^2 + y^2 = 29$ . Instead, rearrance the countion to make y the subject.

$$x^2 + y^2 = 29 \Rightarrow y^2 = 29 - x^2 \Rightarrow y = \pm \sqrt{29 - x^2}$$

If you 'overlap'  $y = +\sqrt{29-x^2}$  and  $y = -\sqrt{29-x^2}$ , you calculator should produce a circle, contried on the origin. Set the range as  $X_{min} = -6$ ,  $X_{min} = 0$ ,  $x_{min} = 0$ , and  $x_{min} = 0$ , and  $x_{min} = 0$ , and the product of intersections with the line y = x + 1. What do you notice about the solutions? The straight line crosses the circle at the points (-5, -2) and (2.5).



If your calculator produces an ellipse or screen you may need

make the shape circui

# 1.6 Simultaneous Equations Exercise

# LACICIS

# Technique

- Solve the following pairs of linear simultaneous equations:
  - a 2x + y = 8 and 3x + 2y = 14
    - **b** x + 3y = 11 and 5x + y = 13
    - c x + 2y = 13 and 4x 5y = -13d 3x + y = 11 and 2y - 5x = 11
    - e 2x + 3y = 7 and 3x y = -6
    - f 4x y = -0.5 and 3x + 2y = -4.5



- a y = 2(x-2) and  $y = x^2 3x + 2$ b  $y = x^2 - 2x - 1$  and y = x - 3
- b  $y = x^2 2x 1$  and y = x 3c y - 5x = 2 and  $y = x^2 + 5x - 2$
- c y 5x = 2 and  $y = x^2 + 5x 2$ d y = 15 - x and  $y = x^2 - 2x + 3$
- e x y = 2 and  $x^2 + y^2 = 34$
- $f \quad x y = 3 \text{ and } x^2 + xy + 2y^2 = 22$
- -

3 Solve the following pairs of simultaneous equations:

- a 70 T = 7a and T 40 = 5a
- **b**  $\frac{1}{5}(2x+y) = 4$  and  $\frac{1}{5}(13x-4y) = 3$
- c 2y 2x + 1 = 0 and  $x^2 xy + 2y^2 = 8$ d 2x = 2y - 9 and y = 8

# Contextual

- 1 The graph  $y = x^2 + 2x 3$  crosses the line y = 4x at the points A and B. Find the coordinates of the points.
- 2 For a football match, the attendance was 44,000 people: x people paid £30, y people paid £20 and the total receipts for the game came to £1.2 million. How many people paid for the higher price tickets?
  - 3 Four CDs and three tapes cost £126. Two CDs and five tapes cost £112. Find the individual costs of a CD and a tape.
- 4 Melanie's straight line passes through the points (2, 7) and (5, 13). Using the general equation for a straight line, v = mx + c, find m and c.
- 5 Three years from now, Callium will be twice as old as Lydia was five years ago. At the moment, half their combined ages is 16. Find their ages.





# Consolidation Exercise A

$$h=ut+\tfrac{1}{2}gt^2$$

where h is the height, u is the initial velocity of the ball and g is the gravitational acceleration, calculate the time for the ball to reach a 6 m height when  $u = 14 \text{ m s}^{-1}$  and  $\sigma = -9.8 \text{ m s}^{-2}$ .

**2** The diagram shows the graphs of  $y = x^2 - 4x$  and y + x = 10, which cross at A and B. Find the coordinates of A and B.



- 3 An opera is attended by 240 people: x people paid £31, y people paid £16, and the box office took in CSS95.
  - Form two equations using this information. b Solve them to find out how many people paid £31.
- 4 A cement company supplies cement for 1200 m of underground concrete tunnels. Show that the area of the cross-section of the tunnel shown is  $\pi(R-r)(R+r)$ . If B = 1 m and r = 0.95 m, find the volume of concrete mix needed to make the tunnel in terms of  $\pi$ .



5 A ball is kicked, and just lands on a roof 5 m high. Using some basic knowledge to find the angle it was kicked at,  $\theta$ , Ahmed correctly comes up with the formula  $2 = 4 \tan \theta - (1 + \tan^2 \theta)$ . Solve this equation to find the angle the ball was kicked at.

6 A uniform solid hemisphere is at rest. Kate looks at the forces involved and deduces that  $\frac{1}{4}N_1 - N_2 = 0$  and  $N_1 + \frac{1}{2}N_2 - 99 = 0$ . Use her equations to find N. and N.



7 Show that the elimination of x from the simultaneous equations x - 2y = 1 and  $3xy - y^2 = 8$  produces the equation  $5y^2 + 3y - 8 = 0$ . Solve this quadratic equation and hence find the pairs (x, y) for which the simultaneous equations are satisfied.

(ULEAC)

# Exercise B

1 Julie throws a cricket ball vertically upwards. Given the formula

$$h=ut+\tfrac{1}{2}gt^2$$

where h is the height, u is the initial velocity of the ball and g is the gravitational acceleration, calculate the time for the ball to reach a height of 13 m when  $u = 18 \text{ m s}^{-1}$  and  $g = -9.8 \text{ m s}^{-2}$ .

The graphs  $y = x^2 - 2x - 3$  and y + 3x + 1 = 0 cross at A and B. Find the coordinates of A and B.



- 3 A 'Science Fiction mania-day' is attended by 600 people: x people pay £22 at the door, y people pay £17 for tickets in advance, and the organisers took a total of £11,400.
  - a Form two equations using this information.
  - Form two equations using this information.

     How many paid at the door and how many bought tickets in advance?
- 4 A plastics company supply 800 m of underground cable tubing. Show that the area of the cross-section is  $\pi(R-r)(R+r)$ . If R=5.2 cm and r=4.8 cm, find the volume of plastic needed to make the tubing.



- [ $\overline{\mathbf{5}}$ ] Elaine hits a golf ball over a tree. Using some basic knowledge to find the angle at which the ball was initially hit, her caddy correctly comes up with the formula  $5=5\tan\theta-(1+\tan^2\theta)$ . Solve the equation to find what the angle might be.
- **6** The sketch shows the curve with equation  $y = 2 6x 3x^2$ , and its axis of symmetry, x = -1.



- a Give the coordinates of the vertex and the value of y when x = 0.
   b Find the values of the constants a and b such that
- $2 6x 3x^2 = a(x+1)^2 + b.$

(OCSEB)

7 Solve the following quadratic equations:

- a  $x^{\frac{1}{2}} 5x^{\frac{1}{2}} + 4 = 0$
- a  $x^3 5x^3 + 4 = 0$ b  $2(2^x)^2 - 3(2^x) + 1 = 0$

Hint: In **a** put  $y = x^{\frac{1}{2}}$ in **b** put  $y = 2^x$ .

- 1 Complete the square for the following six quadratics:
  - a  $v = x^2 6x 16$ d  $v = 2x^2 - 2x - 1$  $v = x^2 - 6x + 1$ b  $v = x^2 + 2x - 8$
- c  $y = x^2 2x 3$  $f y = -3x^2 + 8x + 7$ 2 Now draw their graphs using graph paper or a graphical calculator. Look



at the coordinates of the bottom (or top) of your curve. What do you notice when you compare these coordinates to the equation in its 'complete the square' form?

# Summary

Surds are irrational numbers containing a square root, and have the following properties:

$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$a\sqrt{b} + c\sqrt{b} = (a+c)\sqrt{b}$$

- $a\sqrt{b} c\sqrt{b} = (a c)\sqrt{b}$ To rationalise a surd denominator, multiply by the conjugate:
- The properties of indices are:

$$a^p \times a^q = a^{p+q}$$

$$(a^p)^q = a^{p\times q}$$

$$(a^{p})^{q} = a^{p \times q}$$

$$a^{p} \div a^{q} = a^{p-q}$$

$$a^{0} = 1 \text{ provided } a \neq 0$$

$$a^{-p} = \frac{1}{a^2}$$

$$a^{r} = \overline{a^{p}}$$

$$a^{\frac{1}{p}} = \sqrt[p]{a}$$

$$a^{\frac{p}{q}} = \sqrt[q]{a^{\frac{p}{q}}} = (a^{\frac{1}{q}})^{\frac{p}{q}}$$

- An equation in the form y = a<sub>n</sub>x<sup>n</sup> + a<sub>n-1</sub>x<sup>n-1</sup> + ... + a<sub>1</sub>x + a<sub>n</sub>, is a
  polynomial equation.
- An equation of the form y = ax + b has degree (or order) 1 and is called a linear equation.
- A polynomial equation of degree (or order) 2 is called a quadratic equation and is of the form v = ax² + bx + c;
- In ax<sup>2</sup> + bx + c, the coefficient of x is b, and c is the constant term.
- When factorising, common factors are extracted; ax + bx = x(a + b).
- A difference of two squares (square minus a square) is factorised according to the rule

### $a^2 - b^2 = (a - b)(a + b)$

- Complete the square when factorising by adding the square of half the coefficient of x. By comparing coefficients, you can then write a quadratic in the form o(x + n)<sup>2</sup> + n.
- The formula for solving  $ax^2 + bx + c = 0$  is

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- The discriminant, b<sup>2</sup> 4oc, informs you of the behaviour of the graph of the quadratic.
- Simultaneous equations can be solved by substitution, elimination and graphical methods.

# 2 Coordinate Geometry

# What you need to know

- How to change the subject of an equation.
- How to use Pythagoras' theorem; α<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup>.
  - How to expand  $(a + b)^2$ . How to expand  $(a - b)^2$ .





# 1 Make y the subject of the following equations:

- a y-x=7 d y
- b y+x+6=11 e  $\frac{y+2}{x-3}=4$ 
  - c y+4=2(x+3)
- x 3f  $\frac{y - 3}{x + 3} = \frac{1}{2}$
- $\frac{1}{x+2} = \frac{1}{2}$









- 3 Expand the following expressions:
  - a  $(x+2)^2$ b  $(x+3)^2$
- d  $(a+b)^2$ e  $(2x+1)^2$ f  $(3x+2)^2$
- 4 Expand the following expressions:
- c  $(x+5)^2$ Expand the a  $(x-3)^2$

- d  $(3x-2)^2$ e  $(2x-3)^2$ f  $(5x-1)^2$
- $(x-1)^2$  e  $(a-b)^2$  f

# 2.1 Coordinate Geometry

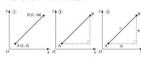
Coordinate geometry is the study of straight lines and curves using adgebraic methods. The Cartesian coordinate system (named after Descartes) is one where axes are drawn perpendicular to each other and the same scale is chosen on each axis. If two points are plotted on this set of axes they can always be joined by a single straight line.

# Example 1

If A is the point  $\{1,2\}$  and B is the point  $\{7,10\}$  what is the shortest distance between them?

#### Solution

The shortest distance between the points is the length of the straight line joining them. By drawing this line, and then creating a right-angled triangle. Pythagoras' theorem can be applied.



Step ① Join A and B.

Step ② Draw lines parallel to the axes from A and B to create a

right-angled triangle.

Step ③ Use the coordinates of A and B to find the lengths of the shorter

Step 4 State Pythagoras' theorem, and use it to find c, the length of the line joining A and B.

$$c^2 = a^2 + b^2$$
  
=  $6^2 + 8^2$   
=  $36 + 64 = 100$   
So  $c = \sqrt{100}$ 

c = 10

Notice that a crucial step is to find the lengths of the shorter sides from the coordinates of A and B. This is done by finding the difference between the René Descarte: (1596–1650) Descartes linked geometry and algel In his work Discoude la Méthode (163 he explained the

Pierre de Ferma (1601-1665) Fermat also works out the method to analytic geometr

own work in 1679

Urheberrec

x-coordinates of A and B, and the difference between the y-coordinates of A and B. So in Example 1, for A (1, 2) and B (7, 10),

length parallel to x-axis = x-coordinate of B - x-coordinate of A = 7 - 1 = 6

$$= 7 - 1 = 6$$
  
length parallel to y-axis = y-coordinate of B - y-coordinate of A  
=  $10 - 2 = 8$ 

So we found the shortest distance between A (1, 2) and B (7, 10) by using

-2)\* 

Check this using calculator.

In general the distance between two points A and B with coordinates  $(x_1, y_1)$  and  $(x_2, y_2)$  respectively is given by





This process is still valid when  $x_2 - x_1$  and  $y_2 - y_1$  are negative.

■ Learn this result.

## Example 2

Find the distance between the following pairs of points:

- a A (2, 7) and B (1, 9)
- b C (-3, 7) and D (-2, -1)
  c E (1, -2) and F (t, t<sup>2</sup>).
- Solution

a Distance AB = 
$$\sqrt{(1-2)^2 + (9-7)^2}$$

$$=\sqrt{(-1)^2+2^2}=\sqrt{1+4}$$
  
=  $\sqrt{5}$ 

b Distance CD = 
$$\sqrt{[(-2) - (-3)]^2 + [(-1) - 7]^2}$$

$$= \sqrt{(-2+3)^2 + (-1-7)^2}$$

$$= \sqrt{1^2 + (-8)^2} = \sqrt{1+64}$$

$$=\sqrt{65}$$

Remember that you can leave the answer in surd form.

$$\begin{aligned} \mathbf{c} & & \text{Distance EF} &= \sqrt{(t-1)^2 + [t^2 - (-2)]^2} \\ &= \sqrt{(t-1)^2 + (t^2 + 2)^2} \\ &= \sqrt{t^2 - 2t + 1 + t^4 + 4t^2 + 4} \\ &= \sqrt{t^4 + 5t^2 - 2t + 5} \end{aligned}$$

The formula for the distance between two points can be extended into three dimensions (3D). In the Catesian system there would now be three sees (x,y and z) and points would have three coordinates, (x,y,x). Consider the points  $A_0(x_0,y_1,z_0)$  and  $B_0(x_0,y_1,z_0)$ . Darwa a sketch to show these points in 3D space. What is the distance between A and B now?



## Construct two triangles as indicated.

In  $\triangle APQ$ ,  $(AQ)^2 = (AP)^2 + (PQ)^2$ In  $\triangle AOB$ ,  $(AB)^2 = (AO)^2 + (BO)^2$  call this equation [1]

Substitute for  $(AQ)^2$  from equation [1] into equation [2]

$$(AB)^2 = (AP)^2 + (PQ)^2 + (BQ)^2$$

But  $AP = x_2 - x_1$ ,  $BQ = y_2 - y_1$  and  $PQ = z_2 - z_1$ 

so 
$$(AB)^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$$

The distance 
$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

inside the square root.

Collect like ten

The x, y and z

Axes x, y and z are perpendicular. In this view the z-axis is drawn coming 'out of' the page

In mechanics it is more usual to make the z-axis



By Pythagoras' theorem

This result is still true if  $x_2 - x_1$ ,  $y_2 - y_1$  or  $z_2 - z_1$  is negative.

## Example 3

An infra-red alarm detector placed in the corner of the grand hall, at P(0, 12, 5), has a range of 14 m. Will it be able to detect a burglar entering the room at Q(4, 0, 0)?



#### Solution

The detector will be able to detect a burglar if the distance between P and Q is less than  $14\ \mathrm{m}.$ 

Distance PQ = 
$$\sqrt{(0-4)^2 + (12-0)^2 + (5-0)^2}$$
  
=  $\sqrt{(-4)^2 + 12^2 + 5^2}$ 

$$=\sqrt{16+144+25}=\sqrt{185}$$

Distance PQ = 13.6 m

Since this is within the 14 m range the burglar will be detected.

#### The gradient of a line joining two points

The gradient of a line is a measure of its steepness. It is given by the ratio of the change in the y-coordinate to the change in the x-coordinate.

Gradients can be positive, zero or negative.



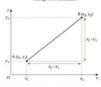
(rising)

Zero gradients (horizontal) Negative gradients (falling)

Consider more closely some positive gradients. The gradient of line A is 1. Notice how it makes an angle of 45° with the x-axis. The gradient of lines B and C are greater than 1. These lines are steeper than line A. The gradients of lines D and E are less than 1, but bigger than 0. Which line has the smallest gradient? The gradient of line E is smallest, because it is closest to the horizontal.



The gradient can be calculated algebraically using the rule



The gradient of the straight line joining  $\Lambda$   $(x_1, y_1)$ and B  $(x_2, y_2)$  is given by gradient  $= \frac{y_2 - y_1}{x_2 - x_1}$ 

◀ Learn this result.

An alternative is to think of the gradient the tangent of the an between the line and



This result gives both the sign (+/-) and the magnitude (size) of the gradient.

# Example 4

a Find the gradient of the straight line joining A (1, 2) and B (7, 10).
b If the gradient of the straight line joining P (a, 3) and Q (2, 8) is 5, find the value of a.

#### Solution

- a gradient = \frac{10 2}{7 1} = \frac{8}{6} = \frac{4}{3}
  \]
  The gradient is often represented mathematically by the letter m. It could be written here as gradient m<sub>AB</sub> = \frac{4}{3} or m = \frac{4}{5}.
- **b** We know that gradient  $m_{PQ} = \frac{y_2 y_1}{x_2 x_1}$

So 
$$5 = \frac{8-3}{2-a}$$
  
Then  $5(2-a) = 8-3=5$   
So  $2-a=1$   
 $-a = 1-2=-1$ 

Multiply both sides by (2-a). Divide both sides by 5.

#### Parallel lines

Use a graphical calculator to draw the graphs of y=3x, y=3x+5 and y=3x-1. What do you notice? The lines are parallel. Now calculate the gradient of each line. The gradient of each line is 3, the same as the coefficient of x in each equation.

Try drawing some graphs of your own linear equations where the coefficient of x is the same. What happens? If the equation starts y = , then when the coefficient of x is the same the equations produce lines that are parallel. These lines never cross and so the equations that represent them cannot be solved simultaneously. Conversely, if two linear equations cannot be solved simultaneously then their graphs must be



# parallel lines.

Show that the following pairs of lines are parallel: y = 2x + 3, y = 2x + 5.

Solution y = 2x + 3 call this equation [1]

y=2x+5 call this equation [2] 2x+3=2x+5  $\blacktriangleleft$  Substitute for y from equation [1] in equation [2].

x(2-2) = 5 - 3 = 2 $x = \frac{2}{0}$ 

Division by zero doesn't give a real number; it is undefined. So x cannot be found to satisfy both equations simultaneously. This means the lines do not cross; so they are parallel. Recall how to solve two linear equations simultaneously.

Take out the common factor and rearrange the equation. It is often quicker to show that two straight lines are parallel by comparing the coefficients of x. To do this, we sometimes need to rearrange the equations in order to make y the subject.

# Example 6

Show that the following pairs of lines are parallel: y = 2(3x + 1), 2y - 12x + 6 = 0.

# Solution

$$y = 2(3x + 1) \Rightarrow y = 6x + 2$$
  
 $2y - 12x + 6 = 0 \Rightarrow y = 6x - 3$ 

The coefficient of  $\boldsymbol{x}$  is the same in both equations, 6, so the lines are parallel.

#### Perpendicular lines

Consider a line OP where P is some point (a, b) and O is the origin. Rotate OP 90° anticlockwise about O (a quarter turn) and call this new line OQ. Now the angle between the lines OP and OQ is 90°. We say that OP is perpendicular to OQ; 'perpendicular to' means 'at right angles to'.



What do you notice about the coordinates of Q? Using the symmetry of the diagram, notice that the coordinates of Q are (-b, a). These have the same numerical values, but there is a change of order and one change of sign in the x-coordinate. Now consider the gradient of each line.

gradient 
$$OP = \frac{b}{a}$$
 gradient  $OQ = \frac{-a}{b}$ 

Multiply these two gradients together. What happens? Their product is -1.
In fact, the product of the gradients of perpendicular lines is always -1.
This is a very useful test for whether two straight lines are perpendicular to each other.

The gradient of OQ of found using the form with  $(x_2, y_2) = (0, 0)$ . gradient  $= \frac{(0-a)}{|0-(-b)|} = -\frac{a}{2}$ 

# Example 7

- a Find the gradient of the line joining A (0,7) and B (2,10).
  - Find the gradient of the line joining A (0,7) and Find the gradient of a line perpendicular to AB.

#### Solution

- a Gradient of the line AB,  $m_{AB} = \frac{10-7}{2-0} = \frac{3}{2}$ 
  - Gradient of a line perpendicular to AB =  $-\frac{2}{5}$ , because  $\frac{3}{5} \times (-\frac{2}{5}) = -1$ .



# Example 8

If A is the point (3, -2) and B is the point (5, 2), find the gradient of:

- a the line AB
- b a line perpendicular to AB.

## Solution

- Gradient of the line AB,  $m_{AB} = \frac{2-(-2)}{5-3} = \frac{4}{2} = 2$
- **b** Gradient of a line perpendicular to AB is  $-\frac{1}{2}$



# 2.1 Coordinate Geometry Exercise

# **Technique**

- 1 Find the shortest distance between the following pairs of points:
  - a (3, 5) and (1, 4) e (-2, -3) and (-7, -1) b (3, 5) and (5, 6) f (8, -4) and (-7, -4)
    - c (1, 7) and (-2, 3) g (2, 1, 5) and (5, 13, 9) d (1, 7) and (0, -1) h (7, -2, 18) and (-3, 3, 8)

# 2 Find the length of the straight line joining the following pairs of points:

- a A (7, -1) and B (-2, 5) e A (4, -8) and B (0, 6) A (-1, -2) and B (-2, -5) f A (4, 4) and B (-1, 2)
- c A (3, 2) and B (-1, -5) g A (6, 11, -3) and B (1, 1, 7) d A(-2,-1) and B(0,3) h A (2, 3, 4) and B (4, 6, 10)
- 3 Find the gradient of the straight line formed by joining the following pairs of points:

f (3, 2) and (5, -8)

- a (3, 2) and (5, 12) d (0, 7) and (-2, 9) b (2, 1) and (4, 9) e (-2, -1) and (6, -1) c (5, 3) and (7, 1)
- 4 For the following pairs of points, A and B, find:
  - the gradient of the line AB
    - ii the gradient of a line perpendicular to AB.
  - a A (0, 6) and B (2, 7) d A (-3, 6) and B (-1, -3) b A (5, 2) and B (-3, -3) e A (-3, -2) and B (6, -6)
  - c A (-3.0) and B (2.-5) f A (-2, 0) and B (7, 2)
- 5 Rearrange the following equations to make y the subject. State whether the pairs of lines are parallel or perpendicular to each other.
- a v = 2x + 3 and v = 2x 7
  - **b** y = 3x + 7 and  $y = 5 \frac{1}{4}x$
  - v = 2x 5 and v 2x = 3d 2v + 6x + 8 = 0 and 3x + v = -7
  - e 8x + 2v = 6 and 4v = 9 + x
  - f = 3v = 9(x-1) and 6v + 2x = 6

#### Contextual

- 1 Katie moves her position from the point (2, 6) to the point (5, 3) on the park map. The map is drawn to a scale of 1:10 000. Find
  - a the shortest distance in centimetres that Katie covers on the map
     b the actual distance she moves in km.
- Twins Peter and David radio their respective coordinates to each other.

  Peter is at position (3, 9) and David is at (-2, -3). How far apart are they?
- 3 The night before military manoeuvres, an army troop are given starting coordinates, 1963, 3800, and finishing coordinates, 1943, 2791, By considering only the final two digits of sech coordinate, find the distance on the Orthanos Survey map moved by the toop, in contimeres. If the scale of their map is 1:23 000, find the actual distance covered in kilometers.
- According to a garden plan, the cottage (7, 9) is the same distance from the ash tree (5, 2) and the beech tree (9, 2). Investigate this statement.
- A parallelogram is formed by lines joining the points P, Q, R and S. Given the coordinates of points P (-2, 3), Q (3, 4) and R (2, -1):
  - a Find the coordinates of S.
     b Show that PORS is a rhombus.
- b Show that PQRS is a rhombus.
- A (1, 2, 1) and F (4, 5, 5), find the shortest distance between A and F.



# 2.2 The Equation of a Straight

Linear equations can be written in many forms. The general form is ax + by + c = 0 where a, b and c are real numbers.

## Example 1

Rearrange the following equations into the general form ax + bv + c = 0:

- y = -3x 8
- b  $y+2=-\frac{1}{2}(x-1)$

## Solution

- 3x + y + 8 = 0
- b  $y+2=-\frac{1}{4}(x-1)$ 
  - 3y + 6 = -(x 1)
    - 3y + 6 = -x + 1

x + 3y + 5 = 0

The general equation can be rearranged to make v the subject. It is then written w = mx + c When written in this form it instantly highlights two important properties; the gradient of the line and its intercept with the y-axis. Consider the line  $y = \frac{1}{2}x - 3$ . This is in the form y = mx + c, with  $m = \frac{1}{2}$  and c = -3. Notice that the gradient is  $\frac{1}{2}$  and the y-intercept is (0, -3).



The equation  $y = \frac{1}{4}x - 3$  can be written in other forms:

$$y = \frac{1}{2}x - 3$$
$$2y = x - 6$$

x - 2y - 6 = 0

The minus sign outsis the bracket changes t sign of each term insi

Multiplying througho by 2 removes the

In the last version, the equation is in the more general form ax+by+c=0, with a=1, b=-2 and c=-6. Notice that  $y=\frac{1}{2}x-3$  and x-2y-6=0 both represent the same straight line.

# Example 2

Find the gradient and y-intercept of the straight lines represented by the following equations and sketch their graphs:

**a** 3x + 3y - 7 = 0 **b** 2x - 5y + 1 = 0

$$3x + 3y - 7 = 0 \Rightarrow 3y = -3x + 7$$
  
 $y = \frac{-3x}{3} + \frac{7}{3} = -x + \frac{7}{3}$ 

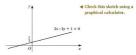
So the gradient is -1 and the y-intercept is  $\{0, \frac{2}{3}\}$ .



Check this sketch using a graphical calculator.

**b**  $2x - 5y + 1 = 0 \Rightarrow 2x + 1 = 5y$  $\frac{2}{5}x + \frac{1}{5} = y$ 

So the gradient is 
$$\frac{3}{2}$$
 and the y-intercept is  $(0, \frac{1}{2})$ .



The technique of rearranging equations into the form y=mx+c is particularly useful when solving simultaneous equations with a graphical method.

First express the equation in the form v = mx + c.



Remember to label the axes and origin on your sketch. Label the line with its equation, and

Remember to use the y = mx + c form on



The equations can be entered into the calculator in the form

#### Example 3

Solve the simultaneous equations x+y=4 and 2y-3x=3 using a graphical method.

#### Solution

We could rearrange each equation into the form y=mx+c to identify the gradient and intercept for each graph. However, it is often quicker to draw each graph by calculating where they cross the axes.

To find where the lines cross the y-axis, put x=0 into each equation. To find where the lines cross the x-axis, substitute y=0 instead.

For 
$$x + y = 4$$
, when  $x = 0, y = 4$   
and when  $y = 0, x = 4$ 

This line crosses the axes at (0, 4) and (4, 0).

For 
$$2y - 3x = 3$$
, when  $x = 0$ ,  $2y = 3$   
 $y = \frac{3}{2}$   
and when  $y = 0$ ,  $-3x = 3$   
 $x = -1$ 

This line crosses the axes at  $(0,\frac{3}{2})$  and (-1,0).

The graphical solution of the simultaneous equations is given by the coordinates of the point of intersection of these two lines.



You should find that the coordinates of this point are x = 1 and y = 3. So the point (1, 3) lies on both lines and x = 1, y = 3 is the solution because it satisfies both equations simultaneously.

An alternative method is to rearrange each equation into the for y = mx + c. Use a graphical calculator draw these lines and find out where they



# 2.2 The Equation of a Straight Line

# **Exercise**

# Technique

1 Rearrange the following equations into the form y = mx + c:

- a 3x + y + 7 = 0b 4x + y - 3 = 0
- e x+y+3=0f 2y-y-5=0

 $c \quad \frac{y-2}{x-3} = 4$ 

 $g \quad \frac{y-7}{2} = 4x$ 

 $d \frac{y+2}{x-5} = 2$ 

- $h = \frac{3-y}{2} = x$
- State the gradient and the y-intercept of the straight-line graphs produced by the following equations:
  - a y = 5x 3c y = 7 - 2x

- $\begin{array}{ll} \mathbf{b} & y = -2x + 3 \\ \mathbf{d} & y = \frac{1}{2}x + 5 \end{array}$
- For the straight lines produced by following equations, find the gradient and the coordinates of the y-intercept:
  - a 2x + y + 8 = 0b -2x + 3y - 2 = 0
- d 2x y + 7 = 4e -3x + 7y = 14f ax + by + c = 0
- c 5x + 10y 2 = 8
- 4 The equation of the line shown is given by 3x + y 6 = 0. Find the gradient and the coordinates of A and B.



- **5** Rearrange the equation  $\frac{y-5}{x+4} = \frac{1}{2}$  into the form y = mx + c. Now sketch the graph of this equation.
- 6 Solve the simultaneous equations x + y = 6 and 4x 2y + 6 = 0 using a graphical method.





# 2.3 More on the Straight Line

Think about the information needed to describe a particular straight line. How can we write the equation of a line by looking only at the graph of the line? We find that we can write the equation if we know:

- the gradient of the line and the coordinates of a point on it
- the coordinates of two points on the line.

#### The equation of a line given its gradient and the coordinates of one point on the line

Suppose the gradient m and the coordinates of point  $P(x_1, y_1)$  on the line are known. A general point  $(x_i, y)$  on the line can then be used to find the equation of the line. The known gradient, m, can be expressed by the sides of a right-angled triangle drawn on P and the general point (x, y).



This can be rearranged into the very useful result,

 $y-y_1=m(x-x_1)$ 

## Example 1

- a Find the equation of the straight line with gradient 2 that passes through the point (3, 4).
- b Find the equation of the straight line with gradient \(\frac{1}{2}\) that passes through the point (-2, -6).

#### Solution

a Use  $y - y_1 = m(x - x_1)$ 

Then 
$$y - 4 = 2(x - 3)$$
  
 $y - 4 = 2x - 6$ 

Substitute the known values of m,  $x_1$  and y This equation can now be rearranged into either form of the equation of a straight line.

$$2x - y - 2 = 0$$
 or  $y = 2x - 2$ 

**b** Use 
$$y - y_1 = m(x - x_1)$$

two known points

Then 
$$y - (-6) = \frac{1}{2}(x - (-2))$$
  
 $y + 6 = \frac{1}{2}(x + 2)$ 

$$y + 6 = \frac{1}{2}x + 1$$
  
 $y = \frac{1}{6}x + 1 - 6 = \frac{1}{6}x - 5$ 

So the equation of the line is  $v = \frac{1}{2}x - 5$ .

Take care when manipulating the negative signs.

ax + bv + c = 0, or

v = mx + c.

# The equation of a straight line passing through

Suppose that two points  $P(x_1, y_1)$  and  $Q(x_2, y_2)$  are known to lie on the straight line. The gradient of this line can be found by drawing in a right-angled triangle.



Now that we have the gradient, the problem is simple. We can use the result  $v - v_x = m(x - x_x)$  on either P or O.

### Example 2

Find the equation of the straight line that passes through the points A (2,3) and B (4,4).



#### Solution

The gradient of the straight line passing through A (2, 3) and B (4, 4) is

$$m = \frac{4-3}{4-2} = \frac{1}{2}$$

Now use  $y - y_1 = m(x - x_1)$ , with  $m = \frac{1}{4}$  and B (4, 4) as the known point.

$$y - y_1 = m(x - x_1)$$
  $\Rightarrow$   $y - 4 = \frac{1}{2}(x - 4)$   
 $y - 4 = \frac{1}{2}x - 2$   
 $y = \frac{1}{2}x + 2$ 

Check that you arrive at the same equation using A (2. 3) instead of B (4, 4)

The expression for the gradient,  $m = \frac{y_2 - y_1}{x_1 - x_1}$ , can be substituted directly into the equation for a straight line,  $y - y_1 = m(x - x_1)$ . At first the algebra might appear quite daunting, but it provides a very useful result.

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

This equation can now be rearranged so that the x terms and v terms are senarated, producing the equation of the straight line directly once the values of  $(x_1, y_1)$  and  $(x_2, y_3)$  are known.

$$\frac{y-y_1}{y_1-y_2} = \frac{x-x_1}{x_1-x_2}$$
 Learn this result.

# Example 3

Find the equation of the straight line joining P (5, -6) and O (-3, 2).

### Solution

Using the result 
$$\frac{Y-Y_1}{2^{-1}-Y_2} = \frac{x-x_1}{x_2-x_1}$$
  
 $\frac{y-(-6)}{2^{-1}-(6)} = \frac{x-5}{(-3)-5}$   
 $\frac{y+6}{8} = \frac{x-5}{-6}$   
 $y+6 = \frac{8-5}{6}(x-5)$   
 $y+6 = -(x-5) = -x+5$   
 $y=6 = -(x-5) = -x+5$ 

Make v the subject

Check that this equation could also be written v + v + 1 = 0

### Finding the mid-point of a line

Given a line joining two known points the mid-point can be established using the mean of the x and v coordinates.



Consider the line joining A  $\{1,2\}$  and B  $\{7,10\}$ . If M is the mid-point of this line then M is half-way between A and B, both horizontally and vertically. In this case the coordinates of M are  $\{4,6\}$ .

Notice that 
$$(4,6) = \left(\frac{1+7}{2}, \frac{2+10}{2}\right)$$
.

The mid-point M of a line joining the points A  $(x_1, y_1)$  and B  $(x_2, y_2)$  has coordinates  $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ .

# Example 4

The vertices of an isosceles triangle are A (2, 7), B (5, 8) and C (4, 5).

- a State the coordinates of the mid-point of AC.
   b Find the equation of the straight line through B and the mid-point
- of AC.

  Find the equation of the perpendicular bisector of BC.
  - This the equation of the perpendicular blocker of

## Solution



 Let M be the mid-point of AC. Then the coordinates of M are (2+4-7+5)

$$\left(\frac{2+4}{2}, \frac{7+5}{2}\right) = (3,6).$$

Recall that the mean of average is the sum of the numbers divided by how many of them there are. In this case, taking the mean of two coordinates, we would add the coordinates and them divide by 2, to find the point half-way between them.

The perpendicular bisector of a line is another line at right angles to the first, that passes through the mid-point of the original line.

# 2.3 More on the Straight Line Exercise

# Toobnique

|   | 10011    | ilique   |        |          |          |             |          |         |  |
|---|----------|----------|--------|----------|----------|-------------|----------|---------|--|
| 1 | Find the | equation | of the | straight | line wit | h the giver | gradient | passing |  |

- through the stated point in each of the following: a gradient 3, point (3, 2) d gradien
  - a gradient 3, point (3, 2) d gradient -3, point (0, 4)
    b gradient 6, point (-1, 2) e gradient ½, point (2, -3)
    c gradient 5, point (3, -2) f gradient -½, point (-1, 4)
- c gradient 5, point (3, -2) f gradient -\frac{1}{2}, point (-1, 4)

  2 Find the equation of the straight line joining the following pairs of points:
  - e joining the following pa
  - a A (2, 4) and B (3, 6) b R (-3, 4) and S (1, 2)
- d A (0, -2) and B (3, 4) e P (8, 6) and O (2, 12)
- c T (-1, 1) and V (0, 6)
- f R (-1, -1) and S (5, 2)
- Find the mid-point and the equation of the perpendicular bisector of AB in each of the following cases:
  - a A (1, -1) and B (3, 7) c A (-2, 5) and B (0, 3)
- b A (4, 1) and B (5, 0)
   d A (-1, -2) and B (1, 6)

#### Contextual

- A straight line passing through the points A (-1, 1) and B (p, 13), has gradient 2. Determine the value of p and find the equation of the straight line.
  - 2 Consider two points, P (2, 7) and Q (4, 13).
  - a Find the mid-point of PQ.
    b Find the gradient of PQ.
    - c Write down the gradient of the line perpendicular to the line PQ.
    - ${\bf d}$  . Find the equation of the perpendicular bisector of PQ. Write it in the form ax+by+c=0.
- Sketch a diagram to show the points A (0, -1), B (4, 3) and C (4, 5). Let M be the mid-point of AB. Find the coordinates of M and write down the equation of the straight line that passes through M and C.
- A is the point (6, 6) and B (8, 2) lies on the straight line x 2y 4 = 0.
  - a Find the equation of the straight line parallel to x 2y 4 = 0 that passes through A. Write it in the form ax + by + c = 0.
    - b Show that the straight line joining A and B is perpendicular to the line x 2y 4 = 0.
    - c Find the perpendicular distance between the two parallel lines.

# 2.4 Inequalities There are four inequality symbols.

There are four inequality symbols

- > means 'is greater than'
- means 'is greater than or equal to'
  means 'is less than'
- < means 'is less than or equal to'

Inequalities produce a range of acceptable answers. They can be represented on number lines using arrows. The base of the arrow is circular, and is shaded when the value is to be included in the range, and clear when the value is not to be included in the range.

Inequalities can be categorised into two types; those without variables (letters) and those with variables. Inequalities without variables are called propositions. Statements such as 2 < 7 > 1 > 1 = 4 = 7 < -2 are propositions and are either true or false. Inequalities with variables can be solved using similar techniques to those used when solving equations. However, a solution set is often produced showing a range of acceptable answers.

A solution set is an inequality, or a set of inequalities, showing the range of values the acceptable as solutions to the problem.

Learn the mathemati

meaning of each of

## Example 1

Example 1

Solve the inequalities: 
$$\begin{array}{lll} \textbf{a} & 2x+1 \geq 7 & \textbf{b} & 1-2x \geq 7 \\ \textbf{c} & 5x+2 < 3x+10 & \textbf{d} & \frac{6+x}{2} \geq x+7 \end{array}$$

c 5x + 2 < 3x + 10Solution

a 
$$2x+1 \ge 7$$
  
 $2x \ge 6$   
 $x > 3$ 

 $\mathbf{b} \quad 1 - 2x \ge 7 \ \Rightarrow \ -2x \ge 6$ 

Notice that the coefficient of x is -2. To find x we need to divide both sides of the inequality by -2. When dividing by a negative number the inequality needs to be reversed.

$$-2x \ge 6 \Rightarrow x \le \frac{6}{-2}$$
  
 $x \le -3$ 

sides of the inequali Divide both sides by

Divide both sides by

substituting a value of smaller than -3 in the original inequality. If the original inequality work? c The process of solving linear inequalities is similar to solving linear equations. Collect the like terms together, with numbers on one side of the inequality and variables on the other.

$$5x + 2 < 3x + 10$$

$$\Rightarrow 5x - 3x < 10 - 2$$

d Again use a similar process to that used when solving linear equations. Eliminate the fractions (by multiplying by a common multiple), collect like terms and find a condition on x by using division.

$$\frac{6+x}{3} \ge x+7$$

$$\Rightarrow$$
 6 + x  $\geq$  3(x + 7)

$$\Rightarrow 6+x \ge 3x+21$$

$$\Rightarrow 6-21 \ge 3x-x$$

$$\Rightarrow -\frac{15}{2} \ge x$$

That is,  $x \le -\frac{15}{3}$ 

- Notice how the following rules were used: Any term can be added to, or subtracted from, both sides of the
  - inequality and the symbol doesn't change. Both sides of an inequality can be multiplied, or divided, by the same
  - positive number and the symbol doesn't change.
  - When both sides of an inequality are multiplied, or divided, by the same negative number then the symbol is reversed.

#### Quadratic inequalities

One example of a quadratic inequality is  $x^2 > 4$ . It has two sets of solutions. Consider  $x^2 = 4$ . This has two solutions: y = 2 and y = -2. Why? Because to solve the equation  $x^2 = 4$  we take the square root of both sides of the equation.

$$x^2 = 4 \Rightarrow x = \pm \sqrt{4} = \pm 2$$

So what do we know about x when  $x^2 > 4$ ? We can see that x > 2 works. Check this result. What is the other solution? Is there a condition involving -2? We find that y < -2 is also a condition that works

Check this result by substituting a value of x smaller than 4 in the original inequality.

collected on the RHS of the resulting term. 2x.

To see why the solutions are x > 2 and x < -2, think about the proposition  $x^2 > 4$ . Draw two gaphs,  $y = x^2$  and y = 4. Where is the parabola above the line y = 4? This is the same as asking for which values of x the graph of  $y = x^2$  is above the line y = 4, or for which values  $x^2 > 4$ . The curve is above the line for x > 2 and for x < -2.



An alternative is to rearrange the original inequality. Then  $x^2 \to 4$  becomes  $x^2 \to 4 \to 0$ . This map not look simple, but the new statement has a quadratic expression and a zero separated by an inequality symbol. A graph of  $y = x^2 - 4$  can now be drawn, and we are looking for the points where y > 0 (that is, for points of the curve above the x-axis).



Find the points where the curve crosses the x-axis (by solving  $x^2-4=0$ , or using your graphical calculator). Notice that the curve is above (greater than) the x-axis (y=0) for x>2 and x<-2.

This technique of sketching the graph is a useful way of checking that no solutions have been lost.

### Example 2

Solve:

**a**  $x^2 - 7x < -10$  **b**  $x^2 - 3x - 5 \ge 0$  **c**  $x^2 + x + 1 \le 0$ 

### Solution

 This is a quadratic inequality. It can be rewritten as a quadratic expression and a zero separated by an inequality symbol.

 $x^2 - 7x < -10 \implies x^2 - 7x + 10 < 0$ 

Since 2 and -2 are n part of the solution, dots here are left unshaded.



The quadratic expression can be factorised. Recall 'PAFF' from Chapter 1.

Then  $x^2 - 7x + 10 < 0$  becomes (x - 2)(x - 5) < 0. What does this expression suggest about x?

If the inequality symbol was an equality (that is, (x-2)(x-5) = 0) then x = 2 or x = 5 would be the solution. Since we have an inequality, these critical values should be examined more closely. Begin by sketching the curve  $v = x^2 - 7x + 10$ . Notice how it crosses the varie at v = 2 and v = 5



The parabola is below the x-axis for all values of x between x = 2 and x = 5. This means  $x^2 - 7x + 10$  is negative for all these values of x. So  $x^2 - 7x + 10 < 0$  when x > 2 and x < 5.

Another way of writing this set of inequalities is as a 'sandwich':

Notice how the x appears between the values of 2 and 5 found in the factorisation process.

b Try the technique used in a, and see what happens. Try factorising the quadratic expression  $x^2 - 3x - 5$ , using PAFF. F- 2

Values for F cannot be found easily so this quadratic expression cannot be factorised using PAFF, but the critical values can be identified by solving  $x^2 - 3x - 5 = 0$ . Since PAFF isn't working, use the quadratic formula with a = 1, b = -3 and c = -5.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

p. \_5

$$=\frac{3\pm\sqrt{9-4\times1\times(-5)}}{2}$$

$$=\frac{3\pm\sqrt{9+20}}{2}=\frac{3\pm\sqrt{29}}{2}$$

coefficient of x2 is 1 the expression can be factorised from this step.

Critical values are points where the quadratic expression changes sign.

Notice that these values of x are both irrational due to the  $\sqrt{29}$  term. Now sketch the curve of  $v = x^2 - 3x - 5$ , (Use a graphical calculator if you have one.)



Notice that the curve is on or above the x-axis (that is  $y \ge 0$ ) when  $x \le \frac{1}{2}(3 - \sqrt{29})$  and  $x \ge \frac{1}{2}(3 + \sqrt{29})$ . These inequalities are separate and cannot be condensed into a 'sandwich'.

Remember that the technique has been to identify critical values. By sketching the graph a set of inequalities has been identified where the graph is above or below the axis. Sketch the graph of  $y = x^2 + x + 1$ . What happens?



The graph doesn't cross the axis. The expression has no critical values. Check this by trying to factorise  $x^2 + x + 1$ , or use the quadratic formula. Since the curve is always above the x-axis,  $x^2 + x + 1$  is never negative, and  $x^2 + x + 1 \le 0$  has no solutions.

In summary the technique for solving quadratic inequalities is as follows:

- (I) Establish zero on one side of the inequality symbol. This means the quadratic expression can then be tested for being positive (>0) or
- negative (<0). (2) Establish the critical values. These are the values of x that make the quadratic expression equal zero.
- 3) Identify the set of inequality solutions. Often this can be done by sketching a suitable graph.
- 4 Decide which sides of the critical points form the solution set.

The critical values as part of the solution s the dots on the graph are shaded.

critical value and bis than the highest crit

complete the square.

An alternative method is to check the sign of the expression below the smallest critical value, between the critical values and above the largest critical value.

# Example 3

Solve  $2x^2 - 9x + 9 > 0$ .

#### Solution

Notice that the first step has been done. This is a quadratic expression that needs to be positive ( $\geq$ 0). Now use PAFF to factorise the expression  $2x^2 - 9x + 9$ .  $\triangleleft$  2 Identify the critical values.

F: 
$$2x^2 - 9x + 9 = 2x^2 - 6x - 3x + 9$$

$$= 2x(x-3) - 3(x-3)$$
  
=  $(x-3)(2x-3)$ 

So the critical values are 3, when x - 3 = 0, and  $\frac{3}{2}$ , when 2x - 3 = 0. Notice that the problem has changed from solving  $2x^2 - 9x + 9 \ge 0$  to solving  $(x - 3)(2x - 3) \ge 0$ .

We will use the method where we check the sign of the expression against the critical values. Look at the sign of (x-3)(2x-3) by comparing the signs of the separate factors.

|             | V - 3                 | 3 3-4-9             | 4-0                 |
|-------------|-----------------------|---------------------|---------------------|
| (x-3)       | -                     | - 1                 | +                   |
| (2x-3)      | -                     | +                   | +                   |
| (x-3)(2x-3) | (-) × (-)<br>positive | (-)×(+)<br>negative | (+)×(+)<br>positive |

showing the critical values, check the sign of the quadratic for values on either side of each critical value.

So (x-3)(2x-3) is positive when values of x are smaller than the least critical value, and larger than the highest critical value. The set of solutions for  $2x^2 - 9x + 9 \ge 0$  is  $x \le \frac{3}{4}$  and  $x \ge 3$ . Check this

result by sketching the graph of  $y = 2x^2 - 9x + 9$ .

# 2.4 Inequalities Exercise

# Technique

Solve these linear inequalities:





a  $x^2 > 9$  b  $x^2 \le 25$  c  $x^2 - 49 > 0$  d  $x^2 - 64 < 0$ 

3 Solve these quadratic inequalities: **a**  $x^2 + 8x + 15 > 0$  **b**  $x^2 + 5x - 6 > 0$  **c**  $x^2 + 7x + 10 < 0$ 

a  $x^2 + 8x + 15 > 0$  b  $x^2 + 5x - 6 \ge 0$  c  $x^2 + 7x + 10 < 0$ d  $x^2 - 2x - 15 < 0$  e  $x^2 - 5x + 6 \le 0$  f  $x^2 + 3x - 4 > 0$ 

Transform these statements into quadratic inequalities involving zero. Solve the inequality in each case.

5 Solve these quadratic inequalities:

d  $3x^2 + 7x + 2 > 0$  b  $7x^2 + 22x + 3 \le 0$  c  $3x^2 + 5x + 2 < 0$  d  $3x^2 + 1 > 4x$  e  $2x^2 > 5x + 3$  f  $3x^2 + x > 2$ 



## Contextual

**1** Solve the inequality  $x+3>x^2$ , leaving your answer in the form  $a+b\sqrt{c}$  where a,b and c are rational.



Find an inequality represented by the highlighted section of this graph.



- **3** Find the set of values of x for which  $(3x 1)^2 < 3x^2 + 13$ .
- Solve the equation  $x^2 5\sqrt{2}x + 12 = 0$ , writing your answer using surds. Hence, or otherwise, solve  $x^2 - 5\sqrt{2}x + 12 < 0$ .

# 2.5 The Equation of a Circle

Consider a circle of radius r whose centre is at the origin, and let P(x,y) be any point on the circle. This means the distance OP must always be equal to the radius of the circle.





Pythagoras' theorem can be used to find the relationship between x, y and r.

The equation of a circle of radius r whose centre is at the origin  $\{0,0\}$  is:



v-axis respectively.

What happens if the centre of the circle is moved to a new position  $Q(a,b)^*$ . Again, let P(x,y) be some point on the circumference of the circle. Notice that PQ is a radius of length r. A new right-angled triangle can be drawn on PQ so that the shorter sides are narallel to the x-axis and Check that this is true for points on the circle where P has negative





The lengths of these sides are (x - a) and (y - b). Check this from the diagram. Now use Pythagoras' theorem on this triangle. What happens?

 $(x-a)^2 + (y-b)^2 = r^2$ 

This is the equation of a circle of radius r whose centre is the point (a, b).

### Example 1

State the radius and centre of the following circles:

- a  $(x-7)^2 + (y+2)^2 = 36$ b  $(x+1)^2 + (y-5)^2 = 23$
- - -

#### Solution

- a Compare  $(x-7)^2 + (y+2)^2 = 36$  with  $(x-a)^2 + (y-b)^2 = r^2$ . The equation is in the same form with a=7, b=-2 and r=6. So  $(x-7)^2 + (y+2)^2 = 36$  is the equation of a circle of radius 6, centre (7,-2).
- b  $(x+1)^2 + (y-5)^2 = 23$  can be compared with  $(x-a)^2 + (y-b)^2 = r^2$ , to give a = -1, b = 5 and  $r = \sqrt{23}$ .

So  $(x+1)^2+(y-5)^2=23$  is the equation of a circle of radius  $\sqrt{23}$  whose centre is (-1,5).

### Example 2

- a The point (k, 2) lies on the circle  $x^2 + v^2 = 13$ . Find the values of k.
- b The point (k, 0) lies on the circle with centre (7, 2) and radius √8.
  Find the possible values of k.

# Solution

Substitute (k, 2) into the equation of the circle.

Then 
$$x^2 + y^2 = 13 \implies k^2 + 2^2 = 13$$

$$\Rightarrow k^2 + 4 = 13$$

$$\Rightarrow k^2 = 9$$

$$k = \pm \sqrt{9} = \pm 3$$

So there are two possible values of k. These can be interpreted geometrically by sketching a diagram of the circle.



Note that since the radius is a distance it is always taken to be b The equation for a circle of radius  $\sqrt{8}$ , centre (7,2) is given by

$$(x-7)^2 + (y-2)^2 = 8$$

Now put x = k when v = 0 into this equation.

$$(k-7)^2 + (0-2)^2 = 8$$

$$\Rightarrow (k-7)^2 + 4 = 8$$

$$(k-7)^2=4$$

$$(k-7) = \pm \sqrt{4} = \pm 2$$
  
 $k = 7 \pm 2$ 

So 
$$k = 9$$
 or  $k = 5$ .

We have seen that the equation of a circle of radius r and centre (a,b) can be written  $(x-a)^2+(y-b)^2=r^2$ . It can also be written in another form by multiplying out the bracketed terms and then collecting like terms.

$$(x - a)^2 + (y - b)^2 = r^2$$
  
 $\Rightarrow (x^2 - 2ax + a^2) + (y^2 - 2by + b^2) = r^2$ 

$$\Rightarrow x^2 + y^2 - 2ax - 2by + (a^2 + b^2 - r^2) = 0$$

Since a, b and r are all constants this can be 'simplified' to the **general** form of the equation for a circle (by writing  $a^2 + b^2 - r^2 = c$ ).

$$x^2 + v^2 - 2ax - 2bv + c = 0$$

Notice that in this form-

- The centre (a, b) can be identified from the coefficients of the x and y terms.
- The radius is not as straightforward to identify as it was in the other form.

### Example 3

- a Find the equation of a circle of radius √7 and centre (3, −2) in its general form.
- b The equation of a circle is  $x^2 + y^2 2x + 4y 4 = 0$ . Find the centre and radius of the circle.

# Solution

a If the centre is (3, -2) and the radius  $\sqrt{7}$  then the equation of the circle is

$$(x-3)^2 + (v+2)^2 = (\sqrt{7})^2$$

Expanding the brackets, 
$$(x^2 - 6x + 9) + (y^2 + 4y + 4) = 7$$
  

$$\Rightarrow x^2 + y^2 - 6x + 4y + (9 + 4 - 7) = 0$$

$$\Rightarrow$$
  $y^2 + y^2 - 6y + 4y + 6 = 0$ 

b Compare 
$$x^2 + y^2 - 2x + 4y - 4 = 0$$
 to the general form of the equation  
for a circle,  $x^2 + y^2 - 2\alpha x - 2by + c = 0$ . Notice that  $a$  and  $b$  can be  
found by equating coefficients of  $x$  and  $y$ .

Equating coefficients of 
$$x$$
,  $-2 = -2a$ , so  $a = 1$ .

Equating coefficients of 
$$y$$
,  $4 = -2b$ , so  $b = -2$ .

So the centre of the circle, (a,b), is (1,-2). Now equating the constant terms in each equation, c=-4. Recall that  $c=\sigma^2+b^2-r^2$ 

So 
$$a^2 + b^2 - r^2 = -4$$
  
 $\Rightarrow (1)^2 + (-2)^2 - r^2 = -4$   
 $\Rightarrow 1 + 4 - r^2 = -4$   
 $\Rightarrow r^2 = 1 + 4 + 4$   
 $\Rightarrow r^2 = 9$ 

So the centre of the circle is (1, -2) and the radius is 3.

# Tangents and normals

A tangent to a circle is a straight line that touches the circle at one distinct point. A normal is the straight line perpendicular to the tangent that passes through the point of contact between the tangent and the circle. Notice that the normal is an extension of a diameter.



### Example 4

Find the equation of the tangent to the circle  $x^2 + y^2 - 3x - y - 2 = 0$  at the point (3. 2). Then find the equation of the normal. We only take the positive square root because we are look at something we kno to be a positive value the radius.

#### Solution

Compare  $x^2 + v^2 - 3x - v - 2 = 0$  to the general form  $x^2 + y^2 - 2ax - 2by + c = 0$ . The values of a and b can be established by equating coefficients.

Equating coefficients of 
$$x$$
,  $-3 = -2a$ , so  $a = \frac{3}{2}$ .  
Equating coefficients of  $v$ ,  $-1 = -2b$ , so  $b = \frac{1}{6}$ .

So the centre of the circle,  $(a,b) = (\frac{3}{5},\frac{1}{5})$ .



The gradient of the normal can now be found by using the points (3, 2) and (3,1).

We now know the gradient of the tangent and the coordinates of a point

gradient of normal = 
$$\frac{2 - \frac{1}{2}}{3 - \frac{3}{2}}$$

$$=\frac{\frac{3}{2}}{\frac{3}{2}}=1$$
 Since the tancent is perpendicular to the normal its gradient must be  $-1$ .

on the tangent (3, 2), so the equation of the tangent is given by  $v - v_1 = m(x - x_1)$ y-2=-1(x-3)

y - 2 = -x + 3 $\Rightarrow v+x-5=0$ 

Similarly, we know the gradient of the normal and the coordinates of a point on the normal, so the equation of the normal is given by

$$y - y_1 = m(x - x_1)$$
  
 $\Rightarrow y - 2 = 1(x - 3)$   
 $\Rightarrow y - 2 = x - 3$   
 $\Rightarrow y - x + 1 = 0$ 

Both the tangent and the normal pass through (3. 2): we know one point on each line. The normal passes through the centre of the circle. so start by finding the centre (a b) of the circle.

Recall that the product of the gradients of two perpendicular lines is

We knew another point on the normal (the centre of the circle) so we could also have used the technique for finding the equation of a

straight line knowing

two points on that line.

# 2.5 The Equation of a Circle Exercise

## Technique

| 1 | Find the | centre and | radius o | of each o | of the | following | circles: |
|---|----------|------------|----------|-----------|--------|-----------|----------|
|---|----------|------------|----------|-----------|--------|-----------|----------|

 $(x-5)^2 + (v-3)^2 = 7^2$ b  $(x+6)^2 + (y+1)^2 = 25$  $x^2 + (y + 7)^2 = 121$ d  $(x+1)^2 + (y-2)^2 = 11$ 

2 Write the equations of the circles with the given centres and radii in the form  $x^2 + y^2 - 2ax - 2by + c = 0$ :

b centre (2 -1) radius 3

c centre (-2,0), radius √5 d centre (3, −3), radius 3√2

3 Find the centre and radius of the following circles.

a centre (−1,3), radius 2

 $x^2 + y^2 - 6x - 2y + 6 = 0$  $b \quad x^2 + y^2 + 2x - 4y + 1 = 0$  $d \quad x^2 + y^2 + 4y + 1 = 0$  $x^2 + y^2 + 2x + 8y + 8 = 0$ 

## Contextual

1 The point (3.k) lies on the circle  $x^2 + y^2 - 6x - 4y - 51 = 0$ . Find the values of k

The point (k, 0) lies on the circle with centre (4, 1) and radius √10. Find two possible values of k.

3 The point A lies on the circle with centre (1,3) and radius √5. Given that A lies on the y-axis, find the possible coordinates of A.

4 Find the equation of the tangent to the circle  $x^2 + 4x + y^2 = 21$  at the point (1.4). Find also the equation of the normal at this point.

A straight line touches the circle  $x^2 - 4x + y^2 - 10y - 71 = 0$  at the point (8, -3). Find the equation of the line and the equation of any line perpendicular to it passing through the point (4, 3).

6 The points A (-7,7) and B (1,1) form the diameter of a circle. Find the equation of the circle.

Find the length of the tangent from the point (9,8) to the circle  $x^2 + v^2 - 2x - 4v = 31$ 





# Consolidation

### Exercise A

- 1 A. B. C are the points with coordinates (4,7), (-1,2) and (6,1) respectively.
  - a Prove that the triangle ABC is isosceles. State the coordinates of the mid-point, M. of AC and find the area of the triangle.
    - b Find the equation of the line BM.
    - Find the equation of the line through A, perpendicular to BC.
    - d Find the coordinate of the point H where these two lines meet, and deduce that CH is perpendicular to AB.

(OCSER)

2 The coordinates of the points A and B are (2, 3) and (4, -3) respectively. Find the length of AB and the coordinates of the mid-point of AB. (UCLES)

3 P. Q. R are the points whose coordinates are (2, 4), (8, -4) and (14, 8) respectively.

- a Find the equations of the perpendicular bisectors of the lines PO and PR
- b If the two bisectors meet at C, calculate the coordinates of C and show that  $CP^2 = 50$ .
- Deduce the equation of the circle through P. O. and R in the form  $x^2 + y^2 + px + qy + r = 0.$

(OCSEB)

4 A line through the origin with gradient m cuts the fixed circle in Fig. 1 in two points provided that  $2(2m+1)^2 > 9(m^2+1)$ . Show that this inequality is equivalent to  $m^2 - 8m + 7 < 0$  and find the solution set for m.



(OCSER)

- Find the length of the tangent from the point (6, 2) to the circle  $x^2 + y^2 + 2x = 9$ .
  - **6** Solve the inequality (x-3)(x-6) > x+9.

(AEB)

### Exercise B

- The coordinates of the points A and B are (3, 2) and (4, -5) respectively. Find the coordinates of the mid-point of AB, and the gradient of AB. Hence find the equation of the perpendicular bisector of AB, giving your answer in the form  $\alpha x + b y + c = 0$ , where a, b and c are integers.
- The straight line P passes through the point (10, 1) and is perpendicular to the line R with equation 2x + y = 1. Find the equation of P. Find also the coordinates of the point of intersection of P and R and deduce the perpendicular distance from the point (10, 1) to the line R.

(UCLES)

(ULEAC)

- Find the length of the tangent from the point (7, 6) to the circle  $x^2 + y^2 2x = 15$ .
- Find the equation of the straight line that is parallel to y + 20x = 90 and passes through the point  $\{4, -10\}$ .
  - **5** Find the set of values for which  $\frac{x}{x+4} > 2$ .

Hint: Solve x > 2(x - 4)and x + 4 > 0.

- A circle, centre P, passes through A (1, 1), B (-2, 2) and C (-7, -3).
  a Find the equation of the perpendicular bisector of AB.
  - b Find the equation of the perpendicular bisector of AB.

    b Find the equation of the perpendicular bisector of BC.
  - c Using your answers to a and b, solve the equations simultaneously to
  - find centre P.
  - d Find the distance AP.
  - Hence write down the equation of the circle.

# Applications and Activities

Constructing a circle through three known points



Mark the three points on a piece of graph paper so that their coordinates can be read. Repeat the problem but this time find:

- a the coordinates of the centre of the circle
- b the radius of the circle and
- c the equation of the circle

# Summary

The formula for the distance between points A (x<sub>1</sub>, y<sub>1</sub>) and B (x<sub>2</sub>, y<sub>2</sub>) is
AB = √(x<sub>2</sub> − x<sub>1</sub>)<sup>2</sup> + (y<sub>2</sub> − y<sub>1</sub>)<sup>2</sup>

The gradient of a line is a measure of its steepness.

- gradient = change in y-coordinate change in x-coordinate
- Parallel straight lines have the same gradient.
- The product of the gradients of perpendicular straight lines is -1.

  The equation of a straight line is generally written in the forms
- $y=mx+c\;(y=a_1x+a_0)\;\text{and}\;ax+by+c=0.$
- The equation of a straight line with gradient m passing through (x<sub>1</sub>, y<sub>1</sub>) is
   x y<sub>1</sub> = m(x x<sub>2</sub>)
- The equation of a straight line passing through  $(x_1, y_1)$  and  $(x_2, y_2)$  is
  - $\frac{y y_1}{y_2 y_1} = \frac{x x_1}{x_2 x_1}$
- The mid-point M of a line joining the points A (x<sub>1</sub>, y<sub>1</sub>) and B (x<sub>2</sub>, y<sub>2</sub>) has coordinates



 The symbols >, ≤, <, ≥ mean 'greater than', 'less than or equal to', 'less than' and 'greater than or equal to', respectively.

- Quadratic inequalities can be solved by rearranging them as factorised quadratic expressions with zero on one side. Solutions can be checked by drawing graphs.
- The equation of a circle has general forms

 $(x-a)^2 + (y-b)^2 = r^2$ and

# $x^2 + y^2 - 2\alpha x - 2by + c = 0$

- A circle, (x − a)<sup>2</sup> + (y − b)<sup>2</sup> = r<sup>2</sup>, has centre (a, b) and radius r.
- The normal to a circle at a given point is perpendicular to the tangent at that point, and passes through the centre of the circle.

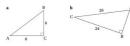
# 3 Trigonometry I

## What you need to know

- How to use Pythagoras' theorem.
- Factorisation methods, including factorisation of quadratic equations.
- How to write down the sine, cosine and tangent ratios for acute angles.
- How to find the area of a triangle.
- That the term solving a triangle means finding the lengths of the unknown sides and the sizes of the unknown angles.
  - How to calculate bearings.

# Review

1 Use Pythagoras' theorem to find the length of side AB in the following triangles:





2 Factorise each of the following expressions and solve the equations:

- a  $a^2 b^2$ b  $c^2 + 3c + 2$
- d  $k^2 7k + 12$ e  $p^2 - 8p + 12 = 0$

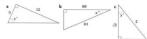
c  $h^2 + h - 12$ 

 $3p^2 + 14p - 5 = 0$ 

first logical proof of the theorem a\* + b\* = c\* for right-angled triangles, and used letters on geometric figures.

Pythagoras of Samos (c. 560-c. 480sc)

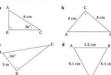
# mplete Advanced Level Mathematics: Pure Mathematics



4 Calculate, to three significant figures, the areas of the following triangles:



5 Solve the following triangles:

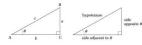


6 For each of the following diagrams write down the bearing of B from A:



# 3.1 Trigonometric Functions

Trigonometry is the study of angle measurement, and in particular the study of triangle measurement and calculation. In order to distinguish between angles and lengths of sides the convention of capital letters for vertices and lower case letters for the corresponding opposite side is adopted.



Right-angled triangles are used to define the three basic trigonometric functions for some acute angle  $\theta$ ; sine, cosine and tangent.

$$\sin \theta = \frac{a}{c} = \frac{\text{side opposite } \theta}{\text{hypotenuse}}$$
  $\cos \theta = \frac{b}{c} = \frac{\text{side adjacent to } \theta}{\text{hypotenuse}}$   
 $\tan \theta = \frac{a}{b} = \frac{\text{side opposite } \theta}{\text{side adjacent to } \theta}$ 

This principle can be used to define the sine, cosine and tangent of any angle  $\theta.$ 

Draw perpendicular axes Ox and Oy, and a circle centred on the origin, with radius 1 unit. Then  $\theta$  will fix some point P on the circle.



The coordinates of P(x,y) are then  $(\cos\theta,\sin\theta)$ . Now adopt the convention that  $\theta$  is measured anti-clockwise from the positive x-axis. The quadrant between the positive x-axis and the positive y-axis is called the first quadrant. In this quadrant  $\theta$  is always acute.

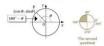
The second quadrant is between the positive y-axis and the negative x-axis. In this quadrant  $\theta$  is always obtuse. When  $\theta$  is obtuse (greater than





90")  $\sin\theta$  and  $\cos\theta$  are equal in magnitude to the sine and cosine ratio of the acute angle (180" –  $\theta$ ). So in the second quadrant the coordinates of P are still ( $\cos\theta$ ,  $\sin\theta$ ), but note that in this quadrant  $\sin\theta$  is positive, and  $\cos\theta$  is negative.  $\blacktriangleleft$  sin (180" –  $\theta$ )  $\equiv$  sin  $\theta$ 

 $\cos (180^{\circ} - \theta) \equiv -\cos \theta$ 



## Example 1

Find cos 147° as a trigonometric ratio of an acute angle.

#### Solution

We know that 147° lies in the second quadrant and, for obtuse  $\theta_*\cos\theta=-\cos(180^\circ-\theta)$ .

So 
$$\cos 147^{\circ} = -\cos(180^{\circ} - 147^{\circ}) = -\cos 33^{\circ}$$
.

By making  $\theta$  a reflex angle, we can extend these results into the third and fourth quadrants. In the third quadrant both  $\sin\theta$  and  $\cos\theta$  are negative. In the fourth quadrant  $\cos\theta$  is positive and  $\sin\theta$  is negative. (Think carefully about the coordinates of the point P).



0 x 180

The magnitude is the

numerical value, or s

of the trigonometric

ratio, ignoring the sis

(positive or negative)

 $\sin(\theta - 180^{\circ}) = -\sin(\theta - 180^{\circ}) = -\cos(\theta - 180^{\circ}) = -\cos(\theta - 180^{\circ})$ 

 $\sin(360^{\circ} - \theta) = -\sin(360^{\circ} - \theta) = \cos \theta$ 

Remembering the definition of  $\cos\theta$  and  $\sin\theta$  as the coordinates of P, the gradient of the line OP gives us  $\tan\theta$ .

$$\tan \theta = \frac{y}{z} = \frac{\sin \theta}{\cos \theta}$$

This allows us to establish the quadrants in which each of the three trigonometric ratios are positive. One way of remembering which trigonometric ratios are positive and which negative in each quadrant is to remember only the positive ones. Think about the coordinates of  $P(\cos\theta,\sin\theta)$  and remember that  $\tan\theta$  is positive when  $\sin\theta$  and  $\cos\theta$  have the same sign.

All the trigonometric ratios are positive in the first quadrant, sine is positive in the second, tangent is positive in the third and cosine is positive in the fourth quadrant. There are several good mnemonics (aids to memory), such as All Stilly Tom Cats; All Squirrels Take Chestnuts; All Stilver Tea Cump.



# Example 2

Write tan 227° as a trigonometric ratio of an acute angle.

#### Solution

We know that 227° lies in the third quadrant, and that  $\tan \theta$  is positive in the third quadrant. So  $\tan 227^\circ = \tan(227^\circ - 180^\circ) = \tan 47^\circ$ 

calculator.

#### Special angles

Some acute angles are special because they occur so frequently. Two triangles in particular are very useful for finding the trigonometric ratios of these angles. These triangles have the advantage of giving exact results and not decimal approximations.

rom Pythagoras'

An isosceles right-angled triangle with sides 1 unit.



Half of an equilateral triangle of side 2 units.



rom Pythagoras' heorem,  $2^2 - 1^2 = 3$ . Using these triangles we have the following special results.

| 1   |     | sin 0 | costi | tan 0 |
|-----|-----|-------|-------|-------|
| ı   | 30" | 1 2   | 4     | 1/3   |
| Ì   | 45" | 1/2   | 力     | 1     |
| - 1 |     |       |       | -     |

This now allows the ratios of related angles in the second, third and fourth quadrants to be evaluated exactly.

### Example 3

- a Find sin 150°.
- b Find cos 330°.
- c Find sin 410° as a trigonometric ratio of an acute angle.

#### Solution

- We know that 150° lies in the second quadrant, where sine is positive. So  $\sin 150^\circ = \sin 180^\circ - 150^\circ) = \sin 30^\circ = \frac{1}{2}$ .
- We know that 330° is in the fourth quadrant, and cosine is positive in the fourth quadrant. So  $\cos 330^\circ = \cos(360^\circ - 330^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}$ .
- the fourth quadrant. So cos 330" = cos(360" Angles outside the range 0"-360" always lie in one of the four quadrants. We find that 410" - 360" = 50", so 410" is in the first quadrant, where sine is positive. So sin 410" = sin(410" - 360")

(110°)

# = sin 50' Graphs of the trigonometric functions

Now draw a new pair of axes and plot the angle  $\theta$  along the x-axis and the y-coordinate of P [sin  $\theta$ ] along the y-axis. This gives a continuous curve. This curve, or waxe, repeats itself every  $360^\circ$ , so the sine curve is said to have a period of  $360^\circ$ . The curve has a maximum value of 1 (when  $\theta = 90^\circ$ ) and a minimum of -1 (when  $\theta = 270^\circ$ ). These correspond to P being at the top and bottom of the circle.



eck this result

calculator.

Recall that ½ is irrational. If you che this result on a calculator your screewill probably show 0.8660.

The systematic statingenemetry is attributed to Hippar an Alexandrian astre-who lived around 15 He made a table of a and used it to find the distance between the Moon and the Earth.

You can draw a similar graph plotting the angle  $\theta$  along the x-axis and the x-coordinate of  $P(\cos \theta)$  along the v-axis. The graph of  $\cos \theta$  is the same shape as that of  $\sin \theta$ , but it has been shifted by 90°. The 90° is sometimes referred to as the phase difference between the two graphs.





The similarities can be described using the following equations.

$$\sin(\theta + 90^\circ) = \cos\theta$$

$$cos(\theta + 90^\circ) = -sin \theta$$
  $cos(90^\circ - \theta) = sin \theta$ 

# Example 4

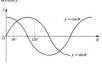
Show that  $\sin 120^\circ = \cos 30^\circ$ .

#### Solution

 $\sin 120^\circ = \sin(180^\circ - 120^\circ)$ 

- sin 60° = cos 30°

An alternative method would be to read off sin 120° and cos 30° from the graphs for sine and cosine. In both cases there is an answer of 0.8660 . . .  $(\approx \sqrt{2})$ , although you are unlikely to be able to read a graph to this level of accuracy.

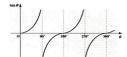


120° is in the second quadrant, so sin is positive.

The graph of  $\tan\theta$  doesn't look like either of the other two graphs. This is because  $\tan\theta$  is defined as

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

The denominator,  $\cos\theta$ , has the value 0 when  $\theta=90^\circ$ . This means that the graph of  $\tan\theta$  will not be continuous. To show this on the graph we use dotted lines called **asymptotes**. Like  $\sin\theta$  and  $\cos\theta$ ,  $\tan\theta$  is periodic, but this time the period is  $180^\circ$  instead of  $360^\circ$ .



You should memorise the main features of the sine, cosine and tangent graphs. The main features are the general shape, maximum and minimum points, intersections with axes and positions of asymptotes.

#### Trigonometric equations

A trigonometric equation is one containing a frigonometric function such as sine, conine or tangent. Solving those equations means finding values of the angle that satisfy the equation. Usually the range of angles that are acceptable as solutions will be restricted. The restriction could be due to the nature of the problem, or imposed by the person setting the question. To find angles within these ranges the trigonometric graphs can be used.

In addition to finding the sine, cost on any with a particular sine, cosine or calculator can be used to find an any with a particular sine, cosine or tangent. The inverse trigonometric functions, written sin<sup>-1</sup>, cos<sup>-1</sup> and tan <sup>1</sup>, are used. On a calculator they are usually located above the 'sin', 'cos' and 'tan' function keys. Sometimes an 'inverse', 'shift', '2nd function' or 'are' key needs to be pressed first.

If a calculator is used to find an angle it will give an answer called the principal value. Other solutions can then sometimes be found by adding multiples of the period for that function. Alternatively, once the principal value is known, the symmetry of the trigonometric graphs can be used to find solutions. Alternative notation inverse trigonometri angles that you may come across is arcsis arccos and arctan (a sometimes arsin, arc and artan).

# Example 5

- $\mathbf{a} \quad \text{ Find values of } \theta \text{ for which } 4\sin\theta = 3 \text{ such that } 0^\circ \leq \theta \leq 360^\circ.$
- **b** Solve the equation  $\tan \theta = -2$  for  $0^{\circ} \le \theta \le 360^{\circ}$ .

## Solution

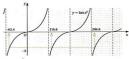
a  $4 \sin \theta = 3 \Rightarrow \sin \theta = \frac{3}{4}$  Recall that  $\Rightarrow$  means 'implies'.  $\theta = \sin^{-1}(0.75) = 48.6$ ' (3 s.f.)

The solution in the first quadrant is 48.6°. The solution in the second quadrant is  $180^\circ-48.6^\circ=131.4^\circ$ 



b 
$$\tan \theta = -2 \Rightarrow \theta = \tan^{-1}(-2)$$
  
 $\theta = -63.4^{\circ}(3.85)$ 

Add multiples of 180°, the period of  $\tan \theta$ , to find solutions that lie within the acceptable range.



 $\theta = -63.4^{\circ} + 180^{\circ} = 116.6^{\circ}$ 

 $\theta = -63.4^{\circ} + 360^{\circ} = 296.6^{\circ}$ 

 $\theta = -63.4^{\circ} + 540^{\circ} = 476.6^{\circ}$ , which is outside the acceptable range.

There are two solutions;  $\theta=116.6^\circ$  and 296.6°. (Notice that they are in the second and fourth quadrants, where  $\tan\theta$  is negative.)

First isolate the trigonometric ratio (sine), and notice that  $\sin \theta$  is positive, so we expect solutions in the first and second quadrants.

In this case the calculator gives a principal value outside the acceptable range, and negative.



#### The reciprocal ratios

There are three other trigonometric ratios, which are known as the reciprocal ratios. These are cosecant (cosec), secant (sec) and cotangent (cot).

$$\csc \theta = \frac{1}{\sin \theta}$$
  $\sec \theta = \frac{1}{\cos \theta}$   $\cot \theta = \frac{1}{\tan \theta}$ 

# Example 6

Find:

c sec 42°

# Solution

a  $\csc 30^\circ = \frac{1}{\sin 30^\circ}$  $=\frac{1}{1}=2$ 

**b** 
$$\cot 60^{\circ} = \frac{1}{\tan 60^{\circ}} = \frac{1}{\sqrt{3}}$$

c 
$$\sec 42^{\circ} = \frac{1}{\cos 42^{\circ}}$$
  
=  $\frac{1}{0.7423} = 1.3457 \text{ (4 d.p.)}$ 

Example 6c demonstrates the need to work to an appropriate degree of accuracy when using trigonometric functions on a calculator.

# Example 7

Find one solution to  $\csc \theta = 3$ .

$$\cos \theta = 3 \Rightarrow \frac{1}{\sin \theta} = 3$$
  
 $\Rightarrow 1 = 3 \sin \theta$   
 $\Rightarrow \sin \theta = \frac{1}{3}$   
 $\theta = \sin^{-1}(\frac{1}{2}) = 19.5^{\circ}(3 \text{ s.f.})$ 

From these examples we see that a useful strategy for solving trigonometric equations is as follows.

Step 1 Rearrange the equation to make sine, cosine or tangent the subject. Step 2 Use a calculator (if necessary) to find the principal value. Step 3 Using a graph or by adding multiples of the period find solutions in the acceptable range of angles.

navigation and mechanics, particula in projectile motion.

Recall that 30° is a

Work to four decima places with the

then sec 42° = 1.345 (4 d.p.). Note the rounding error.

Notice that this solu is the principal valu

# 3.1 Trigonometric Functions Exercise

# Technique

Write each of the following as trigonometric ratios of positive acute angles:

sin 120° cos 165°

tan 400° cos(-137°)

tan 220° cos 205° g sin(-29°) sin(-697°)

Write down the exact value of the following, leaving answers in terms of surds if appropriate:

- cos 150° h sin 225° tan 300°
- cos 120° tan 420° g cos(-300°)

- sin 330°
- sin(-420°)



a  $\sin \theta = 0.314$ **b**  $\cos \theta = -0.52$ c  $\tan \theta = 2.561$ 

 $\sin \theta = \cos \theta$  $2 \sin \theta = 3 \cos \theta$ 

4 Find, correct to four significant figures, the value of:

- cosec 39° sec 41° cot 93°
- cot 200° cosec 307° cot 420°
- d sec 120° cosec (-15°) 5 Find the principal value solutions to the following:
- $5 \sin \theta = -3$  $\tan \theta + 3 = -7$

- d 2 cot 0 = 3 = 0  $e = 4 - 3 \tan \theta - 11$
- $f = 2 \operatorname{cosec} \theta = 3$  $c \sec \theta = 4$

6 Construct a table giving values of  $\sin \theta$ ,  $\cos \theta$  and  $\tan \theta$  for appropriate values of  $\theta$  in the range  $-90^{\circ} < \theta < 450^{\circ}$ . On separate pieces of paper. draw the graphs of  $\sin \theta$ ,  $\cos \theta$  and  $\tan \theta$  for this range of angles. Use the graphs to solve the equations:

- a  $\sin \theta = -0.5$ b  $\cos \theta = 0.8$
- $ton \theta = 2$



Remember to work to 1 d.p. when finding angles.

- 7 Draw the graph of v = sin θ for values of θ in the range -90° < θ < 90°.</p> Use your graph to find:

a sin-1(-0.5)

b sin-1(0.71)

#### Contextual

- 1 The depth of water in a harbour, y metres, can be modelled by the equation  $v = 5 \sin(30t)^{\circ} + 12$ , where t is the time in hours from midnight on a particular day.
  - Draw the graph of this function over a period of 24 hours.
  - b From the graph, find the times of high and low tides.
  - Use the graph to find the length of time for which the depth of water in the harbour is greater than 15 metres.
- 2 The height of a tide can be modelled by a function of the form  $h = a \cos bt^c + c$ , where h is the height in metres of the water and t is the time in hours after midnight. Find the values of a, b and c for the following tide table.

| Tide | Time  | Height (m) |
|------|-------|------------|
| High | 00:00 | 12         |
| Low  | 06:00 | 2          |
| High | 12:00 | 12         |
| Lose | 18:00 | 2          |

- 3 The hours of daylight over a period of time can be modelled using a trigonometric equation. If n is the number of hours of daylight and x is the number of days from 1 January, then,  $n = 12 - 6\cos(x + 10)^{\circ}$ .
  - Calculate the length of the daylight on 1 April, which is day 90.
  - Use the equation to find the dates of the longest and shortest days.
  - Comment on the reliability of the model.
  - Suggest an amendment to the model.

# 3.2 Equations and Identities

Trigonometric equations can increase in complexity and solving them requires combining algebraic techniques and knowledge of the trigonometric functions.

# Example 1

Solve  $4 \sin \theta - 3 \cos \theta = 0$  for  $0^{\circ} \le \theta \le 360^{\circ}$ .

#### Solution

$$4\sin\theta - 3\cos\theta = 0 \Rightarrow 4\sin\theta = 3\cos\theta$$

$$\Rightarrow \frac{\cos \theta}{\cos \theta} = \frac{\pi}{4}$$

$$\Rightarrow \tan \theta = 0.75$$

$$\theta = \tan^{-1}(0.75) = 36.9^{\circ}$$

Tangent is positive in the first and third quadrants. The solution in the first quadrant is 36.9°, and the solution in the third quadrant is 216.9° **4** 180° + 36.9° = 216.9°.



# Example 2

Solve  $\cos \theta \sin \theta = 2 \sin \theta$ , for  $0^{\circ} < \theta < 360^{\circ}$ .

## Solution

me Hein H = 2 sin H =  $\cos \theta \sin \theta - 2 \sin \theta = 0$  $\sin \theta (\cos \theta - 2) = 0$   $\blacktriangleleft$  Factorise.

 $\Rightarrow \sin \theta = 0 \text{ or } (\cos \theta - 2) = 0$ 

When  $\sin \theta = 0$ ,  $\theta = 0^{\circ}$ ,  $180^{\circ}$ ,  $360^{\circ}$ .

When  $\cos \theta = 2$  there are no solutions. So the solutions are  $\theta = 0^{\circ}$ , 180°, 360°. Rearrange the equation using algebra.

Recall the definition of

Remember that the calculator gives the principal value.

When rearranging, remember that you can't divide throughout by  $\sin \theta$ , because  $\sin \theta$  may be zero.

#### Example 3

Solve the equation  $2 \sin^2 \theta + \sin \theta - 1 = 0$ , for  $0^{\circ} \le \theta \le 360^{\circ}$ .

#### Solution

The equation  $2 \sin^2 \theta + \sin \theta - 1 = 0$  is a quadratic in  $\sin \theta$ . It can be solved directly, or by making a substitution for  $\sin \theta$  (which can make the process look less complex).

Direct solution

$$\begin{split} 2\sin^2\theta + \sin\theta - 1 &= 0 \ \Rightarrow \ \ (2\sin\theta - 1)(\sin\theta + 1) = 0 \\ &\Rightarrow \ 2\sin\theta - 1 = 0 \text{ or } \sin\theta + 1 = 0 \end{split}$$

So  $\sin \theta = \frac{1}{2} \text{ or } \sin \theta = -1$ . Substitution

Let  $v = \sin \theta$ .

$$\begin{array}{lll} 2\sin^2\theta + \sin\theta - 1 = 0 & \Rightarrow & 2y^2 + y - 1 = 0 \\ & \Rightarrow & (2y - 1)(y + 1) = 0 \\ & \Rightarrow & 2y - 1 = 0 \text{ or } y + 1 = 0 \\ & \Rightarrow & y = \frac{1}{2} \text{ or } y = -1 \end{array}$$

But 
$$y = \sin \theta$$
, so  $\sin \theta = \frac{1}{2}$  or  $\sin \theta = -1$ .

Both methods give the same result. What else do you notice? You should notice that these are the trigonometric ratios for 'special angles', When  $\sin\theta=\frac{1}{2},\theta=30^\circ$ , 130' for  $0^\circ=\frac{1}{2}$  ed 30', and when  $\sin\theta=-1$ ,  $\theta=270^\circ$ . So the solutions are  $\theta=30^\circ$ ,  $150^\circ$ ,  $270^\circ$ .

Another type of trigonometric equation is one involving brackets.

#### Example 4

Solve the equation  $\cos(\theta+30^\circ)=\frac{1}{2}$  for  $-180^\circ\leq\theta\leq180^\circ.$ 

Solution

$$\cos(\theta + 30^\circ) = \frac{1}{2} \Rightarrow (\theta + 30^\circ) = \cos^{-1}(\frac{1}{2})$$
  
 $\Rightarrow \theta + 30^\circ = \dots, -60^\circ, 60^\circ, \dots$   
 $\Rightarrow \theta = -90^\circ, 30^\circ$  in the given range

So the solutions are  $\theta = -90^{\circ}$ ,  $30^{\circ}$ .

Check that these are solutions by substituting them back into the original equation.

$$cos(-90^{\circ} + 30^{\circ}) = cos(-60^{\circ}) = \frac{1}{2}$$
  
 $cos(30^{\circ} + 30^{\circ}) = cos 60^{\circ} = \frac{1}{2}$ 

The notation  $\sin^2 \theta$ means  $(\sin \theta)^2$ .

المدرواتية المدرواتية المدرواتية

Notice that this quadrequation in sin θ has to distinct solutions for given range of angles. assume that all quadrewill always give two

Remember that this i

Give solutions in the required range only.

## Example 5

Solve  $\tan 2\theta = 1$ , for  $0^{\circ} \le \theta \le 360^{\circ}$ .

#### Solution

If  $\tan 2\theta = 1$  then  $2\theta$  must be a special angle. Note also the range of values for  $\theta$ . The equation is in  $2\theta$ , so we must solve it for  $2\theta$  in the range  $\alpha' < 2\theta < 72\alpha'$ .

$$\tan 2\theta = 1 \implies 2\theta = \tan^{-1}(1)$$
  
 $2\theta = 45^{\circ}, 225^{\circ}, 405^{\circ}, 585^{\circ}$   
 $\theta = 22.5^{\circ}, 112.5^{\circ}, 202.5^{\circ}, 292.5^{\circ}$ 

Find all values of  $2\theta$ before dividing by 2.

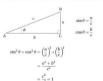
### Pythagorean identities

When equations involve more than one trigonometric function, and factorisation does not appear to be an obvious method, other techniques can be used. Other it is possible to substitute an equivalent expression for one already in the equation. Three results in particular are useful for this. They are known as Pythagurean identities. An identity is an equation that is true for all values of the variable. It is sometimes distinguished by the symbol or instead of s...

The Pythagorean identities are:

$$\sin^4\theta + \cos^2\theta \equiv 1$$
 Identity 1  
 $\tan^4\theta + 1 \equiv \sec^2\theta$  Identity 2  $\blacktriangleleft \sec^4\theta - \tan^4\theta \equiv 1$   
 $1 + \cot^2\theta \equiv \csc^2\theta$  Identity 3  $\blacktriangleleft \csc^2\theta - \cot^2\theta \equiv 1$ 

Identity 1 can be demonstrated by using Pythagoras' theorem.



Alternatively we can use the unit circle  $x^2 + y^2 = 1$ . Now

 $\sin^2 \theta + \cos^2 \theta = 1$ works in all four The following examples illustrate how these results can be used to simplify trigonometric equations and establish further identities.

# Example 6

Solve the equations:

a 
$$2 \sin^2 \theta + 5 \cos \theta + 1 = 0$$
 for  $-180^\circ \le \theta \le 180^\circ$   
b  $3 \cot^2 \theta + 5 \csc \theta + 1 = 0$  for  $0^\circ \le \theta \le 360^\circ$ .

Solution

#### Solution

a 
$$2\sin^2\theta + 5\cos\theta + 1 = 0$$
  $\Rightarrow 2(1 - \cos^2\theta) + 5\cos\theta + 1 = 0$   
 $\Rightarrow 2 - 2\cos^2\theta + 5\cos\theta + 1 = 0$   
 $\Rightarrow 2\cos^2\theta - 5\cos\theta - 3 = 0$ 

This is a quadratic in  $\cos\theta$  that can be factorised.

 $\begin{aligned} (2\cos\theta+1)(\cos\theta-3) &= 0 \\ \text{So} & 2\cos\theta+1 &= 0 \end{aligned}$ 

So 
$$2 \cos \theta + 1 = 0$$
 or  $\cos \theta - 3 = 0$   
 $\cos \theta = -\frac{1}{2}$  or  $\cos \theta = 3$   
 $\cos \theta = -\frac{1}{2} \Rightarrow \theta = -120^{\circ}.120^{\circ}$ 

$$\cos \theta = 3$$
 has no solutions

So the solutions are  $\theta=\pm 120^\circ$ .

5 
$$3\cot^2\theta + 5\csc\theta + 1 = 0 \Rightarrow 3(\csc^2\theta - 1) + 5\csc\theta + 1 = 0$$
  
 $\Rightarrow 3\csc^2\theta - 3 + 5\csc\theta + 1 = 0$ 

$$\Rightarrow 3 \csc^2 \theta + 5 \csc \theta - 2 = 0$$

$$\Rightarrow (3 \csc \theta - 1)(\csc \theta + 2) = 0$$

$$\Rightarrow (3 \csc \theta - 1)(\csc \theta + 2) = 0$$

$$\Rightarrow 3 \csc \theta - 1 = 0 \text{ or } \csc \theta + 2 = 0$$

So 
$$\csc \theta = \frac{1}{3}$$
 or  $\csc \theta = -2$ .  
So now  $\sin \theta = 3$  or  $\sin \theta = -\frac{1}{2}$ .

$$\sin\theta=3$$
 has no solutions and  $\sin\theta=-\frac{1}{2} \, \Rightarrow \, \theta=210^{\circ}, 330^{\circ}$ 

So the solutions are 
$$\theta = 210^{\circ}, 330^{\circ}$$
.

### Example 7

Prove the identity  $\sin \theta \tan \theta \equiv \sec \theta - \cos \theta$ .

Using identity 1.
Multiply out the
bracket, collect like
terms and make the

Solutions in the second

where  $\cos \theta$  is negative.

ing identity 3.

ctorising.

Using the definition of

cosec  $\theta$ .

#### Solution

$$\begin{aligned} \sin\theta \tan\theta &= \sin\theta \frac{\sin\theta}{\cos\theta} \\ &= \frac{\sin^2\theta}{\cos\theta} \\ &= \frac{1-\cos^2\theta}{\cos\theta} & \blacktriangleleft \text{ Using identity 1.} \\ &= \frac{1}{\cos\theta} - \frac{\cos^2\theta}{\cos\theta} \end{aligned}$$

 $= \sec \theta - \cos \theta$ 

That is,  $\sin \theta \tan \theta \equiv \sec \theta - \cos \theta$ .

Example 7 illustrates a useful procedure to adopt when establishing identities. Begin with the left-hand side (LHS) and then perform logical manipulations line by line until the form of the right-hand side (RHS) appears. At first this may appear very difficult, but keep in mind where you are typic to go. The range of equivalent forms mean that tasks like these are difficult for computers and symbol manipulators to do quickly.

### Example 8

Prove the identity  $\tan \theta + \cot \theta \equiv \sec \theta \csc \theta$ .

#### Solution

Beginning with the LHS.

$$\begin{aligned} \tan\theta + \cot\theta &= \frac{\sin\theta}{\cos\theta} \cdot \frac{\cos\theta}{\sin\theta} \\ &= \frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta} \\ &= \frac{1}{\sin\theta\cos\theta} \end{aligned} \quad \blacktriangleleft \text{ Using identity 1.}$$

And so we arrive at the RHS.

That is,  $\tan \theta + \cot \theta \equiv \sec \theta \csc \theta$ .

Another useful technique that can help in proving identities is the ability to multiply by 1, with 1 written in a convenient form that allows further algebraic manipulation.

For example,  $\frac{\sin \theta}{\sin \theta} = 1$ ,  $\frac{1 + \cos \theta}{1 + \cos \theta} = 1$ ,  $\frac{1 - \tan \theta}{1 - \tan \theta} = 1$ , and so on.

 $\equiv \sec \theta \times \csc \theta$ 

Using the definition of  $\tan \theta$ .

Remembering the definition of  $\sec \theta$ .

Writing the LHS in terms of  $\sin \theta$  and or

Recalling how fractionare multiplied.

# Example 9

Prove the identity  $\frac{\cos \theta}{1 - \sin \theta} \equiv \sec \theta + \tan \theta$ .

#### Solution

Beginning with the LHS,  $\frac{\cos\theta}{1-\sin\theta}$  is already written in terms of sine and cosine, so we appear to be stuck. However, multiply by 1, and force the denominator to be the difference of two squares.

$$\begin{aligned} &\frac{\cos\theta}{1-\sin\theta} &= \frac{\cos\theta}{1-\sin\theta} \frac{1+\sin\theta}{1+\sin\theta} \\ &= \frac{\cos\theta(1+\sin\theta)}{1-\sin\theta} \\ &= \frac{\cos\theta(1+\sin\theta)}{1-\sin^2\theta} & \blacktriangleleft \text{ Using identity 1.} \\ &= \frac{\cos\theta(1+\sin\theta)}{\cos\theta} & \blacktriangleleft \text{ Using identity 1.} \end{aligned}$$

 $\equiv \sec\theta + \tan\theta$  So we arrive at the RHS, as required. That is,

$$\frac{\cos \theta}{1 - \sin \theta} \equiv \sec \theta + \tan \theta$$

Note that  $\cos \theta$  is a common factor in the numerator and the denominator.

# 3.2 Equations and Identities Exercise

# Technique

- 1 Solve the following trigonometric equations for  $0^{\circ} \le \theta \le 360^{\circ}$  (giving angles correct to one decimal place):
  - $3\sin\theta 4\cos\theta = 0$  $\sin \theta + 2\cos \theta = 0$
- d  $4\sin\theta = \cos\theta$
- $c = 3 \sin \theta + \cos \theta = 0$
- e  $\cot \theta = \tan \theta$  $2 \sin \theta = \frac{1}{2} \csc \theta$
- Solve these equations completely for −180° ≤ θ ≤ 180°:
- - $a \tan^2 \theta 3 \tan \theta + 2 = 0$
  - $b = 3\sin^2\theta 4\sin\theta + 1 = 0$  $8\sin^2\theta - 6\sin\theta + 1 = 0$  $c = 2\cos^2\theta + \cos\theta - 1 = 0$  $3 \tan^2 \theta = 1$
- 3 Solve these equations completely in the range  $0^{\circ} \le \theta \le 360^{\circ}$  (giving answers correct to one decimal place where necessary):
  - a  $\sin 2\theta = \frac{1}{2}$

- d  $\tan(3\theta 40^\circ) = 6$
- b  $\tan(\theta 33^{\circ}) = 0.4816$  $\cos(2\theta - 20^\circ) = 0.212$
- $\sin(\theta 90^{\circ}) = 0.75$  $\tan 2\theta = 1$
- 4 Use Pythagorean identities to solve these equations in the range  $-180^{\circ} \le \theta \le 180^{\circ}$ :
  - a  $6\cos^2\theta + \sin\theta 5 = 0$  $b = 2\sin^2\theta + 5\cos\theta + 1 = 0$
- d  $2 \sec^2 \theta = 5 \tan \theta$  $\csc^2\theta = 3\cot\theta - 1$
- $c \sec^2 \theta = 3 \tan \theta$
- $\tan^2 \theta + \sec^2 \theta = 17$
- 5 Prove the following identities:
  - $sec^2 \theta + cosec^2 \theta \equiv sec^2 \theta cosec^2 \theta$
  - $\sec \theta + \tan \theta \equiv \frac{1 + \sin \theta}{2}$
  - $e^{-\cos^2\theta + 3\sin^2\theta} = 3 2\cos^2\theta$  $d \cos^4 \theta - \sin^4 \theta \equiv \cos^2 \theta - \sin^2 \theta$
  - e  $\cot^2 \theta + \cos^2 \theta \equiv (\csc \theta \sin \theta)(\csc \theta + \sin \theta)$
  - $\frac{1 \cos \theta}{1 \cos \theta} = 1 + \sec \theta$







#### Contextual



1 The trajectory of a golf ball struck from a tee can be modelled by the equation

$$y = x \tan \theta - \frac{x^2 \sec^2 \theta}{80}$$

where  $\theta$  is the acute angle of projection, x is the horizontal distance of the ball from the tee in metres and y is the vertical height of the ball above the fairway, also measured in metres. If the ball just clears a tree 16.8 m high, whose base is 16 m from the tee, find, to three significant figures, the angle of projection.





2 The equation of the path of a projectile referred to horizontal and upward vertical axes Ox, Oy for a golf ball is

$$y = x \tan \theta - \frac{x^2 \sec^2 \theta}{50}$$

Show how to reduce this equation to a quadratic equation in  $\tan \theta$ . Show that there are two distinct values of  $\theta$  for which the ball can pass through a given point (X, Y), where X > 0, provided  $200Y < 2500 - 4X^2$ . Interpret this result in terms the golfer would understand.

# 3.3 Compound and Double Angle Formulas

In the trigonometry studied so far all the relationships contain ritgonometric functions of a single variable, 0. There are other useful relationships that involve trigonometric functions of two variables and these are known as compound angle formulas. They are also known as the addition thoseems since they show how the trigonometric functions of a sum or difference of two angles can be expressed in terms of the trigonometric functions of the individual surders.

 $\ln(A+B) = \sin A \cos B + \cos A \sin B$  Identity 1  $\triangleleft$  Learn these formulas.

 $\sin (A - B) = \sin A \cos B - \cos A \sin B$  Identity 2  $\cos (A + B) = \cos A \cos B - \sin A \sin B$  Identity 3

 $\cos(A - B) = \cos A \cos B + \sin A \sin B$  Identity 4

Notice that they are written as identities. This is because they are true for all values of A and B.

Identity 1 can be proved for the case A and B acute by considering a diagram illustrating the geometry of the angle sum (A+B).



Let OPQ and OQR be right-angled triangles containing angles A and B respectively (as shown in the diagram). Look at triangle OQR.

If OR = 1 then  $BQ = \sin B$  and  $OQ = \cos B$ .

Now look at triangle ROT.

 $RQ = \sin B$ , so  $RS = \sin B \cos A$  (call this result [1]).

Now look at triangle OQR.

 $OP = OO \sin A$  and  $OO = \cos B$ .

so  $QP = \cos B \sin A$  (call this result [2]).

Use the geometry of figure to show that /SRQ must be A; that is triangles OPQ and RSQ are similar. Now look at triangle ORU.

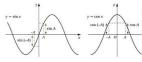
$$OR = 1$$
, so  $RU = \sin(A + B)$ .

But 
$$RU = RS + SU = RS + QP$$
, so

But 
$$RU = RS + SU = RS + QP$$
, so from results [1] and [2],  
 $sin(A + B) = sin B cos A + cos B sin A$ .

That is, sin(A + R) = sin A cos R + cos A sin R.

This demonstrates a proof for A and B acute. The proof of cos(A + B) is very similar. The results for the differences, sin(A - B) and cos(A - B), can be found by replacing B with -B in each of the proven results and using the results sin(-B) = -sin B and cos(-B) = cos(B). These last results can be seen clearly from the graphs of sine and cosine.



They illustrate the results for negative angles.

 $\cos(-A) = \cos A$  $n(-A) = -\sin A$ 

These compound angle formulas allow us to evaluate more sines and cosines exactly and demonstrate further identities.

# Example 1

- Find sin 15° in surd form. Find the exact value of cos 75°.
- Solution
- $a \sin 15^\circ = \sin(60^\circ 45^\circ)$

$$= \left(\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}\right) - \left(\frac{1}{2} \times \frac{1}{\sqrt{2}}\right)$$

$$=\frac{1}{2\sqrt{2}}(\sqrt{3}-1)$$

$$=\frac{\sqrt{2}}{4}(\sqrt{3}-1)$$

angles

It is usual to write th

angles in alphabetics order.

answer in surd form try to write the angle a sum of special ang

the denominator.

- b  $\cos 75^{\circ} = \cos(45^{\circ} + 30^{\circ})$ 
  - = cos 45° cos 30° sin 45° sin 30°

$$= \left(\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}} \times \frac{1}{2}\right)$$

$$=\frac{1}{2\sqrt{2}}(\sqrt{3}-1)$$

$$= \frac{\sqrt{2}}{4}(\sqrt{3} - 1)$$

These compound angle formulas also allow the addition theorems for tangent to be established.

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$tan(A - B) = \frac{tan A - tan B}{1 + tan A tan B}$$
 Identity 6

# Example 2

Prove the identity  $tan(A + B) \equiv \frac{tan A + tan B}{1 - tan A tan B}$ Solution

Beginning with the LHS.

$$tan(A+B) = \frac{sin(A+B)}{cos(A+B)}$$

 $= \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$ 

 $\frac{\sin A \cos B}{\cos A \cos B} + \frac{\cos A \sin B}{\cos A \cos B}$   $\frac{\cos A \cos B}{\cos A \cos B} - \frac{\sin A \sin B}{\cos A \cos B}$ 

 $\tan A + \tan B$  $=\frac{\tan A + \tan B}{1 - \tan A \tan B}$  ■ Using identities 1 and 3.

This is consistent

 $\cos \theta = \sin(90^{\circ} - \theta)$ when # is acute.

both the numerator and sines into tangents.

Eliminate terms: write tangents where possible.

So we arrive at the RHS. The compound angle formula for tan(A - B) can be derived in the same way.

# Example 3

Solve the equation  $sin(\theta + 45^{\circ}) = 2 cos(\theta + 45^{\circ})$  for  $0^{\circ} \le \theta \le 360^{\circ}$ .

#### Solution

$$\begin{split} &\sin(\theta + 45^\circ) = 2\cos(\theta + 45^\circ) \Rightarrow \frac{\sin(\theta + 45^\circ)}{\cos(\theta + 45^\circ)} = 2 \\ \Rightarrow & \tan(\theta + 45^\circ) = 2 \\ \Rightarrow & \frac{\tan\theta + \tan 45^\circ}{1 - \tan\theta \tan 43^\circ} = 2 \\ \Rightarrow & \frac{\tan\theta + 1}{1 - \tan\theta} = 2 \end{split}$$

 $\tan \theta + 1 = 2 - 2 \tan \theta$ 

So  $3 \tan \theta = 1$ , and  $\tan \theta = \frac{1}{2}$ . The solutions are  $\theta = 18.4^{\circ}$ , 198.4° (1 d.p.).

# Double angles

The compound angle formulas provide some more very useful results in the special case where A = B. These are known as double angle formulas.

$$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$

To get these results simply put  $A = B = \theta$  in the formulas for  $\sin (A + B)$ ,  $\cos(A+B)$  and  $\tan(A+B)$ . We can also use the Pythagorean identity,  $\sin^2 \theta + \cos^2 \theta = 1$ , in the expression for  $\cos 2\theta$  to provide two other versions.

### Example 4

Find  $\cos 2\theta$  when  $\cos \theta = -1$ .

Solution Using  $\cos 2\theta = 2 \cos^2 \theta - 1$ ,

$$\cos 2\theta = 2 \times (-\frac{1}{2})^2 - 1$$
  
=  $2 \times \frac{1}{4} - 1 = -\frac{1}{4}$ 

An alternative method

Remembering that 43

a special angle.

is to solve  $\theta + 45^{\circ} = \tan^{-1}(2)$  The result can be checked by using the methods of Section 3.1. When  $\cos \theta = -\frac{1}{2}$ , the cosine is negative so  $\theta$  is in the second or third quadrant.

We know that  $\cos 60^\circ = \frac{1}{4}$ , because  $60^\circ$  is a special angle. So in the second quadrant,  $cos(180^\circ - 60^\circ) = -\frac{1}{5}$ . That is,  $cos(120^\circ = -\frac{1}{5})$ . So  $\theta = 120^\circ$ , and  $2\theta = 240^{\circ}$ .

Now cos 240° = cos(180° + 60°), and 240° is in the third quadrant, so  $\cos 240^{\circ} = -\cos 60^{\circ} = -\frac{1}{4}$ . So when  $\cos \theta = -\frac{1}{4}$ ,  $\cos 2\theta = -\frac{1}{4}$ .

# Example 5

Find the exact value of  $\frac{2 \tan 67 \frac{1}{2}^{\circ}}{1 - \tan^2 67 \frac{1}{2}^{\circ}}$ .

# Solution

$$\begin{split} \frac{2\tan 67\frac{1}{2}^{\circ}}{1-\tan^2 67\frac{1}{2}^{\circ}} &= \tan(2\times 67\frac{1}{2}^{\circ}) \\ &= \tan 135^{\circ} \\ &= \tan(180^{\circ} - 45^{\circ}) \end{split}$$

# Example 6

Prove the identity  $\tan \theta + \cot \theta \equiv 2 \csc 2\theta$ .

#### Solution

Beginning with the LHS.

$$\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\cos \theta}$$

$$= \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}$$

$$= \frac{1}{\sin \theta \cos \theta}$$

$$= \frac{2}{2 \sin \theta \cos \theta}$$

$$= 2 \csc 2\theta$$

 $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$ 

tangent is negative.

Remember the definition of  $\cot \theta$ .  $\sin^2 \theta + \cos^2 \theta = 1.$ 

Multiply numerator and denominator by 2 to create a double angle formula.

# 3.3 Compound and Double **Angle Formulas**

# Fyercise

| Technique |   | • | • | · | , |
|-----------|---|---|---|---|---|
|           | _ |   |   |   |   |

| 1 | Without using a calculator | find the exact | value of the | following |
|---|----------------------------|----------------|--------------|-----------|

a sin 75° cos 105° tan 15°

d cos 15° cin 105° tan 105°

2 Write down the exact value of the following expressions:

cos 40° cos 50° - sin 40° sin 50° d sin 40° cos 20° + cos 40° sin 20° sin 60° cos 15° - cos 60° sin 15° e cos 85° cos 25° + sin 85° sin 25° tan 47° - tan 17° tan 90° + tan 30° 1 + tan 47" tan 17" 1 - tan 90° tan 30

3 Solve the following equations for  $0^{\circ} \le \theta \le 360^{\circ}$ , giving angles correct to one decimal place:

a  $sin(\theta + 30^\circ) = 2 cos \theta$ b  $\sin(\theta + 15^{\circ}) = 3\cos(\theta - 15^{\circ})$  $c \cos(\theta - 60^\circ) = \frac{1}{2}\sin\theta$ d  $sin(\theta + 45^\circ) = -2 cos \theta$ 

4 Prove the following identities:

a  $cos(45^{\circ} - \theta) - cos(45^{\circ} + \theta) \equiv \sqrt{2} sin \theta$ b  $\tan(\theta + 45^\circ) + \tan(\theta - 45^\circ) \equiv 2 \tan 2\theta$ 

 $sin(A + B) + sin(A - B) \equiv 2 sin A cos B$ 

 $\tan A + \tan B \equiv \frac{\sin(A+B)}{\cos A \cos B}$ 

5 If sin A = ½, where A is acute, and cos B = ½, find the exact value of the following:

sin(A+B)tan(A+B)tan 2A  $\cos(A+B)$ tan(A-B)sin 2B c  $\sin(A-B)$ sin 2A  $\cos 2B$  $\cos(A-B)$ cos 2A tan 2B

6 Prove the following identities:

 $\sec 2\theta + \tan 2\theta = \frac{\cos \theta + \sin \theta}{}$  $\sec \theta \csc \theta \equiv 2 \csc 2\theta$ 

 $\frac{2\theta}{1 - \cos 2\theta} \equiv \cot \theta$ 

 $\frac{1}{1 + \cos 2\theta} \equiv \tan \theta$ 

angle formulas









# Contextual



A ramp for a wheelchair, as illustrated in the diagram, can be moved by a person lifting on a handle at B and wheeling the ramp on a castor attached at A. The dimensions of the ramp are AB = 3 m and BC = 50 cm. The base of the ramp is inclined at an angle  $\theta$  to the ground as shown.



- If the ramp is to be moved through a doorway 2 m high, explain why  $\sin(\theta + 9.5^{\circ}) < 0.6576$ .
- Solve this equation for 0.
- iii Comment on the practicalities of θ achieving its maximum value. b A second ramp can similarly be moved by a person lifting on a handle at B. The ramp can be wheeled on a castor at A. The dimensions of this ramp are AB = 2.5 m and BC = 60 cm.
  - Write down the new equation for  $\theta$ . ii Solve the equation.
  - - iii Compare the heights to which B has to be lifted.

# 3.4 The Cosine Rule and the Sine Rule

'Solve a triangle' means find all the angles and the lengths of all the sides of the triangle. Given three of the six quantities (angles or sides) can the remaining three be found?

Pythagoras' theorem applies to right-angled triangles. How do we deal with non-right-angled triangles? One technique is to use the cosine rule.

#### The cosine rule

For any triangle ABC.



To demonstrate this result, drop a perpendicular from C to meet AB at D. Now look at triangle ACD.





Using Pythagoras' theorem,

$$b^2 = h^2 + x^2$$
  
So  $b^2 = b^2 - x^2$ 

 $a^2 - h^2 + (c - v)^2$ 

$$a = n + (c - \lambda)$$

$$h^2 = a^2 - (c - x)^2$$
[2]

Eliminating h by equating [1] and [2],

$$b^2 - x^2 = a^2 - (c - x)^2$$
  
So  $b^2 - x^2 = a^2 - (c^2 - 2cx + x^2)$   
 $b^2 - x^2 = a^2 - c^2 + 2cx - x^2$   
 $b^2 = a^2 - c^3 + 2cx$   
 $a^2 = b^2 + c^2 - 2cx$ 

Multiplying out the bracket.

The x<sup>2</sup> terms cance each other out. But from triangle ACD,  $\cos A = \frac{\pi}{5}$ , giving  $x = b \cos A$ .

So now  $a^2 = h^2 + c^2 - 2hc \cos A$ .

By using a symmetrical argument, the two other equivalent versions can be found (that is, by dropping the perpendicular from any angle, or simply by relabelling the triangle).

$$b^2 = a^2 + c^2 - 2ac\cos\theta$$

$$a^2 = a^2 + b^2 - 2ab\cos C$$

So the cosine rule can be used to find the length of the third side, when the lengths of two sides in a triangle and the angle between them are known.

# Example 1

In triangle ABC, b = 10 cm, c = 8 cm and  $A = 50^{\circ}$ . Find a.



#### Solution

Using  $a^2 = b^2 + c^2 - 2bc \cos A$ ,

$$a^2 = 10^2 + 8^2 - 2 \times 10 \times 8 \times \cos 50^\circ$$

$$= 100 + 64 - 160 \cos 50^{\circ}$$

So 
$$a = \sqrt{61.15}$$

# Example 2

In triangle ABC, a=12 cm, c=17 cm and  $B=129^\circ$ . Find b.



### Solution

Although B is obtuse, the rule still applies. Using  $b^2 = a^2 + c^2 - 2ac \cos B$ ,

$$\begin{split} b^2 &= 12^2 + 17^2 - 2 \times 12 \times 17 \times \cos 129^\circ \\ &= 144 + 289 + 256.76 \end{split}$$

So 
$$b = \sqrt{689.76}$$

The three cosine rule formulas can be rearranged to give expressions for  $\cos A$ ,  $\cos B$  and  $\cos C$  in terms of a, b and c.







Learn these results.

There is a change of

because cos 129° is

This means that if the lengths of each of the three sides are known then each of the three angles can be found.

# Example 3

In triangle ABC if a = 12 cm, b = 20 cm and c = 14 cm, find A, Band C.



# Solution

Using 
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
.

$$\cos A = \frac{20^2 + 14^2 - 12^2}{2 \times 20 \times 14}$$

$$= \frac{400 + 196 - 144}{560} = \frac{452}{560} = 0.8071$$

So 
$$A = \cos^{-1}(0.8071)$$
  
 $A = 36.2^{\circ} (1 \text{ d.p.})$ 

Using 
$$\cos B = \frac{a^2 + c^2 - b^2}{2aa}$$
,  

$$\cos B = \frac{12^2 + 14^2 - 2a^2}{2 \times 12 \times 14}$$

$$= \frac{144 + 196 - 400}{236} = -\frac{60}{236} = -0.1786$$

So 
$$B = \cos^{-1}(-0.1786)$$
  
 $B = 100.3^{\circ} (1 \text{ d.p.})$ 

We know that the angles in a triangle add up to 180°. So now

$$C=180^\circ-(A+B)$$

$$= 180^{\circ} - (36.2^{\circ} + 100.3^{\circ})$$

#### The sine rule

The sine rule is another useful result to help solve triangles. For any triangle ABC,



This particular version of the sine rule is useful for finding sides. To find angles the more convenient form to use is

$$\frac{\sin A}{\sin B} = \sin C$$

To demonstrate this result, drop a perpendicular from C to meet AB at D.





Looking at triangle ACD,  $\frac{h}{k} = \sin A$ .

So 
$$h = b \sin A$$

The negative cosine implies that the angle is obtuse (second quadrant).

Unlike the cosine rule this doesn't look at all like Pythagoras'

Looking at triangle BCD, 
$$\frac{h}{e} = \sin B$$
.

So 
$$h = a \sin B$$

Now eliminate h by equating these two results. Then  $a \sin B = b \sin A$ .

$$\frac{b}{a} = \frac{a}{a}$$

$$\sin B = \sin A$$
Use the ecometry of the figure or simply relabel to find the equivalent

ratio  $\frac{c}{\sin C}$ 

The sine rule is useful in the following situations:

- two (and hence three) angles and one side are known;
- two sides and one angle (but not the angle between them) are known;
- one angle and its opposite side, and one other piece of information are known.

## Example 4

In triangle ABC,  $A=35^{\circ}$ , a=17 cm and  $B=50^{\circ}$ . Find b.



### Solution

Using 
$$\frac{a}{\sin A} = \frac{b}{\sin b}$$
17  $b$ 

So 
$$b = \frac{17 \times \sin 50^{\circ}}{\sin 35^{\circ}}$$

$$= \frac{17 \times 0.7660}{0.5736}$$

$$b = 22.7 \text{ cm (1 d.p.)}$$

Notice that we could find  $C = 95^{\circ}$  directly from the information given in the question using the angle sum triangle.

# Example 5

In triangle ABC,  $A = 60^{\circ}$ , a = 6 cmand b = 5 cm. Find B.



#### Solution

Using 
$$\frac{\sin A}{a} = \frac{\sin B}{b}$$
,  
 $\frac{\sin 60^{\circ}}{6} = \frac{\sin B}{5}$   
 $\Rightarrow \sin B = \frac{5 \times 0.8660}{6}$ 

So 
$$B = \sin^{-1}(0.7217) = 46.2^{\circ}$$

Exercise some caution when using the sine rule to find angles. Sometimes an ambiguity may arise, where two possible angles will solve the trigonometric equation involving sine. The calculator will always give the acute angle but on occasions the obtuse angle gives an equally valid, if different, solution.

Use this form so that the unknown is in the numerator (hence simplifying the algebra).

#### Example 6

Solve the triangle for which  $A = 30^{\circ}$ , a = 8 cm and c = 10 cm.



### Solution

Using the sine rule to find C,

$$\frac{\sin C}{c} = \frac{\sin A}{a}$$

$$\frac{\sin C}{10} = \frac{\sin 30^{\circ}}{8}$$

$$0.5 \times 1$$

$$\sin C = \frac{0.5 \times 10}{8} = 0.625$$
  
So  $C = 38.7^{\circ}, 141.3^{\circ} (1 \text{ d.p.})$ 

Notice that the obtuse angle [141.3"] is possible here

Angle B can now be found by using the angle sum of a triangle.

When 
$$C = 38.7^{\circ}$$
,  $B = 180^{\circ} - (30^{\circ} + 38.7^{\circ}) = 111.3^{\circ}$ .  
When  $C = 141.3^{\circ}$ ,  $B = 180^{\circ} - (30^{\circ} + 141.3^{\circ}) = 8.7^{\circ}$ .

Now use the cosine rule (or the sine rule again) to find 
$$b$$
 for each of the possibilities for  $B$ .

Using the cosine rule, when  $B = 111.3^{\circ}$ ,

$$h^2 = a^2 + c^2 - 2ac\cos R$$

$$= 8^2 + 10^2 - 2 \times 8 \times 10 \times \cos 111.3^\circ$$

$$= 164 + 58.12$$

= 222.12  
So 
$$b = 14.9 \text{ cm (1 d.p.)}$$
.

Using the cosine rule, when  $B = 8.7^{\circ}$ ,

$$b^2 = a^2 + c^2 - 2ac\cos B$$

$$= 8^2 + 10^2 - 2 \times 8 \times 10 \times \cos 8.7^\circ$$

So b = 2.4 cm (1 d.p.)

This means the triangle ABC has two distinct solutions.

$$A = 30^{\circ}, \ a = 8 \text{ cm}$$
  $A = 30^{\circ}, \ a = 8 \text{ cm}$ 

$$B = 111.3^{\circ}, b = 14.9 \,\mathrm{cm}$$
  $B = 8.7^{\circ}, b = 2.4 \,\mathrm{cm}$   
 $C = 38.7^{\circ}, c = 10 \,\mathrm{cm}$   $C = 141.3^{\circ}, c = 10 \,\mathrm{cm}$ 

One sketch can be used to illustrate the geometrical interpretation.



# 3.4 The Cosine Rule and the Sine Rule Exercise

# Technique

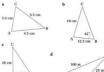
- 1 Use the cosine rule to find the length of b in the following triangles:
  - - $B = 70^{\circ}$ ,  $a = 8 \, \text{cm}$ ,  $c = 12 \, \text{cm}$  $B = 120^{\circ}$ , a = 11 cm, c = 15 cm  $B = 48^{\circ}$ , a = 14.2 cm, c = 8.5 cm
- 2 Use the cosine rule to find the angles in the following triangles:
  - a = 6 cm, b = 4 cm, c = 5 cm
  - a = 13 cm, b = 12 cm, c = 19 cm
  - a = 7 cm, b = 8 cm, c = 14 cm.
- 3 Calculate the length of the lettered side in the following triangles:







131





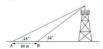


In this exercise give lengths of sides and sizes of angles correct to



#### Contextual

- A ship sails 4 nautical miles from A to B on a bearing of 075°. It then changes to a bearing of 150° and sails 6 nautical miles to C. Calculate the distance AC and the bearing of C from A.
- Ship A is 12 miles from lighthouse B on a bearing of 050°. A second ship C is 15 miles from the same lighthouse on a bearing of 330°. Find the distance between A and C and the bearing of C from A.
- A, B and C are three triangulation points used on an Ordnance Survey
  map. B is 5 km due south of A. C is 4 km from B on a bearing of 300°. Find
  the distance from A to C and the bearing of C from A.
- From a point A on the same level as the base of a radio mast, the angle of elevation of the top of the mast is 25°. From a point B, 20 metres closer to the mast, and on the same level, the angle of elevation is 32°. Find the height of the radio mast.



# 3.5 The Area of a Triangle

You should already be familiar with the rule for the area of a triangle that reads:

$$area = \frac{1}{2} \times base \times perpendicular height$$

This formula is only useful if the length of the 'base' and the 'perpendicular height' of the triangle are known. When this is not the case other techniques are required.

A more useful result is one that incorporates lengths of sides and sizes of angles. In general the area of a triangle ABC is given by:

Remember the symmetry of this expression.

To demonstrate these results drop a perpendicular from A. B or C to meet a,b or c respectively. Suppose a perpendicular that meets AB at D is drawn, as shown.



Looking at triangle ACD. \$\ell = \sin A.

area of triangle ACB =  $\frac{1}{2} \times \text{base} \times \text{perpendicular height}$ 

$$=\frac{1}{2} \times c \times h$$

$$= \tfrac{1}{2} \times c \times b \times \sin A$$

$$=\frac{1}{2}bc\sin A$$

To show one of the other symmetrical versions, simply drop perpendicular lines onto BC or AC.

# Example 1

Find the areas of the following triangles:



One way of remembering these formulas is that they include two sides and the angle between them.

#### Solution

a Using area =  $\frac{1}{2}ac \sin B$ .

area = 
$$\frac{1}{2} \times 9.4 \times 11.2 \times \sin 56^{\circ}$$
  
=  $43.6 \text{ cm}^2 (3 \text{ s.f.})$ 

b Using area =  $\frac{1}{2}bc\sin A$ ,

area = 
$$\frac{1}{2} \times 7 \times 12 \times \sin 110^{\circ}$$
  
= 39.5 m<sup>2</sup> (3 s.f.)

#### Hero's formula

These formulas for area are not really useful if only the lengths of the sides of the triangle are known. The cosine rule could be used to find an angle but often it is much more efficient to use another method called Hero's formula. This is named after Heron of Alexandria (who lived about 75ec). Hero's formula has many practical applications. For example surveyors who know lengths of sides of a three-sided lot can easily compute the area.

Hero's formula states that, for any triangle ABC with sides of length a, b and c

area = 
$$\sqrt{s(s-a)(s-b)(s-c)}$$
  
where s is the semi-perimeter,  $s = \frac{a+b+c}{a}$ .

# Example 2

Which of the following triangles has the larger area?





Looking at triangle 1,

$$s = \frac{1}{2}(25 + 25 + 40) = 45$$

So the area of triangle 1 = 
$$\sqrt{45(45-25)(45-25)(45-40)}$$
  
=  $\sqrt{45\times20\times20\times5}$   
=  $\sqrt{90\,000}$   
=  $300\,\text{m}^2$ 

#### Looking at triangle 2.

 $s = \frac{1}{3}(25 + 25 + 30) = 40$ 

So the area of triangle  $2 = \sqrt{40(40 - 25)(40 - 25)(40 - 30)}$ 

 $=\sqrt{40\times15\times15\times10}$  $=\sqrt{90000}$ 

 $=300 \, \text{m}^2$ 

Since the area of both triangles 1 and 2 is 300 m<sup>2</sup>, neither has a larger area.

# 3.5 The Area of a Triangle

# Exercise

# Technique

- 1 For a right-angled triangle with sides 3 m, 4 m and 5 m find the area using:
  - a area =  $\frac{1}{2}$ (base × perpendicular height)
  - b area = ½ ab sin C
     c Hero's formula.
  - 2 Find the areas of the following triangles:



# Contextual

- The area of an acute-angled triangle ABC is  $12 \text{ cm}^2$ . Given that a = b = 5 cm, find c.
  - A surveyor wishes to estimate the area of a triangular patch of woodland.
     A sketch is made showing the following measurements. Estimate the area of the woodland.



3 Paula, the mathematician, wants to share her equare hirthday cake equally amongst the serves people at he party. She wants every suce to have the same amount of cake and icing. Her friend, Kevin, suggests dividing the perimeter by 7 and cattling from the centre to the appropriate points on the perimeter. If the cake measures 7 inches down each side and is 3 inches high will Kevin's suggestion work?



# 3.6 Radian Measure

All methods of measuring angles are based on division of the circle. We have previously measured angles in degrees, where  $360^\circ$  is a full circle. So a degree is simply  $\frac{1}{300}$  of a circle. Another way of measuring angles is to compare the length of an arc formed by the angle with the radius of the circle. The unit used in this method is called the radius.

In the diagram the radius of the circle is rand the length of the arc PQ is also r. The angle  $\theta$  is said to be 1 radian.

$$\frac{\text{arc length}}{\text{radius}} = \frac{r}{r} = 1$$

The circumference of the circle is  $2\pi r$ . This means that a complete circle, defined in degrees as 360°, is  $2\pi$  in radians.

$$\frac{\text{circumference}}{\text{radius}} = \frac{2\pi r}{r} = 2\pi$$

So  $360^\circ = 2\pi$  radians (rad). Then  $180^\circ = \pi$  rad, so



Similarly, a radian has an equivalence in degrees. We have  $2\pi \, \mathrm{rad} = 360^\circ$ , so



Using a calculator to evaluate this statement,

Since this isn't a rational value (because of the involvement of  $\pi$ , which is irrational) it is more usual to express radians as fractions of  $\pi$ .

## Example 1

Express the special angles 30°, 45°, 60° and 90° as radians.

An alternative notation for radian measure is the use of a lower case c: 1 rad = 1°.

Jahrima both sidos da

1 rad = 18

#### Solution

Since 
$$1^\circ = \frac{\pi}{180}$$
 rad,

$$30^{\circ} = 30 \times \frac{\pi}{180} = \frac{\pi}{6} \text{ rad}$$
  $60^{\circ} = 60 \times \frac{\pi}{180} = \frac{\pi}{3} \text{ rad}$ 

$$45^{\circ} = 45 \times \frac{\pi}{180} = \frac{\pi}{4} \text{ rad} \qquad 90^{\circ} = 90 \times \frac{\pi}{180} = \frac{\pi}{2} \text{ rad}$$

# Example 2

Convert  $\frac{5\pi}{6}$  rad to degrees.

#### Solution

$$1 \text{ rad} = \frac{360^{\circ}}{2\pi} \Rightarrow \frac{5\pi}{6} \text{ rad} = \frac{5\pi}{6} \times \frac{360^{\circ}}{2\pi}$$

Radian measure has several advantages in mathematics and will be used later in curve sketching and integnation. This measure allows both axes to be scaled in real numbers and its particularly advantageous when the requirement is to solve a problem by reflecting in the line y=x, or finding the intersection of graphs.

Another application of radians is in finding arc lengths and sector areas. If we take a sector of a circle its arc length and area will be a fraction of the whole circle. The formulas for these have a simpler form when the sector angle is measured in radians.



When  $\theta$  is in radians,



or area, A = 1r20 | Learn these results.

# Example 3

Find the arc length and area of a sector of radius 4 cm and angle 1.5 rad.

Solution
When  $\theta$  is measured in radians.

arc length 
$$s=r\theta=4\times 1.5=6$$
 cm sector area  $A=\frac{1}{2}r^2\theta=\frac{1}{2}\times 4^2\times 1.5=12$  cm<sup>2</sup>



in these results

In multiplying the

# Example 4

A piece of wire 40 cm long is bent into the shape of a sector. If the area of this sector is  $100\,\mathrm{cm}^2$  find:

- an expression for the sector angle  $\theta$  in terms of radius r
- b the value of r c the value of θ.

#### Solution

a Think carefully about the given information. The three lengths (both radii and the arc length) add up to 40 cm. So arc length s = 40 - 2r. Also, s = r0.



So 
$$r\theta = 40 - 2r$$
  
 $\theta = \frac{40 - 2r}{r}$ 

- b Now use the information about the area.
  - $A = \frac{1}{2}r^2\theta$

Substituting for  $\theta$  from a.

$$\begin{aligned} 100 &= \frac{1}{2} \times r^2 \times \left(\frac{40 - 2r}{r}\right) \\ 100 &= \frac{r}{2} \times (40 - 2r) \\ 100 &= \frac{r}{2} \times 2(20 - r) \\ 100 &= 20r - r^2 \end{aligned}$$

So 
$$r^2 - 20r + 100 = 0$$

$$\Rightarrow$$
  $(r-10)(r-10) = 0$   
 $(r-10)^2 = 0$ 

So r = 10. That is, the radius is 10 cm.

c 
$$\theta = \frac{40 - 2r}{r} = \frac{40 - (2 \times 10)}{10} = 2$$

So the sector angle is 2 rad.

Eliminating r from the denominator.

Taking out the common

Form and solve the

# 3.6 Radian Measure Exercise

# Technique

1 Without using a calculator convert the following angles into radians, leaving the answer in terms of #:

157

150°

2 Convert the following to radians, writing your answers correct to three significant figures:

315°

351°

a 20° 787 d 222°

3 Without using a calculator convert the following angles to degrees:

4 Find the arc lengths and sector areas of the following sectors, correct to one decimal place:

a  $\theta = 1 \text{ rad. } r = 5 \text{ cm}$ b  $\theta = 1.5 \, \text{rad}$ ,  $r = 8 \, \text{cm}$  $\theta = 2 \text{ rad}, r = 11 \text{ cm}$ d  $\theta = 2.6 \, \text{rad}$ ,  $r = 9 \, \text{cm}$ 

A sector OPQ has arc length 20 cm and sector area 100 cm<sup>2</sup> (as shown). Write down the two equations involving r and  $\theta$  (the radius and sector angle). Solve these equations to find the value of r and  $\theta$ .



- 6 Given that the area of sector OPO is  $50 \text{ cm}^2$  and that  $\theta = 1.2 \text{ rad}$ , find the radius of the circle
- Now go back to Exercise 3.2 on page 105 and do questions 1, 2, and 4 using radians.



## Contextual

A wedge of cheese, 0.5 cm thick, has a cross-section that is a sector of a circle. If the radius of the circle is 5 cm and the arc length is 4 cm, find the volume of the cheese.





- a If the arc length PQ is 90 cm, find θ (in radians).
- b Find the area of the minor sector OPQ.
- c Use the cosine rule to work out the length of the chord PQ.
- d Find the area of the triangle OPQ.
- If the drum is 1.2 m long, find the volume of the drum lying below the water surface level, correct to three significant figures.

A circular cone with base radius r and slant height I is unrolled into a circular sector. Find the angle of this sector in radians. Use your answer to explain why the curved surface area of the cone is \(\pi t\).

A windscreen wiper clears a region ABCD of a car windscreen (assumed to be flat), where AB and DC are circular arcs centred at O. Given that OD = 20 cm, DA = 50 cm and /AOB = 2.3 rad, calculate the area of region ABCD.



(NEAB)

# Consolidation

### Exercise A

Find the four solutions of the equation  $\sin 2\theta = \cos^2 \theta$  in the interval  $0^\circ < \theta < 360^\circ$ . Give each of these solutions correct to the nearest degree.

NNEAB:





Culado

- 3 Figure 1 shows the points A and B which two ships have reached after leaving a harbour H. The points A and B are at distance of 8 km and 11 km from H respectively. The bearings of A and B from H are 048° and 120° respectively. Calculate:
  - the distance between A and B, giving your answer to 0.1 km;
  - the bearing of B and A, giving your answer to the nearest degree.



(ULEAC)

Solve the equation  $4 \cot^2 \theta + 12 \csc \theta + 1 = 0$ , giving all values of  $\theta$  to the nearest degree in the interval  $0^\circ \le \theta \le 360^\circ$ .

(AEB)

Find, in degrees, the solution of the equation  $tan(2x + 30^\circ) = -\sqrt{3}$ , for  $0^\circ \le x \le 360^\circ$ .

(NICCEA)

| 6 | The angles | v and | v are | acute |
|---|------------|-------|-------|-------|

- a If  $\cos 2x$  is negative, explain why you can say that  $x > 45^\circ$ .
  - b If sin 4y is negative and cos 4y is positive, what value must y exceed?
    c If the conditions in a and b remain true, state, with reasons, whether the following are positive or negative:
    - $i \tan(x+v)$

i tan(x+)
ii tan 3v.

(MED)

- 7 a Use the formula  $\tan 3\theta = \frac{3\tan \theta \tan^3 \theta}{1 3\tan^2 \theta}$  to show that  $\tan(\pi/12)$  is a
  - root of the cubic equation  $x^3 3x^2 3x + 1 = 0$ . **b** Solve the equation  $\sin 2y = 2 - 2\cos 2y \ (0 \le y \le \pi)$ .

(OCSEB)

8 Show that  $(\csc x - 1)(\csc x + 1)(\sec x - 1)(\sec x + 1) \equiv 1$ .

(UCLES)

- 9 A circle centre O has an arc AB of length 13.44 cm and /AOB = 1.6 rad.
  - Calculate the radius of the circle.
    - b Find the area of the region enclosed by the arc AB and the chord AB.

(WJEC)

- 10 a Determine, in degrees, the solutions of the equation tan x = 5 for which 0° ≤ x ≤ 360°, giving your answers to the nearest tenth of a degree.
  - b Determine, in radians, the solutions of the equation  $3\cos^2y + 8\sin y = 0$  for which  $0 \le y \le 2\pi$ , giving your answers to two decimal places.

(ULEAC)

#### Exercise B

- Solve the following for x, y, z and t, giving all the values from 0° to 360° inclusive:
  - a  $\sin(x/2) = 0.7$ 
    - c  $3 \tan z = 5 \sin z$
- b  $\sec 2y = 1.5$ d  $\sin^2 t = 1 + \cos t$

(OCSEB)

 $oxed{2}$  a Square both sides of the equation  $\sin \theta - \cos \theta = \sin 2\theta$  and rearrange the resulting equation as a quadratic in  $\sin 2\theta$ .

- **b** Deduce that  $\sin 2\theta = \frac{1}{2}(\sqrt{5} 1)$ .
- c Find the two solutions of the equation in **b** that lie in the range  $0^{\circ} < \theta < 180^{\circ}$  and hence find the smallest positive value of  $\theta$  that satisfies the equation given in **a**.

(WJEC)



a the length of AC b the length of AD c the angle /DAC



(NICCEA)





- State the angles of triangle OAB.
- Calculate the distance OB, giving your answer in kilometres correct to three significant figures.
- c Calculate the distance OC and the bearing of C from O.

(OCSEB)

 Hence solve the equation  $4(1 + \cos \theta + \cos 2\theta) - 3(\sin \theta + \sin 2\theta) = 0$ , giving all solutions between 0° and 360°.

giving all solutions between 0° and 360°.

b Given that  $\tan(z - z/4) = \frac{71}{62^{\circ}}$  find the exact values of  $\tan z$  and  $\cos z$ . In triangle ABC, AB = 25 cm, AC = 17 cm and angle BAC = z. Find the length of BC.

(WJEC)

- 7 Figure 2 shows an equilateral triangle ABC whose vertices lie on a circle, centre O. of radius r.
  - a Show that the length of a side of this triangle is  $r\sqrt{3}$ .
  - b Show that the ratio of the area of the shaded region to the area of the triangle is (4π√3 - 9); 9.



Fig

(ULEAC)

# Applications and Activities

All methods of measuring angles are based on division of a circle. Degrees are  $\frac{1}{340}$  of a circle and can be subdivided into sixty minutes and then each minute subdivided into sixty seconds. Many calculators have a degree mode (BGE is usually displayed on the screen) and a key "\footnote{"}. The degree mode is usually observed close to radian mode (RAD) and one other system of measuring angles; GRAD.

- Investigate the GRAD system of measuring angles.
- $\fbox{\bf 2} \ \ \mbox{Find out what GRAD means and draw the graphs of } \sin\theta, \cos\theta \mbox{ and } \tan\theta \mbox{ when } \theta \mbox{ is measured in 'grads'.}$
- 3 What applications are there in everyday life with this scale?

# Summary

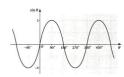
 The trigonometric ratios are positive for angles in the following quadrants.

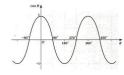


- $\tan \theta = \frac{\sin \theta}{\cos \theta}$
- The exact values of the trigonometric ratios of the special angles are:

| 0   | $\sin \theta$ | cos 0 | tan 0 |
|-----|---------------|-------|-------|
| 30" | 1             | Ą     | +     |
| 45" | 7:            | 1/2   | 1     |
| 60° | ×2            | 1 2   | √3    |

The graphs of  $y = \sin x$ ,  $y = \cos x$  and  $y = \tan x$  have periods 360°, 360° and 180° respectively, and look like:







The reciprocal ratios are:







The Pythagorean identities are:

$$\sin^2 \theta + \cos^2 \theta \equiv 1$$
  
 $\tan^2 \theta + 1 \equiv \sec^2 \theta$   
 $1 + \cot^2 \theta \equiv \csc^2 \theta$ 

The compound angle formulas are:

```
\begin{aligned} \sin(A\pm B) &\equiv \sin A \cos B \pm \cos A \sin B \\ \cos(A\pm B) &\equiv \cos A \cos B \mp \sin A \sin B \\ \tan(A\pm B) &\equiv \frac{\tan A \pm \tan B}{1 \pm \tan A \tan B} \end{aligned}
```

The double angle formulas are:

```
\sin 2A = 2 \sin A \cos B
\cos 2A = \cos^2 A - \sin^2 A
= 2 \cos^2 A - 1
= 1 - 2 \sin^2 A
\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}
```

The cosine rule, in its various forms is:

$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\cos A = \frac{b^2 + c^2 - a^2}{ab}$$

The sine rule is:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

The area of a triangle can be calculated using

$$area = \frac{1}{2} \times base \times perpendicular height$$

$$area = \frac{1}{2} ab \sin C$$

Hero(n)'s formula:  $area = \sqrt{s(s-a)(s-b)(s-c)}$ where  $s = \frac{1}{2}(s+b+c)$ .

- 1 radian =  $\frac{360^{\circ}}{2\pi}$ .
- In radian form, arc length  $s = r\theta$  and sector area  $A = \frac{1}{4}r^2\theta$

## 4 Functions

## What you need to know

- How to change the subject of an equation.
- How to 'complete the square' for a quadratic expression.
- How to solve quadratic equations using either the factorisation method or the quadratic formula.
- How to express simple improper algebraic fractions as mixed fractions.

## Review

1 Make x the subject of each of the following equations:

- a 5x + 2y = 1b  $y = 3x^2 - 2$
- d  $v = \sqrt[3]{x} + 7$ e  $y = 3 - \frac{10}{x}$
- $v = 4\sqrt{x-1}$
- $f y = \frac{2x+1}{x}$
- Write each of the following expressions in the form  $(x + a)^2 + b$  or  $c(x+a)^2 + b$ , where a, b and c are constants:  $a x^2 + 8x + 5$ 
  - b  $x^2 4x + 3$  $c x^2 + x + 1$
- e  $2x^2 + 12x$ f  $3x^2 6x + 7$
- 3 Find the exact solutions of the following quadratic equations:  $x^2 + 5y - 24 = 0$  $d x^2 + 4x - 3 = 0$ 
  - $y^2 5 = 0$  $c 2x^2 - 14x + 20 = 0$
- $e^{-}x^2+6x-1=0$  $\int 2x^2 - 6x + 1 = 0$
- 4 Rearrange each of the following into expressions that eliminate improper algebraic fractions:

4x + 5

An improper algebraic fraction is one where the highest power in the numerator is the same as or larger than the highest power in the denominator.

## 4.1 Mappings and Functions

#### Mappings

European football clubs

A mapping is a rule that relates one set of items or numbers to another. For example, the diagram below shows the mapping of seven beading European football clubs to their home cities. The set of inputs for a mapping is called the domain, and set of outputs from the mapping size called the co-domain. In this example, the set of clubs is the domain and the set of critics is the co-domain.

|   | Ajax            |             |
|---|-----------------|-------------|
| - | thletico Madrid | ► Amsterdar |
| - | Bayern Munich   | Lisbon      |
|   | Benfica         | Madrid      |
| _ | Juventus        | Munich      |
|   | Real Madrid     | ► Turin     |
|   | Sporting Lisbon |             |

This relationship between the football clubs and their home cities is an example of a many-to-one mapping. Although each club obviously has only one home city, more than one club or element in the domain may map onto any given city in the co-domain. For example, Benfica and Sporting Lisbon are both based in the Portuguese capital, Lisbon.

► Home cities

If we reverse this relationship, and map the cities to their football clubs we obtain a one-to-many mapping, as shown below. This shows that it is possible for an element in the domain to map to more than one element in the co-domain.

\*\*PAirs\*\*



Two other types of mapping exist:

- one-to-one mappings
- many-to-many mappings.



The relationship between these five cities and their countries is a **one-to-one mapping**. Each city in the domain maps to one and only one country in the co-domain.



Football clubs European competitions

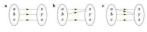
The relationship between the seven football clubs and the major European club competitions is an example of a many-to-many mapping. Several of these clubs have won more than one of these competitions.

#### **Functions**

Any mathematical mapping that takes any object in the domain and maps it to one, and only one, element in the co-domain is called a function. Since there can only be one possible image for each object in the domain, only many-to-one and one-to-one mappings are functions.

## Example 1

Which of the following mappings are functions?



#### Solution

a This one-to-one mapping is a function. Each object in the domain maps to one, and only one, image.

- b This many-to-one mapping is also a function. Note that it is not necessary for every element in the co-domain to be an image of an object in the domain.
- c This many-to-many mapping is not a function because the element o' in the domain maps to more than one element in the co-domain.

The domain of a function is the set of objects or input values for which the function is defined. In Example 1 the set  $\{a,b,c\}$  is the domain in functions a and b. The co-domain is a set containing the possible output values of a function. In Example 1 the set  $\{x,y,z\}$  is the co-domain in functions a and b.

The range of a function is the set of images, or output values, to which the objects in the domain map. This can be the entire co-domain, as in the function in Example 1a, which has the range (x, y, z), or it can be a subset of the co-domain, as in the function in Example 1b, which has the range (x, z).

The words onto and into are used to highlight the difference. The domain of the function in Example 1 a maps onto its co-domain, because it uses every element in the co-domain. The domain of the function in Example 1th maps into its co-domain, because only some of the elements are used.

A number of different but equivalent notations are used to define a function. For example, the function f, which maps values of x in the domain to values of 2x in the co-domain, may be written

$$f: x \to 2x \blacktriangleleft f \text{ maps } x \text{ to } 2x$$
.

or 
$$f(x) = 2x$$

$$y = 2x$$

In this last form of notation, objects x in the domain map to images y in the co-domain. These (x,y) pairs can be used to represent the function graphically.

## Example 2

Functions f and g are defined for domain  $\{-2, -1, 0, 1, 2\}$  by  $f: x \rightarrow 2x + 1$  and  $g: x \rightarrow x^2$ . Draw a mapping diagram for each function. State the range of each function and explain which type of mapping is shown.

f maps x to 2x + 1g maps x to  $x^2$ 

#### Solution





The range of function f, for the given domain, is  $\{-3, -1, 1, 3, 5\}$ .  $f: x \rightarrow 2x + 1$  is a one-to-one mapping.

The range of function g, for the given domain, is  $\{0, 1, 4\}$ .  $g: x \to x^2$  is a many-to-one mapping.

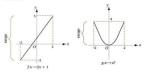
It has been possible to draw mapping diagrams for each function in Example 2 because the domain is discrete. This means the domain consists of separate values of x, and does not contain any values between those stated.

If the domain isn't discrete then it can contain any value within specified limits. In this case the domain is said to be continuous. Functions with continuous domains are usually represented graphically.

## Example 3

The functions f and g in Example 2 are defined for the continuous domain  $\{x\in\mathbb{R}\colon -2\le x\le 2\}$ . In each case, sketch the graph of the function, and state the range.

Solution



The range of function f, for the given domain, is  $\{v \in \mathbb{R}: -3 \le v \le 5\}$ .

The range of function g, for the given domain, is  $\{y \in \mathbb{R}: 0 \le y \le 4\}$ .

 $\{x \in \mathbb{R}: -2 \le x \le 2\}$ means all the real numbers between -2and 2 (inclusive).

This means that the range of f is all the real numbers between -3 and 5 inclusive.

All linear functions can be written in the form  $f: x \to ax + b$ , where a and b are constants. If a and b are both unknown, then they can be calculated using the value of the function at two different values of x.

## Example 4

The linear function  $f: x \to ax + b$  is such that f(1) = 8 and f(3) = 14. Find the values of a and b.

#### Solution

f(1) and f(3) are found by substituting x = 1 and x = 3 into the function.

$$f(1) = 8 \Rightarrow a+b=8$$

[1]

[2]

$$f(3) = 14 \implies 3a + b = 14$$

Eliminating b by subtracting equation [1] from equation [2],

$$2a = 6$$
  
 $\Rightarrow a = 3$ 

Substituting q = 3 into equation [1].

$$3+b=8$$

$$\Rightarrow b-5$$

So a = 3, b = 5 and the function is  $f: x \rightarrow 3x + 5$ .

All quadratic functions can be written in the general form  $f: x \to ax^2 + bx + c$ , where  $a \ne 0$ . If the coefficients a, b and c are all unknown, they can be found in a similar way to that used for linear functions (Example 4). This time use the value of the function f at three different values of x. This creates three linear simultaneous equations involving a, b and c. These can then be solved using either the elimination or substitution methods.

## 4.1 Mappings and Functions Exercise

## Technique

## 1 The functions

- The functions below are defined for the given discrete domains. In each case:
- i draw a mapping diagram
  - ii state the range of the function iii state the type of mapping.
  - a  $f: x \to 1 2x$  for  $\{x: -10, -5, 0, 5, 10\}$
  - **b**  $f: x \to 1-2x$  for  $\{x: -10, -5, 0, 5, 1\}$
  - c  $f: x \to +\sqrt{x}$  for  $\{x: 0, 1, 4, 9, 16\}$ d  $f: x \to \frac{3}{2}$  for  $\{x: 1, 2, 3, 4, 5\}$
- 2 The functions below are defined for the given continuous domains. In each case:
  - i sketch the graph of the function
  - ii state the range of the function iii state the type of mapping.
  - a  $f: x \to \frac{1}{2}x + 3$  for  $\{x \in \mathbb{R}: 2 \le x \le 6\}$
  - b  $f: x \to x^2 1$  for  $\{x \in \mathbb{R}: -3 \le x \le 3\}$ c  $f: x \to x^3$  for  $\{x \in \mathbb{R}: -2 \le x \le 2\}$
  - d  $f: x \to \frac{1}{x}$  for  $\{x \in \mathbb{R}: \ 0 < x \le 3\}$
- State whether or not each of the following graphs represents a function, giving reasons for your answer:











### Complete Advanced Level Mathematics: Pure Mathematics



$$f\colon x\to \begin{cases} 5-x & \text{for } x\le 2\\ \frac{1}{2}x^3 & \text{for } x\ge 2 \end{cases} \qquad g\colon x\to \begin{cases} 12x & \text{for } x\le 4\\ 3x^2 & \text{for } x\ge 4 \end{cases}$$



Explain why g is a function, but f is not a function.

- **5** The functions f and g are such that f(x) = 13x 4 and  $g(x) = 4x^2 1$ .
  - a Find the value of a for which f(a) = 35.
  - **b** Find the values of b for which g(b) = 15.
  - Find the values of c for which f(c) = g(c).
- **6** The linear function f is defined by  $f: x \rightarrow ax + b$ , where a and b are constants. Given that f(2) = 3 and f(-3) = 13, find a and b. Hence, calculate the value of c for which f(c) = 0.
- **7** The quadratic function g is defined by  $g: x \rightarrow ax^2 + bx + c$ , where a, b and c are constants. Given that g(0) = -3, g(1) = 4 and g(2) = 15, find a, b and c. Hence calculate the values of d for which g(d) = 0.

## 4.2 Inverse Functions

For many mathematical mappings, there is a corresponding mapping that has the opposite or reversing effect. For example, the mapping 'subtract  $\theta'$ , or  $x \to x - \theta$  is the opposite of the mapping 'add  $\theta'$ , or  $x - x + \delta$ . For the domain (0.1.2.3) this last mapping has the range (6.7.6) the domain (0.1.3) this last mapping has the range (6.7.6) to



Taking  $\{6, 7, 8, 9\}$  as the domain for the reverse mapping,  $x \rightarrow x - 6$ , this maps back onto the original domain.

So for this particular domain, the mapping  $x \to x + 6$  and its inverse  $x \to x - 6$  are both one-to-one relationships. They are therefore both functions.

To write this more formally, if the function f is defined such that  $f: x \to x + 6$ , then its inverse function  $f^{-1}$  is defined as  $f^{-1}: x \to x - 6$ .

Now consider the function  $f(x) = x^2$ , defined for the domain  $\{x \in \mathbb{Z} : -2 \le x \le 2\}$ . For this particular domain, the mapping of  $x \to x^2$  is "many-to-one." Therefore f(x) is a function. However, the reverse mapping is one-to-many. There is no unique relationship between the objects and images of this mapping, So, by definition, it cannot be a function

 $\begin{pmatrix} -2 \\ -1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$   $f(x) \rightarrow x^2$ 



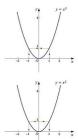
Only those functions which, for a given domain, nor one-to-one mappings, more inverse functions. This point can be liturated graphically by changing the domain over which the function  $f_1 = -x^2$  it defined to  $\{x \in \mathbb{R} = 2 \le x \le x^2\}$ , Find  $f_1 = 1$  and  $f_1(1)$ . What do you notice? Both  $f_1 = 1$  and  $f_1(1)$  equal 1. So two different values of x in the domain can give the same output values from the function. However, if we reverse the mapping, an input of 1 results in not one, but two distinct outputs, 1 and -1.

When working with functions,  $f^{-1}$  means the inverse of function f', and not the reciprocal of function f'.

Recall that Z is the set of all integers.

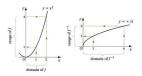
Recall that R is the set of all real numbers.

A one-to-many mapping.



It is, however, possible to define an inverse function if we restrict the domain to values of x for which the mapping is one-to-one. For example, if  $f: x \to x^2$  is defined for the restricted domain  $\{x \in \mathbb{R}: 0 \le x \le 2\}$  then the inverse function  $f^{-1}: x \to +\sqrt{x}$  exists.

The + sign indicates that only the positive square root is taken.



It is important to realise that the inverse function maps values in the range of the original function back onto the domain of the original function.



The graphical representation of a function can be used to determine whether it is a one-to-one mapping. If it is a one-to-one mapping then it has an inverse function.

## Example 1

Use a graphical calculator, or alternative method, to sketch the graphs of the following functions:

$$f: x \to x - 3, x \in \mathbb{R}$$

$$g: x \to x^3, x \in \mathbb{R}$$

$$h: x \rightarrow x^3 - 12x, x \in \mathbb{R}$$
.

Use the graphs to decide which of these functions have inverse functions.

### Solution



Functions f and g are both one-to-one mappings. Therefore both have inverse functions.

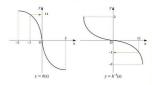




Notice that the graph of y = h(x) has two **turning points**; at x = -2 and x = 2. It doubles back on itself between these two points. Function h is therefore not a one-to-one mapping and so, for the given domain, h does not have an inverse function.

A turning point is a maximum or minim point on a graph.

If the domain of function h is restricted to a set of values of x for which the mapping is one-to-one, for example  $\{x \in \mathbb{R}: -2 \le x \le 2\}$ , then the inverse function  $h^{-1}$  exists. Since h(-1) = 11, it follows that,  $h^{-1}(11) = -1$ .



#### The graph of an inverse function

If a function f maps values of x in its domain to values of y in its range then the inverse function  $f^{-1}$  maps values of y back to the corresponding values of x. It follows that for every point (x,y) on the graph of function f there is a corresponding point with coordinates (y,x) on the graph of the inverse function  $f^{-1}$ . Geometrically, this interchanging of x and y is equivalent to a reflection in the line y = x.

The graph of the inverse function  $y=f^{-1}(x)$  can be sketched by simply reflecting the graph of y=f(x) in the line y=x.

To carry out this reflection properly, it is important to use the same scale on both axes.

## Example 2

Sketch each of the following graphs, and draw in the line y=x. Reflect each of the graphs in y=x to obtain the graph of the inverse function.

- a f(x) = 2x + 1
   b f(x) = 3 x
- f(x) = 3 x $f(x) = x^3 + 1$

Remember to use the same scale for both axes.

## Solution

a



**4** (0, 1) corresponds to (1, 0), and (-½, 0) corresponds to (0, -½)

f(x) = 2x + 1



**◄** (3, 0) corresponds to (0, 3), and (0, 3) corresponds to (3, 0)

The line y=3-x is symmetrical about the line y=x. This means that f(x) is its own inverse; self-inverse. Therefore  $f^{-1}(x)=3-x$ .



 $f(x) = x^3 + 1$ 

◀ (0, 1) corresponds to (1, 0), and (-1, 0) corresponds to (0, -1)



### \_\_\_\_

Finding the inverse function

Two different methods can be used to find an algebraic expression for the inverse of a function:

- express the function as a 'flow diagram' or 'function machine', and then reverse the direction.
  - express the function in the form y = f(x), interchange x and y, and then rearrange the equation to make y the subject of the equation again.

## Example 3

- a Find the inverse function of f(x) = 2x + 5.
  - The function f: x → <sup>2</sup>/<sub>x</sub> is defined for {x ∈ R: x ≠ 0}. Find its inverse function.

#### Solution

a Method 1: Express the function as a 'function machine'.

$$x \xrightarrow{\times 2} 2x \xrightarrow{+5} f(x) = 2x + 5$$

The inverse function is found by reversing each of the individual operations and the order in which they are carried out.

$$f^{-1}(x) = \frac{x-5}{2} \stackrel{+2}{\longleftrightarrow} x - 5 \stackrel{-5}{\longleftrightarrow} x$$
 Read from right to left.

Therefore, the inverse function is  $f^{-1}(x) = \frac{1}{2}(x-5)$ .

Method 2: Expressing the function in the form y = 2x + 5, and interchanging x and y.

x = 2y + 5

Now make y the subject of the equation.

$$y = \frac{1}{5}(x - 5)$$

So, as before, the inverse function is  $f^{-1}(x) = \frac{1}{2}(x-5)$ . Use a graphical calculator to draw the lines y = 2x + 5,  $y = \frac{1}{2}(x-5)$  and y = x. These that the graph of the inverse function is a reflection of the graph of the function in the line y = x. Remember to use the same scale on both axes.

b The function machine for f looks like.

$$x \xrightarrow{invert} \frac{1}{x} \xrightarrow{x_2} f(x) = \frac{2}{x}$$

Now reverse the individual operations and the order in which they are applied:

$$f^{-1}(x) = \frac{2}{x} \xleftarrow{\text{invert}} \frac{x}{2} \xleftarrow{+2} x$$

Therefore  $f^{-1}: x \to \frac{2}{s}$ , and function f is another example of a self-inverse. Draw the graph of  $y = \frac{2}{s}$ . What do you notice? The graph of  $y = \frac{2}{s}$  is symmetrical about the line y = x.



Try this approach the functions in Example 2. Notice this particular met will only work if x appears only once

Interchanging x ar the algebraic equiv of reflecting the function in the lin



Use a graphical calculator to draw the line y = x and the graphs of functions of the form f(x) = a - x and  $f(x) = \frac{\pi}{2}$  for different values of the real number a. With abspaces  $f(x) = \frac{\pi}{2}$  to should discover that all functions of the form f(x) = a - x and  $f(x) = \frac{\pi}{2}$ , where a is a real number, are symmetrical about the line y = x. They are all self-inverses.



## Example 4

The function  $g(x) = \frac{x+1}{x-3}$  is defined for the domain  $\{x \in \mathbb{R}: x \neq 3\}$ . Find its inverse function, and state the value of x for which  $g^{-1}(x)$  is not

## defined.

**Solution** Writing the function in the form y = g(x), and interchanging x and y gives

$$x = \frac{y+1}{y-3}.$$

Rearrange this equation to make y the subject,

$$x(y-3) = y+1$$
  
 $\Rightarrow xy - 3x = y+1$   
 $\Rightarrow xy - y = 3x + 1$   
 $\Rightarrow y(x-1) = 3x + 1$   
 $y = \frac{3x+1}{x-1}$ 

So  $g^{-1}(x) = \frac{3x+1}{x-1}$ 

Try putting x = 1 into the inverse function. What happens? Division by zero causes a problem, creating an answer that is undefined. So this inverse function is defined for all real values of x except x = 1.

## Example 5

The quadratic function  $f(x) = x^2 - 8x + 14$  is defined for the domain  $\{x \in \mathbb{R}: x \ge 4\}$ .

- a By 'completing the square', express f in the form (x + a)<sup>2</sup> + b, where a and b are integers.
   b Hence, or otherwise, find an expression for the inverse function f<sup>-1</sup>.
- c Sketch the graph of  $y = f^{-1}(x)$ , and state the domain and range of this inverse function.
- d Solve the equation  $f(x) = f^{-1}(x)$ .

## Solution

- a  $f(x) = x^2 8x + 14$   $= x^2 - 8x + 16 - 2$   $= (x - 4)^2 - 2$  $\Rightarrow x = -4$  and b = -2
- b Writing the function in the form  $y = (x 4)^2 2$ , and interchanging x and y,

$$x = (y - 4)^2 - 2$$
  
Rearranging to make y the subject.

$$(y-4)^2 = x+2$$

$$\Rightarrow y - 4 = \sqrt{x + 2}$$

$$\Rightarrow y = 4 + \sqrt{x + 2}$$

Therefore, the inverse function is  $f^{-1}(x) = 4 + \sqrt{x+2}$ .

c Reflecting the graph of y=f(x) in the line y=x gives the graph of  $y=f^*(x)$ . The domain of  $f^{-1}$  is  $\{x\in\mathbb{R}:x\geq -2\}$ . The range of  $f^{-1}$  is  $\{y\in\mathbb{R}:y\geq 4\}$ .

d Equating  $f(x) = x^2 - 8x + 14$  with  $f^{-1}(x) = 4 + \sqrt{x+2}$  gives  $x^2 - 8x + 14 = 4 + \sqrt{x+2}$ 

Although progress can be made with this equation, it will involve cubic  $(x^2)$  and quartic  $(x^4)$  terms. Look at the graphs. Notice that the point at which  $f(x) = f^{-1}(x)$  is also the point of intersection of the line y = x and the curve y = f(x), so solving the simultaneous equations y = x and y = f(x) may be an easier way to find the solution.

 $\Rightarrow$  x = 2 or x = 7 Since function f is only defined for x > 4, ignore the solution x = 2.

Therefore, the only solution to the equation  $f(x) = f^{-1}(x)$  is x = 7. Sometimes it may be easier to solve the equation  $f(x) = f^{-1}(x)$  by finding the intersection of v = x and  $v = f^{-1}(x)$ . This is the same as solving Completing the squa and spotting that  $16 = 4^2$ .

Take the positive squ

If y = x and y = f(x)then x = f(x).

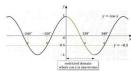
 $x = f^{-1}(x)$ .

## Inverse trigonometric functions

The sine, cosine and tangent functions are periodic. For the domain of real numbers they are many-to-one mappings, as illustrated.



 $\sin x = 0.5$  for  $x = -330^{\circ}$ ,  $-210^{\circ}$ ,  $30^{\circ}$ ,  $150^{\circ}$ , and so on.



 $\cos x = -0.5$  for  $x = -240^{\circ}$ ,  $-120^{\circ}$ ,  $120^{\circ}$ ,  $240^{\circ}$ , and so on.



 $\tan x = 1$  for  $x = -315^{\circ}$ ,  $-135^{\circ}$ ,  $45^{\circ}$ ,  $225^{\circ}$ , and so on.

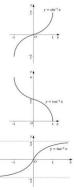
The coloured sections show the restricted domains where the functions are one-to-one mappings. The inverse trigonometric functions sin<sup>-1</sup>, cos<sup>-1</sup> and tan<sup>-1</sup> can each be defined for a restricted domain. These domains are the values of x for which the sine, cosine and tangent mappings are one-to-one. The restrictions are different for each of the three trigonometric functions.

Another notation is arcsin, arccos and arctan.

For  $f(x) = \sin x$  and  $f(x) = \tan x$  to be one-to-one mappings,

 $-90^\circ \le x^\circ \le 90^\circ$ , or  $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$  if x measured in radians. However, for  $f(x) = \cos x$  to be a one-to-one mapping,  $0^\circ \le x^\circ \le 180^\circ$ , or  $0 \le x \le \pi$  if x is measured in radians.

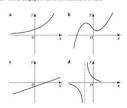
The graphs of  $y=\sin^{-1}x$ ,  $y=\cos^{-1}x$  and  $y=\tan^{-1}x$  can be sketched by reflecting the graphs of  $y=\sin x$ ,  $y=\cos x$  or  $y=\tan x$  in the line y=x. Remember to use the same scale on both axes and to measure the angles in radians.



## 4.2 Inverse Functions Exercise

## Technique

- 1 For each of the following functions:
  - i state whether an inverse function exists, giving a reason for your
  - ii sketch the graph of the inverse function if it exists.





a 
$$f: x \to 3x - 8$$
 d  $f: x \to \frac{1}{4}\sqrt{x^2 + 5}, x \ge 0$ 

**b** 
$$f: x \to \frac{4}{x+3}, x \neq -3$$
 **e**  $f: x \to \frac{2}{x} + 3, x \neq 0$ 

c 
$$f: x \to 2x^2 + 7, x \ge 0$$
 f  $f: x \to \frac{4}{x^2}, x > 0$ 





$$f(x) = \frac{3}{x-4}$$
,  $g(x) = \frac{2x}{x+1}$ ,  $h(x) = \frac{2x+3}{x-5}$ 

such that:

undefined.

- a State the values of x for which each of these functions are
- b Find an expression for each of the inverse functions, and state their domains.

lacksquare The functions f and g are defined such that

$$f(x) = \frac{ax + 2}{x - 3},$$
  $g(x) = \frac{5x - 1}{2x + b}$ 

where a and b are constants.

- a Find expressions for  $f^{-1}(x)$  and  $g^{-1}(x)$ .
- b State the values of a and b for which functions f and g are self-inverses.
- **5** a Express  $x^2 2x 4$  in the form  $(x + a)^2 + b$ , where a and b are integers.
  - b Function f(x) = x² 2x 4 is defined for the domain x ∈ R: x ≥ q. Find the least value of q for which function f is a one-to-one mapping.
    c State the range of f.
  - d Find an expression for the inverse function f<sup>-1</sup>.
  - e Solve the equation  $f(x) = f^{-1}(x)$ .
- The function f is defined for the domain 0 ≤ x ≤ <sup>5</sup>/<sub>6</sub> by f(x) = cos 3x.
  a Find an expression for f<sup>-1</sup>. State the domain of f<sup>-1</sup>.
  - **b** Calculate the value of  $f^{-1}(\sqrt{2})$  in terms of  $\pi$ .



The diagram shows the graph of y = f(x), where  $f(x) = \sin 2x$ .

- State the restricted domain for which function f is a one-to-one mapping.
  - b For this restricted domain:
    - i find an expression for f<sup>-1</sup>
      ii state the domain of f<sup>-1</sup>
    - iii sketch the graphs of y=f(x) and  $y=f^{-1}(x)$  on one set of axes, using the same scale on both axes.
- c State the domain of the function g(x) = sin ax, where a is a positive constant, if the inverse function g<sup>-1</sup> exists.

## 4.3 Composite Functions

The output values of two or more functions can be combined using addition, subtraction, multiplication and division. If f(x) = 3x and  $g(x) = \sin x$ , possible combinations include:

$$f(x) + g(x) = 3x + \sin x$$

$$f(x) - g(x) = 3x - \sin x$$

$$f(x) \times g(x) = 3x \sin x$$

$$f(x) + g(x) = \frac{3x}{\sin x}$$
 (provided  $\sin x \neq 0$ )

It is also possible to take the output values from one function and use them as the input values for another function. Using  $f(\mathbf{x}) = \mathbf{x}$  and  $g(\mathbf{x}) = \sin \mathbf{x}$ , first evaluate function g for different values of  $\mathbf{x}$ , and then input the values of  $g(\mathbf{x})$  into function f. What happens?

$$x \xrightarrow{g} g(x) = \sin x \xrightarrow{f} f(g(x)) = 3\sin x$$

The resulting composite function (or 'function of a function') is  $f(g(x)) = 3 \sin x$ , and is commonly referred to as fg(x). Note that the g is written closest to the x because function g is the first stage of this composite function.

Now evaluate function f first and use the corresponding values of f(x) as inputs into function g. What happens?

$$x \xrightarrow{f} f(x) = 3x \xrightarrow{g} g(f(x)) = \sin 3x$$

Notice that the composite function isn't the same. This time the output is  $\sigma f(x) = \sin 3x$ .

## Example 1

The functions f, g and h are defined by f:  $x \to \cos x$ , g:  $x \to x^2$ , h:  $x \to 2x + 1$ . Find expressions for the following composite functions:

f flig(x)

a 
$$gf(x)$$
  
d  $hf(x)$ 

## Solution

$$\mathbf{a} \quad gf(x) = g(f(x))$$

$$=g(\cos x)$$

$$=(\cos x)^2$$

$$=\cos^2 x$$

Input cos x into function g. Recall the conventional way of writing (cos x)<sup>2</sup>.

An alternative notation for the composite function fg(x) is  $f \circ g(x)$ .

**b** 
$$hg(x) = h(g(x))$$
  
=  $h(x^2)$ 

$$= 2(x^2) + 1$$
  
 $= 2x^2 + 1$ 

$$= 2x^2 + 1$$

$$c \quad gh(x) = g(h(x))$$

$$e gn(x) = g(n(x))$$
$$= g(2x + 1)$$

$$= (2x+1)^2$$

$$\mathbf{d} \quad hf(x) = h(f(x))$$

$$= h(\cos x)$$

$$= 2(\cos x) + 1$$

$$= 2(\cos x) + 1$$
$$= 2\cos x + 1$$

e 
$$hgf(x) = h(g(f(x)))$$

$$=h(g(\cos x))$$

$$=h(\cos^2 x)$$

$$=2(\cos^2 x)+1$$

$$= 2\cos^2 x + 1$$

$$f \quad fhe(x) = f(he(x))$$

$$= f(hg(x))$$
$$= f(2x^2 + 1)$$

$$=\cos(2x^2+1)$$

## Example 2

Each of the following functions are composite functions of the form gf(x). In each case find the component functions f and g.

a 
$$p(x) = \frac{1}{x+2}$$

$$\mathbf{b} \quad q(x) = 8x^3$$

$$c \quad r(x) = 5 - x$$

#### Solutio

Use flow diagrams to decompose each of these functions.

a 
$$p(x): x \xrightarrow{+2} x + 2 \xrightarrow{\text{invert}} \frac{1}{x+2}$$

Therefore 
$$p(x) \equiv gf(x)$$
, where  $f(x) = x + 2$  and  $g(x) = \frac{1}{x}$ .

b 
$$q(x): x \xrightarrow{\text{cube}} x^3 \xrightarrow{\times 8} 8x^3$$

Therefore q(x) = gf(x), where  $f(x) = x^3$  and g(x) = &x. There is an alternative way of expressing function q as the composite of two functions.

$$q(x): x \xrightarrow{\times 2} 2x \xrightarrow{\text{cube}} 8x^3$$

Then 
$$q(x) \equiv gf(x)$$
, where  $f(x) = 2x$  and  $g(x) = x^3$ .

 $x^2$  replaces x in fundable.

 $\cos x$  replaces x in function h.

Input composite function gf(x) into

From **b**,  $hg(x) = 2x^3$ 

c 
$$r(x): x \xrightarrow{\times (-1)} -x \xrightarrow{+5} -x + 5 = 5 - x$$

Therefore  $r(x) \equiv gf(x)$ , where f(x) = -x and g(x) = x + 5. Again, there is an alternative.

$$r(x): x \xrightarrow{-5} x - 5 \xrightarrow{\times (-1)} -(x - 5) = 5 - x$$

Then 
$$r(x) \equiv gf(x)$$
, where  $f(x) = x - 5$  and  $g(x) = -x$ .

Instead of feeding the output from one particular function into a different function, we could input back into the original function itself. Using f(x) = 3x again, the composite function

$$ff(x) = f(f(x)) = f(3x) = 9x$$

Note that ff(x) is often referred to as  $f^{2}(x)$ , indicating that the function is to be carried out twice (and not that the output from the function is to be squared). Similarly, for this particular function,

$$f^3(x) = fff(x) = f(f(f(x))) = 3(3(3x)) = 3(9x) = 27x$$

## Example 3

The functions f, g and h are defined by

$$f(x)=2-x, \qquad g(x)=\frac{3}{x+1} \quad (x\neq -1), \qquad \text{and} \qquad h(x)=2x-1$$

- Show that  $f^2(x) = x$ .
  - b Find an expression for  $g^2(x)$ , and state for which two values of x it is undefined.
  - Solve the equation  $h^3(x) = x$ .

### Solution

a 
$$f^{2}(x) = f(f(x))$$
  
=  $f(2-x)$ 

$$=2-(2-x)=x$$

$$\mathbf{b} = g^2(\mathbf{x}) = g(g(\mathbf{x}))$$

$$=g\left(\frac{3}{x+1}\right)$$

$$= \frac{3}{\frac{3}{x+1}+1}$$

$$= \frac{3}{x+4} = \frac{3(x+1)}{x+4}$$

Since 
$$g(x)$$
 is undefined for  $x = -1$ , it is not possible to evaluate  $g^2(x)$ 

when x = -1. You can see that  $g^2(x)$  is also undefined for x = -4.

Making x + 1 the common denominator of the fraction in the denominator.

c 
$$h^2(x) = h(h(x))$$
  
 $= h(2x - 1)$   
 $= 2(2x - 1) - 1$   
 $= 4x - 3$   
Now  $h^2(x) = h(h^2(x))$   
 $= h(4x - 3) - 1$   
 $= 8x - 7$   
So when  $h^2(x) = x$ .

8x - 7 = x7x = 7r = 1

#### Domain of a composite function

The relationships between the domains and ranges of functions f and g, and the range of composite function of are illustrated here.



How is the domain of a composite function found? First, establish which values of x in the domain of function f produce values of f(x) that lie in the domain of function g. These can then be fed into g(x). However, depending upon the nature of functions f and g, and the values of x in the domains for which they are defined, the composite function gf may have a restricted domain.

## Example 4

The functions f and g are defined by

$$f(x) = 1 + 2x$$
 for  $\{x \in \mathbb{R}: x \ge 0\}$   
 $g(x) = \frac{1}{x - 1}$  for  $\{x \in \mathbb{R}: x > 1\}$ 

- a State the range of f and g for the given domains. b Find an expression for ef(x), and determine its domain.
- Find an expression for fg(x), and determine its domain.

### Solution

a For the given domain, the least value of f(x) is 1. This is when x = 0. Therefore the range of f(x) is {y ∈ ℝ: y ≥ 1}.

What about g(x)? As x increases, x - 1 also increases. This means that as x increases  $\frac{1}{x^2}$  decreases. As x becomes very large, g(x) will tend towards zero. Conversely, for values of x close to 1, the denominator is very small and g(x) becomes very large. This means that the range of g(x) is  $(x \in \mathbb{R} \times y = 0)$ .

$$gf(x) = g(1+2x)$$

$$= \frac{1}{(1+2x)-1} = \frac{1}{2x}$$

The domain of the composite function gf is the set of values of x in the domain of function f that give values of f(x) that are in the domain of function g.

What about the domain of g? The domain of function g is  $(x \in \mathbb{R}: x > 1)$ , so we require the values of x in the domain of f for which f(x) > 1. Are there values in the domain of f that do not satisfy this? The only value of x in the domain of f that does not satisfy this condition is x = 0. This means that the domain of the composite function g(x) is  $f(x \in \mathbb{R}: x > 0)$ .

c 
$$fg(x) = f\left(\frac{1}{x-1}\right)$$
  
=  $1 + 2\left(\frac{1}{x-1}\right)$   
=  $\frac{x-1+2}{x-1} = \frac{x+1}{x-1}$ 

The domain of the composite function fg is the set of values of x in the domain of function g which give values of g(x) that are in the domain of function f.

What about the domain of f? The domain of function f is  $\{x \in \mathbb{R}: x > 0\}$ . This means that we require  $g(x) \geq 0$ . Are there any values in the domain of g that do not satisfy this? All values of x in the domain of g satisfy the condition  $g(x) \geq 0$ . So the domain of the composite function |g(x)| is  $\{x \in \mathbb{R}: x > 1\}$ ; that is, the entire domain of g.

### The inverse of a composite function

The flow diagram shows how the composite function fg is obtained by putting values of x into g, and then putting values of g(x) into f.

$$x \xrightarrow{g} g(x) \xrightarrow{f} fg(x)$$

The inverse of this composite function is  $(fg)^{-1}$ . This is obtained by reversing each of the individual component functions and the order in which they are applied.

$$g^{-1}f^{-1} \stackrel{g^{-1}}{\longleftarrow} f^{-1}(x) \stackrel{f^{-1}}{\longleftarrow} x$$

So values of x are put into  $f^{-1}$ , and then values of  $f^{-1}(x)$  are put into  $g^{-1}$ . This gives:

$$(fg)^{-1}(x) = g^{-1}f^{-1}(x)$$

## Example 5

The functions f and g defined for  $x \in \mathbb{R}$  by  $f: x \to x^3$  and  $g: x \to 2x + 1$ . Find:

c of and (of)-1

- **a**  $f^{-1}$  and  $g^{-1}$  **b** fg and  $(fg)^{-1}$
- Solution a  $f^{-1}: x \to \sqrt[3]{x}$

$$f^{-1}: x \rightarrow \sqrt[3]{x}$$
  
 $g^{-1}: x \rightarrow \frac{x-1}{x}$ 

b 
$$fg(x) = f(2x + 1) = (2x + 1)^3$$
  
 $(fg)^{-1}(x) = g^{-1}f^{-1}(x)$ 

$$= g^{-1}(\sqrt[3]{x})$$
  
=  $\frac{\sqrt[3]{x} - 1}{x}$ 

$$gf(x) = g(x^3) = 2x^3 + 1$$

$$(gf)^{-1}(x) = f^{-1}g^{-1}(x)$$
  
=  $f^{-1}\left(\frac{x-1}{2}\right)$ 

$$=\sqrt[3]{\frac{x-1}{2}}$$

Note that having found the composite function, the inverse can also be found by writing it in the form y = fg(x) (or y = gf(x)), interchanging the xand v, and then making v the subject of the equation.

Applying this technique to Example 5b, writing fg as  $y=(2x+1)^3$  and then interchanging x and y gives  $x=(2y+1)^3$ . Making y the subject of this equation,  $y=\frac{1}{2}(\sqrt[3]{x}-1)$ . So  $(fg)^{-1}(x)=\frac{1}{2}(\sqrt[3]{x}-1)$ .

Applying this technique to Example 5c, writing gf as  $y=2x^3+1$  and then interchanging x and y gives  $x=2y^3+1$ . Making y the subject of this equation,  $y=\sqrt[3]{\frac{1}{2}(x-1)}$ . So  $(gf)^{-1}(x)=\sqrt[3]{\frac{1}{2}(x-1)}$ , as before.

Read from right to I

Check these by substituting values the function into th

Check this result by substituting values

Check this result by substituting values

# 4.3 Composite Functions

## Exercise

## Technique





2 For each of the following, express function p as a composite of the functions  $f: x \rightarrow 5x$ ,  $g: x \rightarrow x + 3$  and  $h: x \rightarrow \sin x$ :

- a  $p: x \rightarrow 5x + 3$ d  $p: x \rightarrow 5 \sin x + 15$  $p: x \rightarrow \sin(x+3)$  $p: x \rightarrow x + 6$ c  $p: x \rightarrow \sin x + 3$  $p: x \rightarrow \sin(5x + 15)$ .
- 3 Given that f(x) = x 3, g(x) = 10x and  $h(x) = \frac{1}{2}(x \neq 0)$ :
  - find an expression for fgh(x)solve the equation fgh(x) = x

4 Functions f and g are defined by f(x) = 3x + 5 and  $g(x) = \frac{x - 5}{3}$ .

- Find expressions for  $f^2(x)$  and  $g^2(x)$ . Show that fg(x) = x and gf(x) = x.
  - Comment on the significance of your results in b.
- **5** The functions f and g are defined by  $f: x \to 4 x^2$  for  $\{x \in \mathbb{R}\}$  and  $g: x \to \sqrt{x}$  for  $\{x \in \mathbb{R}, x \ge 0\}$ .
  - State the ranges of f and g for the given domains.
    - b Find an expression for fg, and determine its domain.
    - Find an expression for gf, and determine its domain.
- 6 The functions f and g are defined by f: x → ½x² for (x ∈ R) and  $g: x \to \frac{2}{x-1}$  for  $\{x \in \mathbb{R}, x \neq 1\}$ . Find expressions for the following, in each case stating any values of x for which the composite functions are undefined:
  - a fo(x)
- Given that  $f(x) = x^3$ , g(x) = 1 3x and  $h(x) = \frac{2}{x}$   $(x \neq 0)$ , find expressions
  - a f<sup>-1</sup>, g<sup>-1</sup> and h<sup>-1</sup> c hg, (hg)<sup>-1</sup> and g<sup>-1</sup>h<sup>-1</sup>







## 4.4 Transformations of Graphs and Functions

#### Translations

## Graphs of the form y = f(x) + a

Using a graphical calculator draw the graphs of  $y = x^2$ ,  $y = x^2 + 5$  and  $y = x^2 - 3$  on the same axes. How are the graphs of  $y = x^3 + 5$  and  $y = x^2 - 3$  related to the graph of  $y = x^2$ ? Notice that the shape of the curve is the same. The curve has been translated, or moved.



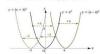
Graphi calcula suppor pack

The three curves all have the same shape. Although they appear to be getting closer together, their vertical separation at every value of x is constant; the graph of  $y = x^2 + 5$  is 3 units above the graph  $y = x^2$ , while the graph of  $y = x^2 - 3$  is 3 units below  $y = x^2$ . In fact the curve  $y = x^2$  by 4 units contained by simply translating the curve  $y = x^2$  by 4 units parallel to the y-axis and the curve  $y = x^2$  by 3 units parallel to the y-axis. This can be permission at 6 likely  $x = x^2$  by 3 units parallel to the  $x = x^2$  by 3 units parallel to the  $x = x^2$  by 3 units parallel to the  $x = x^2$  by 3 units parallel to  $x = x^2$  by 4 un

The graph of y = f(x) + a is obtained by translating the graph of y = f(x) through a units parallel to the y-axis.

## Graphs of the form y = f(x + a)

Using a graphical calculator, draw the graphs of  $y=x^2$ ,  $y=(x+3)^2$  and  $y=(x-4)^2$  on the same axes. How are the graphs of  $y=(x+3)^2$  and  $y=(x-4)^2$  related to the graph of  $y=x^2$ ?





The graphs of  $y=x^2,y=(y+3)^2$  and  $y=(y-4)^2$  all have the same shape. The curve  $y=(x+3)^2$  is obtained by translating each point on the curve  $y=x^2$  by -3 units parallel to the x-axis. The graphs of  $y=x^2$  and  $y=(x+3)^2$  have the same value of y when the x-coordinate on the curve  $y=(x+3)^2$  is 3 units smaller than that on the curve  $y=x^2$  and  $y=(x+2)^2$  is 3 units smaller than that on the curve  $y=x^2$  the  $y=x^2$   $y=x^2$ . The curve  $y=(x+3)^2$  is obtained by translating the curve  $y=x^2$  by  $y=x^2$  by  $y=x^2$  the  $y=(x+3)^2$  is obtained by translating the curve  $y=x^2$  by  $y=x^2$  by  $y=x^2$  the  $y=(x+3)^2$  is obtained by translating the curve

The graph of y = f(x + a) is obtained by translating the graph of y = f(x) through -a units parallel to the x-axis.

## Example 1

The diagram shows the graph of y = f(x) for  $f(x) = x^3 - 3x^2 - 9x + 11$ . Functions g(x) and h(x) are related to f(x) with g(x) = f(x-1) and h(x) = f(x+2) - 3.

- a Explain how the graphs of y = g(x) and y = h(x) can be obtained from the graph of y = f(x).
   b Sketch both of these graphs, indicating the coordinates of their
- turning points. c Show that  $g(x) = x^2 - 6x^2 + 16$  and  $h(x) = x^3 + 3x^2 - 9x - 14$ .

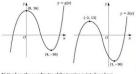


#### Solution

The graph of y = g(x) = f(x - 1) is obtained by translating the y = f(x) graph by +1 unit parallel to the x-axis.

The graph of y = h(x) = f(x + 2) - 3 is obtained by translating the y = f(x) graph by -2 units parallel to the x-axis, and -3 units parallel to the y-axis.

b



Notice how the coordinates of the turning points have been translated.

 $\mathbf{c} \quad g(x) = f(x-1)$ 

$$=(x-1)^3-3(x-1)^2-9(x-1)+11$$

$$= (x^3 - 3x^2 + 3x - 1) - (3x^2 - 6x + 3) - (9x - 9) + 11$$

$$=x^3-6x^2+16$$
, as required

h(x) = f(x+2) - 3

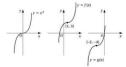
$$= (x+2)^3 - 3(x+2)^2 - 9(x+2) + 11 - 3$$

$$= (x^3 + 6x^2 + 12x + 8) - (3x^2 + 12x + 12) - (9x + 18) + 8$$

$$=x^3 + 3x^2 - 9x - 14$$
, as required

## Example 2

The diagram shows the graph of  $y = x^3$ . The graphs of y = f(x) and y = g(x) have been obtained by translating the curve  $y = x^3$ .



- a Describe the transformation by which the graph of y = x<sup>3</sup> is mapped to the graphs of y = f(x) and y = g(x).
- **b** Find expressions for f(x) and g(x).

collect like terms an

### Solution

a The graph of y = f(x) is obtained by translating the curve y = x<sup>3</sup> by +1 unit parallel to the x-axis, and +3 units parallel to the y-axis. The graph of y = g(x) is obtained by translating the curve y = x<sup>3</sup> by -2 units parallel to the x-axis, and -4 units parallel to the y-axis.

b  $f(x) = (x-1)^3 + 3$ 

Expanding the brackets and collecting like terms,

 $f(x) = x^3 - 3x^2 + 3x + 2$ 

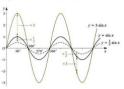
 $g(x) = (x+2)^3 - 4$ 

Expanding the brackets and collecting like terms,  $g(x) = x^3 + 6x^2 + 12x + 4$ 

#### Stretches

## Graphs of the form y = af(x)

Using a graphical calculator, draw the graphs of  $y=\sin x$ ,  $y=3\sin x$  and  $y=\frac{1}{2}\sin x$  on the same axes. How are the graphs of  $y=3\sin x$  and  $y=\frac{1}{2}\sin x$  related to the graph of  $y=\sin x$ ?



Look at the graphs of  $y=\sin x$  and  $y=\sin x$ . Both curves repeat themselves with a period of  $360^\circ$ . The sine are arrived to the sine function. However, the curve  $y=\sin x$  is an amplitude of 3. This is because its maximum and minimum values are t=3 and -1 respectively. In fact, the curve  $y=3\sin x$  can be drawn by simply stretching the curve  $y=\sin x$  and t=0 to the  $t=x\sin x$  by  $t=x\sin x$ .

The graph  $y = \frac{1}{2} \sin x$  also has a period of 360°. Notice that its amplitude is 0.5. It can be obtained by 'stretching' the curve  $y = \sin x$  by a scale factor

The x-axis translation is the -1, and the y-axis translation is the +3.

The x-axis translation is the +2, and the y-axis translation is the -4.

Graphical calculator support pack

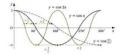
Amplitude is the greatest height reached by the wave from the of  $\frac{1}{2}$  parallel to the y-axis. Notice also that, a stretch factor between 0 and 1 actually has the effect of compressing the curve (that is making it closer to the x-axis).

This can be generalised as follows:

The graph of y=af(x) is obtained from the graph of y=f(x) by a one-way stretch, of scale factor a, parallel to the y-axis.

## Graphs of the form y = f(ax)

Using a graphical calculator, draw the graphs of  $y=\cos x, y=\cos 2x$  and  $y=\cos 3$  on the same axes. How are the graphs of  $y=\cos 2x$  and  $y=\cos 3$  related to the graph of  $y=\cos 3$ . Explain the transformation required to obtain the graph of y=f(xx) from the graph of y=f(x).



The graph of  $y=\cos x$  repeats itself every 360°. The curve  $y=\cos 2x$  has a period of only 190°. In Completes two full cycles every 360°. In fact, the curve  $y=\cos 2x$  has been obtained by 'stretching' the graph of  $y=\cos x$  parallel to the  $x=\sin x$  by a scole factor of f. This has the effect of compressing each cycle into half the space. Notice that this is a one-way stretch and that the amplitude of the cosine curve is not altered.

The graph of  $y = \cos(\frac{x}{2})$  completes half of a full cycle within 360°. It has a period of 720°. It is obtained from the graph of  $y = \cos x$  by a one-way stretch of scale factor 2 parallel to the x-axis.

Stretches like this can be summarised as:

The graph of  $y = f(\alpha x)$  is obtained from the graph of y = f(x)by a one-way stretch, scale factor  $\frac{1}{2}$ , parallel to the x-axis.

## Example 3

The diagram shows the graph of y = f(x), where  $f(x) = 3 - 2x - x^2$ . This graph is manned to y = y(x) by a stretch of factor 2 narallel to the y-axis.

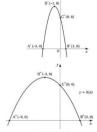


The graph of y = g(x) is then itself mapped to y = h(x) by a stretch of factor 3 parallel to the x-axis.



- Sketch the graphs of v = g(x) and v = h(x), Indicate clearly the coordinates of the images of points A, B, C and D.
  - Find expressions for g(x) and h(x) in terms of x.

## Solution



The graph of y = g(x) is obtained by stretching the graph of y = f(x)by a factor of 2 parallel to the y-axis. So

$$g(x) = 2f(x)$$

$$= 2(3 - 2x - x^2)$$
$$= 6 - 4x - 2x^2$$

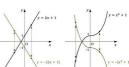
The graph of y=h(x) is obtained by stretching the graph of y=g(x) by a factor of 3 parallel to the x-axis. So

$$h(x) = g(\frac{1}{3}x)$$
  
=  $6 - \frac{4x}{3} - 2\left(\frac{x}{3}\right)^2$   
=  $6 - \frac{4x}{3} - \frac{2x^2}{9}$ 

#### Reflections

#### Graphs of the form y = -f(x)

Using a graphical calculator, draw the graphs of y=2x+1 and y=-(2x+1). How are these two graphs related to each other? Now draw the graphs of  $y=x^2+1$  and  $y=-(x^2+1)$ . Are these two graphs related in the same way?



The graphs of y=2x+1 and y=-(2x+1) are shown. The latter has been obtained by reflecting the line y=2x+1 in the x-axis. Positive values of y=-(2x+1). The curve  $y=-(x^2+1)$  is similarly a reflection of the curve  $y=-(x^2+1)$  is similarly a reflection of the curve  $y=-(x^2+1)$  is similarly a reflection of the curve  $y=-(x^2+1)$  is the x-axis.

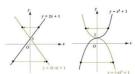
This can be generalised as follows:

The graph of y = -f(x) is a reflection of the graph of y = f(x) in the x-axis.

## Graphs of the form y = f(-x)

Use a graphical calculator to draw the graphs of y = 2x + 1 and y = 2(-x) + 1 on the same axes. Now draw the graphs of  $y = x^3 + 1$  and  $y = (-x)^3 + 1$ . How are these curves related to one another?





The graphs of v = f(x) and v = f(-x) for f(x) = 2x + 1 and  $f(x) = x^3 + 1$ respectively are shown. In both examples, the graph of v = f(-x) is obtained by reflecting the graph of y = f(x) in the y-axis.

This transformation can be summarised as:

The graph of y = f(-x) is obtained by reflecting the graph of y = f(x) in the y-axis.

## Example 4

The graph of y = f(x) is mapped to the graph of y = g(x) by a reflection in one axis, and a translation. Describe the transformations that have occurred. Clearly state the order in which they were carried out. Find an expression for g(x).



#### Solution

Notice that there are two ways in which the graph of  $y = 2^x$  can be mapped to y = g(x):

- a reflection in the x-axis, followed by a translation of +2 units parallel to the y-axis;
- a translation of -2 units parallel to the y-axis, followed by a reflection in the x-axis.

The second combination of 
$$y=2^x$$
  
transformations gives the  $\int translation \, sf-2$  units parallel to  $y$ -axis same expression.  $y=2^x-2$ 

reflection in x-axis  $v = -(2^x - 2) = -2^x + 2$ The general quadratic curve

#### All quadratic expressions can be written in the form $c(x + a)^2 + b$ , where

a, b and c are constants. Why is this rearrangement useful? The graphs of  $y = x^2$  and  $y = c[(x + a)^2 + b]$  can be compared. The values of a, b and cthen give an indication of the transformations used.

Activities, Chapter 1.

### Example 5

Express the function  $g(x) = 2x^2 + 8x + 6$  in the form  $c[(x + a)^2 + b]$ , where a, b and c are constants. Describe the transformations by which the curve  $y = x^2$  is mapped to the graph of this function. Sketch the graph of y = g(x).

## Solution

$$g(x) = 2x^{2} + 8x + 6$$

$$= 2(x^{2} + 4x + 3)$$

$$= 2(x^{2} + 4x + 4 - 1)$$

$$= 2[(x + 2)^{2} - 1]$$

The graph of  $v = x^2$  is mapped to the graph of v = g(x) by translations of -2 units parallel to the x-axis and -1 unit parallel to the y-axis, followed by a stretch of factor 2 parallel to the v-axis.



Complete the square

translations are appl although they must h applied before the stretch.

## 4.4 Transformations of **Graphs and Functions**

## Exercise

## Technique

1 The diagram shows the graph of y = f(x), where  $f(x) = x^2 - 2x$ .



For each of the following transformations of this function:

- describe the transformation(s) geometrically;
- ii write down an expression for the new function;
- iii sketch the graph of the transformed function, indicating the coordinates of its intersection with the axes and the turning point:
  - y = f(x) + 2d y = -3f(x)
- b v = f(x-3)v = f(-1x)
- v = f(2x)v = f(x+1) + 4



a. Express f in the form  $f(x) = (x + a)^2 + b$ , where a and b are integers. b Describe the transformation by which the graph of  $v = x^2$  is mapped to the graph of v = f(x).



- Express g in the form  $g(x) = 2(x + a)^2 + b$ , where a and b are integers. b Describe the transformations by which the graph of  $y = x^2$  is mapped to the graph of v = g(x). Clearly state the order in which they must be applied.
- 4 Each of the following quadratic curves is a transformation of the curve  $v = x^2$ . In each case, state the transformation(s) that have occurred. State also the order in which they must be applied.

a 
$$y = x^2 + 3$$
  
b  $y = 4x^2$ 

3 e 
$$y = \frac{1}{2}x^2 + 1$$
  
f  $y = x^2 - 6x + 10$   
2)<sup>2</sup> g  $y = x^2 + 4x$ 

c 
$$y = (x-2)^2$$
  
d  $y = x^2 + 2x + 5$ 

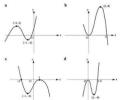
h 
$$y = 2x^2 - 4x + 3$$

**5** The diagram shows the graph of  $y = x^3 - 3x^2$ .

Describe the transformations that map this graph to each of the following graphs. State the order in which they must be applied.

Use these transformations to write down the equation of each graph.





Describe the transformations by which the graph of  $y = \sin x$  is

mapped to each of the curves below. Make a sketch of the graph of each of the transformed functions for  $-360^{\circ} \le x \le 360^{\circ}$ .

 $y = \sin(x + 90^\circ)$  $y = -2\sin x$ 

b  $v = \sin(\xi)$ d  $y = 3 + \sin x$ 

**7** The function  $f: x \to \frac{1}{x}, x \neq 0$  is transformed to give the function g. For each of the following transformations:

find an expression for g:

state the value of x for which function g is undefined:

a a stretch of factor 3 parallel to the y-axis

b a translation of +2 units parallel to the x-axis

a stretch of factor 1 parallel to the x-axis, followed by a translation of -4 units parallel to the v-axis

d a translation of −5 units parallel to the x-axis, followed by a stretch of factor 12 parallel to the y-axis.

# 4.5 Even, Odd and Periodic Functions

Several of the functions considered so far have graphs that are symmetrical in some way. We can categorise these functions as even, odd or periodic.

#### Even functions

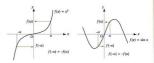
The graph of an even function has the y-axis as a line of symmetry. Examples of even functions include  $f(x) = x^2$  and  $f(x) = \cos x$ .



The reflection of the graph of y=f(x) in the y-axis gives the graph of y=f(-x). What does this suggest to you? Even functions satisfy the condition f(-x)=f(x). This condition can be used to check whether or not a function is even.

#### **Odd functions**

The graphs of odd functions have rotational symmetry about the origin. Examples of odd functions include  $f(x) = x^3$  and  $f(x) = \sin x$ .



Odd functions satisfy the condition f(-x)=-f(x). This condition can be used to check whether or not a function is odd.

#### Example 1

State whether the following are graphs of even functions, odd functions, or neither:





#### Solution

- a The graph has rotational symmetry about the origin. This is the graph of an odd function.
- b The graph is symmetrical about the y-axis. This is the graph of an even function.
- c This graph has no rotational symmetrical about the origin and no reflective symmetry about the y-axis. The function is neither even nor odd.
- d This is a graph of an odd function because it has rotational symmetry about the origin.

#### Example 2

The functions f, g and h are defined by  $f(x) = x^3 - 2x$ ,  $g(x) = 1 + x^2 - 5x^4$  and  $h(x) = 3x^2 + 2x$ . Determine which of these functions are even or odd.

## and $h(x) = 3x^2 +$ Solution

Check whether or not a function is even or odd by substituting -x into the function in place of x.

function in place of x.  

$$f(-x) = (-x)^3 - 2(-x)$$

$$= -x^3 + 2x$$

$$= -(x^3 - 2x)$$
So  $f(-x) = -f(x)$ 

Therefore  $f(x) = x^3 - 2x$  is an odd function.

Writing this in terms the original function

$$g(-x) = 1 + (-x)^2 - 5(-x)^4$$
$$= 1 + x^2 - 5x^4$$

So 
$$g(-x) = g(x)$$

Therefore  $g(x) = 1 + x^2 - 5x^4$  is an even function.

$$h(-x) = 3(-x)^2 + 2(-x)$$

$$= 3(-x)^2 + 2(-x)$$
  
=  $3x^2 - 2x$ 

Since  $h(-x) \neq h(x)$  and  $h(-x) \neq -h(x)$ , function h is neither even nor odd.

#### The modulus function

The modulus function f(x) = |x| reflects negative values into their positive equivalents. It is defined by:

$$f(x) = x$$
, for  $x > 0$  and  $f(x) = -x$ , for  $x < 0$ 

Since its graph is symmetrical about the y-axis, the modulus function f(x) = |x| is even.



To obtain the graph of y=|f(x)|, first sketch the graph of y=f(x). The parts of this graph for which y is positive are kept: the parts for which y is negative are reflected in the x-axis.

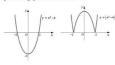
### Example 3

Sketch the graphs of:  $v = |x^2 - 4|$ 

b 
$$v = |\sin x|$$

#### Solution

a First sketch the graph of y = x² - 4. Now reflect in the x-axis those parts of this graph that lie below the x-axis.





b Sketch the graph of  $y=\sin x$  and then reflect in the x-axis those parts that lie below the x-axis.



The graphs of functions related to the modulus function can be sketched by applying the appropriate transformations to the graph of  $y=|\mathbf{x}|$ .

## Example 4 Sketch the graphs of:

a v = |x + 3|

b 
$$y = |2x + 1|$$
.

#### Solution

a The graph of y = |x + 3| is obtained by translating the graph of y = |x| by −3 units parallel to the x-axis.



b The graph of y = |2x + 1| is obtained by stretching the graph of y = |x| by a factor of ½ parallel to the x-axis, and a translation of -½ parallel to the x-axis.



To obtain the graph of  $y = f(|\mathbf{x}|)$ , first sketch the graph of  $y = f(\mathbf{x})$  for positive values of  $\mathbf{x}$ . For negative values of  $\mathbf{x}$ , the value of  $\mathbf{y} = f(|\mathbf{x}|)$  is found by substituting the equivalent positive value of  $\mathbf{x}$  into the function. This simply reflects the graph of  $y = f(\mathbf{x})$  for positive values of  $\mathbf{x}$  in the y-axis.

#### Example 5

Sketch the graphs of:  $\mathbf{a} \quad \mathbf{v} = |\mathbf{x}| - 2$ 

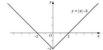
 $\mathbf{b} \quad y = \sin|x|.$ 

#### Solution

v-axis.

a The graph of y = |x| - 2 is obtained by first drawing the graph of y = x - 2 for positive values of x, and then reflecting this in the





b The graph of y = sin |x| is obtained by first drawing the graph of y = sin x for positive values of x, and then reflecting this in the y-axis.





#### Periodic functions

Periodic functions have graphs that regularly repeat themselves. Examples of periodic functions include the sine, cosine and tangent functions. The graphs of  $y = \sin x$  and  $y = \cos x$  repeat themselves every 360° or  $2\pi$  radians. This value is referred to as the period of the function. The graph of  $y = \tan x$  has a period of only 180° or x radians.

In general, periodic functions f(x) are such that for some constant k,  $f(x\pm k)\equiv f(x)$ , for all values of x, where k is the period of the function.

Writing the trigonometric functions in this form

 $\sin(x\pm360^\circ)\equiv\sin x$   $\cos(x\pm360^\circ)\equiv\cos x$   $\tan(x\pm180^\circ)\equiv\tan x$ Once the behaviour over one period is known, the graph of a periodic function can be drawn. k is the smallest distance over which function repeats itse

#### Example 6

The function f(x) is periodic with a period of 4 units. It is defined by

$$f(x) = \frac{1}{2}x^3$$
,  $0 \le x \le 2$ 

 $f(x) = 8 - 2x, \qquad 2 \le x \le 4$ 

- a Sketch the graph of y = f(x) for 0 ≤ x ≤ 4. Use its periodic behaviour to extend the graph to −6 ≤ x ≤ 10.
  - b Determine the values of f(5) and f(−1.5).

### Solution

Between 0 and 2, the graph is cubic in nature. Between 2 and 4 it is linear with a gradient of -2.



The function f(x) repeats itself with a period of 4. Now sketch its graph for  $-6 \le x \le 10$ .



b  $f(5) \equiv f(1)$   $f(-1.5) \equiv f(2.5)$ =  $\frac{1}{2}(1)^3$  = 8 - 2(2.5)=  $\frac{1}{2}$  = 3

e function repeat elf every 4 units.

The function is cubi when x = 1.

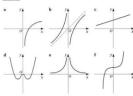
The function is lines when x = 2.5.

## 4.5 Even, Odd and Periodic **Functions**

## Exercise

## **Technique**

Which of the following graphs represents the graph of an even or an odd function?





- $a \quad f(x) = x 1$ f(x) = 2x + |x|
- $f(x) = (x+1)^3$  $f(x) = \frac{1}{2x + 1}$
- $f(x) = \sin^2 x$

 $f(x) = \frac{x}{2x+1}$ 

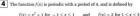
d  $f(x) = (x+1)^2$ 

- $f(x) = (x^2 + 4)^3$
- 3 The diagram shows the graph of v = |f(x)| for some cubic function f(x).
  - On separate diagrams sketch











Determine the values of f(4.5) and f(10).

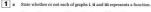




## Consolidation

#### Exercise A







b One of the graphs is such that the function f represented by the graph has an inverse f-1. Assuming equal scales on the axes of the graphs drawn, sketch the graph of  $f^{-1}$ . (AFR)



- Express the composite function gf in terms of x. **b** Sketch the curve with equation y = gf(x) and label the coordinates of
- the points at which your curve intersects the x-axis. Determine the range of the function of.
- Find the value of x for which  $g(x) = g^{-1}(x)$ , where  $g^{-1}$  is the inverse function of g. (ULEAC)
- 3 The functions f and g are defined by  $f: x \to 9x^2 4$  for  $\{x \in \mathbb{R}: x \ge 0\}$  and  $g: x \to \sqrt{x+1}$ , for  $\{x \in \mathbb{R}: x > 0\}$ .
- a State the range of f. b Sketch the graph of f and hence explain why the inverse function f<sup>-1</sup>
  - exists. Find f-1, stating its domain. c The composite function f ∘ g is defined for x > 0.
    - Find  $f \circ g(x)$ .

notation for the ii Determine the exact surd solution to the equation f(x) = f ∘ g(x). composite function (AFR)

4 The function f has as its domain the set of all non-zero real numbers, and is given by  $f(x) = \frac{1}{x}$  for all x in this set. On a single diagram, sketch the following graphs, and indicate the geometrical relationships between them:

 $\mathbf{a} \quad \mathbf{v} = f(\mathbf{x})$ b v = f(x + 1)v = f(x+1) + 2Deduce, explaining your reasoning, the coordinates of the point about which the graph of  $y = \frac{2x+3}{x+3}$  is symmetrical.

(LICLES)

- 5 Function f is defined on the domain  $0 \le x \le [by f(x) = tan 2x$ . Find an expression for  $f^{-1}(x)$  and state, or obtain, the domain of  $f^{-1}$ . (NEAB)
- **6** Functions f and g are defined by  $f: x \to 4 x$  for  $\{x \in \mathbb{R}\}$  and  $g: x \to 3x^2$ for  $\{x \in \mathbb{R}\}.$ 
  - a Find the range of g.
  - b Solve gf(x) = 48. c Sketch the graph of y = |f(x)| and hence find the values of x for which |f(x)| = 2.(ULEAC)
- 7 Functions f and g are defined by  $f: x \to 3x 1$  for  $\{x \in \mathbb{R}\}$  and  $g: x \rightarrow x^2 + 1$  for  $\{x \in \mathbb{R}\}$ .
  - a Find the range of g.
    - b Determine the values of x for which gf(x) = fg(x).
  - Determine the values of x for which |f(x)| = 8. d Function  $h: x \to x^2 + 3x$  for  $\{x \in \mathbb{R}, x \ge a\}$  is one-to-one. Find the least value of q and sketch the graph of this function.
- (ULEAC) 8 The diagram shows the curve y = f(x + a), where a is a positive constant.





Sketch the following curves, on separate diagrams, in each case stating the coordinates of the maximum and minimum points:

- $\mathbf{a} \quad v = f(x)$
- b v = -2f(x + a).
  - (I)CLES)
- **9** The function f is defined on the domain x > 0 by  $f(x) = 1 + \frac{2}{5}$ .
  - Find an expression for  $f^{-1}(x)$ . State the domain of  $f^{-1}$ .

The composite function g is defined by g = ff. Find an expression for g(x).

- State the range of g.

(WIEC)

**10** Function f is defined on the domain  $-1 \le x \le 2$  by  $f(x) = 4 - 2x - x^2$ .

Determine the values of a and b such that  $f(x) = a - (b + x)^2$ . The diagram shows a sketch of the graph of v = f(x).

b Describe, as either a single transformation or as two separate transformations, how the graph of y = f(x) may be obtained from part of the graph of  $y = -x^2$ ,  $\{x \in \mathbb{R}\}$ . State the coordinates of the points

of  $y = -x^2$  which correspond to the end points of y = f(x). Sketch the graph of  $y = f^{-1}(x)$ .

Calculate the value of x for which  $f(x) = f^{-1}(x)$ .

(NEAB)

### Exercise B

1 The figure shows part of the graph of  $y = \sqrt{x}$  (the scales on the two axes being the same). Describe the transformations that map this graph on to the graphs of:  $v = 50 + \sqrt{x}$ 



 $\mathbf{d} \quad \mathbf{x} = \sqrt{\mathbf{y}}$ 

(OCSEB)

for  $\{x \in \mathbb{R}: -\frac{\pi}{2} < x < \frac{\pi}{2}\}.$ 

Write down  $f_{\theta}(x)$  and state the domain of  $f_{\theta}$ .

b Find  $g^{-1}(\sqrt{3})$  in terms of  $\pi$ . Explain briefly why f does not have an inverse.

(NEAB)

**3** Functions f, g and h are defined for  $\{x \in \mathbb{R}: x > 0\}$  by  $f: x \to x^2$ ,  $g: x \to \frac{2}{x}$ and  $h: x \to \sqrt{x}$ . Express in terms of x:

2 Functions f and g are defined by  $f(x) = 1 + x^2$  for  $\{x \in \mathbb{R}\}$  and  $g(x) = \tan x$ 

a ch(x)

b fah(x)

State which two of the three functions f, g and h are inverses of each other.

(UCLES)

#### 4 Functions

- Functions f and g are defined with their respective domains by  $f: x \to \frac{3}{(2x-1)}$  for  $\{x \in \mathbb{R}, x \neq \frac{3}{2}\}$  and  $g: x \to x^2 + 1$  for  $\{x \in \mathbb{R}\}$ .
  - a Find the values of x for which f(x) = x.
  - b Find the range of g.
  - c The domain of the composite function f ∘ g is ℝ. Find f ∘ g(x) and state the range of f ∘ g.
    (AEB)

Recall the alternative notation for the composite function

Function f is defined on the domain 0 ≤ x ≤ 2 by f(x) = x<sup>2</sup>. Function g is defined by translating the graph of y = f(x), with this domain, 3 units in the positive x direction and 5 units in the positive y direction to give the graph of y = g(x).

- a Sketch the graphs of y = f(x) and y = g(x).
   b State the domain and range of function g.
- c Find an expression for g(x).
- d Find an expression for  $g^{-1}(x)$ .
- State the domain and range of the function g<sup>-1</sup>.

(NEAB)

Express x² + 4x in the form (x + a)² + b, stating the numerical values of a and b. Functions f and g are defined as f: x → x² + 4x for {x ∈ ℝ: x > -2} and g: x → x + 6 for {x ∈ ℝ}.

- a Show that the equation gf(x) = 0 has no real roots.
- b State the domain of  $f^{-1}$ .
- c Find an expression in terms of x for f<sup>-1</sup>(x).
- d Sketch, on a single diagram, the graphs of y = f(x) and y = f<sup>-1</sup>(x).
  (UCLES)



- $f^{-1}(x)$ , and state the domain of  $f^{-1}$ . O c There is one value of x for which  $f(x) = f^{-1}(x)$ . By considering your diagram, explain why this value of x satisfies the equation  $1 + \sqrt{x} = x$ .
- d By treating the equation 1 + √x = x as a quadratic equation for √x, or otherwise, show that the value of x satisfying f(x) = f<sup>-1</sup>(x) is x = ½(3 + √5).

(UCLES)

## **Applications and Activities**

 $\blacksquare$  There are four possible functions that map elements in the set  $\{a,b\}$  across to elements in the set  $\{p,q\}$ , as illustrated by the mapping diagrams below.

In the first two mappings,  $\{a,b\}$  is the domain and  $\{p,q\}$  is the range, containing all the output values. However, in the second two mappings,  $\{p,q\}$  is the co-domain of the functions, containing the possible output values.

Now consider the functions that could possibly map elements in  $\{a,b,c\}$  to elements in  $\{p,q\}$ .

- a How many have {p, q} as their range, and how many have {p, q} as their co-domain?
- b What is the total number of possible functions?
- b What is the total number of possible functions?
  c How many different functions exist in the more general case of m elements in the domain and n elements in the co-domain?

## Summary

- A function is a many-to-one or one-to-one mapping for which each input value in the domain gives only one output value.
- The range of a function is the set of output values to which values in its
  domain map; the range is a subset of the co-domain.
   Only functions which, for a given domain, are one-to-one mappings, hav
- Only functions which, for a given domain, are one-to-one mappings, have inverse functions.
- The graph of the inverse function y = f<sup>-1</sup>(x) is obtained by reflecting the graph of y = f(x) in the line y = x for values of x where f is one-to-one.
   An algebraic expression for f<sup>-1</sup>(x) can be found by interchanging x and y
- in the equation y = f(x) and then rearranging it to make y the subject of the equation again.
- Functions for which f<sup>-1</sup>(x) ≡ f(x) are self-inverses.
- The inverse trigonometric functions y = sin<sup>-1</sup>x, y = cos<sup>-1</sup>x and y = tan<sup>-1</sup>x only exist for the restricted domains in which the sine, cosine and tangent functions are one-to-one.

- The composite function fg(x) (alternative notation f ∘ g(x)) is obtained by putting values of g(x) into function f.
- The composite function ff(x), or f<sup>2</sup>(x), is obtained by putting values of f(x) back into the function f again.
- The graph of y = f(x) can, by a combination of translations, stretches, and reflections, be transformed into the graph of a related function, as shown in this table.

| Function | Transformation                                         |
|----------|--------------------------------------------------------|
| f(x) + a | translation of $+a$ units parallel to the y-axis       |
| f(x+a)   | translation of $-a$ units parallel to the x-axis       |
| af(x)    | one-way stretch, of factor a, parallel to the y-axis   |
| f(ax)    | one-way stretch, of factor 1/2, parallel to the x-axis |
| -f(x)    | reflection in the x-axis                               |
| f(-x)    | reflection in the y-axis                               |

- Even functions are those that satisfy the condition f(−x) = f(x), and are therefore symmetrical about the y-axis.
- Odd functions are those that satisfy the condition f(−x) = −f(x), and therefore have rotational symmetry about the origin.
- Periodic functions are those for which f(x ± k) = f(x) for some constant k; such functions repeat themselves every k units along the x-axis, and k is the period of the function.

## 5 Differentiation I

#### What you need to know

- How to find the gradient of the straight line joining two points.
- How to find the value of a function.
- How to find the equation of the straight line that passes through a given point, when its gradient is known.
- How to solve simple trigonometric equations.
- How to use negative and fractional indices.

## Review

- 1 Find the gradient of the straight line joining the following pairs of points:
  - a (2.1) and (6.9) c (-2, 11) and (1, -7)
- b (0.7) and (3.1) d (-1,-2) and (-4,-11)
- 2 Find the value of the following functions at the given value of x:
  - a  $f(x) = x^2 + 5x + 6$ , when x = -4
    - **b**  $f(x) = 3x + \frac{1}{2}$ , when  $x = \frac{1}{2}$
  - c  $f(x) = \sin 2x 2\cos^2 x$ , when  $x = \frac{\pi}{4}$
  - 3 Find the equation of the straight line that passes through the given point with the gradient indicated, giving your answer in the form y = mx + c: b (3, -11), gradient -3
    - a (1, 4), gradient 6 c (-5,2), gradient - 1
- d (2, 3), gradient ?
- Solve the following trigonometric equations for 0 ≤ θ ≤ 2π: a  $\tan 2\theta = \sqrt{3}$  $c \sin 2\theta = \cos \theta$ 
  - $b \sin \theta + \cos \theta = 0$ d  $\cos 2\theta + \cos \theta = 0$
- 5 Write each of the following in index notation:

# 5.1 Finding the Gradient of a Curve

The gradient at each point on the graph of a linear function, such as y=2x+1, is constant. However, many mathematical functions are not linear, and have curved graphs whose gradients are continuously changing.

Look at the graph of  $y = x^2$ . Notice that the gradient changes from being negative to positive as the graph crosses the y-axis. It also becomes steeper for larger positive and negative values of x.



Finding the gradient of the curve is not as straightforward as it is for the linear function. The gradient of the curved graph at any particular point can be found by calculating the gradient of the tangent to the curve at this point. Look at the graph of  $y=\mathbf{x}^2$  again in more detail.



Draw tangents to this graph at the points x = -3, -2, -1, 0, 1, 2, 3. Notice that for x > 0, the gradient is positive and increases as the tangents become steeper. When x < 0, the gradient is negative, and becomes more negative as x decreases. By constructing right-angled triangles and using

$$gradient = \frac{\text{change in } y}{\text{change in } x} = \frac{\Delta y}{\Delta x}$$

we can estimate the gradient of the curve at these different points.

| e | can | estimate | the | gradient | ol | the | cu | rve | at | these | diffe | rent | por | nt | k. |  |
|---|-----|----------|-----|----------|----|-----|----|-----|----|-------|-------|------|-----|----|----|--|
|   | -   |          |     |          |    |     |    |     |    |       |       |      |     |    |    |  |

These results suggest that the **gradient function** of the curve  $y = x^2$  is 2x. This means that the gradient at any point on this curve can be calculated by multiplying the x-coordinate by 2. The gradient function describes algebraically how the gradient is changing.

However this method of finding the gradient function, by drawing tangents to the curve at a number of different points and then calculating their gradients, has a number of drawbacks.

- Its accuracy depends on the accuracy with which the graph and the tangents to it are drawn, and on the accuracy of the measurements of Δx and Δy.
  - It cannot easily be translated into an algebraic procedure.

How else could the gradient function be found? An alternative method would be to draw a chord from a particular point on a curve to some nearby point. For example, the gradient of the curve  $y=x^2$  at x=2 can be estimated by finding the gradient of the chord drawn from x=2 to x=3 on the curve. The gradient of this chord can be calculated using.

gradient of chord = 
$$\frac{\text{change in } y}{\text{change in } x} = \frac{\Delta y}{\Delta x}$$

$$= \frac{3^3 - 2^2}{3 - 2}$$

$$= \frac{9 - 4}{1}$$

$$= 5$$



The Greek letter  $\Delta$  is used to mean 'a char The gradient of this chord is only a rough approximation to the gradient of the tangent, and to the gradient of the curve itself at x=2. A more accurate value can be found using the chord between the points on the graph corresponding to x=2 and x=2.5.

gradient of chord = 
$$\frac{\Delta y}{\Delta x}$$
  
=  $\frac{2.5^2 - 2^2}{2.5 - 2}$   
=  $\frac{6.25 - 4}{0.5}$   
= 4.5



Notice that the smaller the change in x (denoted  $\Delta x$ ) over which this chord is drawn, the closer its gradient will approximate that of the tangent to the curve at x=2.

Try using  $\Delta x = 0.1$ .

$$\begin{aligned} \text{gradient of chord} &= \frac{\Delta y}{\Delta x} \\ &= \frac{2.1^2 - 2^2}{2.1 - 2} \\ &= \frac{4.41 - 4}{0.1} \end{aligned}$$

Repeat this procedure with  $\Delta x = 0.01$ , and tabulate all your results. What do you notice?

| Δx                                 | 1 | 0.5 | 0.1 | 0.01 |
|------------------------------------|---|-----|-----|------|
| Gradient of chord drawn from x = 2 | 5 | 4.5 | 4.1 | 4.01 |

From these results, notice that as  $\Delta x$  tends towards zero (written  $\Delta x \rightarrow 0$ ), the gradient of the chord tends towards a value of 4. Try  $\Delta x = 0.001$  at x = 2. Does your result get closer to the value of 4?

Find the gradient of the curve  $y = x^2$  at the points x = -3, -2, -1, 0, 1, and 3 by calculating the gradient of the chords drawn from these points, using  $\Delta x = 1, 0.1$ , and 0.01. Notice that as  $\Delta x = 0$ , the gradients of these chords converge towards a limiting value. These results also suggest that the gradient faunction of the curve  $y = x^2$  is 2x.

This method of finding the gradient of a curve by drawing chords between two nearby points on it has two major advantages.

- It does not rely on the accurate drawing of a tangent to the curve, and measurement of Δy and Δx because Δy can be calculated for any given value of Δx.
- It can be translated into an algebraic procedure, known as differentiation from first principles.

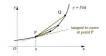
#### Differentiation from first principles

Consider the point P with coordinates (x,y) on the curve y=f(x). Let the nearby point Q on the curve have coordinates  $(x+\delta x,y+\delta y)$ , where  $\delta x$  is the small change in the value of the x-coordinate between P and Q, and  $\delta y$  is the corresponding small change in the value of the y-coordinate.



The gradient of the chord PQ is given by

$$\begin{array}{l} \text{change in } y\text{-coordinate} \\ \text{change in } x\text{-coordinate} \\ \end{array} = \frac{\delta y}{\delta x} = \frac{(y+\delta y)-y}{(x+\delta x)-x} \\ \\ = \frac{f(x+\delta x)-f(x)}{\delta x} \end{array}$$





Check to see if your graphical calculator a derivative function key. This will give th numerical value of t gradient of a curve a chosen point.

If y = f(x) then  $y + \delta y = f(x + \delta x)$  For smaller values of  $\delta x$ , point Q approaches point P. The gradient of the chord PQ becomes closer to the gradient of the tangent to the curve at point P. So, in the limiting case, as  $\delta x \to 0$ ,

gradient of the curve at point 
$$P = \lim_{\delta x \to 0} \left( \frac{\delta y}{\delta x} \right)$$
  
=  $\lim_{\delta x \to 0} \left[ \frac{f(x + \delta x) - f(x)}{\delta x} \right]$ 

This process of finding the gradient of a curve at some point P(x,y) by calculating the gradient of the chord to the point  $Q(x+\delta x,y+\delta y)$ , as  $\delta x$  tends towards zero, is called differentiation from first principles.

The resulting gradient function of the curve is denoted  $\frac{dr}{dx}$  or f'(x), and is a function of x.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) = \lim_{\delta x \to 0} \left[ \frac{f(x + \delta x) - f(x)}{\delta x} \right]$$

Note that  $\frac{dy}{dx}$  is *not* a fraction. It refers to the gradient of the graph of y = f(x).

#### Example 1

Using differentiation from first principles, show that the gradient function of the curve  $y=x^2$  is  $\frac{dx}{dx}=2x$ .

#### Solution

Let y=f(x), where  $f(x)=x^2$ . A small change  $\delta x$  in the x-coordinate of some point on the curve  $y=x^2$  will result in a corresponding small change  $\delta y$  in its y-coordinate, such that

$$\begin{split} \delta y &= f(x + \delta x) - f(x) \\ &= (x + \delta x)^2 - x^2 \\ &= x^2 + 2x \, \delta x + (\delta x)^2 - x^2 \\ &= 2x \, \delta x + (\delta x)^2 \end{split}$$

The gradient function of the curve is given by

$$\frac{dy}{dx} = \lim_{\delta t \to 0} \left( \frac{\delta y}{\delta x} \right)$$

$$= \lim_{\delta t \to 0} \left[ \frac{2x \delta x + (\delta x)^2}{\delta x} \right]$$

$$= \lim_{\delta t \to 0} \left[ \frac{2x \delta x + (\delta x)^2}{\delta x} \right]$$

$$= \lim_{\delta t \to 0} \left( 2x + \delta x \right)$$

$$= Ax \delta x - 0, (2x + \delta x) - 2x$$

So, the gradient at any point on the curve  $y = x^2$  can be calculated using the gradient function  $\stackrel{d}{=} 2x$ .

#### Example 2

Find the gradient function for the general quadratic curve  $v = ax^2 + bx + c$ , where a, b and c are constants.

#### Solution

Let v = f(x), where  $f(x) = \alpha x^2 + bx + c$ . The small change  $\delta y$  in the value of v that results from a small change  $\delta x$  in the value of x is given by

$$\delta y = f(x + \delta x) - f(x)$$
$$= [a(x + \delta x)^{2} + b(x +$$

$$= [a(x + \delta x)^2 + b(x + \delta x) + c] - [ax^2 + bx + c]$$

$$= ax^2 + 2ax \delta x + a(\delta x)^2 + bx + b \delta x + c - ax^2 - bx - c$$

$$= 2ax \delta x + a(\delta x)^2 + b \delta x$$

The gradient function of the curve is given by

$$\begin{aligned} \frac{\mathrm{d}y}{\mathrm{d}x} &= & \liminf_{\delta x \to 0} \left( \frac{\delta y}{\delta x} \right) \\ &= & \liminf_{\delta x \to 0} \left[ \frac{2\alpha x}{\delta x} \frac{\delta x + a(\delta x)^2 + b \, \delta x}{\delta x} \right] \\ &= & \liminf_{\delta x \to 0} \left[ 2\alpha x + a\delta x + b \right] \\ &= & 2\alpha x + b \end{aligned}$$

#### Differentiating $y = x^n$

Differentiating from first principles is a way of establishing the gradient function (or derivative) of different types of functions, but this process can be tedious. The derivative of functions of the form  $y = x^n$ , where n is a positive integer, all follow a similar pattern.

| Punction   | y = x | y = x | $y = x^{-}$     | $y = x^{-}$ | y = x |
|------------|-------|-------|-----------------|-------------|-------|
| Derivative | 1     | 2x    | 3x <sup>2</sup> | 4x³         | 5x4   |
|            |       |       |                 |             |       |

Can you spot the similarities in the derivatives? Notice that the following

algebraic rule explains the similarities.

If 
$$y = x^n$$
, then  $\frac{dy}{dx} = nx^{n-1}$ 
 $\blacktriangleleft$  Learn this result.

Expressed in words, this rule becomes 'multiply by the power, and then reduce the power by one'. A more general rule for differentiating powers of v is-

If 
$$y = \alpha x^n$$
, where  $\alpha$  is a constant, then  $\frac{dy}{dx} = n\alpha x^{n-1}$ 

differentiation

fractional and negative

■ Learn this result.

#### Example 3

Differentiate the following with respect to x:

a 
$$y = x^{10}$$
  
d  $y = \frac{3}{x^2}$ 

**b** 
$$y = 5x^6$$
  
**e**  $y = \frac{1}{2\sqrt{x}}$ 

c 
$$y = \sqrt{x}$$
  
f  $v = 4$ 

a 
$$y = x^{10}$$

$$\frac{dy}{dx} = 10x^{10-1} = 10x^9$$

b 
$$y = 5x^6$$

$$\frac{dy}{dx} = 6 \times 5x^{6-1} = 30x^5$$

c 
$$y = \sqrt{x} = x^{\frac{1}{2}}$$

$$y = \sqrt{x} = x^{\parallel}$$
  
 $\frac{dy}{dx} = \frac{1}{2}x^{\parallel-1} = \frac{1}{2}x^{-\frac{1}{2}}$ 

$$= \frac{1}{2} \times \frac{1}{\sqrt{x}} = \frac{1}{2\sqrt{x}}$$

d 
$$y = \frac{3}{3} = 3x^{-2}$$

$$\frac{dy}{dx} = -2 \times 3x^{-2-1}$$

$$=-6x^{-3}=-\frac{6}{3}$$

e 
$$y = \frac{1}{\sqrt[3]{x}} = \frac{1}{x^{\frac{1}{3}}} = x^{-\frac{1}{3}}$$

$$\frac{dy}{dx} = -\frac{1}{3}x^{-\frac{1}{2}-1}$$

$$= -\frac{1}{3}x^{-\frac{1}{2}} = -\frac{1}{3}x^{-\frac{1}{2}}$$

f v = 4 can be expressed  $v = 4x^0$ , since  $x^0 = 1$ 

$$\frac{dy}{dx} = 0 \times 4x^{\theta-1} = 0$$

By differentiating from first principles, it can be shown that the derivative of the sum (or difference) of two or more functions is simply the sum (or difference) of their individual derivatives. That is:

Remember, multiply by the power, 10, and then reduce the power by 1.

differentiating; that is, convert roots to powers

Recall, 
$$x^{-n} = \frac{1}{\sqrt{n}}$$

 $-\frac{1}{3x^3}$  can also be written  $-\frac{1}{3\sqrt[3]{x^4}}$  or -1

This is as expected, v = 4 is horizontal; its gradient is 0.

#### Example 4 Find the derivatives of the following functions of v-

a 
$$y = x^3 + 4x^2 - 9x - 13$$
 b  $y =$ 

**a** 
$$y = x^3 + 4x^2 - 9x - 13$$
 **b**  $y = 5x + \frac{1}{x} - \frac{2}{x^3}$   
**c**  $y = (2x - 1)(x + 3)$  **d**  $y = \frac{x^3 + 1}{x^3}$ 

 $a \quad v = x^3 + 4x^2 - 9x - 13$ 

$$\frac{dy}{dx} = \frac{d}{dx}(x^3) + \frac{d}{dx}(4x^2) - \frac{d}{dx}(9x) - \frac{d}{dx}(13)$$

$$= 3x^2 + 8x - 9 - 0$$

$$= 3x^2 + 8x - 9$$

**b** 
$$y = 5x + \frac{1}{x} - \frac{2}{x^3}$$
  
=  $5x + x^{-1} - 2x^{-3}$ 

$$= 5x + x^{-1} - 2x^{-2}$$

$$= \frac{dy}{dx} = \frac{d}{dx}(5x) + \frac{d}{dx}(x^{-1}) - \frac{d}{dx}(2x^{-3})$$

$$= 5 + (-1 \times x^{-1-1}) - (-3 \times 2x^{-3-1})$$

$$= 5 - x^{-2} + 6x^{-4}$$

$$= 5 - \frac{1}{x^{2}} + \frac{6}{x^{2}}$$

c 
$$y = (2x - 1)(x + 3)$$
  
=  $2x^2 + 5x - 3$ 

$$= 2x^2 + 5x - 3$$

$$\frac{dy}{dx} = 4x + 5$$

$$y = \frac{x^3 + 1}{x^2}$$

$$= \frac{x^3}{x^2} + \frac{1}{x^2} = x + x^{-2}$$

$$\frac{dy}{dx} = 1 + (-2x^{-3}) = 1 - 2x^{-3}$$

$$=1-\frac{2}{x^3}$$
$$=\frac{x^3-2}{x^3}$$

Differentiation has so far been mainly confined to functions of the form y = f(x), where  $f(x) = \alpha x^n$ . The rules for differentiating can be applied when other letters are used. For example, if z = o(t), where  $o(t) = ot^a$  and g is a constant, we can differentiate z 'with respect to' t. The derivative  $dt = \sigma'(t) = n\alpha t^{x-1}$ 

x before differentiating

Take care with the sis

The last step simply form of the question. a single fraction, usin the common

#### Example 5

Find the derivatives of the following functions:

 $s = ut + \frac{1}{4}\alpha t^2$ , where u and a are constant

$$\mathbf{b} \quad p = \theta - \frac{\theta^3}{6} + \frac{\theta^5}{120}$$

c  $\theta = \frac{2A}{A}$ , where A is constant.

## Solution

a 
$$s = ut + \frac{1}{2}at^2$$

$$\frac{\mathrm{d}s}{\mathrm{d}t} = u + (2 \times \frac{1}{2}at^{2-1}) = u + at$$

$$\mathbf{b} \qquad p = \theta - \frac{\theta^3}{6} + \frac{\theta^5}{120}$$

$$\frac{\mathrm{d}p}{\mathrm{d}\theta} = 1 - \frac{3\theta^2}{6} + \frac{5\theta^4}{120}$$

$$=1-\frac{\theta^2}{2}+\frac{\theta^4}{24}$$

$$\theta = \frac{2A}{r^2} = 2Ar^{-2}$$

$$\frac{d\theta}{ds} = -4Ar^{-3} = -\frac{4A}{s^3}$$

#### Rates of change

The derivative,  $\frac{dr}{dr}$  or f'(x), describes the rate at which the value of rchanges with respect to x at different points on the curve. The rate of change at any particular value of x can be found by substituting this value into the expression derived for  $\frac{dr}{dr}$ . For example, f'(2) is the rate at which the function y = f(x) is changing with respect to x when x = 2.

The concept of 'rate of change' can be applied to equations in other variables. Consider the volume of a sphere, given by  $V = \frac{4}{5}\pi r^3$ . The derivative with respect to variable r,  $\frac{dV}{dr} = 4\pi r^2$ , gives the rate at which the volume V changes with respect to the radius r at any given value of r.

#### Example 6

Find the rate of change with respect to the given variable of the following functions at the values indicated:

- a  $f(x) = x^2 7x$ , when x = 3
- **b**  $u(\theta) = (\theta^2 1)(\theta + 1)$ , when  $\theta = \frac{1}{2}$ .

The variable on the RHS is t. Both u and a are constant.

Differentiating s with

respect to L.

Differentiating p with respect to  $\theta$ .

Differentiating 0 with respect to r.

#### Solution

a 
$$f(x) = x^2 - 7x$$
  
 $\Rightarrow f'(x) = 2x - 7$   
Substituting  $x = 3$ ,  $f'(3) = 6 - 7$   
 $= -1$ 

b 
$$u(\theta) = (\theta^2 - 1)(\theta + 1)$$
  
=  $\theta^3 + \theta^2 - \theta - 1$ 

 $\Rightarrow u'(\theta) = 3\theta^2 + 2\theta - 1$ 

Substituting  $\theta = \frac{1}{2}$ ,  $u'(\frac{1}{2}) = 3 \times \frac{1}{6} + 2 \times \frac{1}{2} - 1$ 

=3+3-1=0

## Example 7

Find the coordinates of the point(s) on the following curves at which the gradient has the value indicated:

$$\mathbf{a} \quad y = x^2 + 4x + 1, \quad \frac{\mathrm{d}y}{\mathrm{d}x} = 8$$

$$\mathbf{b} \quad y = \frac{1}{x} - 2x, \quad \frac{\mathrm{d}y}{\mathrm{d}x} = -6$$

#### Solution

$$\mathbf{a} \quad y = x^2 + 4x + 1 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2x + 4$$

If 
$$\frac{dy}{dx} = 8$$
, then  $2x + 4 = 8$   
This gives  $2x = 4 \Rightarrow x = 2$ 

This gives 
$$2x = 4 \Rightarrow x = 2$$
  
 $\Rightarrow v = (2)^2 + (4 \times 2) + 1 = 13$ 

So, the gradient of the curve  $y = x^2 + 4x + 1$  is 8 at the point (2, 13).

b 
$$y = \frac{1}{x} - 2x = x^{-1} - 2x$$
  
 $\Rightarrow \frac{dy}{dx} = -x^{-2} - 2 = -\frac{1}{x^2} - 2$   
If  $\frac{dy}{dx} = -6$ , then  $-\frac{1}{x^2} - 2 = -6$ 

$$\Rightarrow \frac{1}{x^2} = 4$$

$$\Rightarrow x^2 = \frac{1}{4}$$

$$\Rightarrow x^2 = \frac{1}{4}$$

$$\Rightarrow x = \frac{1}{2} \text{ or } x = -\frac{1}{2}$$

Expand brackets fir

Differentiate u with respect to  $\theta$ .

Substituting the val

When 
$$x = \frac{1}{2}$$
,  $y = \frac{1}{(1)} - 2 \times (\frac{1}{2}) = 2 - 1 = 1$ 

When 
$$x = -\frac{1}{2}$$
,  $y = \frac{1}{(-1)} - 2 \times (-\frac{1}{2}) = -2 + 1 = -1$ 

So the curve  $y = \frac{1}{x} - 2x$  has a gradient of -6 at the points  $(\frac{1}{2}, 1)$  and  $(-\frac{1}{4}, -1)$ .

#### Differentiating with respect to y

It can be shown that the rate of change of x with respect to y,  $\frac{dx}{dy}$ , is the reciprocal of  $\frac{dy}{dy}$ .



◀ Learn this result.

For example, if 
$$y = 3x^2 + 2x$$
, then  $\frac{dy}{dx} = 6x + 2$ , and  $\frac{dx}{dy} = \frac{1}{(\frac{dy}{dx})} = \frac{1}{6x + 2}$ 

This particular method is quicker than having to rearrange  $y=3x^2+2x$  to express x in terms of y before differentiating with respect to y.

#### **Higher derivatives**

Sometimes it is useful to know the gradient of the gradient function at a particular point on the curve y = f(x). This is called the second derivative. It is found by differentiating the first derivative,  $\frac{dr}{dx}$ , with respect to x to give  $\frac{dr}{dx}(\frac{dr}{dx})$ , written  $\frac{dr}{dx}(x) = \frac{dr}{dx}(\frac{dr}{dx})$ .

The expression  $\frac{g_{s}}{ds^{2}}$  is read 'd-two-y-by-d-x-squared', and shows that the differentiation process has happened twice. It is *not* the same as squaring  $\frac{ds}{ds}$ .

Differentiating again with respect to x would give the third derivative,  $\frac{d^2y}{dx^2}$  , or f'''(x) .

Higher derivatives, of the form  $\frac{d^ny}{dx^n}$  or  $f^{(n)}(x)$ , can be obtained by differentiating y=f(x) n times with respect to x.

It is important to remember that  $\frac{d^2y}{dx^2} \neq (\frac{dy}{dx})^2$ .

d'y is read 'd-three-yby-d-x-cubed'.

#### Example 8

Find the first, second and third derivatives of the following functions:

- a  $y = x^4 + 5x^3 9x^2 + 2x 7$
- **b**  $f(x) = x^3 \frac{1}{x}$

#### Solution

Solution 
$$x^4 + 5x^3 - 9x^2 + 2x - 7$$
  

$$\Rightarrow \frac{dy}{dx} = 4x^3 + 15x^2 - 18x + 2$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right)$$

$$= \frac{d}{dx} (4x^2 + 15x^2 - 18x + 2)$$

$$= 12x^2 + 30x - 18$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{d^2y}{dx^2} \right)$$

$$\frac{d^3y}{dx^3} = \frac{d}{dx} \left( \frac{d^2y}{dx^2} \right)$$

$$= \frac{d}{dx}(12x^2 + 30x - 18)$$
$$= 24x + 30$$

**b** 
$$f(x) = x^3 - \frac{1}{x}$$

$$= x^3 - x^{-1}$$

$$f'(x) = 3x^2 + x^{-2}$$

$$=3x^2+\frac{1}{x^2}$$

$$f''(x) = 6x - 2x^{-3}$$

$$= 6x - \frac{2}{x^3}$$

$$f'''(x) = 6 + 6x^{-4}$$

$$=6+\frac{6}{x^4}$$

## 5.1 Finding the Gradient of a Curve

### Exercise

## Technique

- 1 Differentiate each of the following from first principles to find dr.
- $v = x^3$ **b**  $v = 3x^2 - 9x + 5$  **c**  $v = \frac{1}{2}$ 2 Differentiate each of the following with respect to x:
  - $a \quad v = x^3$ 
    - $y = \frac{2 x^3}{x^3}$ **b**  $v = 7 + x - 3x^2 - \frac{1}{6}x^3$ 
      - y = (3x 5)(2x + 1)
      - h  $y = \frac{3x^2 2x}{\sqrt{x}}$ .  $d v = \sqrt[4]{x}$
- 3 Find the first derivative of each of the following functions:  $h(p) = \frac{2p^4 - 5p}{p^3}$ a  $f(x) = \frac{1}{2}x^2 - \frac{1}{6}x$ 
  - **b** f(t) = (t+1)(2-t) $e^{-f(s)} = s^3 - 7s^2 - 2s$
- 4 Find the gradient of each of the following curves at the point indicated:
  - a  $y = x^2 + 6x 3$  at (2, 13)b  $y = 2x^3 - 7x - 5$  at (-1,0)
  - c  $y = \frac{4}{5} + \frac{8^2}{5}$  at (2,3)d  $v = (x^2 - 2)(x + 1)$  at (-3, -14)
- 5 Find the coordinates of the points on each of the following curves at which the gradient has the value indicated:
  - a  $v = x^3 6x^2 + 7x$ , where  $\frac{4x}{2} = -2$ 
    - b  $v = 3 5x + x^3$ , where x = 7

intersection with the x- and v-axes:

- c  $y = 2x + 1 \frac{4}{3}$ , where  $\frac{dr}{dr} = 1$ d  $y=\frac{1}{2}$ , where  $\frac{dy}{dz}=-\frac{4}{3}$
- 6 Find the gradient of each of the following curves at their points of
  - a  $y = x^2 + 2x 3$ **b** v = (2x+3)(x-1)
- 7 Find the first, second and third derivatives of each of the following:
  - a  $v = 5x^4 + 2x^3 7x^2 9x + 2$  b  $f(x) = \frac{4}{5} \frac{1}{32}$













## 5.2 Stationary Points

Look at the graph below. What do points A, B, C and D have in common?



Notice that the gradient of the curve is zero at these four points. This means that \$\frac{d}{dt} = 0 at A, B, C and D.

Points like A, B, C and D are known as stationary points. They correspond to values of x for which the gradient of the curve is zero. This means the function f(x) is momentarily 'stationary', that is neither increasing or decreasing.

Points A and C are known as turning points on the graph. Notice that at a turning point f(x) changes from being an increasing function of x to a decreasing function of x, or vice versa. Point A is called a local maximum point and point C is a local minimum point.

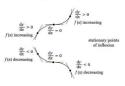
What about points B and D? f(x) is a decreasing function on either side of point B. It is an increasing function on either side of point D, but the gradient is zero at both points. Such points are called stationary points of inflexion.

of 'inflexion' is inflection'.



Colin Maclauri (1698-1746) Maclaurin was the f theory for distinguis between the minin and maximum valu a function.

As a graph passes through a local minimum point, its gradient function, # changes from being negative to positive. It is zero at the minimum point itself. On either side of a local maximum point, there is a corresponding change in the sign of # from positive to negative.



Since the curve is either an increasing or decreasing function of x on both sides of a stationary point of inflexion, its gradient # remains either positive or negative on both sides of the point of inflexion. The gradient is zero at the point of inflexion itself.

So, the stationary points on a curve can be located by solving  $\frac{dy}{dz} = 0$ . Then their nature can be determined by examining the gradient of the curve on either side of the stationary point. The table below summarises the changes in the sign of  $\frac{dr}{dr}$  and the corresponding type of stationary point.

accurate sketch of a

| Change in 4                         | Type of stationary point |  |  |  |
|-------------------------------------|--------------------------|--|--|--|
| $-ve \to 0 \to +ve$                 | minimum                  |  |  |  |
| $+ve \rightarrow 0 \rightarrow -ve$ | maximum                  |  |  |  |
| $+ve \rightarrow 0 \rightarrow +ve$ | point of inflexion       |  |  |  |
| $-ve \rightarrow 0 \rightarrow -ve$ | point of inflexion       |  |  |  |

■ Learn these important results.

#### Example 1

Find the coordinates of the points where the quadratic curve  $v = x^2 - 2x - 15$  crosses the x- and y-axes. Find the coordinates of the stationary point on the curve, and determine its nature. Then, sketch the graph of  $v = x^2 - 2x - 15$ .

#### Solution

The graph crosses the x-axis when y = 0.

$$\Rightarrow x^2 - 2x - 15 = 0$$

$$\Rightarrow (x+3)(x-5) = 0$$

$$\Rightarrow x = -3 \text{ or } x = 5$$

So the graph crosses the x-axis at (-3,0) and (5,0).

It crosses the y-axis when  $x=0 \ \Rightarrow \ y=-15.$  So the graph crosses the y-axis at (0,-15).

The gradient function for the graph of  $y=x^2-2x-15$  is given by  $\frac{dy}{dz}=2x-2$ . To find the location of the stationary point on this graph, solve  $\frac{dy}{dz}=0$ .

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies 2x - 2 = 0$$

When 
$$x = 1$$
,  $y = (1)^2 - 2(1) - 15 = -16$ .

So, the stationary point is at 
$$(1, -16)$$
.

Now look at 
$$\frac{dr}{dr}$$
 on either side of  $x = 1$ .

When 
$$x = 0$$
,  $\frac{dy}{dx} = -2$ . That is,  $\frac{dy}{dx} < 0$ .

When 
$$x = 2$$
,  $\frac{dy}{dx} = 2$ . That is,  $\frac{dy}{dx} > 0$ .

Since the gradient changes from being negative to positive as the graph passes through (1, -16) this is a local minimum point. The graph of the quadratic can now be sketched by drawing a parabola through the four calculated points.



Now substitute this value into the equat of the graph to find

#### Example 2

For each of the following cubic functions, find the coordinates of any stationary points, and determine their nature. Use a graphical calculator to plot the graphs of these functions. Use the TRACE facility to check your results.

a 
$$v = x^3 - 3x^2 - 9x + 10$$

b 
$$v = x^3 - 3x^2 + 3x + 1$$



a The gradient function for the graph of  $y = x^3 - 3x^2 - 9x + 10$  is given by  $\frac{dy}{dx} = 3x^2 - 6x - 9$ . To find the location of any stationary points on this graph, solve  $\frac{dy}{dx} = 0$ .

$$3x^2 - 6x - 9 = 0$$

$$\Rightarrow 3(x^2 - 2x - 3) = 0$$

$$\Rightarrow \ 3(x+1)(x-3)=0$$

$$\Rightarrow$$
  $x = -1 \text{ or } x = 3$ 

(-1, 15) and (3, -17).

When 
$$x = -1$$
,  $y = (-1)^3 - 3(-1)^2 - 9(-1) + 10$   
=  $-1 - 3 + 9 + 10 = 15$ 

When 
$$x = 3$$
,  $y = (3)^3 - 3(3)^2 - 9(3) + 10$ 

$$= 27 - 27 - 27 + 10 = -17$$

Now look at the sign of  $\frac{dx}{dx}$  on both sides of x = -1.

When 
$$x = -2$$
,  $\frac{dy}{dx} = 3(-2)^2 - 6(-2) - 9 = 15$ . That is,  $\frac{dy}{dx} > 0$ .  
When  $x = 0$ ,  $\frac{dy}{dx} = 3(0)^2 - 6(0) - 9 = -9$ . That is,  $\frac{dy}{dx} < 0$ 

So, the graph of  $y = x^3 - 3x^2 - 9x + 10$  has stationary points at

Since the gradient changes from positive to negative as the graph  
passes through 
$$(-1, 15)$$
, this is a local maximum point.

Now look at the sign of  $\frac{dr}{dr}$  on both sides of x = 3.

When 
$$x=2$$
,  $\frac{\mathrm{d}y}{\mathrm{d}x}=3(2)^2-6(2)-9=-9$ . That is,  $\frac{\mathrm{d}y}{\mathrm{d}x}<0$ .

When 
$$x=4, \ \frac{dy}{dx}=3(4)^2-6(4)-9=15.$$
 That is,  $\frac{dy}{dx}>0.$ 



To the left of the stationary point to function is increase

To the right of the stationary point the function is decreasi



Since the gradient changes from negative to positive, (3, -17) is a local minimum point on the curve.



b Any stationary points on the graph of  $y=x^3-3x^2+3x+1$  are found by solving  $\frac{dx}{dx}=0$ .

Since 
$$\frac{dy}{dx} = 3x^2 - 6x + 3$$
  
then  $\frac{dy}{dx} = 0 \Rightarrow 3x^2 - 6x + 3 = 0$ 

$$dx$$
 $\Rightarrow 3(x^2 - 2x + 1) = 0$ 
 $\Rightarrow 3(x - 1)^2 = 0$ 

When 
$$x = 1$$
,  $y = (1)^3 - 3(1)^2 + 3(1) + 1 = 2$ .

So the only stationary point on this curve is located at (1, 2). To determine its nature, look at the sign of  $\overset{\alpha}{\cong}$  on either side of x = 1.

When 
$$x = 0$$
,  $\frac{dy}{dx} = 3$ . That is,  $\frac{dy}{dx} > 0$ .

When 
$$x=2$$
,  $\frac{\mathrm{d}y}{\mathrm{d}x}=3$ . That is,  $\frac{\mathrm{d}y}{\mathrm{d}x}>0$ .

So the gradient is positive on both sides of (1, 2), which must be a stationary point of inflexion.



The y-intercept is for by substituting x = 0into the equation of curve.



Note the repeated r

#### Increasing and decreasing functions

We are sometimes more interested in whether a function is increasing or decreasing at various points along its curve. At points on the graph of y = f(x) where the gradient is not zero, y must be either an increasing or decreasing function of x.

- If <sup>dr</sup>/<sub>T</sub> > 0 (a positive gradient), then v is an increasing function of x.
- If  $\frac{dv}{ds} < 0$  (a negative gradient), then y is a decreasing function of x.

For continuous functions, sections of increasing and decreasing behaviour are always separated by a stationary point. In order to find out for which values of x a function is increasing or decreasing, its stationary point(s) must first be located.

#### Example 3

Find the values of x for which the function  $y=x^3-9x^2+15x+13$  is increasing.

#### Solution

$$y = x^3 - 9x^2 + 15x + 13$$
  
 $\Rightarrow \frac{dy}{dx} = 3x^2 - 18x + 15$ 

At stationary values of function y,  $\frac{dr}{dz} = 0$ .

$$\Rightarrow 3x^{2} - 18x + 15 = 0$$

$$\Rightarrow 3(x^{2} - 6x + 5) = 0$$

$$\Rightarrow 3(x-1)(x-5) = 0$$

$$\Rightarrow$$
  $x = 1 \text{ or } x = 5$ 

To determine the nature of these two stationary values, look at the gradient of  $\frac{dr}{dr}$  on both sides.

When 
$$x = 0$$
,  $\frac{dy}{dy} = 15$ . That is,  $\frac{dy}{dy} > 0$ .

When 
$$x = 3$$
,  $\frac{dy}{dx} = -12$ . That is,  $\frac{dy}{dx} < 0$ .

When 
$$x = 6$$
,  $\frac{dy}{dx} = 15$ . That is,  $\frac{dy}{dx} > 0$ .

This means that y has a maximum value at x = 1 and a minimum value at x = 5. It follows that y will be a decreasing function in the interval 1 < x < 5, and an increasing function of x for x < 1 and x > 5.

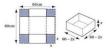


#### Optimisation

Many practical problems involve finding the maximum or minimum values of a function as it changes with respect to a particular variable. If the problem can be modelled in terms of a mothematical function, differentiation can be used to locate and distinguish between any maximum and minimum values.

# Example 4

An open-topped gift box is formed by cutting squares of side length x from each corner of a 60 cm  $\times$  60 cm square of cardboard, and folding the remaining flaps to make the vertical sides.



- a Find an expression in terms of x for the volume V (in cm<sup>2</sup>) of the gift hox.
- Use differentiation to find the value of x that corresponds to the maximum possible volume of the gift box.
- Calculate this maximum volume.

#### Solution

a The volume of the folded box is given by

 $V = \text{length of box} \times \text{width of box} \times \text{height of box}$ 

and the dimensions of the box are

length = width = 60 - 2x and height = x

So  $V = (60-2x) \times (60-2x) \times x$ 

$$= x(60 - 2x)^{2}$$

$$V = 4x^{3} - 240x^{2} + 3600x$$

 ${f b}$  Differentiating with respect to x, the gradient of this volume function is given by

$$\frac{\mathrm{d}V}{\mathrm{d}x} = 12x^2 - 480x + 3600$$

At the maximum and minimum volumes,  $\frac{dV}{d\epsilon}=0$ 

 $\Rightarrow 12x^2 - 480x + 3600 = 0$ 

$$\Rightarrow$$
 12( $x^2 - 40x + 300$ ) = 0

$$\Rightarrow \quad 12(x-10)(x-30)=0$$

 $\Rightarrow \qquad x = 10 \text{ or } x = 30$ 

Look at the sign of  $\frac{dY}{dx}$  on both sides of x = 10.

When x = 5,  $\frac{dV}{dx} = 12(5)^2 - 480(5) + 3600 = 1500$ .

That is,  $\frac{dV}{dx} > 0$ .

When x = 15,  $\frac{dV}{dx} = 12(15)^2 - 480(15) + 3600 = -900$ .

That is,  $\frac{dV}{dt} < 0$ .

This means that x=10 corresponds to a maximum value of V. Look at the sign of  $\frac{\partial V}{\partial x}$  on both sides of x=30.

When x = 25,  $\frac{dV}{dx} = 12(25)^2 - 480(25) + 3600 = -900$ .

That is,  $\frac{dV}{dx} < 0$ .

When x = 35,  $\frac{dV}{dx} = 12(35)^2 - 480(35) + 3600 = 1500$ .

That is,  $\frac{dV}{dx} > 0$ .

Alternatively, use  $\frac{dY}{dx} = 12(x - 10)(x - 30)$ 

This means that x = 30 corresponds to a minimum value of x. In fact, the volume of the folded box is zero when x = 30 because cutting squares of this size from each corner of the original sheet would leave no cardboard at all to fold into a box.

e From b. the maximum volume of the folded hox occurs when  $x = 10 \, \text{cm}$ .

Then 
$$V = 4(10)^3 - 240(10)^2 + 3600(10) = 16000 \,\mathrm{cm}^3$$

In many ontimisation problems, the function to be maximised or minimised is dependent on two variables. However, usually one of these variables can be eliminated using additional information given about the eituation

[1]

[2]

# Example 5

A manufacturer wishes to make cylindrical steel cans with a capacity of 500 ml using the smallest quantity of metal possible, (Remember that 1 millilitre = 1 cm3.)



The optimum dimer

length = width = 40

- Find an expression for the total surface area S cm2 of a cylindrical can, in terms of its radius r cm only.
- Find, correct to one decimal place, the values of r and h, the can's height, that would give the smallest surface area.

### Solution

a The total surface area of the can, S, is given by

$$S = 2\pi r^2 + 2\pi r h$$

At the moment S is expressed as an equation with two variables, r and h. We are required to express it in terms of r only, so we must

eliminate h. The volume of the cylinder is given by  $V = \pi r^2 h$ , where h is the height of the can.

For this particular can the volume is 500 cm3, so

$$\pi r^2 h = 500$$

Rearranging equation [2],  $h = \frac{500}{\pi r^2}$ .

Substituting this expression for h into equation [1],

$$S = 2\pi r^2 + 2\pi r \frac{500}{\pi r^2}$$
$$= 2\pi r^2 + \frac{1000}{\pi r^2}$$

Eliminating \u03c4r in the second term.

$$b \quad \frac{dS}{dr} = 4\pi r - 1000r^{-2}$$

 $=4\pi r - \frac{1000}{3}$ 

At the maximum and minimum values of surface area, dS = 0.

$$\frac{dS}{dr} = 0 \implies 4\pi r - \frac{1000}{r^2} = 0$$

$$\implies 4\pi r^3 - 1000 = 0$$

$$\implies r^3 = \frac{1000}{4\pi} = \frac{250}{\pi}$$

$$\implies r = \sqrt[3]{\frac{250}{\pi}} = 4.3 \text{ cm } (1 \text{ d.p.})$$

Substituting for r in the rearranged form of equation [2] to find the corresponding height.

$$h = \frac{500}{\pi r^2} = \frac{500}{\pi} \times \frac{1}{\left(\sqrt[3]{\frac{250}{\pi}}\right)^2}$$
$$= \frac{500}{\pi} \times \left(\frac{250}{\pi}\right)^{-2/3}$$
$$= \frac{500}{\pi} \times \left(\frac{\pi}{250}\right)^{2/3}$$
$$= 8.6 \text{ cm} (1.4 \text{ d.})$$

To decide whether these values for the radius and height correspond to a maximum or minimum value for the surface area, look at the value of 45 on either side of r = 4.3.

When 
$$r = 4$$
,  $\frac{dS}{dr} = 16\pi - \frac{1000}{16} \approx -12.2$ . That is,  $\frac{dS}{dr} < 0$ .  
When  $r = 5$ ,  $\frac{dS}{dr} = 20\pi - \frac{1000}{25} \approx 22.8$ . That is,  $\frac{dS}{dr} > 0$ .

This means that the surface area of a 500 ml cylindrical can is minimised when r = 4.3 cm and h = 8.6 cm.

Use the surd form of r.

These values of r and h minimise the surface metal when cutting the pieces, and this may give different values of r

# 5.2 Stationary Points Exercise

# Technique

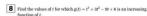
# \_\_\_\_\_

- 1 For each of the following quadratic functions:
  - i find the coordinates of the points where the graph of y = f(x) crosses the axes
  - ii find the coordinates of the stationary point on the graph, and determine its nature
  - iii sketch the graph of y = f(x). Check your graph using a graphical calculator.
  - a  $f(x) = x^2 2x 8$ b  $f(x) = 35 + 2x - x^2$ c  $f(x) = 4x^2 - 16x - 9$ d  $f(x) = x^2 + 8x + 28$
  - For each of the following cubic functions, find the coordinates of any stationary points, and determine their nature:
    a v = x<sup>3</sup> + 6x<sup>2</sup> + 12x + 7
    b v = 2x<sup>3</sup> 12x<sup>2</sup> + 18x 5
    - c  $y = x^3 + 7x^2 + 19x + 2$  d  $y = 3x^3 3x^2 + 1$ 3 a Find the coordinates of the points where the quartic curve
    - y = x<sup>4</sup> − 12x<sup>3</sup> crosses the axes.

      b Find \( \frac{dc}{dc} \). Hence find the location, and determine the nature, of the stationary points on the curve.
- c Sketch y = x<sup>4</sup> 12x<sup>3</sup>. Check your graph using a graphical calculator.
  4 For each of the following functions, find an expression for f'(x), and hence locate and determine the nature of any stationary points on the graph of
  - y = f(x): **a**  $f(x) = x + \frac{4}{3}$

- **b**  $f(x) = \frac{50}{x} \frac{x^2}{x}$
- $c \quad f(x) = \frac{8}{x^2} + \frac{x}{4}$
- **d**  $f(x) = \frac{3}{x} \frac{9}{x^2}$
- Given that s = 3t² − 8t + 3, find the minimum value of s and the value of t for which this occurs.
   Given that v = 26 + 11t − r², find the maximum value of v and the value of t for which this occur.



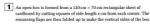








### Contextual







- Find an expression in terms of x for the volume V (in cm3) of the
- Find  $\Psi$  and then solve the equation  $\Psi = 0$ .
- Find the maximum possible volume of the box, Justify your answer,
- 2 A garden centre wishes to use fencing to enclose three equally sized rectangular plots next to each other, as shown in the diagram. The total area A of the three plots is to be 288 m2.



- Find expressions for the total area A (in  $m^2$ ), and the total length L(in m) of fencing required in terms of x and y.
- Express L in terms of x only.
- Hence, find the dimensions of each rectangular plot if the total length of fencing is to be kept as low as possible. Justify your answer,
- What is the minimum length of fencing required?



- What is the value of the FTSE at noon?
  - Calculate the highest value of the index during the day. To the nearest minute, at what time does this occur?



- If trading finishes at 4.30 p.m., by how much has the index risen or fallen during the day?
- d During which times of the day could the broker have sold her clients chares?

4 A cuboidal water tank, of height h cm, width x cm and length 2x cm, is designed to hold 700 litres when full.

 $1 \, \text{litre} = 1000 \, \text{cm}^3$ 



- Show that  $h = \frac{350 \, \text{H}}{2}$
- Find an expression for the total surface area, Sm2, of the six faces of the tank in terms of x only.
- Find the dimensions of the tank that correspond to the least surface area. Justify your answer. (Give your answers to the nearest cm.)

5 A school decides to organise a monthly raffle in order to raise funds. It estimates that 2000 tickets would be bought if the price of each one was 50 pence, and that only 1000 tickets would be bought if they cost £1 each. The cost c of organising the raffle each month is £150 for prizes and 2 nence per ticket for printing.

- a The number of tickets sold is modelled by n = a + bs, where s pence is the selling price, and a and b are constants. Find a and b.
- b Show that c = (21000 40s) pence.
- Show that, in terms of the selling price s, the monthly profit generated by the raffle is given by  $p = 3040s - 21000 - 20s^2$ , and find the selling price that would maximise the profit. Calculate the maximum profit and the number of tickets sold to achieve it.

# 5.3 Further Applications of Differentiation

#### Tangents and normals

The gradient of a tangent drawn to a curve at any particular point is the same as the gradient of the curve at this point. This means that the gradient of a tangent can be found by differentiation. For example, consider the tangent drawn to the curve  $y = x^2$  at the point (1, 1).



The gradient function of this curve is  $\frac{\pi}{4\pi} = 2x$ . So the gradient of the curve, and therefore the gradient of the tangent, at the point (1,1) is 2. Recall from Chapter 2 that the equation of a line with gradient m, that passes through a point with coordinates  $(x_y, y_i)$ , is given by  $y = \frac{\pi}{4\pi} = \frac{\pi}{4\pi} = \frac{\pi}{4\pi}$ . So the equation of this particular tangent is given by y = 1 = 2(x-1) or y = 2x-1.

The normal to a curve at any point is the straight line that passes through the curve at right-angles to the tangent at that point. Because the tangent and normal are perpendicular to each other, their gradients.  $m_1$  and  $m_2$  respectively, satisfy the condition  $m_1m_2=-1$ . So,



gradient of normal = \_\_\_\_\_\_gradient of tangen

So the gradient of the normal to the curve  $y=x^2$  at (1,1) is  $-\frac{1}{2}$ . Now use  $y-y_1=m(x-x_1)$  to find the equation of this normal.

$$y-1=-\frac{1}{2}(x-1)$$

$$\Rightarrow y - 1 = -\frac{1}{2}x + \frac{1}{2}$$

$$\Rightarrow y = -\frac{1}{2}x + \frac{3}{2}$$

# Example 1

Find the gradient of the curve y=(x+2)(4-x) at the point where x=3. Hence, find the equations of the tangent and the normal to the curve at this point.

#### Solution

$$y = (x+2)(4-x)$$

$$= 8 + 2x - x^{2}$$
So  $\frac{dy}{dx} = 2 - 2x$ 

When 
$$x = 3$$
,  $y = 5$  and  $\frac{dy}{dt} = -4$ .

So the gradient of the tangent to the curve at (3,5) is -4.

This means that the gradient of the normal is 1/4.

Now use  $y-y_1=m(x-x_1)$  to find the equations of both the tangent and the normal to the curve at (3,5).

The equation of the tangent is 
$$y-5=-4(x-3)$$
  
 $\Rightarrow \qquad y-5=-4x+12$   
 $\Rightarrow \qquad y-4x+17$   
The equation of the normal is  $y-5=\frac{1}{4}(x-3)$   
 $\Rightarrow \qquad y=\frac{1}{4}x+\frac{12}{4}$ 

Recall that straight line equations, involving fractions, can be rearranged into the form ax + by + c = 0.

Use a graphical calculator or graph plotting software to draw the quadratic curve y = (x + 2)(4 - x). On the same graph plot the lines y = -4x + 17 and  $y = \frac{1}{4}x + \frac{17}{4}$ . Verify that they are the tangent and normal to the curve at the point x = 3.

### Example 2

Find the equation of the normal to the curve  $y = x^2 + 4x - 2$  at the point where x = -3. Find the coordinates of the other point where this normal intersects  $y = x^2 + 4x - 2$ .

### Solution

$$y = x^2 + 4x - 2$$
 So 
$$\frac{dy}{dx} = 2x + 4$$

Graphi calcula suppor pack

Ensure that you have square' view; that is

scale.

When x = -3, y = -5 and  $\stackrel{d}{=} = -2$ . Since the gradient of the tangent to the curve at (-3, -5) is -2, the gradient of the normal will be 1.

Use  $y - y_1 = m(x - x_1)$  to find the equation of this normal.

$$y - (-5) = \frac{1}{2}(x - (-3))$$
  
 $y + 5 = \frac{1}{2}x + \frac{3}{2}$   
 $y = \frac{1}{2}x + \frac{3}{2} - 5$   
 $y = \frac{1}{2}x - \frac{7}{2}$ 

At the points of intersection of this normal and the curve  $v = x^2 + 4x - 2$ ,

$$x^{2} + 4x - 2 = \frac{1}{2}x - \frac{7}{2}$$
  
 $\Rightarrow 2x^{2} + 8x - 4 = x - 7$   
 $\Rightarrow 2x^{2} + 7x + 3 = 0$   
 $\Rightarrow (2x + 1)(x + 3) = 0$   
 $\Rightarrow x = -\frac{1}{2}, \text{ or } x = -3$ 

This means the x-coordinate of the other point of intersection is  $-\frac{1}{2}$ . The corresponding y-coordinate can be found by substituting  $x = -\frac{1}{2}$  into the equation of the normal. Check that this gives  $y = -\frac{15}{4}$ . So the normal to the curve at (-3, -5) crosses the curve again at  $(-\frac{1}{2}, -\frac{15}{4})$ . Check this result using a graphical calculator and the TRACE facility.



#### Displacement, velocity and acceleration

The branch of mathematics concerned with the study of moving objects. and in particular their displacement, velocity and acceleration, is called kinematics.

The displacement s of an object moving in a straight line is the distance it has travelled from a fixed point on the line in a specified direction. In many real-life situations, displacement can be a function of time t.



The velocity v of an object is the speed with which it is travelling in the specified direction. By definition, velocity is the rate at which the object's displacement is changing with respect to time. So  $v = \frac{dv}{dt}$ .

If displacement is measured in metres and time is measured in seconds, then the units of velocity are metres per second (written m/s or m s<sup>-1</sup>).

- If v = 0 then the object is stationary.
- If v > 0 then the object is moving along the line in the specified direction.
- If v < 0, then the object is moving in the opposite direction.</li>

The acceleration  $\alpha$  of a moving object is the rate at which its speed in the specified direction is changing. So acceleration is the rate of change of velocity with respect to time;

$$a = \frac{dv}{dt} = \frac{d}{dt} \left( \frac{ds}{dt} \right) = \frac{d^2s}{dt^2}$$

Notice that acceleration is the first derivative of velocity, and the second derivative of displacement. If velocity is measured in ms<sup>-1</sup> then the units of acceleration are metres per second per second, or 'metres per second squared' (written mis<sup>2</sup> or ms<sup>-2</sup>).

- If a = 0 the object is moving with constant velocity (that is at constant speed in a straight line).
- If a > 0 the object is accelerating: that is its speed in the specified direction is increasing.
- If a < 0, then the object is decelerating; that is its speed in the specified direction is decreasing.

### Example 3

The height h metres at time t seconds of a ball thrown vertically upwards, from a fixed point O, with initial velocity  $12 \text{ m s}^{-1}$ , is given by  $h = 12t - 5t^2$ .

- a Find the greatest height reached by the ball.
- b Find the acceleration of the ball.
- $\varepsilon$   $\;\;$  Find the height of the ball after 0.3 and 1.7 seconds.
- d Find the distance travelled by the ball between these two times.
  e Find the average speed of the ball during this time interval.

#### Solution

a Height h takes the place of displacement s in this problem. The velocity of the ball at any time is given by

$$v = \frac{dh}{ds} = 12 - 10t \text{ (m s}^{-1})$$

At its maximum height, the velocity of the ball is zero.

Then  $12 - 10t = 0 \Rightarrow t = 1.2$  seconds

When 
$$t = 1.2$$
,  $h = 12(1.2) - 5(1.2)^2 = 7.2$ 

So, the greatest height reached is 7.2 m.

- Acceleration,  $a = \frac{dr}{dt} = \frac{d}{dt}(12 10t) = -10 \text{ (m s}^{-2})$ 
  - When t = 0.3,  $h = 12(0.3) 5(0.3)^2 = 3.15 \text{ m}$ When t = 1.7,  $h = 12(1.7) - 5(1.7)^2 = 5.95$  m
  - Consider the graph of h against t.
    - 5.95 3.15-Time t (seconds)

The hall reaches its greatest height and changes direction between t = 0.3 seconds and t = 1.7 seconds. The distance travelled during this time interval is the sum of the distance the ball rises and the distance the ball then falls.

Between t = 0.3 seconds and t = 1.2 seconds, the ball rises and travels (7.2 - 3.15) = 4.05 metres upwards. Between t = 1.2 seconds and t = 1.7 seconds, the ball falls and travels

(7.2 - 5.95) = 1.25 metres downwards. So it travels a total distance of  $(4.05 + 1.25) = 5.3 \,\mathrm{m}$ .

average speed =  $\frac{\text{distance travelled}}{\text{time taken}}$ 

$$=\frac{5.3\,(m)}{1.4\,(s)}$$

$$= 3.8 \,\mathrm{m \, s^{-1}} \, (1 \,\mathrm{d.p.})$$

You must always include a unit in your answer if units are given in the question.

This is the downwards acceleration due to gravity. A more accurate

#### Small changes

If y=f(x), then recall that by definition the gradient of its graph at any particular point is given by

$$\frac{dy}{dx} = \lim_{\delta x \to 0} \left( \frac{\delta y}{\delta x} \right)$$

Remember that  $\delta y$  is the small change in the value of the y-coordinate at this point corresponding to a small change,  $\delta x$ , in the x-coordinate. Provided  $\delta x$  is very small,

$$\frac{\delta y}{\delta x} \approx \frac{\mathrm{d}y}{\mathrm{d}x}$$

This means that the ratio  $\hat{g}$  gives a good approximation to  $\hat{g}$ , the gradient function at that point. Remember that  $\hat{g}$  is the gradient of the curve y = f(x) at the point from which this small change is being made. This approximation allows the change in the value of y resulting from a small change in the value of x (or vice versa) to be calculated quickly.

### Example 4

The side length of a  $100\,\mathrm{cm} \times 100\,\mathrm{cm} \times 100\,\mathrm{cm}$  cube is increased by 2 cm. Find the approximate increase in the cube's surface area



### Solution

If the side length of the cube is x, then the surface area  $S = 6x^2$ .

So 
$$\frac{dS}{dx} = 12x$$
.

Because the change in the side length,  $\delta x$ , is small relative to the original length,

$$\frac{\delta S}{\delta x} \approx \frac{dS}{dx}$$

where  $\delta S$  is the corresponding small change in surface area, and  $\frac{dS}{ds}$  is the value of the gradient function when x=100 cm. Therefore

$$\delta S \approx \frac{dS}{dx} \times \delta x$$

$$= 12x \times \delta x$$

$$= 12(100) \times 2 = 2400 \, \text{cm}^2$$

The approximate increase in the cube's surface area is 2400 cm<sup>2</sup>.

to see now accurate this approximation i put x = 102 cm in the equation for surface area,  $S = 6x^2$ . The nesurface area is 62.424 cm<sup>2</sup>. The act increase in surface a is therefore 2424 cm the approximation is good.

The change in a measurement or quantity is often expressed as a percentage of the original value. If y = f(x), then  $\pm \frac{i x}{x} \times 100$  is the percentage increase (+) or decrease (-) in the value of x, and  $\pm \frac{i y}{x} \times 100$  is the corresponding percentage increase (-) or decrease (-) in the value of y.

### Example 5

The time period T of a simple swinging pendulum is a function of the length L of the pendulum, such that  $T=2\pi\sqrt{L/g}$ , where g is a constant. Find the percentage change in the period if the pendulum is shortened by 6%.



#### Solution

$$T = 2\pi \sqrt{\frac{L}{g}} = \frac{2\pi}{\sqrt{g}} L^{3/2}$$
So 
$$\frac{dT}{dL} = \frac{2\pi}{\sqrt{g}} \times \frac{1}{2} L^{-4/2} = \frac{\pi}{\sqrt{g}} \times \frac{1}{\sqrt{L}} = \frac{\pi}{\sqrt{gL}}$$

The percentage change in the value of L is -6%, the minus sign indicating a decrease. Therefore

$$\frac{\delta L}{L} = -0.06$$
  $46\% = \frac{6}{100} = 0.06$ 

Because this is a small change

$$\begin{split} & \frac{\partial T}{\partial L} \approx \frac{\partial T}{\partial L} \\ & \approx \frac{\partial T}{\partial L} \approx \frac{\pi}{\sqrt{gL}} \quad \blacktriangleleft \text{Using } \frac{\partial T}{\partial L} = \frac{\pi}{\sqrt{gL}} \\ & \approx \delta T \approx \frac{\pi}{\sqrt{gL}} \\ & \approx \delta T \approx \frac{\pi}{\sqrt{gL}} \\ & = \frac{\partial T}{\partial L} \approx \frac{\pi}{\sqrt{gL}} \frac{\delta L}{L} \times \delta L . \qquad \blacktriangleleft \text{Using } T = 2\pi \sqrt{\frac{g}{gL}} \end{split}$$

That is,  $\frac{\delta T}{T} \approx \frac{1}{2} \times \frac{\delta L}{L} = \frac{1}{2} \times -0.06 = -0.03$ .

This means, the percentage change in the period of the pendulum, as the length is shortened, is a decrease of 3%.

The minus sign indicates a decrease in the value of T.

# 5.3 Further Applications of Differentiation Exercise

# Technique

1 Find the equations of the tangent and normal to each of the following curves at the points indicated:

- a  $y = x^2 5x + 1$  at (6,7)
- **b** y = (2x+1)(x-5) at (1,-12)
  - $y = x^3 6x^2 + 3x + 1$  at (3, -17)
- d v = x + 2 at (2,32)e  $v = \sqrt{x}$  at (9.3)
- $v = 2x x^3$  at  $(-\frac{1}{2}, -\frac{7}{2})$





4 Find the equation of the normal to the curve  $y = x - \frac{6}{2}$  at the point where x = 3. Find the coordinates of the other point where this normal intersects v = x - 9.

### Contextual

- 1 The height, h metres, of an object thrown vertically upwards at time t seconds after its release is given by  $h = 40t - 5t^2$ .
  - Calculate how long it takes for the object to return to its point of projection.
  - b Find the value of t at which the object is momentarily stationary, and hence calculate the maximum height reached by the object.
- 2 The displacement, s metres, of an object from some fixed point O at time t seconds is given by  $s = t^3 - 3t^2 + 4t + 5$ .
  - a Find expressions for the velocity v and acceleration q at time t. b Show that the object is never stationary.
  - Calculate the average speed of the object during the first three seconds.



#### 5 Differentiation I

- A closed cylinder has a base radius of 8 cm and a height of 20 cm. Calculate the small changes
   a in its volume and
  - a in its votume and
     b in it surface area

that result from a small change of 0.1 cm in its radius. Leave your answers in terms of  $\pi$  and assume height remains constant.



A cuboidal box has height x, length 3x, and width 2x. Calculate the percentage increase in the value of x if the volume is to increase by 4.5%.

# 5.4 The Chain Rule and Related Rates of Change

Functions such as  $y = (x + 1)^3$  and  $y = (2x - 3)^5$  are examples of composite functions. They are also known as 'functions of a function'. Notice that  $y = (x + 1)^3$  can be written as  $y = u^3$  where u = x + 1.

One method of finding derivatives of composite functions is to expand the brackets and then differentiate term-by-term. For example,

$$y = (x + 1)^{3}$$

$$= (x + 1)(x + 1)(x + 1)$$

$$= (x^{2} + 2x + 1)(x + 1)$$

$$= x^{3} + 3x^{2} + 3x + 1$$
So  $\frac{dy}{dx} = 3x^{2} + 6x + 3$ 

$$= 3(x^{2} + 2x + 1)$$

 $=3(x+1)^2$ 

Try finding  $\frac{d}{dt}(2x-3)^5$  in the same way. What happens when you differentiate term-by-term? Notice that the algebra gets quite complicated. Factorisation of such expressions, which we would need to do to locate stationary points, can be very tricky. This is a major disadvantage of this "expansion and term-by-term differentiation" method.

We also need an alternative method of differentiating composite functions such as  $y = (4-x)^{-1}$  and  $y = \sqrt{3x+1}$ , which cannot be expanded into a finite number of terms involving powers.

#### Differentiating composite functions - the chain rule

Suppose y = f(x) is a composite function of x. This means that y = f(x), where y = f(x) where mentialst function of x that can be identified in the construction of function f. Any small change in the value of x, x, gives rise to a small change in the value of x, x. This then gives rise to a small change in the value of y, x, y. Differentiating from first principles,

$$\frac{dy}{dx} = \lim_{\delta x \to 0} \left( \frac{\delta y}{\delta x} \right)$$

but since it is possible to write

$$\frac{\delta y}{\delta x} = \frac{\delta y}{\delta u} \times \frac{\delta u}{\delta x}$$

Notice that the gradi function includes th bracket featured in to original function, rai it follows that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\delta x \to 0} \left( \frac{\delta y}{\delta u} \times \frac{\delta u}{\delta x} \right)$$

However,  $\delta u \rightarrow 0$  as  $\delta x \rightarrow 0$ , and therefore

$$\frac{dy}{dx} = \lim_{\delta u \to 0} \left( \frac{\delta y}{\delta u} \right) \times \lim_{\delta t \to 0} \left( \frac{\delta u}{\delta x} \right)$$

This gives



 $\frac{dy}{dx} = \frac{dy}{dx} \times \frac{du}{dx}$  

Learn this important result.

This method of differentiating composite functions by introducing an intermediate variable u is the chain rule.

## Example 1

Differentiate the following with respect to x, using the chain rule. b  $y = (2x - 3)^5$ a  $y = (x+1)^3$ 

### Solution

a For  $y = (x + 1)^3$ , let  $y = u^3$ , where u = x + 1.

Therefore 
$$\frac{dy}{du} = 3u^2$$
 and  $\frac{du}{dx} = 1$ .

Using the chain rule

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = 3u^2 \times 1 = 3u^2$$

Substituting u = x + 1,  $\frac{dy}{dx} = 3(x + 1)^2$ b For  $v = (2x - 3)^5$ , let  $v = u^5$  where u = 2x - 3.

$$\frac{dy}{dx} = 5u^4$$
 and  $\frac{du}{dx} = 2$ 

Using the chain rule,

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = 5u^4 \times 2 = 10u^4$$

Substituting 
$$u = 2x - 3$$
,  $\frac{dy}{dx} = 10(2x - 3)^4$ 

# Example 2

Use the chain rule to find the gradient function for each of the following:

$$a \quad y = \frac{1}{4x - 5}$$

**b** 
$$y = \sqrt{3x - 1}$$

Differentiating v with respect to u and u with respect to x.

#### Solution

Before using the chain rule,  $y = \frac{1}{4x - 5}$  must be written as a bracket

raised to a power. In this case, 
$$y = \frac{1}{4x-5} = (4x-5)^{-1}$$
.  
Now let  $y = u^{-1}$ , where  $u = 4x-5$ .

Then 
$$\frac{dy}{du} = -u^{-2} = -\frac{1}{u^2}$$
 and  $\frac{du}{dx} = 4$ .

Using the chain rule.

$$\frac{dy}{dy} = \frac{dy}{dy} \times \frac{dy}{dy}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = -\frac{1}{u^2} \times 4 = -\frac{4}{u^2}$$

Substituting 
$$u = 4x - 5$$
,  $\frac{dy}{dx} = -\frac{4}{(4x - 5)^2}$ 

**b** Similarly, write  $v = \sqrt{3x-1}$  as  $v = (3x-1)^{1/2}$ . Now let  $v = u^{1/2}$ , where u = 3x - 1.

Then 
$$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{1}{2}u^{-1/2} = \frac{1}{2\sqrt{u}}$$
 and  $\frac{\mathrm{d}u}{\mathrm{d}x} = 3$ 

Using the chain rule.

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \frac{1}{2\sqrt{u}} \times 3 = \frac{3}{2\sqrt{u}}$$

Substituting 
$$u = 3x - 1$$
,  $\frac{dy}{dx} = \frac{3}{2\sqrt{3x - 1}}$ 

When using the chain rule, the choice of the intermediate function u(x) is very important. It is essential that u(x) can be easily differentiated. In general, any composite function of the form  $y = [f(x)]^n$ , involving some function f(x) raised to a rational power n, can be differentiated using the

chain rule. Let  $v = u^n$ , where u = f(x),

Then 
$$\frac{dy}{du} = nu^{n-1}$$
, and  $\frac{du}{dx} = f'(x)$ .

Using the chain rule,

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$
So  $\frac{dy}{dx} = nu^{n-1} \times f'(x)$ 

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}[f(\mathbf{x})]^n = n[f(\mathbf{x})]^{n-1} \times f'(\mathbf{x})$$

Note that  $n[f(x)]^{n-1}$ the derivative of the bracket ignoring its contents, and f'(x) is derivative of the contents of the brack

# Example 3

The tangent to the curve  $y = \frac{5}{1+x^2}$  at x = 2 crosses the y-axis at A and the x-axis at B.

- Find the equation of the tangent.
- Find the coordinates of points A and B.
- Show that the area of triangle OAB is 199 square units.

#### Solution

a In order to find the equation of the tangent to the curve at x = 2, first calculate the gradient of the curve at this point.

Use the chain rule to differentiate 
$$y = \frac{5}{1 + x^2}$$
.

Let 
$$y = \frac{5}{u} = 5u^{-1}$$
, where  $u = 1 + x^2$ .

Then 
$$\frac{dy}{dx} = -5u^{-2}$$
, and  $\frac{du}{dx} = 2x$ .

Using the chain rule,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{5}{u^2} \times 2x$$

Substituting 
$$u = 1 + x^2$$
,  $\frac{dy}{dx} = -\frac{10x}{(1+x^2)^2}$ 

Now, when x = 2,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{10 \times 2}{(1+2^2)^2} = -\frac{20}{25} = -\frac{4}{5}$$

The gradient of the curve, and therefore the gradient of the tangent drawn to the curve, at x=2 is  $-\frac{4}{3}$ . Use  $y-y_1=m(x-x_1)$  to find the equation of the tangent.

When 
$$x = 2$$
,  $y = \frac{5}{1 + 3^2} = 1$ 

So 
$$y-1 = -\frac{4}{5}(x-2)$$
  
 $y = -\frac{4}{6}x + \frac{13}{5}$ 

or 
$$5v + 4x - 13 = 0$$

**b** At point A, where the tangent crosses the y-axis,  $x=0 \Rightarrow y=\frac{13}{5}$ . The coordinates of A are  $(0,\frac{13}{5})$ . At point B, where the tangent crosses the x-axis,

$$y = 0 \Rightarrow -\frac{4}{5}x + \frac{13}{5} = 0$$
  

$$\Rightarrow x = \frac{13}{4}$$

The coordinates of B are  $(\frac{13}{4}, 0)$ 



Recall that the area of a triangle is given by  $area = \frac{1}{2}$  base × perpendicular height. So area of triangle OAB =  $\frac{1}{4} \times \frac{13}{4} \times \frac{13}{4} = \frac{109}{125}$  square units.

#### Related rates of change

Consider how to calculate the rate at which the area of a circular oil slick, of uniform thickness, changes. Using the area of a circle,  $A = \pi r^2$ , the rate of change of area with respect to the slick's radius r,  $\frac{ds}{dr}$  can be found by differentiation. That is,  $\frac{ds}{dr} = 2\pi r$ .

From aerial observation, or by more detailed mathematical modelling, it may be possible to determine the rate of change of the radius with respect to time, §.

The chain rule can now be used to link these two related rates of change together. The rate of change of the slick's area with respect to time is given by

$$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$$

$$= 2\pi r \frac{dr}{dt}$$

It is important to remember that if a particular variable is increasing then its rate of change will be positive, and if it is decreasing, its rate of change will be negative.

Unless specified otherwise, the phrase 'rate of change' refers to the rate at which a variable is changing with respect to time.

### Example 4

A metallic cube, of side length x cm, is being heated in a furnace. The side lengths are expanding at the rate of 0.1 cm s $^{-1}$ . Find the rates at which the cube's surface area and the cube's volume are changing when x = 10 cm.



### Solution

The surface area of the cube,  $S = 6x^2$ . Hence  $\frac{dS}{dt} = 12x$ .

The volume of the cube,  $V = x^3$ . So  $\frac{dV}{dx} = 3x^2$ .

Since the side lengths are expanding at the rate of  $0.1 \, \mathrm{cm \, s}^{-1}$ ,

$$\frac{dx}{dt} = 0.1$$

Using the chain rule, the rate of change of surface area,

$$\frac{dS}{dt} = \frac{dS}{dx} \times \frac{dx}{dt}$$

$$= 12x \times 0.1 = 1.2x \text{ cm}^2 \text{ s}^{-1}$$

When 
$$x = 10 \text{ cm}$$
,  $\frac{dS}{dt} = 12 \text{ cm}^2 \text{ s}^{-1}$ .

Using the chain rule, the rate of change of volume,

$$\begin{split} \frac{dV}{dt} &= \frac{dV}{dx} \times \frac{dx}{dt} \\ &= 3x^2 \times 0.1 = 0.3x^2 \text{ cm}^3 \text{ s}^{-1} \end{split}$$

When x = 10 cm,  $\frac{dV}{dt} = 30$  cm<sup>3</sup> s<sup>-1</sup>.

# Example 5

Air is being pumped into a spherical balloon at the rate of  $300\,\mathrm{cm}^3\,\mathrm{s}^{-1}$ . Find the rate at which the surface area of the balloon is increasing when the radius is  $15\,\mathrm{cm}$ .

#### Solution

The rate of change of volume,  $\frac{dV}{dt} = 300 \text{ cm}^3 \text{ s}^{-1}$ . Since the surface area of a sphere is  $S = 4\pi r^2$ , it

Since the surface area of a sphere is  $S = 4\pi r^2$ , its rate of change with respect to radius r is  $\frac{dS}{dS} = 8\pi r$ .

But it is not possible to link these two related rates of change together to form an expression for  $\frac{45}{5}$ , the rate at which the surface area is changing with respect to time. Instead, we must involve a third expression.

Using the chain rule,

$$\frac{dS}{dt} = \frac{dS}{dr} \times \frac{dr}{dV} \times \frac{dV}{dt}$$

Since the volume of this spherical balloon is  $V = \frac{4}{3}\pi r^3$ , then

$$\frac{dV}{dr} = 4\pi r^2$$
and so  $\frac{dr}{dV} = \frac{1}{4\pi r^2}$ 

The rate of change of surface area is then

$$\frac{dS}{dt} = \frac{dS}{dr} \times \frac{dr}{dV} \times \frac{dV}{dt}$$
$$= 8\pi r \times \frac{1}{4\pi r^2} \times 300$$

 $= \frac{600}{r} \text{ cm}^2 \text{ s}^{-1}$ When r = 15 cm,  $\frac{dS}{dr} = 40 \text{ cm}^2 \text{ s}^{-1}$ .

## Example 6

Water is emptying out of a 85 cm × 85 cm square-based cuboidal tank at the rate of 900 millilitres per second. Find, correct to 2 decimal places, the rate at which the height of the water is falling in the tank. Calculate how long it takes for the height to fall by 10 cm.



illilitre = 1 cm<sup>3</sup>

### Solution

$$\frac{dV}{dt} = -900 \text{ ml s}^{-1}$$
$$= -900 \text{ cm}^3 \text{ s}^{-1}$$

The volume of the water left in the tank, when its height is  $h\,\mathrm{cm}$ , is given by

$$V = 85 \times 85 \times h$$
$$= 7225 h \text{ cm}^3$$

This means the rate of change of volume V with respect to height h is  $\frac{dV}{dt} = 7225$ .

indicates that the volume is decreasing Using the chain rule, the rate of change of height,

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t}$$

found using

$$= \frac{1}{7225} \times -900$$

$$= -0.125 \,\mathrm{cm}\,\mathrm{s}^{-1} \quad (3 \,\mathrm{d.p.})$$

This means the height falls by approximately 0.125 cm per second.

The fall in the height of the water in the tank over a period of time can be

fall in height of water = fall per second × time taken

The time taken for the height of the water to fall 10 cm is given by

$$time taken = \frac{fall in height of water}{fall per second}$$

$$= \frac{10 \text{ cm}}{0.125 \text{ cm s}^{-1}}$$
= 80 seconds (to nearest second)

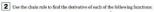
# 5.4 The Chain Rule and **Related Rates of Change**

# Exercise

## Technique

1 Use the chain rule to find for each of the following:

- $v = (x+2)^4$
- $f y = \frac{1}{5x+9}$
- $v = (3-x)^5$  $v = (4x - 5)^3$
- $v = \sqrt{2x+3}$  $v = (x^4 + 2)^{5/2}$
- $v = (x^2 + 1)^6$  $v = (2x^3 - x + 1)^5$
- i  $y = \frac{1}{(7-6x)^2}$ j  $y = \frac{1}{\sqrt{25-x^2}}$



- $a s(t) = (2t+5)^2$ b  $h(r) = (9r - 4)^{-2}$
- e  $P(t) = \frac{3}{\sqrt{1-t}}$  $f V(x) = \frac{12}{x^3 + 2x}$
- $v(t) = \sqrt{t^2 2}$
- $g g(s) = s + \frac{1}{s}$
- $A(\theta) = \sqrt[3]{6\theta + 2}$

h  $I(u) = (1 + \sqrt{u})^3$ 



- 3 Find the gradient of each of the following curves at the point indicated: d  $y = \frac{5}{3x+1}$  at (-2,-1) $v = \sqrt{4x^2 + 9}$  at (2.5).
  - **b**  $y = (2x+3)^4$  at (-1,1)
  - $v = (13 5x)^3$  at (3, -8)
  - 4 Find the coordinates of the point(s) on each of the following curves at which the gradient has the value indicated:
- a  $y = (x+6)^4$  where  $\frac{dy}{dx} = -4$ 
  - **b**  $y = (2x 8)^3$  where  $\frac{dy}{dx} = 24$
  - c  $y = \sqrt{x-7}$  where  $\frac{dy}{dx} = \frac{1}{6}$



6 Given that  $V = (3y - 2)^4$  and  $y = (1 + x)^2$ , use the chain rule to find an expression for  $\mathfrak{T}$  in terms of x only.

#### Contextual

1 The radius of a circular oil slick is increasing at the rate of per hour. Find the rates at which the slick's perimeter and area are changing when the radius is 20 metres (leave your answers in terms of  $\pi$ ).

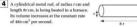


 $1 \text{ litre} = 1000 \text{ cm}^3$ 

2 As air is pumped into a spherical balloon, the rate at which its surface area increases remains a constant 16 z cm2 s-1.

- Find the rate at which the radius of the balloon is changing when
- r = 5 cm. b What is the volume of air in the balloon (in litres) when the rate at which the radius is increasing has dropped to 0.1 cm s<sup>-1</sup>?
- 3 Find the coordinates of the stationary points on the graph of





- Express the volume V in terms of r only. Hence, find  $\Psi$ . Use the chain rule to calculate the rate at which the radius is increasing when r = 5 cm.
- Find an expression for the surface area S of the rod in terms of r. Hence, calculate the rate at which it is changing when r = 5 cm.

5 A right-circular cone, of height 30 cm and radius 12 cm, is filled with sand. The sand is then allowed to drain from the anex of the cope at the rate of 30 cm3 per second. At any given time, it can be assumed that the remaining sand forms a right-circular cone of height h and radius r.



above or below the

- Express the volume V of remaining sand in terms of h only. (Hint: The proportions of this particular cone are such that  $h = \frac{\pi}{2}r$ ). Find an expression for \$\frac{4!}{2!}\$. Use the chain rule to calculate the rate at
- which the height of the remaining sand is falling when h = 15 cm.
- How long, to the nearest second, does it take for the initially full cone to empty?

# 5.5 Differentiation of Trigonometric Functions

### Small angle approximations

In order to be able to differentiate the sine, cosine and tangent functions from first principles, their behaviour for *small* angles must first be established.



that triangle OAC is right-angled at A. Since  $AC = r \tan \theta$ , it follows that area of triangle  $OAC = \frac{1}{r}$  base  $\times$  perpendicular height

area of triangle OAC = 
$$\frac{1}{2}$$
 base ×perpendicular heigh  
=  $\frac{1}{r} \times r \tan \theta$ 

$$=\frac{1}{2}r^2 \tan \theta$$

Also, area of triangle OAB = 
$$\frac{1}{2}r^2 \sin \theta$$
.

Given that angle  $\theta$  is measured in radians, area of sector OAB =  $\frac{1}{2}r^2\theta$ . From the diagram, notice that

centre O. The line AC is a tangent to this arc at the point A. This means

This means 
$$\frac{1}{4}r^2 \sin \theta < \frac{1}{4}r^2\theta < \frac{1}{4}r^2 \tan \theta$$

So 
$$\sin \theta < \theta < \tan \theta$$

Dividing this inequality throughout by  $\sin \theta$  gives

$$1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta}$$

Recall that for small angles,  $\cos\theta\approx$  1. This means that for small  $\theta$ ,

$$\frac{\theta}{\sin \theta} \approx 1$$

So if  $\theta$  is small and measured in radians,  $\sin \theta \approx \theta$ .

 $\triangle$  OAC is right-angle so  $\tan \theta = \frac{AC}{OA} = \frac{AC}{r}$ 

Recall from Chapte the other formula for area of a triangle, area =  $\frac{1}{2}ab \sin C$ .

Recall from Chapter that sector area =  $\frac{1}{2}r$ (when  $\theta$  is measured radians). Alternatively, dividing  $\sin \theta < \theta < \tan \theta$  throughout by  $\tan \theta$  gives

$$\frac{\sin \theta}{\tan \theta} < \frac{\theta}{\tan \theta} < 1$$

$$\cos \theta < \frac{\theta}{\tan \theta} < 1$$

Again, since  $\cos\theta\approx 1$  for very small values of  $\theta$  in radians, it follows that

$$\frac{\theta}{\tan \theta} \approx 1$$

This means that  $\tan \theta \approx \theta$  for small angles measured in radians.

The behaviour of the cosine function for small angles can be established using the Pythagorean identity:

$$\sin^2 \theta + \cos^2 \theta = 1$$
  
 $\Rightarrow \cos^2 \theta = 1 - \sin^2 \theta$ 

$$\cos \theta = 1 - \sin^2 \theta$$
  
 $\cos \theta = (1 - \sin^2 \theta)^{\dagger}$ 

For small values of  $\theta$ ,  $\sin \theta \approx \theta$ , so

$$\cos \theta \approx (1 - \theta^2)^{\frac{1}{2}}$$

The expression  $(1-\theta^2)^{\frac{1}{2}}$  can be expanded using the binomial expansion (see Chapter 8), to give

$$\cos \theta \approx 1 - \frac{1}{2}\theta^2$$

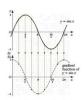
In summary, the behaviour of sine, cosine and tangent functions for small angles measured in radians are:

$$\sin \theta \approx \theta$$
 $\cos \theta \approx 1 - \frac{1}{2}\theta^2$ 
 $\tan \theta \approx \theta$ 

◆ Learn these important results.

#### Differentiation of sine and cosine

The diagram shows the graphs of  $y=\sin x$  and its gradient function for the interval  $0 \le x \le 2\pi$ . By considering the gradient of the sine curve at several values of x, it is possible to gain some insight into the nature of its gradient function.



For example, at  $x = \frac{\pi}{2}$  and  $x = \frac{\pi}{2}$ , the gradient is zero. Between these two values, sinx is a decreasing function of x, and the gradient of the sine curve is therefore negative. The gradient is at its most negative when x = x, and this corresponds to a minimum point on the graph of the gradient function.

For  $0 \le x \le \frac{\pi}{2}$  and  $\frac{3\pi}{2} < x < 2\pi$ ,  $\sin x$  is an increasing function of x. The sine curve has a positive gradient in these intervals. The gradient function therefore reaches a maximum at x = 0 and  $x = 2\pi$ .

What do you notice about the graph of the gradient function? The outline graph of the gradient function obtained appears to resemble the curve  $y = \cos x$ . Its exact nature can be found algebraically by differentiating the sine function from first principles.

Consider the chord drawn from the point P(x,y) to the point  $Q(x + \delta x, y + \delta y)$  on the curve  $y = \sin x$ .



gradient of the chord PQ =  $\frac{\text{change in } y\text{-coordinate}}{\text{change in } x\text{-coordinate}} = \frac{\delta y}{\delta x}$   $= \frac{(y + \delta y) - y}{\delta x}$   $= \frac{\sin(x + \delta x) - \sin x}{\delta x}$ 

 $y = \sin x, \text{ then}$  $y + \delta y = \sin(x + \delta x)$ 

Now use the compound angle formula,

$$sin(A + B) = sin A cos B + cos A sin B$$

to give  $\sin(x+\delta x)=\sin x\cos\delta x+\cos x\sin\delta x.$  This means

$$\frac{\delta y}{\delta x} = \left(\frac{\sin x \cos \delta x + \cos x \sin \delta x - \sin x}{\delta x}\right)$$

Differentiating from first principles, the gradient function for the curve  $y=\sin x$  can be found by finding the limiting value of  $\frac{\delta y}{\delta x}$  as  $\delta x\to 0$ .

$$\frac{dy}{dx} = \lim_{\delta x \to 0} \left( \frac{\delta y}{\delta x} \right)$$

$$= \lim_{\delta x \to 0} \left( \frac{\sin x \cos \delta x + \cos x \sin \delta x - \sin x}{\delta x} \right)$$

Now, use the small angle approximations  $\sin \theta \approx \theta$  and  $\cos \theta \approx 1 - \frac{1}{2}\theta^2$ .

For small values of  $\delta x, \sin \delta x \approx \delta x$  and  $\cos \delta x \approx 1 - \frac{1}{2} (\delta x)^2$ .

Using these approximations,

$$\begin{split} \frac{\mathrm{d} y}{\mathrm{d} x} &= \lim_{\delta x \to 0} \left( \frac{1 - \frac{1}{2} (\delta x)^2 |\sin x + \delta x \cos x - \sin x}{\delta x} \right) \\ &= \lim_{\delta x \to 0} \left( \frac{\sin x - \frac{1}{2} (\delta x)^2 \sin x + \delta x \cos x - \sin x}{\delta x} \right) \\ &= \lim_{\delta x \to 0} \left( \min \left( \cos x - \frac{1}{2} (\delta x) \sin x \right) \right) \\ &= \cos x \end{split}$$

We can also find the gradient function of the cosine function by differentiating from first principles.

If  $y = \cos x$ , then

$$\begin{aligned} \frac{\mathrm{d}y}{\mathrm{d}x} &= \underset{\delta x \to 0}{\mathrm{limit}} \left( \frac{\delta y}{\delta x} \right) \\ &= \underset{\delta x \to 0}{\mathrm{limit}} \left( \frac{\cos(x + \delta x) - \cos x}{\delta x} \right) \end{aligned}$$

result is dependent on x being in radians. Use the compound angle formula

$$cos(A + B) = cos A cos B - sin A sin B$$

to give  $\cos(x + \delta x) = \cos x \cos \delta x - \sin x \sin \delta x$ . Then

$$\frac{dy}{dx} = \lim_{x \to \infty} \left( \frac{\cos x \cos \delta x - \sin x \sin \delta x - \cos x}{\delta x} \right)$$

Use the small angle approximations,  $\sin\delta x\to\delta x$  and  $\cos\delta x\to 1-\frac12(\delta x)^2$  as  $\delta x\to 0$ ,

$$\begin{split} \frac{\mathrm{d} y}{\mathrm{d} x} &= \lim_{\delta x \to 0} \left(\frac{1 - \frac{1}{2} (\delta x)^2 \left| \cos x - \delta x \sin x - \cos x \right.}{\delta x} \right) \\ &= \lim_{\delta x \to 0} \left(\frac{\cos x - \frac{1}{2} (\delta x)^2 \cos x - \delta x \sin x - \cos x}{\delta x} \right) \\ &= \lim_{\delta x \to 0} \left(\frac{1}{2} (\delta x) \cos x - \sin x \right) \\ &= -\sin x \end{split}$$

derivation of their gradient functions from first principles relies upon small angle approximations for  $\sin\theta$  and  $\cos\theta$ . These are only valid for angles measured in radians.

The chain rule can be used to differentiate composite functions of sine or cosine involving double or multiple angles.

# Example 1

Differentiate the following with respect to x:

- a  $y = \sin 2x$
- b  $y = 4\cos 3x$ c  $y = \sin(ax + b)$  where a and b are constants
- d  $y = \cos(x^2 + \pi)$ .
  - Solution a Let  $v = \sin u$ , where u = 2x.
    - Then  $\frac{dy}{dx} = \cos u$  and  $\frac{du}{dx} = 2$

Using the chain rule,

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \cos u \times 2$$

Substituting 
$$u = 2x$$
,  $\frac{dy}{dx} = 2\cos 2x$ 

 $\mathbf{b} \quad \text{ Let } y = 4\cos u \text{, where } u = 3x.$ 

Then 
$$\frac{dy}{du} = -4 \sin u$$
 and  $\frac{du}{dx} = 3$ 

Using the chain rule,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = -4\sin u \times 3$$

Substituting 
$$u = 3x$$
,  $\frac{dy}{dx} = -12 \sin 3x$ 

c Let 
$$y = \sin u$$
, where  $u = ax + b$ .

Then 
$$\frac{dy}{du} = \cos u$$
 and  $\frac{du}{dx} = a$ 

Using the chain rule,

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \cos u \times a$$

Substituting 
$$u = ax + b$$
,  $\frac{dy}{dx} = a\cos(ax + b)$ 

**d** Let  $y = \cos u$ , where  $u = x^2 + \pi$ .

Then 
$$\frac{dy}{du} = -\sin u$$
 and  $\frac{du}{dx} = 2x$ 

Using the chain rule, 
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = -\sin u \times 2x$$

Substituting 
$$u = x^2 + \pi$$
,  $\frac{\mathrm{d}y}{\mathrm{d}x} = -2x\sin(x^2 + \pi)$ 

The chain rule can also be used to differentiate functions involving powers of sine and cosine.

### Example 2

Differentiate the following with respect to  $\theta$ .

$$\mathbf{a} \quad x = \sin^2 \theta$$

b 
$$y = \cos^3 4\theta$$

#### Solution

a For  $x = \sin^2 \theta = (\sin \theta)^2$ , let  $x = u^2$ , where  $u = \sin \theta$ .

Then 
$$\frac{dx}{du} = 2u$$
 and  $\frac{du}{d\theta} = \cos \theta$ 

Using the chain rule,

$$\frac{dx}{d\theta} = \frac{dx}{du} \times \frac{du}{d\theta} = 2u \cos \theta$$

Substituting 
$$u = \sin \theta$$
,  $\frac{dx}{d\theta} = 2 \sin \theta \cos \theta = \sin 2\theta$ 

b For 
$$y = \cos^3 4\theta = (\cos 4\theta)^3$$
, let  $y = u^3$ , where  $u = \cos 4\theta$ .

Then  $\frac{dy}{du} = 3u^2$  and  $\frac{du}{d\theta} = -4\sin 4\theta$ Using the chain rule.

$$\frac{dy}{dz} = \frac{dy}{dz} \times \frac{du}{dz} = 3u^2 \times -4\sin 4\theta$$

Substituting  $u = \cos 4\theta$ ,  $\frac{dy}{d\theta} = -12(\cos 4\theta)^2 \sin 4\theta = -12\cos^2 4\theta \sin 4\theta$ 

### Example 3

Find the equations of the tangent and normal to the curve  $y=\cos 2x$  at the point where  $x=\xi$ 

Solution If  $v = \cos 2x$ , then  $\frac{dy}{dx} = -2 \sin 2x$ 

When 
$$x = \frac{\pi}{x}, y = \cos \frac{\pi}{x} = \frac{1}{x}$$
 and  $\frac{dy}{dx} = -2\sin \frac{\pi}{x} = -\sqrt{3}$ 

So the gradient of the tangent to the curve at  $x = \frac{\pi}{6}$  is  $-\sqrt{3}$ , and the gradient of the normal is  $\frac{1}{\sqrt{3}}$ .

Using  $y - y_1 = m(x - x_1)$  to find the equations of the tangent and the normal at the point  $(\frac{x}{4}, \frac{1}{2})$ :

The equation of the tangent is 
$$y - \frac{1}{2} = -\sqrt{3}\left(x - \frac{\pi}{6}\right)$$
  
 $\Rightarrow y = -\sqrt{3}x + \frac{1}{4} + \frac{\pi\sqrt{3}}{6}$ 

The equation of the normal is 
$$y - \frac{1}{2} = \frac{1}{\sqrt{3}} \left( x - \frac{\pi}{6} \right)$$

$$\Rightarrow y = \frac{x}{\sqrt{3}} + \frac{1}{2} - \frac{z}{6\sqrt{3}}$$

Use a graphical calculator to verify that they are the tangent and normal to the curve at  $(\mathbb{R}, \frac{1}{n})$ .

Use the chain rule to find %.

Check that your

mode, with a 'sou

view'.

### Example 4

Find the coordinates of the stationary points on the graph of  $y = \sin x + \cos x$  in the interval  $0 \le x \le 2\pi$ . Determine their nature. Hence sketch the graph of  $y = \sin x + \cos x$ .

#### Solution

If  $y = \sin x + \cos x$ , then  $\frac{dy}{dx} = \cos x - \sin x$ . At stationary points on the graph,  $\frac{dy}{dx} = 0$ .

So 
$$\cos x - \sin x = 0$$
  
 $\Rightarrow \cos x = \sin x$   
 $\Rightarrow \tan x = 1$   
 $x = \tan^{-1}(1)$ 

Remember that this equation has more than one solution in the interval  $0 \le x \le 2\pi$ . The solutions are  $x = \frac{\pi}{4}$  and  $x = \frac{5\pi}{4}$ .

When x = 5.

$$y = \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right)$$
$$= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$$
$$= \frac{2}{\sqrt{2}} = \sqrt{2}$$

When  $x = \frac{5\pi}{4}$ .

$$y = \sin\left(\frac{5\pi}{4}\right) + \cos\left(\frac{5\pi}{4}\right)$$
$$= -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}$$
$$= -\frac{2}{\sqrt{2}} = -\sqrt{2}$$

To determine the nature of the stationary points at  $(\frac{\pi}{4}, \sqrt{2})$  and  $(\frac{5\pi}{4}, -\sqrt{2})$  consider the sign of the gradient of the curve at points on each side of them. Considering the point  $(\frac{\pi}{4}, \sqrt{2})$ :

When 
$$x = \frac{\pi}{6}$$
,  $\frac{dy}{dx} = \cos\left(\frac{\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} - \frac{1}{2}$   
That is,  $\frac{dy}{dx} > 0$ .  $\blacktriangleleft$  The function is increasing.  
When  $x = \frac{\pi}{3}$ ,  $\frac{dy}{dx} = \cos\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{3}\right) = \frac{1}{2} - \frac{\sqrt{3}}{2}$ 

This means  $(\frac{\pi}{4}, \sqrt{2})$  is a maximum point on the curve.

Considering the point 
$$(\frac{51}{4}, -\sqrt{2})$$
:

When 
$$x = \pi$$
,  $\frac{dy}{dx} = \cos \pi - \sin \pi = -1 - 0$ 

That is, 
$$\frac{dy}{dx} < 0$$
.  $\blacktriangleleft$  The function is decreasing.

When 
$$x = \frac{3\pi}{2}$$
,  $\frac{dy}{dx} = \cos\left(\frac{3\pi}{2}\right) - \sin\left(\frac{3\pi}{2}\right) = 0 - (-1)$ 

That is, 
$$\frac{dy}{dx} > 0$$
.  $\blacktriangleleft$  The function is increasing.

This means  $(\frac{16}{4},-\sqrt{2})$  is a minimum point on the curve.

The graph crosses the x-axis when  $y = \sin x + \cos x = 0$ 

⇒ 
$$\tan x = -1$$
  
⇒  $x = \frac{3\pi}{4}$  and  $x = \frac{7\pi}{4}$  (in the stated range).



Check this result using a graphical calculator.

## Example 5

A Ferris wheel at an amusement park, with a radius of 10 m, is centred 11 m above the ground. It completes a revolution every 20 s. The height of a particular chair on the wheel varies according to

$$h = 11 + 8\sin\left(\frac{\pi t}{10}\right) + 6\cos\left(\frac{\pi t}{10}\right).$$

Find, to the nearest second, the times during the first revolution that this chair is rising, and the times during which it is falling.

### Solution

When the chair is rising, height h is an increasing function of time t. This means that we need to find the times when  $\frac{d}{dt} > 0$ . When the chair is falling, h is a decreasing function of time t. This means that we need to find the times when  $\frac{d}{dt} < 0$ .





In order to decide when the chair is rising and falling, first locate and determine the nature of the stationary points on the height-time curve. Using the chain rule to differentiate the sine and cosine terms,

$$\begin{split} \frac{\mathrm{d}h}{\mathrm{d}t} &= 8\cos\left(\frac{\pi t}{10}\right) \times \frac{\pi}{10} - 6\sin\left(\frac{\pi t}{10}\right) \times \frac{\pi}{10} \\ &= \frac{4\pi}{5}\cos\left(\frac{\pi t}{10}\right) - \frac{3\pi}{5}\sin\left(\frac{\pi t}{10}\right) \end{split}$$

At stationary points on the height-time curve

$$\begin{split} \frac{dh}{dt} = 0 &\Rightarrow \frac{4\pi}{5}\cos\left(\frac{\pi t}{t}\right) - \frac{3\pi}{5}\sin\left(\frac{\pi t}{t}\right) = 0 \\ &\Rightarrow &\frac{4\pi}{5}\cos\left(\frac{\pi t}{t}\right) - \frac{3\pi}{5}\sin\left(\frac{\pi t}{t}\right) \\ &\Rightarrow &\frac{\sin\left(\frac{\pi t}{t}\right)}{\cos\left(\frac{\pi t}{t}\right)} - \frac{4\pi}{5}\sin\left(\frac{\pi t}{t}\right) \\ &\Rightarrow &\tan\left(\frac{\pi t}{t}\right) - \frac{4\pi}{5} \\ &\Rightarrow &\tan\left(\frac{\pi t}{t}\right) = \frac{4\pi}{5} \end{split}$$

So  $\frac{2t}{10}$  = 0.927, 4.069, 7.210, ... and t = 2.95, 12.95, 22.95, ... (2 d.p.)

So during the first 20-second revolution, there are stationary points after 2.95 and 12.95 seconds. To find the nature of these stationary points, look at values of the gradient function on each side.

Considering t = 12.95 s:

Considering the stationary point at t = 2.95 s:

When 
$$t=2$$
,  $\frac{\mathrm{d}h}{\mathrm{d}t}=\frac{4\pi}{5}\mathrm{cos}\left(\frac{\pi}{5}\right)-\frac{3\pi}{5}\mathrm{sin}\left(\frac{\pi}{5}\right)$ 

That is, 
$$\frac{dh}{dt} > 0$$
.

When 
$$t = 4$$
,  $\frac{dh}{dt} = \frac{4\pi}{5} \cos\left(\frac{2\pi}{5}\right) - \frac{3\pi}{5} \sin\left(\frac{2\pi}{5}\right)$ 

That is, 
$$\frac{dh}{dt} < 0$$
.  $\blacktriangleleft$  The function is decreasing.

So  $t = 2.95 \,\mathrm{s}$  is the location of a maximum point on the height–time curve.

When 
$$t = 12$$
,  $\frac{dh}{dt} = \frac{4\pi}{5} \cos \left(\frac{6\pi}{5}\right) - \frac{3\pi}{5} \sin \left(\frac{6\pi}{5}\right)$ 

That is, 
$$\frac{dh}{dt} < 0$$
.  $\blacktriangleleft$  The function is decreasing.

When 
$$t=14$$
,  $\frac{\mathrm{d}h}{\mathrm{d}t}=\frac{4\pi}{5}\cos\left(\frac{7\pi}{5}\right)-\frac{3\pi}{5}\sin\left(\frac{7\pi}{5}\right)$ 

That is, 
$$\frac{dh}{dt} > 0$$
.  $\blacktriangleleft$  The function is increasing.

Hence, there is a minimum point when  $t=12.95\,\mathrm{s}$ . Given that the wheel is centred 11 metres above the ground, and has a radius of 10 metres, the maximum and minimum heights of the chair (at these stationary points) are 21 m and 1 m respectively.

When t=0,  $h=11+8\sin(0)+6\cos(0)=17$  m. Since the wheel completes a revolution every 20 seconds, the height of the chair will be 17 metres when t=20.

Use this information to sketch the height-time graph. From the graph notice that, to the nearest second, the chair is rising between 0 and 3 seconds, and between 13 and 20 seconds during its first revolution. This means it is falling between t = 3 and t = 13 seconds.



# 5.5 Differentiation of Trigonometric Functions

# Exercise

#### Technique

- Differentiate each of the following with respect to x:
  - $v = \cos^2 x$ 
    - $y = \cos x$  $v = \sin 4x + \sin 2x$
  - $y = \cos^3 x$
  - $y = 5 \sin 2x$
  - $y = \cos(5 x)$   $f \quad y = \sin^3 x$
  - $y = \sin x$  $y = \cos^2(3x)$
  - $y = \cos(3x)$   $h \quad y = \sin(x^2 + 5)$
  - $y = \sin(x^2 + 5)$   $y = 4\cos^2 \xi$
  - $y = a \sin(px) + b \cos(qx)$ , where a, b, p and q are constants
- 2 Find the gradient of each of the following curves at the point indicated:
  - a  $y = 3\cos x$ , where  $x = \frac{\pi}{2}$ b  $y = \sin^2 x$ , where  $x = \frac{\pi}{4}$ c  $y = 6\cos \frac{\pi}{2}$ , where  $x = 3\pi$ d  $y = x^2 - \cos x$ , where  $x = \frac{\pi}{2}$
- Find the coordinates of the points on each of the following curves at which the gradient has the value indicated:
  - a  $y = 6 \sin x$ , for  $0 \le x \le 2\pi$ , where  $\frac{dy}{dx} = 6$ b  $y = \cos^2 x$ , for  $0 \le x \le \pi$ , where  $\frac{dy}{dx} = 1$
  - c  $y = 1 2\cos\frac{\pi}{2}$ , for  $0 \le x \le 2\pi$ , where  $\frac{dy}{dx} = \frac{1}{2}$ d  $y = \sin 2x$ , for  $0 \le x \le \pi$ , where  $\frac{dy}{dx} = \sqrt{2}$
- For each of the following trigonometric functions, find an expression for f'(x). Hence locate, and determine, the nature of any stationary points on the graph of v = f(x) in the interval 0 ≤ x ≤ 2π.
- **a**  $f(x) = \sin \frac{3x}{2}$  **b**  $f(x) = \frac{1}{2}x \cos x$  **c**  $f(x) = 2x + \sin 2x 5$
- 5 For each of the following trigonometric functions, in the interval 0 < x < 2π:</p>
  - i Find the coordinates of the points where the graph of y = f(x) crosses the axes.
    - ii Find the coordinates of the stationary points on the graph, and determine their nature.
    - iii Sketch the graph of y = f(x).
      - Check your results using a graphical calculator.
    - a  $f(x) = \cos x \sin x$ b  $f(x) = \sin x + \sqrt{3} \cos x$ c  $f(x) = 3 \sin x - \cos x$





- - 6 Find the equations of the tangent and normal to the curve  $v = 2 \cos x - 3 \sin x$  at the point where:
    - $\mathbf{a} \quad \mathbf{x} = \mathbf{0}$

x = x

#### Contextual



1 The hours of daylight h in York during a calendar year can be modelled by

$$h = 12 + 2.5 \cos \left[ \frac{2\pi (t - 172)}{365} \right],$$

where t is the number of days after the start of the year. So, t = 1 on 1

January and t = 365 on 31 December (leap years are ignored). a Find the number of hours daylight predicted by the model on 1 June and 26 August.

b Find an expression for 4.

- On which days does this model predict that the summer solstice (day with the most daylight hours) and winter solstice (day with the least daylight hours) will happen?
  - Find the rate at which h is either increasing or decreasing on 28 January and on 2 November.



2 An object is attached to a spring, and is oscillating such that its distance x cm below some fixed point O, t seconds after its release, is given by

$$x = 20 + 8\cos(\pi t) - 5\sin(\pi t)$$

- Find an expression for \$\\$. Hence calculate the initial velocity of the object, indicating in which direction the object is moving
- Calculate the times at which the object is momentarily at rest during its first oscillation.
- Calculate the velocity with which the object is moving the first time it moves through the midpoint of its oscillation (again indicate the direction).



# Consolidation

# Exercise A

- 1 A curve has the equation  $y = 2x^3 3x^2 36x + 120$ .
  - a Calculate the values of y when x is 3 and when x is -2.
    - b Find dr.
      - Use your expression for dr dr to find the coordinates of the two stationary points on the curve.
      - stationary points on the curve.
        By considering the values of dr/dt near the stationary points, decide which type of stationary point each is.
    - e Sketch the curve. Deduce the range of values of h for which the equation  $2x^2 3x^2 36x + 120 = h$  has three real roots.

(OCSEB)

A drinks machine delivers water into a cup at constant rate of 20 cm<sup>3</sup> s<sup>-1</sup>. When the height of water in the cup is h cm, the volume of water contained in the cup is ½π<sup>3</sup> cm<sup>3</sup>. Calculate the rate, in cm s<sup>-1</sup>, at which the height is increasing when h = 5, giving your answer correct to two decimal places.

(UCLES)

- **3** The equation of a curve is  $y = (3 x^2)^6$ . Find:
  - a de
    - b the equation of the normal at the point on the curve where x = 2.

      (UCLES)

On its journey from station A to station B, a rapid transit train T passes a certain landmark C at noon. The train's journey from A to B may be modelled by the equation

$$x = \frac{1}{20}(24t - 9t^2 - 2t^3)$$

where x km denotes the displacement of T from C at t minutes past noon.

- a Find the velocity of the train at t minutes past noon.
- b Find the time of departure of the train from A and its time of arrival at B.
- c Find the distance between the stations.
- d Calculate the average speed of the train for the journey from A to B.
- Determine the greatest speed of the train during its journey.

(WIEC)

- - Calculate the exact value of the gradient of the curve at the point where x = \(\frac{\pi}{2}\).
  - b Determine the equation of the tangent to the curve at the point where  $x = \frac{\pi}{4}$ .

**6** The two variables x and y are related by the equation  $y = 3x - \frac{4}{x}$ .

The two variables x and y are related by the equation
a Obtain an expression for <sup>dy</sup>/<sub>2</sub> in terms of x.

a Obtain an expression for dr/dx in terms of x.
 b Hence find the approximate increase in y as x increases from 2 to 2 + p, where p is small.

(UCLES)

(AEB)

A cylindrical biscuit tin has a close-fitting lid which overlaps the tin by 1 cm, as shown. The radii of the tin and the lid are both x cm. The tin and the lid are made from a thin sheet of metal of area 600 cm<sup>2</sup> and there is no wastage. The volume of the tin is V cm<sup>2</sup>.



a Show that  $V = \pi (40x - x^2 - x^3)$ .

Given that x can vary:

- b use differentiation to find the positive value of x for which V is stationary
- $\mathbf{c}$  prove that this value of x gives a maximum value of V.
- d Find the maximum value of V.
   e Determine the percentage of the sheet metal used in the lid when V is a maximum.

(ULEAC)

- **8** A curve is defined by  $y = x^3 6x^2 + 8$ .
  - a Find an expression for dg.
     b Find the equation of the tangent at the point (2, -8).
  - b Find the equation of the tangent at the point (2, -8).
    c Find the equation of the normal at the point where x = 3.

c Find the equation of the normal at the point where x = 3.
(MEI)

A train has to travel a distance of 60 km at a constant speed. When the train has a speed of v km h<sup>-1</sup> the running cost of the train is

A train has a speed of v km h<sup>-1</sup> the running cost of the train is

 $\mathcal{E}\left(v^2 + \frac{32\,000}{v}\right)$  per hour.

a Find the time taken for the journey of 60 km at a constant speed of  $\nu\,\mathrm{km}\,\mathrm{h}^{-1}.$ 

- Show that the total cost of the whole journey is £(60v + 19500009).
   Find the speed at which the train should travel so that the cost of the
- journey is a minimum.

  d Explain, briefly, why the total distance travelled does not affect the speed found in c.

(NICCEA)

10 An importer and distributor of computers has found an exclusive source of laptop micro-computers. They will cost her £250 per machine. In addition she will incur a cost of £5000 to adapt her distribution system to sell them, no matter how many machines she buys. The total cost of adapting her distribution system and buying machines is £c.

- a Express c in terms of n.
- b Experience suggests that the number, n, of machines sold is related to the selfing price per anothens, s, by the equation n = a + bs, where a and b are constants. The importer has been informed by the market research department that if the fixes the selfing price at C400 per machine the is likely to self above 5000 machines, and if it fix fixes it at C500 this will full to about 3500 machines. Find a and b based on the information supplied by the market research department.
- c Show that the profit, £p, the importer will make from selling all these machines is given by p = 18500s 20s² 3380000.
- d Find the selling price per machine which will maximise the importer's total profit and hence find the number of machines she should purchase and her total profit on selling all the machines.

(NEAB)

### Exercise B

Find the equation of the tangent to the curve  $y = (4x + 3)^5$  at the point  $(-\frac{1}{2}, 1)$ , giving your answer in the form y = mx + c.

A storm has damaged an oil rig and caused a circular oil slick with a uniform thickness of 2 inches. The oil is spilling at a rate of 112 cubic feet per minute. Calculate the rate at which the radius of the oil slick is

increasing when its radius is 50 feet. (The volume V of a cylinder of radius r and height h is given by  $V = \pi r^2 h$ .)

(WIEC)

- A large tank in the shape of a cuboid is to be made from 54 m<sup>2</sup> of sheet metal. The tank has a horizontal rectangular base and no top. The height of the tank is x metres. Two of the opposite vertical faces are squares.
  - a Show that the volume,  $V \text{ m}^3$ , of the tank is given by  $V = 18x \frac{2}{5}x^3$ .

- b Given that x can vary, use differentiation to find the maximum value of V.
  - Justify that the value of V you have found is a maximum.
- Prove that the equation of the tangent to the curve  $y = x^3 3x^2 7$  at P(3, -7) is y = 9x 34. Find the coordinates of the other point on the curve at which the tangent is parallel to the tangent at P.

(MEI)

- **5** A particle moves in a straight line so that, t seconds after leaving a fixed point O, its displacement, s metres, is given by  $s = \frac{1}{4}t^2 2t^2 + 3t$ . Given that the particle returns to O when t = T, find the value of T. Using this value of T. Tind:
  - a the maximum displacement from O of the particle during the interval 0 ≤ t ≤ T.
     b the acceleration of the particle at time T seconds.
  - b the acceleration of the particle at time T seconds.
    (UCLES)
- A manufacturer wishes to make cylindrical containers to hold a dry powder. Each container has to hold 72 cm³ of dry powder and has a base
  - radius of x cm and a height of h cm.

    a Write down an equation, in terms of x and h, for the volume of a
  - container. State what assumptions you have made.

    b Write down an expression, in terms of x and h, for the curved surface area of a container. Now write this expression in terms of x only.

    The top is to be made of plastic and the sides and base are to be made of
  - cardboard.

    c If plastic costs 0.2 pence for 1 cm<sup>2</sup> and cardboard costs 0.1 pence for 1 cm<sup>2</sup>, show that the total cost, in pence, of a container is

 $c = 0.3\pi x^2 + \frac{14.4}{}$ 

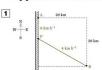
Find the dimensions of a container so that the cost of the materials is a minimum.

(NICCEA)

- T a When the height of liquid in a tub is x metres the volume of liquid is V m<sup>3</sup>, where V = 0.05[(3x + 2)<sup>3</sup> 8].
  i Find an expression for 4V.
  - ii The liquid enters the tub at a constant rate of 0.081 m<sup>3</sup> s<sup>-1</sup>. Find the rate which the height of liquid is increasing when V = 0.95.
  - b Given that y = \*\* use differentiation to determine, in terms of p, where p is small, the approximate change:
  - i in y as x increases from 4 to 4 + p,
    ii in x as y decreases from 1 to 1 p.

(UCLES)

# **Applications and Activities**



As part of a training exercise, a group of soldiers have to walk from point As point B, which lie at opposite consens of a 20 km × 20 km square. They start off by travelling south along a track that runs along the western edge of the square. Their average speed is 8 km \*1. \*1 Lpon reaching some point P, they turn of the track and head directly lowards B. Due to the difficult stature of the terrain they are crossing, the soldiers can only average a speed of 4 km \*1 \* inside the square.

a Find an expression for the total time taken for this two stage journey.
 b Find the position of point P, that minimises the total time taken. What is this minimum time, to the nearest minute?

# Summary

- The gradient function, or derivative, of y = f(x) is denoted by  $\frac{dy}{dx}$  or f'(x).
- Differentiation from first principles uses

$$\frac{dy}{dx} = \lim_{\delta x \to 0} \left( \frac{f(x + \delta x) - f(x)}{\delta x} \right)$$

- 'Multiply by the power and then reduce the power by one' to differentiate powers of x.
- Differentiate the first derivative again to find the second derivative, the gradient of the gradient function.
- A stationary point is a point where dr/dt = 0.
- A local maximum point is a stationary point where the gradient function changes from being positive to negative.
- A local minimum point is a stationary point where the gradient function changes from being negative to positive.
- The gradient function on both sides of a stationary point of inflexion remains either positive or negative.
- Local maximum and minimum points are called turning points.
- If the gradient function is positive then the function is increasing; if it is negative the function is decreasing.
- The equations of the tangent and the normal to a curve y = f(x) at some point (x<sub>1</sub>, y<sub>2</sub>) are found using dy/2 and the result y − y<sub>1</sub> = m(x − x<sub>1</sub>).
- A composite function can be differentiated using the chain rule,

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

 For a small change \(\delta y\) in the value of the y-coordinate corresponding to a small change \(\delta x\) in the x-coordinate,

$$\frac{\delta y}{\delta y} \approx \frac{\mathrm{d}y}{\mathrm{d}x}$$

When the angle θ is small and measured in radians,

$$\sin\theta\approx\theta,\ \cos\theta\approx1-\frac{\theta^2}{2},\ \ {\rm and}\quad \ \tan\theta\approx\theta$$

Trigonometric functions can be differentiated using

$$\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x \quad \text{and} \quad \frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x.$$

Remember that x mu be measured in radio

# 6 Algebra II

### What you need to know

- How to use the long division algorithm (method).
- How to add and subtract proper fractions.
- How to express simple improper algebraic fractions as mixed fractions.
- The characteristics of the graphs of linear, quadratic, cubic and simple rational functions.

# Review

Use the long division algorithm (method) to find the following, leaving any remainders as fractions:

a 
$$4251 \div 7$$
 b  $92144 \div 5$  c  $31541 \div 12$  d  $65235 \div 13$ 

Write each of the following in its simplest form:  

$$\mathbf{a} = \frac{1}{2} + \frac{1}{6}$$
  $\mathbf{b} = \frac{1}{6} + \frac{2}{6}$   $\mathbf{c} = \frac{2}{9} + \frac{1}{6}$   $\mathbf{d} = \frac{1}{2} - \frac{2}{6}$ 

a x-4 b x+1 c x+2 d x+14 Match each of the following equations to the graphs:

a 
$$y = x^2$$
  
b  $y = x^3$   
c  $y = x^2 + 1$   
d  $y = \frac{1}{x}$   
e  $y = (x+2)^2 + 1$ 

int: First rewrite the umerator in terms of the enominator.

# 6.1 Polynomial Division

Without using a calculator work out 1452 + 11. There are many ways of doing this calculation but using the long division algorithm the solution takes the following form.

| 11)1452 | Rewrite the problem in the standard form.               |
|---------|---------------------------------------------------------|
| 1       |                                                         |
| 11)1452 | Find the number of 11s in 14, and subtract this result. |
| 13      | Bring the next figure, 5, down to the result of the     |
| 11)1452 | subtraction, 3. Find the number of 11s in 35 and repeat |
| 11      | the process.                                            |
| 35      |                                                         |
| -33     |                                                         |
| 132     |                                                         |
| 11)1452 | The completed solution shows an exact answer of 132.    |
| -11     |                                                         |
| 35      |                                                         |
| -33     |                                                         |
| -22     |                                                         |
|         |                                                         |

Use another method to check this solution.

The process for polynomial division is very similar, but instead of keeping figures in columns the powers of x are kept in columns.

# Example 1

Find 
$$\frac{x^3 + 4x^2 + 5x + 2}{x + 1}$$
.

# Solution

x+1 $x^3+4x^2+5x+2$ 

 $(x+1)x^3+4x^2+5x+2$  $-(x^3 + x^2)$ 

First rewrite the problem using the standard format for the long-division Next divide x3 by x, and subtract the result, multiplied by (x + 1), from the polynomial.

algorithm, as above.

 $v^2 \pm 3v$  $(x+1)x^3+4x^2+5x+2$  $-\frac{(x^3+x^2)}{3x^2+5x}$ 

Notice how the powers of x are kept under each other in straight columns. Now the subtraction takes place and the next term in the polynomial, 5x, is brought down.

x goes into x3 exactl times, and

$$\begin{array}{lll} x^{2} + 3x & & \\ x + 13x^{2} + 4x^{2} + 3x & & \\ -(x^{2} + x^{2}) & & \\ & 3x^{2} - 5x & \\ & -(x^{2} + 2x) & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

x goes into 3x2 exactly 3x times, and

x goes into 2x exactly twice, and 2(x+1) = 2x + 2

$$\frac{-(2x+2)}{0}$$
 This means that 
$$\frac{x^3+4x^2+5x+2}{x+1}=x^2+3x+2.$$
 Notice that this result can be checked in several ways.

1. Show that  $(x+1)(x^2+3x+2) = x^3+4x^2+5x+2$ . 2. Check that  $\frac{x^3+4x^2+5x+2}{x^2+3x+2} = x+1$ .

 $-(3x^2 + 3x)$ (2x + 2)

3. Since the division is true for all values of x put x = 10 into each expression. What happens now? Notice how the polynomial division has produced 1452 ÷ 11 again, with a result of 132. Try other values of x and see what happens.



### Example 2

Divide  $x^3 + 4x - 2$  by x - 1.

#### Solution

Notice that the cubic polynomial has no  $x^2$  term. This means the coefficient of  $x^2$  in this polynomial must be zero.  $x^3 + 4x - 2$  can be re-written as  $x^3 + 0x^2 + 4x - 2$ 

In this way the distinct columns for the powers of x are retained.  $(x-1)x^3+0x^2+4x-2$  Rewrite the problem using the standard

format.  

$$x = 1$$
 $\frac{x^2}{x^3}$   $x = 1$  $\frac{x^2}{x^3}$   $x = 1$  $\frac{x^2}{x^3}$   $x = 1$  $\frac{x^3}{x^3}$   $x = 1$  $\frac{x^3}{x^3}$   $x = 1$  $\frac{x^3}{x^3}$   $x = 1$  $\frac{x^3}{x^3}$ 

$$\begin{array}{cccc} x^2+x & & & \\ x-1|x^3+6x^2+4x-2 & & & \\ -(x^2-x^2)& \downarrow & & \\ & & x^2+4x & \\ & & -(x^2-x) & \end{array}$$
 Subtract. Bring down the  $4x$  term,  $x$  into  $x^2$  and  $x$  goes  $x$  times,  $x(x-1)=x^2-x$ 



$$\begin{array}{lll} x^2+x+5 & \text{Repeat the process. Notice that the final subtraction does not give a zero result.} \\ -(x^2-x^2) & | & | & | & | & | \\ -(x^2-x^2) & | & | & | & | \\ -(x^2-x) & | & | & | & | \\ \hline -x^2+4x & | & | & | & | \\ \hline -x^2-x & | & | & | & | \\ \hline -x^2-x & | & | & | & | \\ \hline -x^2-x & | & | & | & | \\ \hline -x^2-x & | & | & | & | \\ \hline -x^2-x & | & | & | & | \\ \hline -x^2-x & | & | & | & | \\ \hline -x^2-x & | & | & | & | \\ \hline -x^2-x & | & | & | & | \\ \hline -x^2-x & | & | & | & | \\ \hline -x^2-x & | & | & | & | \\ \hline -x^2-x & | & | & | & | \\ \hline -x^2-x & | & | & | & | \\ \hline -x^2-x & | & | & | \\ \hline -x^2-x & | & | & | \\ \hline -x^2-x & | & | & | \\ \hline -x^2-x & | & | & | \\ \hline -x^2-x & | & | & | \\ \hline -x^2-x & | & | & | \\ \hline -x^2-x & | & | & | \\ \hline -x^2-x & | & | \\ -x^2-x & | & | \\ \hline -x^2-x &$$

Since the result of the final subtraction is 3 the original division problem must have a remainder of 3.

$$\frac{x^3 + 4x - 2}{x - 1} = (x^2 + x + 5)$$
 with remainder 3

which can be rewritten

$$\frac{x^3 + 4x - 2}{x - 1} = (x^2 + x + 5) + \frac{3}{x - 1}$$

Notice how the remainder term has the same divisor as the original problem.

Check this result by:

- Multiplying (x² + x + 5) by (x 1) and then adding the remainder of 3. The result should be x³ + 4x - 2
- Substituting x = 10 and showing that 1398 ÷ 9 has a remainder of 3.

Example 3 demonstrates that polynomial division can create an answer with two distinct components:

- a polynomial, whose degree, or order, is less that the degree of the polynomial in the problem – this term is called the quotient
- an algebraic fraction, whose denominator is the divisor of the original problem and whose numerator is called the remainder.

So 
$$\frac{x^3 + 4x - 2}{x - 1}$$
 has a quotient of  $(x^2 + x + 5)$  and a remainder of 3.

#### Example 3

Find the quotient and remainder for  $(4x^3+2x^2-8x+6)$  divided by (2x-3).

#### Solution

These can be found by using the long division algorithm (method) for  $\frac{4x^3 + 2x^2 - 8x + 6}{2x^2 - 8x + 6}$ .

$$\begin{array}{c|cccc} 2x^2 + 4x + 2 \\ 2x - 3\overline{\smash)}4x^3 + 2x^2 - 8x + 6 \\ 4x^3 - 6x^2 & \downarrow \\ 8x^2 - 8x \\ \underline{8x^2 - 12x} \\ 4x + 6 \\ \underline{4x - 6} \end{array}$$

Since

$$\frac{4x^3 + 2x^2 - 8x + 6}{2x - 3} = (2x^2 + 4x + 2) + \frac{12}{(2x - 3)}$$

the quotient is  $(2x^2 + 4x + 2)$  and the remainder is 12.

#### The remainder theorem

When a polynomial P(x) is divided by a linear factor (x - a) then the remainder is P(a).

This is a useful result if information about the remainder is needed from polynomial division.

#### Proof of the remainder theorem

Let P(x) be a polynomial of degree n where  $n \ge 2$ . Then  $P(x) \equiv (x - a)Q(x) + R$ , where Q(x) is the quotient and R is the remainder. This identity is true for all x, and so it is true for x = a.

When x = a, this becomes P(a) = (a - a)O(a) + R. Since (a - a) = 0, the remainder R = P(a),

# Example 4

Use the remainder theorem to find the remainders when:

- $3x^2 + 2x 5$  is divided by x 4
- b  $x^3 2x^2 3x + 1$  is divided by 2x + 1.

#### Solution

a Let  $P(x) = 3x^2 + 2x - 5$ . The remainder when P(x) is divided by (x-4) is P(4).

$$R = P(4) = 3(4)^2 + 2(4) - 5$$
  
= 48 + 8 - 5 = 51

**b** Let  $P(x) = x^3 - 2x^2 - 3x + 1$ .

The remainder when P(x) is divided by (2x + 1) is P(-1).

$$R = P(-\frac{1}{2}) = (-\frac{1}{2})^3 - 2(-\frac{1}{2})^2 - 3(-\frac{1}{2}) + 1$$
  
=  $-\frac{1}{2} - \frac{2}{5} + \frac{2}{5} + 1 = \frac{15}{2}$ 

$$=-\frac{1}{8}-\frac{2}{4}+\frac{3}{2}+1=\frac{35}{8}$$

Check these results using the long division algorithm (method).

#### Example 5

When  $5x^2 + x - 8k$  is divided by (x - 1) the remainder is 2. Find k.

### Solution

Let  $P(x) = 5x^2 + x - 8k$ .

P(1) = 5 + 1 - 8k = 6 - 8k

But P(1) = R, where R is the remainder when P(x) is divided by (x - 1). Since R = 2, it follows that 6 - 8k = 2

k = 1

The factor theorem

The remainder theorem can also be used to provide a useful result for analysing higher order polynomials. If the remainder from dividing the polynomial P(x) by (x - a) is zero, then the linear term (x - a) must be a factor of the polynomial P(x).

 $f P(\alpha) = 0$  then  $(x - \alpha)$  is a factor of P(x).

# Example 6

Factorise  $y^3 + 2y^2 = 5y = 6$ 

#### Solution

Let  $P(x) = x^3 + 2x^2 - 5x - 6$ , a cubic polynomial of order 3. To find the linear factors of P(x), if any exist, substitute values of x until P(x) = 0. Adopt a trial and error approach, substituting factors of the constant term, -6, in P(x).

 $P(1) = 1^3 + 2(1)^2 - 5(1) - 6 \neq 0$  $P(2) = 2^3 + 2(2)^2 - 5(2) - 6 = 8 + 8 - 10 - 6 = 0$ 

Since P(2) = 0. (x - 2) is a factor of P(x).

 $P(3) = 3^3 + 2(3)^2 - 5(3) - 6 \neq 0$ 

 $P(-2) = (-2)^3 + 2(-2)^2 - 5(-2) - 6 \neq 0$  $P(-3) = (-3)^3 + 2(-3)^2 - 5(-3) - 6 = -27 + 18 + 15 - 6 = 0$ 

Since P(-3) = 0, (x + 3) is also a factor of P(x).

 $=x^3+2x^2-5x-6$ 

By the remainder

 $P(6) = 6^3 + 2(6)^2 - 5(6) - 6 \neq 0$  $P(-1) = (-1)^3 + 2(-1)^2 - 5(-1) - 6 = -1 + 2 + 5 - 6 = 0$ Since P(-1) = 0, (x + 1) is a factor of P(x).

one quadratic or thre

It may not be necessary to keep substituting values of x until all the factors have been found. Once one factor has been found the polynomial P(x) can be rewritten as P(x) = (x-a)Q(x), and the resulting quotient Q(x) may then be easier to factorise.

# Example 7

# Factorise $3x^3 + 2x^2 - 19x + 6$ .

#### Solution

Let 
$$P(x) = 3x^3 + 2x^2 - 19x + 6$$
.

$$P(1) = 3(1)^3 + 2(1)^2 - 19(1) + 6 \neq 0$$

$$P(2) = 3(2)^3 + 2(2)^2 - 19(2) + 6 = 24 + 8 - 38 + 6 = 0$$

Since P(2) = 0, (x - 2) is a factor of P(x).

So 
$$P(x) = (x - 2)O(x)$$

The quotient Q(s) could be found by using the long division algorithm or by using a technique known as algebraic juggling and then equating coefficients. The juggling method uses both terms of the linear factor to find the quotient by comparing coefficients of the polynomials on each side of the equals sign as follows.

$$P(x) = (x - 2)Q(x)$$

$$\Rightarrow 3x^3 + 2x^2 - 19x + 6 = (x - 2)(ax^2 + bx + c)$$

$$= ax^3 + bx^2 + cx - 2ax^2 - 2bx - 2c$$

$$= ax^3 + (b - 2a)x^2 + (c - 2b)x - 2c$$

Comparing coefficients of  $x^3$ , a=3. Comparing coefficients of  $x^2$ ,  $b-(2\times 3)=b-6=2$ . So b=8. Comparing constant terms, -2c=6. So c=-3.

So 
$$3x^3 + 2x^2 - 19x + 6 = (x - 2)(3x^2 + 8x - 3)$$

The quotient can now be factorised by using either the factor theorem again or by another appropriate method. Since Q(x) is a quadratic it can be factorised using PAFF.

$$Q(x) = 3x^2 + 8x - 3$$

P: 
$$3 \times (-3) = -9$$
 A:  $+8$  F:  $9, -1$ 

$$Q(x) = 3x^2 + 8x - 3 = 3x^2 + 9x - x - 3$$

$$= 3x(x+3) - 1(x+3)$$

$$=(x+3)(3x-1)$$

Try substituting factors of the constant term, 6, into P(x) until P(x) = 0 and a linear factor can be

Check this by expanding the RHS.

P is the constant term multiplied by the coefficient of x<sup>2</sup>. A is the number of 'x's and F values add to A and multiply to P. Having factorised Q(x) the original polynomial P(x) can be written in a factorised form as

$$P(x) = 3x^3 + 2x^2 - 19x + 6$$
  
=  $(x - 2)Q(x)$ 

=(x-2)(x+3)(3x-1)

Writing cubic polynomials in their factorised form is particularly useful if the graph needs to be sketched or related inequalities solved.

# Example 8

Sketch the graph of  $y=x^3-2x^2-13x-10$ . Hence, or otherwise, state the range of values of x for which  $y\geq 0$ .

#### Solution

Use the factor theorem first to show that,  $v = x^3 - 2x^2 - 13x - 10 = (x + 2)(x + 1)(x - 5).$ 

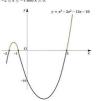
y = x - 2x - 13x - 10 = (x + 2)(x + 1)(x - 5).So y = 0 when x = -2, -1, 5; the graph cuts the x-axis at (-2, 0), (-1, 0) and (5, 0).

The graph cuts the y-axis when x = 0 at the point (0, -10).

Given the general shape of the cubic graph and the four points through which it must pass a sketch can be made.

Check this result using a graphical calculator.

graphical calculator. The values of x for which  $y \ge 0$  can be read from the graph;  $y \ge 0$  when  $-2 \le x \le -1$  and  $x \ge 5$ .



The remainder and factor theorems can also be used to find the value of unknown coefficients in a polynomial. This often creates simultaneous equations.



emember that th

[1]

# Example 9

The polynomial  $2x^3 + ax^2 + bx + 8$  has (x - 1) as a factor and gives a remainder of 50 when divided by (x - 3). Find a and b.

#### Solution

Let  $P(x) = 2x^3 + ax^2 + bx + 8$ Since (x - 1) is a factor, P(1) = 0.

$$P(1) = 2 + a + b + 8 = 0$$

$$a+b=-10$$

When P(x) is divided by (x-3) there is a remainder of 50. This means P(3)=50.

$$P(3) = 2.3^3 + a.3^2 + b.3 + 8 = 50$$
  
 $54 + 9a + 3b + 8 = 50$   
 $9a + 3b = -12$ 

Equations [1] and [2] are simultaneous equations. Using the elimination technique we can find  $\alpha.$ 

From equation [2], 
$$9a + 3b = -12$$
  
 $3 \times \text{ equation } [1]$   $3a + 3b = -30$ 

Subtracting, 
$$6a = 18$$
  
 $\Rightarrow$   $a = 3$ 

Put 
$$a = 3$$
 in equation [1]  $3 + b = -10$   
 $\Rightarrow b = -13$ 

So 
$$P(x) = 2x^3 + 3x^2 - 13x + 8$$
, with  $a = 3$  and  $b = -13$ .

# 6.1 Polynomial Division Exercise

# Technique

1 Use the long division algorithm to find:

| _ | $x^3 + 3x^2 + 5x + 3$ | ь | $\frac{x^3 + x^2 - x - 10}{x - 2}$ |  |
|---|-----------------------|---|------------------------------------|--|
| a | x + 1                 |   | x - 2                              |  |
|   | $x^3 - x^2 - 9x - 6$  |   | $2x^{3} - x^{2} + 4x +$            |  |

2 Use the remainder theorem to find the remainder in the following:

| a | $x^2 + 2x - 5$  | ь     | $3x^2 + 2x + 2$ |
|---|-----------------|-------|-----------------|
|   | x - 2           | x + 1 | x + 1           |
|   | $2x^2 + 3x - 3$ |       | 4.2 . 2. 1      |

3 Factorise completely the following polynomials:

| a | $x^3 - x^2 - 4x + 4$   | d | $x^3 + 5x^2 - 8x - 12$   |
|---|------------------------|---|--------------------------|
| ь | $x^3 - 6x^2 + 11x - 6$ | e | $2x^3 + 13x^2 + 22x + 8$ |
| c | $x^3 - 4x^2 - x + 4$   | f | $2x^3 + 5x^2 + x - 2$    |

4 Solve the following inequalities:



Contextual

1 24 -74 -404

15

1 Let  $f(x) = x^4 - 2x^3 - 12x^2 + 40x - 32$ .

a Factorise f(x) completely. b When is f(x) > 0?

**2** (x+1) and (x-2) are both factors of  $x^3 + \alpha x^2 + bx - 6$ . Find a, b and the third linear factor.

**3** Find the coordinates of the points where  $y = x^3 - 3x^2 - 16x - 12$  crosses the x-axis.

When  $x^3 + ax^2 + bx - 1$  is divided by (x - 2) and (x + 2) the remainders are 27 and 3 respectively. Find a and b.

**5** Solve the equation  $6x^3 - 7x^2 - 9x - 2 = 0$ .

6 If  $f(x) = 4x^3 - 19x^2 + 19x + 6$ , find the range of values of x for which f(x) < 0.

**0** 2a

Hint: Use the factor







Hint: First write the expression as the product of three linear factors.

# 6.2 Algebraic Fractions

An algebraic fraction is a fraction that contains an algebraic term. Some examples are

$$\frac{x}{3}$$
,  $\frac{2}{y}$ ,  $\frac{3}{4x+1}$ ,  $\frac{6t+7}{t^2+3t-1}$ 

Algebraic fractions can be combined in the same way as numerical fractions, and obey the same rules for addition, subtraction, multiplication and division.

#### Addition and subtraction

Find [+]: Check that you get a result of []: How did you arrive at this result? When adding fractions the first step is to find a common denominator. This is usually the least (or lovest) common multiple (LCM) of the denominator of the fractions being added. Having found a common denominator each fraction is then written in an equivalent form using this new denominator. The numerators can then be added to give the solution to the problem.

The same technique can be used to add and subtract algebraic fractions.

$$\frac{1}{3} + \frac{2}{5} = \frac{6}{15} + \frac{6}{15} = \frac{11}{15}$$

Here the LCM of 3 and 5 is 15 but 15, 30, 45,... would serve equally well as denominators.

Common denominator o 15 – the LCM of 3 and 5. Notice the new

### Example 1

Example 1

Find 
$$\frac{2}{(x-3)} + \frac{3}{(x+5)}$$
.

**b** Find 
$$\frac{10}{(2x-1)} = \frac{5}{(x+2)}$$
.

### Solution

The common denominator will be (x - 3)(x + 5). Notice that this is the LCM of (x - 3) and (x + 5).

$$\frac{2}{(x-3)} + \frac{3}{(x+5)} = \frac{2(x+5)}{2(x-3)(x+5)} + \frac{3(x-3)}{(x-3)(x+5)}$$

$$= \frac{2x+10+3x-9}{(x-3)(x+5)}$$

$$= \frac{5x+1}{(x-3)(x+5)}$$

b The common denominator will be (2x-1)(x+3).

$$\frac{10}{(2x-1)} - \frac{5}{(x+3)} = \frac{10(x+3) - 5(2x-1)}{(2x-1)(x+3)}$$

$$= \frac{10x + 30 - 10x + 5}{(2x-1)(x+3)}$$

$$= \frac{30}{(2x-1)(x+3)}$$

Rewrite the fractions using the common

Expand the brackets an

# Example 2

Express as a single fraction,  $\frac{3}{(x+2)} + \frac{2x-1}{(x^2+4x+1)}$ .

#### Solution

Again notice that both algebraic fractions are proper. Notice also that the quadratic expression in the denominator will not factorise. The same technique can be used, even though one of the denominators is quadratic and not linear.

$$\begin{split} \frac{3}{(x+2)} + \frac{2x-1}{(x^2+4x+1)} &= \frac{3(x^2+4x+1) + (2x-1)(x+2)}{(x+2)(x^2+4x+1)} \\ &= \frac{(3x^2+12x+3) + (2x^2+4x-x-2)}{(x+2)(x^2+4x+1)} \\ &= \frac{5x^2+15x+1}{(x+2)(x^2+4x+1)} \end{split}$$

### Example 3

Express  $\frac{3}{x+2} - \frac{1}{(x+2)^2}$  as a single fraction.

#### Solution

**Solution**Notice that the term (x + 2) appears in both denominators and that the LCM of (x + 2) and  $(x + 2)^2$  is  $(x + 2)^2$ . This means the common denominator will also be  $(x + 2)^2$ .

$$\frac{3}{x+2} - \frac{1}{(x+2)^2} = \frac{3(x+2)}{(x+2)^2} - \frac{1}{(x+2)^2}$$

$$= \frac{3(x+2) - 1}{(x+2)^2}$$

$$= \frac{3x+6-1}{(x+2)^2} = \frac{3x+5}{(x+2)^2}$$

# Multiplication and division

Find  $\parallel$  × $\parallel$ , Check that you can get a result of  $\parallel$ . How did you arrive at this result? When multiplying fractions the first step is to find if there is a common factor in the numerator and the denominator. If a common factor does exist, if can be 'cancelled down'. Then multiply the numerators and denominators separately to give the numerator and denominator of the result.

$$\frac{2}{3} \times \frac{6}{7} = \frac{2}{13} \times \frac{6}{7}^2 = \frac{2 \times 2}{1 \times 7} = \frac{4}{7}$$

The same technique can be used to multiply algebraic fractions.

The order (degree) of polynomial in the numerator is less the order (degree) of the polynomial in the

Check this result by

6 and 3 have a community factor 3, so it can be 'cancelled'.

**◄** Difference of

two squares.

## Example 4

a Simplify 
$$\frac{3(x+5)}{7} \times \frac{1}{6x}$$
.

**b** Express as a single fraction, 
$$\frac{2(x+3)}{\pi} \times \frac{1}{(x^2-0)}$$

c Simplify 
$$\frac{3x-12}{10} \times \frac{5x}{2x-8}$$
.

#### Solution

a 
$$\frac{3(x+5)}{7} \times \frac{1}{6x} = \frac{1}{7} \frac{3(x+5)}{7} \times \frac{1}{2} \frac{1}{6x}$$
  
=  $\frac{x+5}{14x}$ 

b 
$$\frac{2(x+3)}{5} \times \frac{1}{(x^2-9)} = \frac{2(x+3)}{5} \times \frac{1}{(x-3)(x+3)}$$
  
=  $\frac{2(x+3)}{5} \times \frac{1}{(x-3)(x+3)} \times \frac{1}{(x-3)(x+3)}$ 

$$= \frac{2(x+3)}{5}^{1} \times \frac{1}{(x-3)(x+3)}_{1}$$

$$= \frac{2}{5(x-3)}$$

$$\begin{array}{c} c & \frac{3x-12}{10} \times \frac{5x}{2x-8} = \frac{3(x-4)}{10} \times \frac{5x}{2(x-4)} \\ \\ & = \frac{3(x-4)!}{2\cdot 10} \times \frac{1\cdot 5x}{2(x-4)_1} \end{array}$$

The division of fractions can be tackled by reducing the problem to multiplication. Remember that to divide fractions, invert the second fraction and change the sign from division to multiplication. For example,  $\frac{\pi}{2}$ ,  $\frac{\pi}{2}$ ,  $\frac{\pi}{2}$ ,  $\frac{\pi}{2}$ ,  $\frac{\pi}{2}$ ,  $\frac{\pi}{2}$ . The same technique can be applied to algebraic fractions.

common factor 3.

Factorise the quadratic expression The common factor is (x + 3).

Factorise the terms in the fractions first.

There are two common factors; (x-4) and 5.

Check this result using a calculator with fraction kees.

### Example 5

- a Simplify  $\frac{5x}{3} \div \frac{11x}{6}$ .
- $\textbf{b} \quad \text{Express as a single fraction } \frac{3x-6}{8x} \div \frac{5x^2-5x-10}{6x}.$

#### Solution

$$a = \frac{5x}{3} \div \frac{11x}{6} = \frac{5x}{3} \times \frac{6}{11x}$$
$$= \frac{5x^{\frac{2}{3}}}{13} \times \frac{6^{\frac{2}{3}}}{11x_{\frac{2}{3}}}$$
$$= \frac{10}{11}$$

Inverting the second fraction and multiplying.

# 6.2 Algebraic Fractions Exercise

# Technique

- 1 Find:
  - $a = \frac{3}{x-1} + \frac{5}{x+2}$  $\frac{3}{x-1} - \frac{2}{x+1}$
  - $e = \frac{7}{x+1} \frac{3}{x-1}$  $b = \frac{4}{x-2} + \frac{6}{x+2}$
  - $c = \frac{6}{x-2} \frac{6}{x+3}$  $f = \frac{1}{v+1} + \frac{4}{v+2}$
- 2 Express each of the following as single fractions:
  - a  $\frac{2}{3-2x} \frac{3}{2x+1}$
- d  $\frac{3}{x-2} + \frac{2}{7x+1}$ e  $\frac{2}{3x-2} + \frac{1}{x-1}$
- $b = \frac{2}{x-1} + \frac{5}{4x+3}$
- $f = \frac{3}{3x-2} \frac{2}{1-2x}$
- $c = \frac{4}{2x+1} \frac{2}{x-2}$
- 3 Identify the LCM of these denominators and use it to write each of the following as a single algebraic fraction:
  - a  $\frac{2x+1}{x^2+x-12} + \frac{2x+3}{(x+4)(x-2)}$  d  $\frac{3}{x^2-9} \frac{2}{x-3}$ b  $\frac{x}{2x^2+3x-2} - \frac{3}{x+1}$ 
    - e  $\frac{3}{x^2+x-2}-\frac{2}{3x-1}$
    - $c = \frac{1}{x+1} + \frac{3}{x^2+2x+1}$
- $f = \frac{2}{3(x+2)} + \frac{2}{(x+2)^2}$
- 4 Express each of the following as a single fraction:
  - $a = \frac{3x}{9} \times \frac{2}{5}$

- d  $\frac{2x-6}{7} \times \frac{2x}{4(x^2-9)}$ e  $\frac{(x+1)}{14} \times \frac{2}{(x^2-2x-3)}$
- **b**  $\frac{5(x-1)}{3} \times \frac{2}{15x}$
- $f = \frac{3}{x+2} \times \frac{x^2+4x+4}{6x}$
- $c = \frac{3(x-7)}{6} \times \frac{1}{(x^2-49)}$



- $a = \frac{2}{5x} \div \frac{8}{x}$ d  $\frac{3x-6}{2} \div \frac{6(x^2-4)}{x}$ 
  - b  $\frac{2x}{9} \div \frac{8(x+1)}{3}$  $e \frac{x+3}{9} \div \frac{x^2+2x-3}{3}$
  - $c = \frac{x-1}{15} \div \frac{x^2-1}{2}$

# **6.3 Partial Fractions**

Two or more proper fractions can be combined to give a single fraction. For example  $\frac{3}{2} + \frac{3}{2} = \frac{11}{15}$ . Equally, a fraction can be expressed as a sum or difference of two or more proper fractions, known as partial fractions.

We can usually apply this technique to algebraic fractions, and it is sometimes quite advantapous to write an algebraic fraction as a sum or difference of simpler algebraic fractions (see Chapter 12). The key to this process lies in the factorisation of the denominator. We will consider three categories of denominators:

- linear factors in the denominator
- quadratic factors in the denominator
- repeated factors in the denominator.

# Linear factors in the denominator

Look at the fraction  $\frac{5x+1}{(x-3)(x+5)}$ .

The denominator has been factorised into two linear factors, (x-3) and (x+5). This suggests that this algebraic fraction could be rewritten as

$$\frac{5x+1}{(x-3)(x+5)} \equiv \frac{A}{(x-3)} + \frac{B}{(x+5)},$$

where A and B are constants. Checking back to Section 6.2, Example 1a, you will find that A=2 and B=3 provide the solution.

$$\frac{5x+1}{(x-3)(x+5)} \equiv \frac{2}{(x-3)} + \frac{3}{(x+5)}$$

Two techniques can be used to find the constants that form the numerators of the partial fractions. The first uses the following steps:

- Step 1 Identify the linear factors in the denominator.
- Step ② Write each linear factor as a new denominator with a constant term numerator.
- Step ③ Add the algebraic fractions together and then equate the two numerators.
- Step ④ Substitute values of x that make the coefficients of A and B zero, in turn, and solve the resulting equation.

### Example 1

Write 
$$\frac{5x+7}{(x+3)(x-1)}$$
 in partial fractions.

#### Solution

Notice that the denominator has been factorised into two linear factors. (x+3) and (x-1). This suggests that

$$\frac{5x+7}{(x+3)(x-1)} \equiv \frac{A}{(x+3)} + \frac{B}{(x-1)}$$
 < 2 Write each linear factor as a new fraction.

Now add together the algebraic fractions on the RHS of the identity.

$$5x + 7 = A(x - 1) + B(x + 3)$$

$$\frac{5x+7}{(x+3)(x-1)} \equiv \frac{A(x-1)+B(x+3)}{(x+3)(x-1)}$$
 

(3) Add the fractions.

Since the denominators on both sides are equal it follows that the two numerators must be equivalent to each other.

So 
$$5x + 7 \equiv A(x - 1) + B(x + 3)$$
 4 3 Equate the numerators.

This statement is true for all values of x, so A can be found by substituting values of x that reduce the coefficient of B to zero, and vice versa.

When 
$$x = 1$$
,  $5+7 = A(0) + B(4)$   $\blacktriangleleft$  Substitute values of  $x$ .

$$\Rightarrow 12 = 4B$$

$$\Rightarrow B = 3$$

When 
$$x = -3$$
,  $-15 + 7 = A(-3 - 1) + B(0)$   
 $\Rightarrow -8 = -4A$ 

So 
$$\frac{5x+7}{(x+3)(x-1)} \equiv \frac{2}{(x+3)} + \frac{3}{(x-1)}$$

adding these two algebraic partial

Recall that RHS means right-hand side.

### Example 2

Express  $\frac{3}{v^2 - v - 2}$  in partial fractions.

#### Solution

The denominator of this fraction is a quadratic, Since it has not been written as a product of linear factors the first step is to factorise the denominator. Check that  $x^2 - x - 2 = (x + 1)(x - 2)$ .

So 
$$\frac{3}{x^2-x-2} \equiv \frac{3}{(x+1)(x-2)}$$

Now the denominator contains two distinct linear factors.

$$\frac{3}{(x+1)(x-2)} \equiv \frac{A}{(x+1)} + \frac{B}{(x-2)}$$
 < 2 Use each linear factor to write down a new fraction.

Adding together the algebraic partial fractions,

$$\frac{3}{(x+1)(x-2)} \equiv \frac{A(x-2)+B(x+1)}{(x+1)(x-2)}$$
  $\blacktriangleleft$  3 Add the fractions.

Equating the numerators,

When 
$$x = 2$$
,  $3 = A(0) + B(3)$   $\blacktriangleleft$  (§ Substitute values of  $x$ .  
 $\Rightarrow 3 = 3B$   
 $\Rightarrow B = 1$   
When  $x = -1$ ,  $3 = A(-1 - 2) + B(0)$ 

when 
$$x = -1$$
,  $3 = A(-1 - 2) + B(0)$   

$$\Rightarrow 3 = -3A$$

$$\Rightarrow A = -1$$

So 
$$\frac{3}{x^2-x-2} \equiv -\frac{1}{(x+1)} + \frac{1}{(x-2)}$$

Step @ provides the second method of finding partial fractions. It is known as the 'cover-up' rule. He never-up rule uses the fact that some values of x create a zero in the denominator. From above, we have seen that these values are also the ones that allow us to calculate the required numerators in the partial fractions. So overing up these factors the whole process can be speeded up, and can often be calculated mentally.

# Example 3

Use the cover-up rule to express  $\frac{5x+7}{(x+3)(x-1)}$  in partial fractions.

#### Solution

Look at the fraction 
$$\frac{5x+7}{(x+3)(x-1)}$$
.

Notice that (x + 3) = 0 when x = -3. Cover up (x + 3) and substitute x = -3 in the parts of the fraction you can still see

$$\frac{5x+7}{(x-1)} = \frac{-15+7}{-4} = \frac{-8}{-4} = 2$$

Also notice that (x - 1) = 0 when x = 1.

Cover up (x-1) and substitute x=1 in the parts of the fraction you can still see.

$$\frac{5x+7}{(x+3)(3)} = \frac{5+7}{4} = \frac{12}{4} = 3$$

Check this result by combining the term the RHS of the

Notice that this is another way of tac Example 1.

The solution 2 is when (x + 3) is covered up.

The solution 3 is for

when (x-1) is covered up.

So 
$$\frac{5x+7}{(x+3)(x-1)} \equiv \frac{2}{(x+3)} + \frac{3}{(x-1)}$$

Notice how the number found when 'covering-up' becomes the numerator above that 'covered' linear factor. This means the cover-up rule can only be used with linear denominators.

# Example 4

Express 
$$\frac{5x^2 + 3x - 14}{(x-2)(x-1)(x+4)}$$
 in partial fractions.

#### Solution

Notice that the denominator has three linear factors. Using the cover-up rule this can be put into partial fractions in three steps. Covering up (x-2) and substituting x=2.

$$\frac{5x^2 + 3x - 14}{(x-1)(x+1)} = \frac{20 + 6 - 14}{1 \times 3} = \frac{12}{3} = 4$$

Covering up (x-1) and substituting x=1.

$$\frac{5x^2 + 3x - 14}{(x - 2)(x + 1)} = \frac{5 + 3 - 14}{-1 \times 2} = \frac{-6}{-2} = 3$$

Covering up (x + 1) and substituting x = -1,

$$\frac{5x^2 + 3x - 14}{(x - 2)(x - 1)} = \frac{5 - 3 - 14}{-3 \times -2} = \frac{-12}{6} = -2$$
So 
$$\frac{5x^2 + 3x - 14}{(x - 2)(x - 1)(x + 4)} = \frac{4}{(x - 2)} + \frac{3}{(x - 1)} - \frac{2}{(x + 1)}$$

#### Quadratic factors in the denominators

Some algebraic fractions have denominators that contain a quadratic

factor that doesn't factorise; for example,  $\frac{3x^2 + 5x + 6}{(x+1)(x^2+3)}$ 

Notice that the denominator has a linear factor (x + 1), and a quadratic factor  $(x^2 + 3)$ , which doesn't factorise.

What happens when fractions of this type are written in partial fractions?

What happens when fractions of this type are written in partial fractions? The linear factor has a constant numerator, A, and the quadratic factor has a linear numerator of the form (Bx + C).

# Example 5

Express 
$$\frac{3x^2 + 5x + 6}{(x+1)(x^2+3)}$$
 in partial fractions.

Check this result by adding the algebraic fractions.

#### Solution

This fraction can be written as the sum of two distinct fractions; one with (x+1) as its denominator and the other with  $(x^2+3)$  as its denominator. The latter fraction has a linear numerator.

$$\frac{3x^2 + 5x + 6}{(x+1)(x^2+3)} = \frac{A}{(x+1)} + \frac{Bx + C}{(x^2+3)}$$

Now add together the algebraic fractions on the RHS.

$$\frac{3x^2 + 5x + 6}{(x+1)(x^2+3)} = \frac{A(x^2+3) + (Bx+C)(x+1)}{(x+1)(x^2+3)}$$

Since the denominators on both sides are equal the two numerators must be equivalent.

$$3x^{2} + 5x + 6 \equiv A(x^{2} + 3) + (Bx + C)(x + 1)$$

A, B and C can now be found from a combination of:

- substituting suitable values of x
- equating coefficients of powers of x.

Let x = -1

Then 
$$3(-1)^2 + 5(-1) + 6 = A[(-1)^2 + 3] + (-B + C)(0)$$
  
 $\Rightarrow 3 - 5 + 6 = 4A + 0$ 

$$4 = 4A$$
 $A = 1$ 

Let x = 0

Then 
$$3(0)^2 + 5(0) + 6 = A(0^2 + 3) + C(0 + 1)$$
  
 $\Rightarrow 6 = 3A + C$ 

Substituting A = 1, 6 = 3 + C  $\Rightarrow C = 3$ 

Returning to the equivalence between the numerators,

$$3x^2 + 5x + 6 \equiv A(x^2 + 3) + (Bx + C)(x + 1)$$
  
=  $Ax^2 + 3A + Bx^2 + Bx + Cx + C$   
=  $(A + B)x^2 + (B + C)x + (3A + C)$ 

Then x + 1 = 0, and eliminate the term (Bx + C)

This eliminates the t

[2]

### Equating the coefficients of the different powers of x:

$$x^2: \quad 3 = A + B$$
$$x: \quad 5 = B + C$$

constant terms: 6 = 3A + CWe know that A = 1 and C = 3, so the value of B can be established from

equation [1] and checked in equation [2], or vice versa. From [1],  $3 = 1 + B \implies B = 2$ In [2], 5 = B + C = 2 + 3 = 5Having found A = 1, B = 2 and C = 3, the original fraction can be

rewritten in terms of partial fractions as:

$$\frac{3x^2 + 5x + 6}{(x+1)(x^2+3)} \equiv \frac{1}{(x+1)} + \frac{2x+3}{(x^2+3)}$$

Check this result by:

# Example 6

Express  $\frac{3x^2 + 2x + 3}{(x+1)(x^2+3)}$  in partial fractions.

#### Solution

$$\frac{3x^2 + 2x + 3}{(x+1)(x^2 + 3)} \equiv \frac{A}{(x+1)} + \frac{Bx + C}{(x^2 + 3)}$$
$$\equiv \frac{A(x^2 + 3) + (Bx + C)(x + 1)}{(x+1)(x^2 + 3)}$$

#### Equating the numerators.

$$3x^2 + 2x + 3 \equiv A(x^2 + 3) + (Bx + C)(x + 1)$$

# When x = -1. $\triangleleft$ Substitute suitable values of x.

$$3(-1)^2 + 2(-1) + 3 = A[(-1)^2 + 3]$$
  
 $\Rightarrow 3 - 2 + 3 = 4A$ 

#### When x = 0.

$$3(0)^2 + 2(0) + 3 = A(0^2 + 3) + C(0 + 1)$$

$$+2(0) + 3 = A(0^{\circ} + 3) + C(0 + 1)$$
  
 $\Rightarrow 3 = 3A + C$ 

$$\Rightarrow C = 0$$

(i) adding the two algebraic fractions: (iii) substituting x = 10.

So (x+1) = 0 and we (Rx + C)

This eliminates the term Rx.

Equating the coefficients of the powers of x:

$$x^2$$
:  $3 = A + B$   
 $x$ :  $2 = B + C$   
constants:  $3 = 3A + C$ 

We know A = 1 and C = 0, so equation [1] or [2] can be used to find B. From [1],

$$3 = A + B$$
$$3 = 1 + B$$
$$B = 2$$

So 
$$\frac{3x^2 + 2x + 3}{(x+1)(x^2+3)} = \frac{1}{(x+1)} + \frac{2x}{(x^2+3)}$$
.  $\blacktriangleleft$  Check this result.

#### Repeated factors in the denominator

Some algebraic fractions have denominators that contain repeated factors: for example,  $\frac{3x+5}{(x+2)^2}$  and  $\frac{5x+15}{(x-1)(x+4)^2}$ .

What happens when fractions of this type are written in partial fractions?

### Example 7

Express 
$$\frac{3x+5}{(x+2)^2}$$
 in partial fractions.

#### Solution

$$\frac{3x+5}{(x+2)^2} \equiv \frac{A}{(x+2)} + \frac{B}{(x+2)^2}$$

Notice that the partial fractions have denominators (x+2) and  $(x+2)^2$ . The two numerators are assumed to be constants. Adding the algebraic fractions gives

$$\frac{3x+5}{(x+2)^2} \equiv \frac{A(x+2)+B}{(x+2)^2}$$

The two numerators can now be equated since the denominators of these two fractions are equivalent.

$$3x + 5 \equiv A(x + 2) + B$$

Since this statement is true for all values of x substitutions can be made.

Alternatively, equat coefficients of x and constants.

constants: 5 = 2A + Check that this give

When 
$$x = -2$$
,  $3(-2) + 5 = B$   
 $\Rightarrow -6 + 5 + B$   
When  $x = 0$ ,  $3(0) + 5 - A(0 + 2) + B$   
 $\Rightarrow 5 - 2A + B$   
 $\Rightarrow 5 - 2A - 1$   
 $\Rightarrow -2A - 1$   
 $\Rightarrow -$ 

Check this by:
(i) adding together the algebraic fractions;
(ii) putting x = 10.

### Example 8

Express  $\frac{5x + 15}{(x - 1)(x + 4)^2}$  in partial fractions.

#### Solution

Notice that the denominator has a linear factor (x-1) and a repeated factor (x+4). This means the fraction will split into three partial fractions, with denominators (x-1), (x+4) and  $(x+4)^2$ .

$$\frac{5x+15}{(x-1)(x+4)^2} \equiv \frac{A}{(x-1)} + \frac{B}{(x+4)} + \frac{C}{(x+4)^2}$$

Adding together the algebraic fractions with a common denominator of  $(x-1)(x+4)^2$ ,

$$\frac{5x+15}{(x-1)(x+4)^2} = \frac{A(x+4)^2 + B(x-1)(x+4) + C(x-1)}{(x-1)(x+4)^2}$$

Equating the numerators,

$$5x + 15 \equiv A(x+4)^2 + B(x-1)(x+4) + C(x-1)$$

When 
$$x = 1$$
,  $S(1) = 15 = A(1 + 4)^2$   $\checkmark$  Substitute suitable  
 $\Rightarrow 5 + 15 = 25A$   $\Rightarrow A = \frac{20}{5}$   
 $\Rightarrow A = \frac{4}{5}$   
When  $x = -4$ ,  $S(-4) + 15 = C(-4 - 1)$   
 $\Rightarrow -20 + 15 = -5C$ 

To determine B, either substitute another value of x or equate coefficients of some power of x. Equating coefficients is usually the quicker method. So, equating coefficients of  $x^2$ ,

$$x^2$$
:  $0 = A + B$ 

We know 
$$A = \frac{4}{3}$$
, so  $B = -\frac{4}{3}$ .

So 
$$\frac{5x+15}{(x-1)(x+4)^2} \equiv \frac{\frac{4}{5}}{(x-1)} - \frac{\frac{4}{5}}{(x+4)} + \frac{1}{(x+4)^2}$$
  

$$\equiv \frac{4}{5(x-1)} - \frac{4}{5(x+4)} + \frac{1}{(x+4)^2}$$

#### Improper fractions

These techniques can be extended to improper algebraic fractions. Remember that fractions are improper when the numerator is of a degree equal to, or higher than, the denominator. In these cases polynomial long division must be used first.

### Example 9

Write the improper fraction 
$$\frac{5x^3 + 15}{(x-2)(x+3)}$$
 in partial fractions.

#### Solution

Notice that the numerator is a polynomial of degree 3 and the denominator is a quadratic in factorised form; the fraction is improper.

Now rewrite the problem in the usual long division format. The long division algorithm gives

$$\begin{array}{c} 5x-5\\ x^2+x-6)\overline{5}x^3+0x^2+0x+15\\ \underline{5}x^3+5x^2-30x\\ -5x^2+30x+15\\ \underline{-5x^2+30x+15}\\ 35x-15 \end{array}$$

 $(x-2)(x+3) = x^2 + x - 6$ 

So 
$$\frac{5x^3 + 15}{(x-2)(x+3)} = 5x - 5 + \frac{35x - 15}{(x-2)(x+3)}$$

We can now write the proper algebraic fraction in terms of partial fractions, in the same way as before.

$$\frac{35x-15}{(x-2)(x+3)} = \frac{A}{(x-2)} + \frac{B}{(x+3)}$$

Try equating coeffici check whether you g the same result.

Check this result by adding the algebraic

0x2 and 0x to retain t

The quotient is (5xand the remainder is Since the denominators are all linear we can use the cover-up rule. Covering up (x-2) and putting x=2,

$$\frac{35x - 15}{(100)(x + 3)} = \frac{70 - 15}{5} = 11$$

Covering up (x + 3) and putting x = -3,

$$\frac{35x - 15}{(x - 2)} = \frac{-105 - 15}{-5} = 24$$

So A = 11 and B = 24.

So 
$$\frac{5x^3 + 15}{(x-2)(x+3)} \equiv 5x - 5 + \frac{11}{(x-2)} + \frac{24}{(x+3)}$$

The partial fractions techniques can be summarised as follows:

Check this result by substitution, using x =10.

| Factors of the<br>denominator        | Example                              | Partial fractions                                 |
|--------------------------------------|--------------------------------------|---------------------------------------------------|
| Linear                               | $\frac{5x+7}{(x+3)(x-1)}$            | $\frac{A}{x+3} + \frac{B}{x-1}$                   |
|                                      | $\frac{2x-3}{(x+4)(x+1)(x-5)}$       | $\frac{A}{x+4} + \frac{B}{x+1} + \frac{C}{x-5}$   |
| Quadratic that does<br>not factorise | $\frac{3x^2 + 5x + 6}{(x+1)(x^2+3)}$ | $\frac{A}{x+1} + \frac{Bx + C}{x^2 + 3}$          |
| Repeated                             | $\frac{5x + 15}{(x - 1)(x + 4)^2}$   | $\frac{A}{x-1} + \frac{B}{x+4} + \frac{C}{(x+4)}$ |

A useful rule to remember is that the number of constants (A, B, C, ...)needed when first writing down the partial fractions is equal to the order of the denominator of the original proper fraction. For example,  $(x-1)(x+1)^2$  is of order 3, so three constants, A, B and C, are needed.

# 6.3 Partial Fractions Exercise

# Technique

- Express the following in partial fractions (denominators with linear factors):
- a  $\frac{6}{(x-5)(x+1)}$  d  $\frac{2(3x+5)}{(x-1)(x+1)}$ 
  - a (x-5)(x+1) d (x-1)(x+3)2x 7x-12
  - b (x-1)(x+3) b  $x^2-3x+2$ c  $\frac{5x+29}{(x-4)(x+3)}$  f  $\frac{5x-17}{x^2-7x+12}$
- Express the following in partial fractions (denominators with quadratic factors):
  - a  $\frac{3x^2 2x + 7}{(x 2)(x^2 + 1)}$  d  $\frac{4x^2 + 5x + 9}{(x + 1)(x^2 + x + 4)}$  $5x^2 - 2x + 15$   $3x^2 + 20x + 3$
  - b  $\frac{3x 2x + 13}{x(x^2 + 3)}$  e  $\frac{3x + 2xx + 3}{(x 2)(x^2 + 3x + 1)}$ e  $\frac{2(x^2 + 2x - 4)}{(x - 3)(x^2 + 2)}$  f  $\frac{3x^2 + 5x + 14}{(x + 1)(x^2 + x + 4)}$
- 3 Express the following in partial fractions (denominators with a repeated
- factor): x + 2 2(2x + 3)
  - a  $\frac{(x+4)^2}{(x+3)^2}$  d  $\frac{(x+3)^2}{(x+3)^2}$
  - $(x-2)^2$   $(x-1)^3$   $(x-1)^4$   $(x-1)^4$  (x-1
- $(x+5)^2$   $(x+2)(x-1)^2$
- Express these improper algebraic fractions as partial fractions:  $2x^3 - x^2 - 18x - 22$   $10x^3 + 20$ 
  - a  $\frac{2x^3 x^2 18x 22}{(x 4)(x + 2)}$  d  $\frac{10x^3 + 20}{(x 3)(x^2 + 1)}$  $5x^3 + 15$   $x^3 - 4x$
  - b  $\frac{3x+13}{(x-2)(x+3)}$  e  $\frac{x-4x}{(x-2)(x+1)^2}$
  - $\epsilon = \frac{3x^3 + 12}{(x-1)(x^2+2)}$   $\epsilon = \frac{2x^3 + 4x^2 + 5x 5}{(x+1)^2}$
- 5 Express the following in partial fractions:
  - $a \quad \frac{3x^2 + 2x 41}{(x+1)(x-3)(x-4)} \qquad \qquad d \quad \frac{3x^2 + 5x + 6}{(x+1)(x^2+3)}$ 
    - $\frac{8x^2 34x + 32}{(x 3)(x 2)(x 1)}$  e  $\frac{x^2 + 11x + 4}{(x 1)(x + 1)^2}$
    - (x-3)(x-2)(x-1)  $(x-1)(x+1)^2$  $4x^2 + 16x - 60$   $(x+1)(x^2-25)$   $(x-2)(x^2+x+2)$

# 6.4 Curve Sketching

'Curve-sketching' means producing an outline graph that shows the general behaviour of a function or polynomial. It is not necessary to draw a table of values and plot points accurately. The sketch should show the main features.

Step ① Find where the graph crosses or intercepts the axes.

Step ② Identify any stationary points (local maxima, minima or

stationary points of inflexion).

Step ③ Find out what happens for large positive and negative values of

the variable (the behaviour as x tends to  $+\infty$  and  $-\infty$ ). Step ① Identify any values for which the function is undefined (or

discontinuous).



# Example 1

Sketch the curve  $v = 2x^2 + 8x + 6$ .

#### Solution

The main features of this curve are identified separately and then a sketch is produced combining them all.

The graph crosses the y-axis when x = 0. ◀ ① Intercepts.
 x = 0 ⇒ y = 2(0)² + 8(0) + 6 = 6

So the graph passes through (0,6),

The graph crosses the x-axis when y = 0.

$$v = 0 \implies 0 = 2x^2 + 8x + 6$$

$$\Rightarrow 2(x^2+4x+3)=0$$

$$\Rightarrow$$
 2(x+3)(x+1) = 0  
 $\Rightarrow$  (x+3) = 0 or (x+1) = 0

$$\Rightarrow x = -3$$
 or  $x = -1$ 

So the graph passes through (-3,0) and (-1,0).

Stationary points occur when  $\frac{dv}{dt} = 0$ .

$$y = 2x^2 + 8x + 6 \implies \frac{dy}{dx} = 4x + 8$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \ \Rightarrow 4x + 8 = 0 \ \Rightarrow \ x = -2$$

When 
$$x = -2$$
,  $y = 2(-2)^2 + 8(-2) + 6 = -2$ 

Use factorisation to solve this quadratic equation.



So there is a stationary point at (-2, -2), Using the techniques from Chapter 5, verify that it is a minimum point.

- As x gets large (x → +∞), y also gets large (y → +∞).
   3 Large x. Similarly as  $x \to -\infty$ ,  $y \to +\infty$  because of the  $x^2$  term.
- The function is defined for all values of x, so the graph should be a continuous curve. ◆ ④ Continuity.

Now combine all four findings into one graph. Verify that the graph of  $y = 2x^2 + 8x + 6$  has this form using a graphical calculator.



# Example 2

Sketch the curve  $y = x^3 + 2x^2 - x - 2$ .

### Solution

The graph crosses the y-axis when x = 0.

- $x = 0 \Rightarrow y = (0)^3 + 2(0)^2 (0) 2 = -2$  

  (1) Intercepts.
  - The graph passes through (0, -2).

The graph crosses the x-axis when v = 0.

 $y = 0 \Rightarrow x^3 + 2x^2 - x - 2 = 0$ 

This cubic equation can be solved using the factor theorem.

- Let  $P(x) = x^3 + 2x^2 x 2$
- Check that P(-2), P(-1) and P(1) are all zero.
- This means (x + 2), (x + 1) and (x 1) are all factors of P(x). This means the graph crosses the x-axis at three distinct points:
- (-2,0), (-1,0) and (1,0).

Remember to look at gradient of the curve either side of x = -2



Stationary points can be found from  $\frac{dy}{dz} = 0$ . 2 Stationary points.

If 
$$y = x^3 + 2x^2 - x - 2$$
 then  $\frac{dy}{dx} = 3x^2 + 4x - 1$ 

So 
$$\frac{dy}{dx} = 0 \implies 3x^2 + 4x - 1 = 0$$

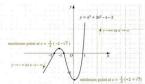
This particular quadratic equation cannot be solved by factorising, so use 'completing the square' or the 'quadratic formula' instead.

Verify that the solutions are 
$$x = \frac{1}{2}(-2 \pm \sqrt{7})$$
.

This means there are two turning points. The approximate coordinates are (-1.55, 0.63) and (0.22, -2.11). Check that these turning points are a maximum and a minimum point, respectively, by looking at the values of  $\frac{dr}{ds}$  on either side of each point.

- As x → ∞, y → ∞ because of the behaviour of the x<sup>3</sup> term. Similarly, as  $x \to -\infty$ ,  $y \to -\infty$ .
- The graph will be defined for all values as this polynomial can be evaluated for all values of x. ■ ② Continuity.

Combine all four findings into one graph.



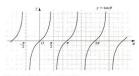


#### Graphs of discontinuous functions

Discontinuous functions have graphs that get closer and closer to some straight line and yet never cross it. This straight line is called an asymptote. This type of graph has been met already.

Recall that  $\tan \theta$  is undefined for a sequence of values of  $\theta$ .

$$\dots - \frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots$$



What is special about these values of  $\theta$ ? Recall that  $\tan \theta = \frac{\sin \theta}{\cos \theta}$ .

For these values of  $\theta$ ,  $\cos\theta=0$ . The rational function that then defines  $\tan\theta$  has a denominator of zero.

This observation indicates a useful technique to adopt when sketching rational functions. Identify those values that produce a zero denominator. Vertical asymptotes will be located at those values.

## Example 3

Sketch the graph of  $y = \frac{3}{(x-2)}$ .

#### Solution

•  $x = 0 \Rightarrow y = \frac{3}{-2} = -\frac{3}{2}$ The graph crosses the y-axis at  $(0, -\frac{1}{2})$ .  $y = 0 \Rightarrow 0 = \frac{3}{(x - 2)}$ 

(x-2)Since there is no value of x for which y = 0 the graph does not cross the x-axis. So the line y = 0 (the x-axis) must be an asymptote.

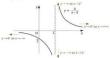
•  $y = \frac{3}{(x-2)}$   $\Rightarrow \frac{dy}{dx} = -\frac{3}{(x-2)^2}$  • 2 Stationary points.

Since  $\frac{dr}{dx} \neq 0$  for all values of x there are no stationary points. • As  $x \to +\infty$ ,  $y \to 0^+$ As  $x \to -\infty$ ,  $y \to 0^-$ 

The function <sup>3</sup>⁄<sub>(x-2)</sub> is undefined when x − 2 = 0 ◀ ③ Continuity. So the graph is discontinuous when x = 2.
Since x = 2 is an asymptote the behaviour of y either side of this value should be checked.

As  $x \to 2^+$  (from above),  $x = 2 \to 0^+$ , so  $y = \frac{3}{(x-2)} \to +\infty$ . As  $x \to 2^-$  (from below),  $x = 2 \to 0^-$ , so  $y \to -\infty$ . 0<sup>+</sup> means x → 0 from above (positive) and 0<sup>-</sup> means x → 0 from below (negative). All of these features can now be combined to give the graph of

$$y = \frac{3}{(x-2)}$$



Example 4

Sketch the graph of  $y = \frac{x+1}{x+x}$ .

#### Solution Look closely at the algebraic fraction. Spot that it is improper and rewrite

it in quotient/remainder form. Verify that  $y = \frac{x+1}{x+5}$  can be written as  $y = 1 - \frac{4}{x+5}$ .

Putting 
$$x = 0$$
 of  $x = 1$ . So  $(0, 1)$  is the interest

- Putting x = 0 gives y = ½. So (0,½) is the intercept on the y-axis. Putting y = 0 gives x = -1. So the graph crosses the x-axis at (-1, 0).
- Verify that  $\frac{dy}{dx} = \frac{4}{(x+5)^2}$ . Since  $\frac{dy}{dx} \neq 0$  for all values of x, there are
- As  $x \to \pm \infty$ ,  $y \to 1$ , so y = 1 is a horizontal asymptote.
- The graph is not defined for x = -5. When x = -5 the denominator is
- zero. So x = -5 is a vertical asymptote. These can now be combined to give the graph.



# Example 5

Sketch the graph of  $y = \frac{x^2 + 2}{x^2 + 2}$ .

Check this result using a eraphical calculator.



y = 1 using the Chapter 4.



#### Solution

Look closely at the algebraic fraction. Spot that it is improper.

Check that 
$$y = \frac{x^2 + 2}{x - 1}$$
 can be written as  $y = x + 1 + \frac{3}{x - 1}$ .

The quotient is now (x + 1) and contains the variable x.

 The graph crosses the y-axis when x = 0 at (0, −2).
 Intercepts. The graph does not cross the x-axis. Why? If v = 0 then the numerator

 $x^2 + 2 = 0$ , and this equation has no real solutions. • If  $y = x + 1 + \frac{3}{x - 1}$ , then  $\frac{dy}{dx} = 1 - \frac{3}{(x - 1)^2}$  • 2 Stationary

• If 
$$y = x + 1 + \frac{1}{x - 1}$$
, then  $\frac{dr}{dt}$ 

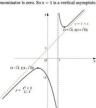
For stationary values,  $\frac{dr}{ds} = 0$ .

$$1 - \frac{3}{(x-1)^2} = 0 \Rightarrow (x-1)^2 = 3$$
  
 $\Rightarrow x - 1 = \pm \sqrt{3}$ 

Check that the stationary point at  $x = 1 + \sqrt{3}$  is a minimum point and that the stationary point at  $x = 1 - \sqrt{3}$  is a maximum point by looking at the value of the gradient of the curve on either side. As x becomes very large (both positive and negative),  $\frac{3}{x-3}$  becomes

very small, and tends towards zero. Therefore  $v \to x + 1$  as  $x \to \pm \infty$ . So v = x + 1 is a skew, or slant asymptote.

The graph is not defined for x = 1. When x = 1 the original denominator is zero. So x = 1 is a vertical asymptote.



to gather relevant information more ea

### Modulus graphs

The modulus of a function, |f(x)|, was defined in Chapter 4. To sketch graphs of the modulus of a function, first sketch the graph of the function f(x), and then reflect in the x-axis all parts of the graph for which the y-coordinate is negative.

## Example 6

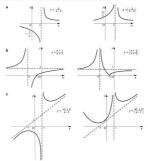
Sketch the graphs of:

a 
$$y = \left| \frac{3}{x-2} \right|$$
 b  $y = \left| \frac{x+1}{x+5} \right|$  c  $y = \left| \frac{x^2+2}{x-1} \right|$ .

### Solution

Compare these with the graphs of the functions found in Examples 3–5.

All that is required now is to reflect the parts of the graph that are below
the x-axis (where y-coordinates are zero) in the x-axis.



Sketching a modulus graph is a very useful technique when we have to solve equations or inequalities that involve the modulus function. Check these results using a graphical calculator.

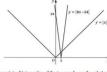


# Example 7

Solve the equation |x| = |8x - 24|, Hence, or otherwise, solve |x| < |8x - 24|.

Solution To solve the equation first sketch the graphs of v = |x| and v = |8x - 24|

Notice that we get two distinct V-shaped graphs. The graph of y = |8x - 24| is steeper and touches the x-axis at x = 3.



The points of intersection of the two graphs are the solutions to |x| = |8x - 24|. These can be found algebraically by solving two sets of equations:

$$x = 8x - 24$$
  
and  $x = -(8x - 24)$ 

The first equation corresponds to the point where y = x intersects v = 8x - 24. The second equation gives the solution created by the reflection in the x-axis. This corresponds to the point where v = xintersects v = -(8x - 24). Solving these equations gives

$$x = 8x - 24 \qquad \Rightarrow \quad 7x = 24$$
$$x = \frac{24}{7}$$

$$x = -(8x - 24) \Rightarrow 9x = 24$$
$$x = \frac{24}{9}$$

To solve the inequality  $|x| \le |8x - 24|$ , use the graph. Notice that the graph of y = |x| is below the graph of y = |8x - 24| when  $x \le \frac{24}{3}$  or  $x \ge \frac{24}{3}$ . So  $|x| \le |8x - 24|$  when  $x \le \frac{24}{3}$  and  $x \ge \frac{24}{3}$ .

When we need to solve inequalities that involve the modulus function it is often useful to check the graphs. We can usually identify where the required condition is, geometrically, by finding where a graph is either above or below another graph or axis.

intersecting with y = 8y - 24

Check that  $x = \frac{24}{3}$  an |x| = |8x - 24|Verify this result on graphical calculator

# 6.4 Curve Sketching Exercise

# Technique

- 1 Sketch the graphs of the following continuous functions:
  - a  $f(x) = 2x^3 + 7x^2 5x 4$ c  $g(x) = x^3 19x + 30$ 
    - b  $h(x) = |x^2 6x 7|$  $h(x) = |2x^3 + 15x^2 + 31x + 12|$
- 2 Sketch the graphs of the following rational functions:
  - a  $g(x) = \frac{3}{x}$ c  $g(x) = \frac{1}{2}$

- **b**  $f(x) = \frac{2}{1 x}$  $d h(x) = \left| \frac{1}{2x+2} \right|$
- 3 Sketch the graphs of the following rational functions:
  - a  $f(x) = \frac{x+1}{x}$

- $\mathbf{b} \quad g(x) = \frac{x+3}{x+4}$
- c  $h(x) = \frac{x-3}{x-3}$
- $\mathbf{d} \quad h(x) = \begin{vmatrix} 5x + 1 \\ 2x & 2 \end{vmatrix}$

# 4 Solve the following:

d |x| = |5x - 40| b |x| = |12 - 3x| c |x - 2| = |6 - 2x| d |x| \le |8x - 40| e |x| \ge |1 - 5x| f |2x + 1| \ge |5 - 3x|

# Contextual

- 1 Given that  $f(x) = 3x^3 7x^2 7x + 3$ : a factorise f(x) and then sketch its graph
  - **b** on a separate diagram sketch the graph of |f(x)|.
- **2** Given that f(x) = 2x + 1 and g(x) = x + 2, find the range of values of x for which: **b** g(x) > 0 $a \quad f(x) > 0$
- $c = \frac{f(x)}{g(x)} > 0$

3 Sketch the graph of  $y = \frac{4x+1}{2x-5}$ . Hence or otherwise find the range of values of x for which y < 0

- 4 On separate diagrams sketch the graphs of:
  - $y = \frac{2x-6}{x+8}$

- $\mathbf{b} \quad y = \begin{vmatrix} 2x 6 \\ y + 8 \end{vmatrix}$
- 4 a, b

# Consolidation

### **Exercise A**

Use the factor theorem to find a linear factor of  $x^3 - x - 6$ . Hence express  $x^3 - x - 6$  as the product of a linear factor and a quadratic factor.

(OCSEB)



- a Express g(x) in the form  $Ax^3 + Bx^2 + Cx + D$ , giving the values of the constants A, B, C and D.
- b Find the value of the constant a, given that (x + 3) is a factor of g(x) + ax.
- c Express  $\frac{x-3}{g(x)}$  in partial fractions.
- d Solve the inequality g(x) > 3x(x+2)(x-3).

(UCLES)

- When divided by (x 3) the expression x<sup>3</sup> + ax<sup>2</sup> (a<sup>2</sup> 3a + 17)x gives a remainder of 3. Find the value of a.
  - **b** Find the three linear factors of  $3x^3 x^2 75x + 25$ .
- The polynomial  $p(x) = x^3 + cx^2 + 7x + d$  has a factor of (x + 2), and leaves a remainder of 3 when divided by (x 1).
  - ${\bf a} \quad \text{ Determine the value of each of the constants } c \text{ and } d.$
  - **b** Find the exact values of the three roots of the equation p(x) = 0.

    (AEB)
- Given that  $\frac{(x-1)^2}{x^2} = Ax + B + \frac{C}{x} + \frac{D}{x^2}$ ,  $x \neq 0$ , find the values of A, B, C and D.

(OCSEB)

- Given that  $y = \frac{2x+1}{x(2x-1)^2}$ , express y in the form  $\frac{A}{x} + \frac{B}{(2x-1)} + \frac{C}{(2x-1)^2}$ . (NEAE
- The cubic polynomial  $x^2 2x^2 x 6$  is denoted by f(x). Show that (x 3) is a factor of f(x). Factorise f(x). Hence find the number of real roots of the equation f(x) = 0, justifying your answer.

  Hence write down the number of points of intersection of the graphs with equations  $y = x^2 2x 1$  and y = 0, instiffing your answer.

(UCLES)

- 8 If  $p(x) = 2x^3 5x^2 28x + 15$ :
  - factorise p(x)c sketch the graph of p(x)
- b solve p(x) = 0d solve  $p(x) \ge 0$ .
- **9** Sketch the curve  $y = \frac{x+3}{x-5}$ . Now find the values of x for which y > 0.
- **10** Given  $f(x) = \frac{2x+1}{x+2}$ :
  - a sketch the graph of f(x)
  - b on a separate diagram sketch the graph of | f(x)|.

#### Exercise B

- When the cubic expression  $x^3 + ax^2 (2a^2 + 12)x + (7a + 10)$  is divided by (x-1) the remainder is 7. Find a. Find the three linear factors of  $x^3 + 2x^2 - 20x + 24$ . (WIEC)
- 2 A polynomial f(x) can be expressed in the form  $p(x+2)^4 + q$  where pand g are constants. When f(x) is divided by (x-1) the remainder is 40 and when f(x) is divided by (x + 3) the remainder is zero. Find the values of p and q. (NEAB)
- 3 Given f(x) = (3x-2)(x-1)(x+1):
  - a express f(x) in the form  $Ax^3 + Bx^2 + Cx + D$
  - **b** express  $\frac{x+1}{f(x)}$  in partial fractions
  - c solve the inequality f(x) > 2x(x-1)(x+1).
- 4 The cubic polynomial  $f(x) = 5x^3 + px^2 11x + q$  has a remainder of -12 when divided by (x-1) and also has an exact factor (x-3).
- Find the values of p and q.
  - Express the cubic polynomial as the product of three linear factors. With the aid of a sketch, solve f(x) < 0.
- A curve has equation  $y = \frac{3x+4}{(x-2)(2x+1)}$ 
  - a Express  $\frac{3x+4}{(x-2)(2x+1)}$  in partial fractions.
  - **b** Show that  $\frac{dy}{dx} = \frac{2}{(2x+1)^2} \frac{2}{(x-2)^2}$  and hence, or otherwise, show that the curve has a turning point when x = -3. Determine the value of x at the other stationary point of the curve. (AEB)

291

#### Parametric equations

Sometimes, instead of having an equation relating x and y directly, y = f(x), x and y are written in terms of a third variable, called a parameter. Then x and y are represented by two separate functions, x = g(t) and y = h(t), called parametric equations. Eliminating the parameter, or variable, reduces the two parametric equations into a Cartesian form with two variables.

Parametric equations are a useful technique to use with graphical calculators, when it is difficult to write y as a function of x. Use a graphical calculator in the parametric mode to help you with the following activities.

- Sketch the graphs of the curves given parametrically by the following and describe the Cartesian form of these curves:
  - a  $x = \cos \theta$  and  $v = \sin \theta$
  - **b**  $x = 3 + \cos \theta$  and  $y = 4 + \sin \theta$
  - c  $x = -3 + \cos\theta$  and  $y = 4 + \sin\theta$
  - d  $x = -3 + \cos \theta$  and  $y = -4 + \sin \theta$
- e  $x = 3 + \cos \theta$  and  $y = -4 + \sin \theta$
- Predict, and then check, the behaviour of the curve given parametrically by  $x=2\cos\theta$  and  $y=2\sin\theta$ . What do you expect the curve given parametrically by  $x=5+2\cos\theta$  and  $y=1+2\sin\theta$  will look like?
- Investigate other parametric coordinates.



# Summary

- A polynomial can be divided by a linear factor and the result is checked using either multiplication or substitution.
- The remainder theorem says that when a polynomial P(x) is divided by a linear factor (x - a) then the remainder is P(a).
- The factor theorem says that if P(a) = 0 then (x a) is a factor of P(x).
- The factor theorem can be used to factorise cubic and higher order polynomial expressions.
- Partial fractions can be classified into three categories: those with linear factors in their denominators: those with quadratic factors in the denominator; and those with repeated factors in the denominator.
- The cover-up rule uses the fact that some values of x create a zero in the denominator to calculate the required numerators in the partial fractions.
- To sketch the graphs of continuous and discontinuous functions, check:
  - where the graph crosses the axes 2) the location and nature of any stationary points
    - (3) the behaviour as  $x \to \pm \infty$
  - where the function is undefined.
- The graph can be discontinuous at a point. This is shown by a line called
- an asymptote. - A vertical asymptote can be found when the denominator of a rational function is zero.
  - A horizontal asymptote can be found when the function tends towards a fixed value for large positive and negative values of x.
  - A skew asymptote can be found by writing an improper algebraic fraction in its quotient-remainder form.
- Produce a sketch of the modulus of a function, |f(x)|, by reflecting in the x-axis all parts of the graph for which the function is negative.

# 7 Exponentials and Logarithms

### What you need to know

- How to write numbers in standard index form.
- The laws of indices.
- How to evaluate negative and fractional indices.
- How to use the x<sup>1/y</sup> or <sup>x</sup>√ function key on your calculator.

### Review

| 1 Write the f | following number | s in standard | (index) | for |
|---------------|------------------|---------------|---------|-----|
|---------------|------------------|---------------|---------|-----|

a 93 000 000 b 0.006 25 c ten million d three hundredths

### 2 Simplify the following:

a  $a^7 \times a^5$  b  $a^6 \div a^2$  c  $(m^6)^3$ d  $m^9$ , where  $m \neq 0$  e  $a^m \times a^n$  f  $\frac{a^m}{a}$ 

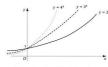
### 3 Without using a calculator, work out:

a  $16^{\frac{1}{2}}$  b  $27^{\frac{1}{2}}$  c  $4^{-3}$ d  $\binom{1}{4}$  e  $64^{\frac{1}{2}}$  f  $125^{-\frac{1}{2}}$ 

# 4 Use your calculator to find the values of the following, correct to three significant figures:

# 7.1 The Exponential Function

Any function of the form  $\sigma^{s}$ , where  $\sigma$  is a positive constant, is known as an exponential (or power) function. The variable of the function is x. Examples of exponential functions include  $2^{s}$ ,  $3^{k}$ ,  $5^{k}$  and  $10^{t+3}$ . The graphs of these functions all have the same basic shape.



- The graphs are defined for all values of x.
- The graphs are always above the x-axis.
- The x-axis (the line y = 0) is an asymptote, and each graph tends to infinity quickly as x gets large.

Exponential functions can be used to model growth and decay. To model decay we find that the exponent needs to be negative. Graphs of exponential functions with negative exponents are the same shape as those with positive exponents, but reflected in the line x = 0 (or the y-axis).

Exponential functions are used to predict population growth, describe radioactive decay and determine compound interest.

#### Population growth

The world's human population is growing by about 3% each year. Given that the population at the end of 1989 was estimated at 4.5 billion  $(4.5 \times 10^8)$ , we can predict population figures for future years using an exponential graph.

| Year end               | 1989 | 1990       | 1991                  | 1992                  | 1993                      |
|------------------------|------|------------|-----------------------|-----------------------|---------------------------|
| Population in billions | 4.5  | 4.5 × 1.03 | $4.5 \times (1.03)^2$ | $4.5 \times (1.03)^3$ | 4.5 × (1.03) <sup>4</sup> |

Complete a table of values or use a graphical calculator to draw the graph of  $y=4.5\times1.03^3$ . Notice that the curve crosses the y-axis at 4.5 (representing 4.5 billion in 1989, our initial year). Using a trace and zoom function we can find when the population doubles  $(y=2\times4.5=9)$ .

Since  $a^0 = 1$ , all graphs of the form  $y = a^x$  cross the y-axis at (0, 1).

Exponential functions are always positive.

Multiplying by 1.03 increases by 3%



This means we can predict that the world's human population will have doubled in size from its 1989 estimate by the end of the year 2013 (1989 + 24 years).

#### Radioactive decay

Radioactive substances have 'half-lives' that are determined by the time it takes the radioactivity to halve. Radon: 219, an isotope of the element radon, has a half-life of approximately four seconds. This means that if at some time t=0 we have  $10\,000$  Radon: 219 nuclei, then four seconds later (if = 4) there will be only \$1000.

(t = 4) there will be only 5000.
The exponential model for radioactive decay will have a negative exponent (power). To find it, first tabulate some values.

| Time after<br>sample is<br>identified | 0      |                        | 8                                        | 12                                    | 16                                             |
|---------------------------------------|--------|------------------------|------------------------------------------|---------------------------------------|------------------------------------------------|
| Number of<br>nuclei<br>remaining      | 10 000 | 10 000 × (½)<br>= 5000 | $10000 \times (\frac{1}{2})^2$<br>= 2500 | $10000 \times (\frac{1}{2})^3$ = 1250 | 10 000 ×( <sup>2</sup> <sub>3</sub> )<br>= 625 |

Notice that every four seconds the power increases by 1. If N(t) is the number of atoms at time t, then

$$N(t) = 10000 \times (\frac{1}{2})^{\frac{1}{4}}$$
  
=  $10000 \times (2^{-1})^{\frac{1}{4}}$   
=  $10000 \times 2^{-\frac{1}{4}}$ 

This model now allows us to calculate the number of nuclei of Radon-219 present in the sample at any time after timing commenced (t = 0).

#### Compound interest

Banks and building societies add the interest to cortain accounts at the end of a year. In the following year interest is also calculated on this interest. This method of calculation is known as 'compound interest'. Consider investing £500. What would give the best return, 10% per year or 15% every \(\frac{1}{2}\) year? Compare the blance at the start of each year.

| Year                              | 1   | 2      | 3      | 4      | 5      |
|-----------------------------------|-----|--------|--------|--------|--------|
| 10% per year (f)                  | 500 | 550    | 605    | 665.50 | 732.05 |
| 1% every \(\frac{1}{2}\) year (£) | 500 | 552.31 | 610.10 | 673.92 | 744.43 |

Trace and zoom
The Trace facility of graphical calculator described on p. 34. "Zoom facility enab you to zoom in on a region, or section, or plotted graph. Most calculators will zoo on the graph at the point traced along and then redraw the graph with a preset

nomber the laws

Clearly the second option gives a better return. But how can these figures be calculated mickly?

the calculated quickly: In the first account £500 can be multiplied by  $\{1.1\}^6$  where n is the number of interest paying years. In the second account £500 can be multiplied by  $\{1.01\}^n$  where n is the number of  $\frac{1}{n}$  years for which interest

is paid. Thus £500 ×  $(1.01)^{10}$  = £552.31.

The idea of reducing the interest rate but increasing the number of times it is paid is nothing new. Today interest can be paid daily (so in a year, n would be 365) but the rate will be only a fraction of 1%.

Now look at the following pattern:

$$(1+0.1)^{10} = 2.59374246$$
  
 $(1+0.01)^{100} = 2.704813829$ 

$$(1 + 0.001)^{1000} = 2.716923932$$
  
 $(1 + 0.0001)^{10000} = 2.718145927$ 

The left-hand column is generating the pattern  $(1+\frac{1}{h})^n$  for powers of 10. The figures on the RHS are converging to a limit that begins 2.718.... This number is known as 'e' and is the limit of this sequence.

This can be written mathematically as  $e = \liminf_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$  or more usually as  $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ .

### The exponential function as a series

The number e can also be defined as 
$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$
.

The function  $e^x$  is often referred to as the exponential function. It can be defined, in a similar way to e, as:

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

If we differentiate this infinite power series term by term we get a remarkable result.

$$\frac{d}{dv}(e^x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{2!} + \cdots = e^x$$

That is, the gradient function equals the function itself for all real values.

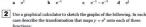
It is this result that makes the exponential function, etc. unique.

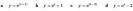
Alternative notation you may come across for e<sup>x</sup> is exp x or exp (x). Do not confuse this with the EXP key on a scientific calculator.

# 7.1 The Exponential Function Exercise

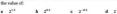
# Technique



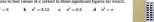












### Contextual

- 1 The mass of a colony of bacteria, measured in grams, doubles each day and is given by the formula M(t) = 7.0 × 2°. Find the initial mass of the bacteria and the number of days needed for the total mass of the bacteria to exceed 500 e.
- The decay of a radioactive isotope can be modelled by M(t) = M<sub>0</sub> e<sup>-kt</sup>, where M(t) is the remaining mass after t days. If a given isotope has a half-life of 10 days and after this time 60 g remain, find:
  - a how much isotope was present initially (the value of  $M_0$ ).
  - a how much isotope was present in
     b the value of the decay constant k.
  - c how much isotone has remained after 30 days.
  - d the number of days required for 80% of the isotope to have decayed.
- 3 Engine oil, at temperature T°C cools down according to the model T = 60 e<sup>-ix</sup> + 10, where t is the time in minutes from the moment the engine was switched off.
  - a What is the initial temperature of the oil when the engine is first switched off?
  - b If the oil cools to 32°C after three minutes find the value of k.

    How lone will it take for the oil to cool to a temperature of 15°C?







- 4 The cost of living is increasing by 4% per year. By how much does the cost of living increase in:
  - a a month h six months

five years?

How long will it take for the cost of living to double from its present value?

- 5 A car bought for £12 000 depreciates at 20% per year. After t years it is worth £x.
  - a Sketch a graph of x against t. b Use your graph to calculate:
    - - i when the car is worth half its original value:
        - ii when its value first falls below £1000.



# 7.2 Logarithms

When comparing numbers written in standard form, first look at the index, (exponent or power) of the number ten. This gives an indication of the magnitude of the number.

For example, if the index is 6 then the number will be in the millions because

$$10^6 = 1\,000\,000 = 1\,\text{million}$$

Now consider numbers between 10 and 100. Since  $10 = 10^5$  and  $100 = 10^5$  we would expect the index for these numbers to be between 1 and 2. What about 1.5? What number is equivalent to  $10^{14}$ . The answer is not 50. Using the  $8^{16}$  function key on a calculator you should find that  $10^{14} = 31.822$  777 (6 dp.). The number 1.5 is called the logarithm of 31.622 777 in base 10. If you

The number 1.5 is called the **logarithm** of 31.622 777 in base 10. If you now try the 'log' function key on the calculator notice that log (31.622777) = 1.5



Mathematicians generalise this relationship as follows,

#### $\mathbf{f} \mathbf{y} = \mathbf{a}^{\mathbf{x}}$ then $\mathbf{x} = \log_{\mathbf{x}} \mathbf{y}$

and x is known as the logarithm of y in base a.

Logarithms can be in bases other than 10.

# Example

For each of the following, write down an expression for a logarithm in a suitable base:

c 
$$100 = 10^2$$

A though invent
Europe by John
Napier in the sixtee
contaury, there is pile
evidence to show th
Japanithms were kno
Asian mathematician
the period around th
eighth century. The a
may have developed
the idea of logs with
using them for any
practical purpose.

Henry Briggs (1561–1630) Logarithms to be 10 are known a 'common logs' 'Briggs logs' in ho of Briggs, who calculated the fr

300

#### Solution

- a 81 = 34 so 4 = log, 81
- b 8 = 23, so 3 = log, 8
- $100 10^2$ , so  $2 \log_{10} 100$
- $\frac{1}{12} = \frac{1}{2^3} = 2^{-5}$ , so  $-5 = \log_2(\frac{1}{2^3})$

The logarithm of a number is the power to which the base must be raised in order to equal that number. So log10 100 is 2 because the base, 10, must be raised to power 2 to equal 100.

The most common bases used for logarithms are 10 and e. In value,  $e \approx 2.7182818$  and logarithms taken to this base are called natural logarithms.

To distinguish between these types of logarithms the following notation is used.

 $log_{10}x$  is written logx or lgx

log, x is written lnx

Calculators have two different function keys for logarithms. 'LN' and "LOG", with inverse functions ex and 10" respectively. The relationship between ex and ln x is very important,

If  $y = e^x$  then  $x = \ln y$ .

The use of e as a base for logarithms is by no means accidental. The number e has many applications in mathematics.

#### Transcendental numbers

A number that cannot satisfy an algebraic equation with integer coefficients is called a transcendental number. Many irrationals are not transcendental. For example,  $\sqrt{2}$  satisfies  $x^2 = 2$  or  $x^2 - 2 = 0$ , which are equations with integer coefficients. Both e and a are transcendental.

Recall that  $a^{-n} = \frac{1}{-n}$ 

This value can be found



# 7.2 Logarithms Exercise

# Technique

 $c \quad x = \log_{\bullet}(\frac{1}{\epsilon})$ 

- 1 Without using a calculator, find the values of:
  - log 1000 log 0.01 log 10 000 000 log 0.0001
- 2 Find the values of the following, to three significant figures:
  - a log50 b log 2 d log(2)
  - c log(1)
- 3 Without using a calculator find the exact values of x in: a  $x = \log_2 64$ **b**  $x = \log_3 27$ 
  - $d \quad x = \log_3(\frac{1}{a_3})$
- 4 Find the value of the base, a, of the following logarithms: a 3 - log, 125 b 1 = log, 6
- $c -2 = \log_a(\frac{1}{4\epsilon})$ d 1 = log, 25
- 5 Find the values of the following, to three significant figures: a ln2 b ln 50
- c ln 100 In 25
- 6 Evaluate the following without using a calculator:
  - d  $\ln\left(\frac{1}{\sqrt{3}}\right)$  $c \ln \left(\frac{1}{3\sqrt{n}}\right)$
- 7 Copy and complete the following table:

| Exponent torm          | Logarithmic form           |
|------------------------|----------------------------|
| 2 <sup>4</sup> = 16    | $\log_2 16 = 4$            |
| $2^{-1} = \frac{1}{2}$ | $\log_2(\frac{1}{2}) = -1$ |
| $2^5 = 32$             |                            |
|                        | $\log_2 64 = 6$            |
| $3^2 = 9$              |                            |
| $3^{-2} = \frac{1}{9}$ |                            |
| $4^{\frac{1}{2}} = 2$  |                            |

### Contextual

1 The Richter scale measures the magnitude of earthquakes using logarithms. The Richter value is only part of the number describing an earthquake's strength. If it has a Richter value of 6, the magnitude of the earthquake is 10°. Many people believe an earthquake with a Richter value of 8 is twice as strong as one with a value of 4. How do the two actually commany in intensity.



2 The human ear responds to the ratio of the powers, measured in waits, when the power of sound increases. This ratio is measured in bels (B) but in practice the bel is too large and the decibel (dB) is used. This is calculated using the rule

change in 
$$dB = 10 \log_{10} \left( \frac{\text{new power}}{\text{old power}} \right)$$

- Explain why an increase in power output from 100 W to 200 W is only 3 dB.
- b Approximately how many times will the power level emitted by a source of sound have increased if the sound level increases by 10 dB?
- c If the volume control on a personal stereo is turned down so that the power output from the loudspeaker changes from 500 mW (milliwatts) to 100 mW, what is the corresponding fall in sound level in dB?
- In chemistry the acidity or alkalinity of a solution is measured by its pH factor, defined by pH =  $-\log_{10} |H^*|$ . In this rule  $|H^*|$  is a measure of the quantity of hydrogen ions present in the solution. A pH value of 7 indicates a neutral solution for which  $|H^*| = 10^{-7}$  moles per litre. If the pH value is greater than 7 the solution is alkaline. If the pH value is less than 7 the solution is acidic.
  - a Calculate the pH value for a hair shampoo of strength  $2.5 \times 10^{-9}$  moles per litre.
  - b An acid X, has a pH of 5.0, and an acid, Y, a pH of 2.5. How many times more concentrated than acid X is acid Y?

# 7.3 Laws of Logarithms



Remember that these two mathematical statements are identical and interchangeable. Now suppose that there are positive numbers c and d such that  $c=m^p$  and  $d=m^q$  for some m>0.

Then 
$$p = \log_{es} c$$
 and  $q = \log_{es} d$   
and  $c \times d = m^p \times m^q = m^{(p+q)}$ 

In logarithm form this can be written,

$$\log_{cc}(c \times d) = p + q = \log_{cc} c + \log_{cc} d$$

This result is true for any two positive numbers c and d and for any suitable base m. Since it is true for any base,

 $\log ab = \log a + \log b$  Property 1  $\triangleleft$  Learn this result.

### Example 1

Given  $\log 2 = 0.301$  and  $\log 6 = 0.778$  find  $\log 12$ .

#### Solution

- $\log 12 = \log(2 \times 6)$   $= \log 2 + \log 6$ 
  - = log 2 + log 6= 0.301 + 0.778
- = 1.079 iow return to property 1 and put  $\log a^2 = \log a + \log a = 2 \log a$

Now return to property 1 and put a=b. This gives the following result:

This can be generalised to

This is valid for all values of n, and not just integers.

# Example 2

Given  $\log 6 = 0.778$  find  $\log 36$ .

Remember the laws indices.

> John Napler (1550–1617) ier introduced the

Napier introduced the of logarithms as a breakthrough in simpli computation. It reduce multiplication and division addition and subtract This was the principle which the side rule.

eck this using y

#### Solution

 $log 36 = log 6^2$ 

= 2 log 6

 $= 2 \times 0.778 = 1.556$ 

Now return to  $c = m^p$  and  $d = m^q$  with m > 0 and try division instead of multiplication.

$$\frac{c}{d} = \frac{m^p}{m^q} = m^{p-q}$$

In logarithm form this can be written.

$$\log_{\mathrm{ee}}\left(\frac{c}{d}\right) = p - q = \log_{\mathrm{ee}}c - \log_{\mathrm{ee}}d$$

This can be generalised to

 $\log \binom{a}{b} = \log a - \log b$  Property 3  $\triangleleft$  Learn this result.

### Example 3

Using the results from Examples 1 and 2, evaluate log 3.

#### Solution

 $\log 3 = \log \left( \frac{36}{12} \right)$ = log 36 - log 12 = 1.556 - 1.079 = 0.477

Property 5

There are two other logarithm properties worth noting, based on the indices statements  $a^0 = 1$  and  $a^1 = a$ .

Property 4

■ Learn these results.

These five properties can be used to simplify expressions containing logarithms and to solve logarithmic equations.

### Example 4

Write the following as single logarithms:

a log8 - log6 + log9

b  $2\log a + 3\log b - \log c$ 

Check this using your

ndices.

 $= \log 6 - \log 2$ 

The side rule, a calculating device commonly used right up to the development of the electronic calculator. was invented by William Oughtred in 1622. The 1 slide rule used a logarithmic scale.

#### Solution

$$\log 8 - \log 6 + \log 9 = \log(\frac{1}{2}) + \log 9$$

$$= \log \left(\frac{8 \times 9}{6}\right)$$

$$= \log 12$$

$$\begin{array}{ll} \mathbf{b} & 2\log a + 3\log b - \log c = \log a^2 + \log b^3 - \log c \\ & = \log(a^2b^3) - \log c \\ & = \log\left(\frac{a^2b^3}{a^3}\right) \end{array}$$

Some logarithmic equations are a mixture of logarithms and ordinary numbers. When that is the case, try collecting together the logarithmic terms so that the logarithm properties can be used to combine them into a simele logarithmic term.

## Example 5

Given that  $1 + \log_0(7x - 2a) = 2 \log_0 x + \log_0 3$ , find, in terms of a, the possible values of x.

# Solution

$$\begin{array}{lll} 1 + \log_{v}(7x - 2a) = 2 \log_{v}x + \log_{o}3 \\ \\ \Rightarrow & 1 = 2 \log_{o}x + \log_{o}3 - \log_{v}(7x - 2a) \\ \\ \Rightarrow & 1 = \log_{o}x^{2} + \log_{o}3 - \log_{v}(7x - 2a) \\ \\ \Rightarrow & 1 = \log_{o}(3x^{2}) - \log_{o}(7x - 2a) \\ \\ \Rightarrow & 1 = \log_{o}\frac{3x^{2}}{2a} \end{array}$$

But  $\log_a a = 1$ , so

$$\frac{3x^2}{7x - 2a} = a$$

$$\Rightarrow 3x^2 = a(7x - 2a)$$

$$\Rightarrow 3x^2 = 7ax - 2a^2$$

$$\Rightarrow 3x^2 - 7ax + 2a^2 = 0$$

Factorising,

$$(3x - a)(x - 2a) = 0$$
  
So  $x = \frac{a}{2}$  or  $x = 2a$ 

Using property 3. Using property 1.

Using property 2.

Using property 1.

Using property 3.

Using property 2.

Using property 3.

By property 5.

Using PAFF:

A: coefficient of x = -7aF: -6a and -a. F: Replace -7ax with -6ax - ax, and

factorise.

# 7.3 Laws of Logarithms

# **Exercise**

# Technique

Write the following as single logarithms:

a ln7+ln2 d log12-log6 b log2+log3+log4 e ln6+ln10-ln5

c 2 ln 3 f log 1 – log 3

2 Given that log 2 = 0.301 and log 3 = 0.477 find, without using a calculator:

a log 4 b log 27 c log 18

d log36 e log144 f log1½

3 Simplify: a  $\log x + 2 \log y + \log z$  d  $\ln x^2 - \frac{1}{2} \ln x$ b  $3 \ln x - 2 \ln y$  e  $3 \log x + 2 \log z$ c  $\log a - 2 \log b - 3 \log c$  f  $\ln x - 2 \ln y + \ln z$ 

4 Express, in terms of  $\ln x$ ,  $\ln y$  and  $\ln z$ :

a  $\ln(xyz)$  b  $\ln\left(\frac{x^2y^2}{z}\right)$  c  $\ln\frac{x\sqrt{y}}{z}$ d  $\ln\frac{x\sqrt{y}}{z}$  e  $\ln\sqrt{\frac{y}{z}}$  f  $\ln x\sqrt{yz}$ 

5 Solve the following logarithmic equations:

a  $\log_e 9 = \frac{1}{2}$ b  $\log_e 16 = -4$ c  $\ln x^3 - \ln x + \ln \sqrt{x} = 3$ d  $\log_e 24 + \log_e 9 + 3 = 3 \log_e 4$ 

#### Contextual

- 1 Explain why xy = 100 and log<sub>10</sub> x + log<sub>10</sub> y = 2 are equivalent, interchangeable statements.
- On the same axes sketch the graphs of y = ln x and y = ln(\frac{1}{x}). Using the laws of logarithms suggest a possible transformation for these graphs. Describe an inverse function for y = ln(\frac{1}{x}).
- Show that log<sub>2</sub> 12 = log<sub>4</sub> 144
   Evaluate log<sub>2</sub> 12 log<sub>4</sub> 9 without using a calculator.
- By taking natural logarithms, or otherwise, find g(x) such that  $x^x = e^{ig(x)}$  for all values of x.
- **5** Given that  $\log_2 x + 2 \log_4 y = 4$ , explain why xy = 16.



# 7.4 Solving $a^x = b$

Consider the equation 3" = 20. This can be solved by trial and improvement using the power function by 3" on any scientific calculator, although this method can be quite time consuming. A more concise vay of solving exponential equations like these is to use the properties of logarithm. The method is based on the principle that if two sides of an equation are equal then the logarithm of one side must be equal to the logarithm of the other.

# Example 1

Solve  $3^{\kappa} = 20$ .

Solution

Taking natural logarithms of both sides,

 $\ln 3^x = \ln 20$  $x \ln 3 = \ln 20$  Using property 2.

 $x = \frac{\ln 20}{\ln 3}$ =  $\frac{2.996}{1.000} = 2.73 \text{ (3 s.f.)}$ 

The same principle can be used when the powers become more complicated.

# Example 2

Solve 4(3x+1) = 79.

Solution
Taking locarithms of both sides.

$$\begin{split} \log_{10} 4^{(3k+1)} &= \log_{10} 79 \\ (3k+1) &= \log_{10} 79 \\ 3k+1 &= \frac{\log_{10} 79}{\log_{10} 4} \\ &= \frac{1}{2} \left(\frac{\log_{10} 79}{\log_{10} 4} - 1\right) \\ &= \frac{1}{4} \left(\frac{1.8076}{10.047} - 1\right) = 0.717 \left(3.8.6\right) \end{split}$$

This technique provides a useful tool for solving more complicated exponential equations where one power is a multiple of another.

Either log<sub>10</sub> or ln car used; both bases will give the same answe

neck that log<sub>10</sub> also

Use either log<sub>10</sub> or l

Check that 4<sup>(3×0.717</sup> is close to 79. Notio rounding error.

## Example 3

Solve the equation  $e^{4x}+e^{2x}-6=0$ .

Solution Notice that 4x = 2(2x), so this equation could be written

$$(e^{2x})^2 + e^{2x} - 6 = 0$$

Now substitute  $v = e^{2x}$ . This transforms the exponential equation into a quadratic equation.

$$y^2 + y - 6 = 0$$

$$\Rightarrow (y+3)(y-2) = 0$$

$$(y+3)(y-2) = 0$$
  
 $y = -3 \text{ or } y = 2$   
So  $e^{2x} = -3 \text{ or } e^{2x} = 2$ .

So 
$$e^{xx} = -3$$
 or  $e^{xx} = 2$ .

These two statements can be analysed using logarithmic functions.  $e^{2x} = -3$  has no solutions since  $e^{2x} > 0$  for all values of x.

$$e^{ax} = -3$$
 has no solutions since  $e^{ax} > 0$  for all value  
If  $e^{2x} = 2$  then  $\ln(e^{2x}) = \ln 2$   
 $2x \ln e = \ln 2$ 

$$2x = \ln 2$$
$$x = 3 \ln 2$$

$$x = \frac{1}{2} \ln 2$$
= 0.347 (3 s.f.)
So the equation  $e^{4x} + e^{2x} - 6 = 0$  has only one solution;  $x = 0.347$  (3 s.f.).

Logarithms can also be used to solve problems involving exponential

# functions and inequalities. Example 4

- a Find the smallest integer p such that 2.5° exceeds one million.
- **b** Find the largest integer x such that  $(0.7)^x > 5$ .

# Solution

a Taking logarithms of both sides.

$$log_{10} 2.5^p > log_{10} 1000 000$$
  
 $\Rightarrow p log_{10} 2.5 > 6$   
 $\Rightarrow p > \frac{6}{log_{10} 2.5}$ 

Since p has to be an integer, p = 16.

Remember the laws of

Remember that  $v = e^{2x}$ .



252 > 1,000,000

Note that logan is preferable here because 1 000 000 is a power of

2.5<sup>16</sup> > 1 × 10<sup>6</sup> and  $2.5^{15} < 1 \times 10^6$ .

### b Taking logarithms of both sides,

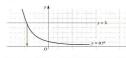
$$log_{10}(0.7^x) > log_{10} 5$$
  
 $\Rightarrow x log_{10} 0.7 > log_{10} 5$ 

$$\Rightarrow x < \frac{\log_{10} 5}{\log_{10} 0.7}$$

$$\Rightarrow x < -4.512$$

Since x must be an integer, x = -5.

Check that the negative result is sensible. This can be done graphically by considering the intersection of  $y=0.7^8$  and y=5. Check this result on a graphical calculator.



Sometimes x can appear as a power on both sides of an equation. To solve this logarithms can still be used.

### Example 5

Find a value of x such that  $5^x = 7^{(x-2)}$ .

#### Solution

Start by taking logarithms of both sides:

$$\ln 5^x = \ln 7^{(x-2)}$$

$$\Rightarrow x \ln 5 = x \ln 7 - 2 \ln 7$$

$$\Rightarrow x \ln 5 - x \ln 7 = -2 \ln 7$$

$$\Rightarrow x(\ln 5 - \ln 7) = -2 \ln 7$$

$$\Rightarrow x(\ln 5 - \ln 7) = -2 \ln 7$$

$$x = -\frac{2 \ln 7}{\ln 5 - \ln 7} = \frac{2 \ln 7}{\ln 7 - \ln 5}$$

$$x = 11.6 (3 s.f.)$$

#### **Graphical applications**

We have looked at techniques of solving problems of the form  $a^x = b$ . These techniques also have a graphical application. If an exponential Remember to reverse the inequality becaulog<sub>10</sub> 0.7 is negative.



Using property 2.
Collecting like terms

Compare 511.6 and 7 on your calculator.

relationship exists between two sets of data, then logarithms can be used to simplify their exponential graph into a straight line. This technique is called reduction to linear form. There are two basic cases to consider:

- the exponent is variable
- the exponent is constant.

The exponent is variable This means that the relationship between x and y is such that  $v = a \times b^x = ab^x$  where a and b are constants. By using the logarithm techniques:

 $\log v = \log ab^x$ 

 $\log v = \log a + \log b^x$  

By property 1.

 $\log v = \log a + x \log b$  

By property 2.

Look carefully at this result. What do you notice? It has the form Y = mX + c where  $Y = \log v$ , X = x,  $m = \log b$  and  $c = \log a$ . So plotting log y vertically against x horizontally should give a straight line of gradient log b with a vertical intercept of log a.

'Exponent', 'index' and power' all mean the

### Example 6

The relationship between the values of x and v in the following table is  $v = ab^x$ , where a and b are positive integers. Find a and b.

| x | 0 | 1  | 2  | 3  | 4  |
|---|---|----|----|----|----|
| y | 5 | 10 | 20 | 40 | 80 |

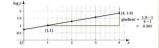
#### Solution

Plotting the data on a graph gives an exponential style curve.



However, when log v is plotted against x a straight line is obtained.

| X    | 0     | 1     | 2     | 3     | 4     |
|------|-------|-------|-------|-------|-------|
| logy | 0.699 | 1.000 | 1.301 | 1.602 | 1.903 |



From the straight-line graph notice that the intercept with the 'y-axis' is approximately 0.7 and the gradient is about 0.301. We have already seen that an exponential equation in the form  $v = ab^x$  can be written in the linear form  $\log v = \log a + x \log b$ , where  $\log b$  is the gradient of the line  $\log v = \log a + x \log b$ , and  $\log a$  is the intercept with the vertical axis. From the graph,  $\log a \approx 0.7$  and  $\log b \approx 0.301$ . So a = 5 and b = 2

So the equation that fits the data is  $y = 5 \times 2^x$ .

#### The exponent is constant

This means that the relationship between x and y is such that  $v = a \times x^b = ax^b$ , where a and b are constants. This is really a power function and not an exponential function. Using the logarithm properties,

 $\log v = \log(\alpha x^b)$  $\log y = \log a + b \log x$ 

 $\log y = \log a + \log x^b$ **◄** By property 1.

■ By property 2. What do you notice about this result? This also has the linear form Y = mX + c if  $\log y$  is plotted vertically as Y and  $\log x$  is plotted horizontally as X. The resulting straight line will have a gradient of b and a vertical intercept of log a.

# Example 7

The relationship between x and y in the following table of values is  $v = ax^b$  where a and b are positive integers. Use a graphical method to find a and b



century, Charles Rabbage and fellow Cambridge student which at that stace This was laborious. tedious work and des a high degree of acc Babbage once made seemed to be a passi comment. It is a pity can't be done by stea later went on to devel number of machines. including the first calc

n the early ninete

which he called his analytical engine".

#### Solution

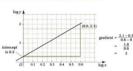
The data plotted on a graph gives a curve.



Now take logarithms and retabulate the data.

| logx | 0     | 0.301 | 0.477 | 0.603 |
|------|-------|-------|-------|-------|
| logy | 0.301 | 1.204 | 1.732 | 2.107 |

Plotting log y against log x gives a straight-line graph.



From the graph notice that the vertical intercept is 0.3 and the gradient is 3. From the linear equation in  $\log x$  and  $\log y$ ,  $\log y = \log a + b \log x$ , this means  $\log a \approx 0.3$  and  $b \approx 3$ . So a = 2 and b = 3.

So a = 2 and b =

Thus the equation that fits this data is  $y = 2x^3$ .

When you get sets of data like these a decision has to be made. Which model should be used? If either of the graphs gives a straight line then an exponential or power form would be the expected equation. One way of saving time is to look at the original data and determine if it goes through the origin. If it does, then sussect that the exponent is constant. Note that the point x = 0, y = 0 cannot be used.

Remember that a and b are integers.

Check this model against the original data.

# 7.4 Solving $a^x = b$ Exercise

# Technique

1 Solve the following equations:

a 2<sup>x</sup> = 4000 c 11\* = 151

b 5x - 500  $d - 4^x = 17$ 

2 Solve the equations:

a 3x+1 = 25

 $4^{x-3} = 30$  $3^{2x-1} = 29$ 

e s2x+3 - 51

3 Find the value of x in the following:

a  $5^{3x} = 7^{x-2}$ 24+3 \_ 24-2

4 Solve the following exponential equations:

 $2^{x+1} = 3^x$ 23x+1 \_ 22x-3

 $a \quad e^{2x} - 5e^x + 6 = 0$  $e^{2x} + e^x - 6 = 0$ 

 $2e^{2x} - 9e^x + 4 = 0$ d  $6e^{4x} - 13e^{2x} - 5 = 0$ 

5 Find the smallest integer p such that: a 2<sup>p</sup> > 1000

 $c (0.9)^p < 0.0001$ 

b 3<sup>p</sup> > 2000  $d (0.5)^p < 0.001$ 

6 Find equations for the following sets of data:

95 2072

2.46 0.406 0.0549

1.10 7 Solve the following equations: a  $100^x - 10^{x+1} + 16 = 0$  $c = 10^{2x} - 10.10^x + 24 = 0$ 

 $10^{2x} - 10^{x+1} + 21 = 0$  $d = 10^{2x} - 100 = 0$ 

Hint: Use ln in part d.

Hint-Let v - 10"

### Contextual

The population, P thousands, of a new town is calculated every t years
after 1979. The results are summarised in the table below.

| t | 1    | 2    | 3    | 4    | 5    |
|---|------|------|------|------|------|
| P | 12.1 | 18.4 | 28.0 | 42.5 | 64.6 |

It is believed that P and t are connected by an exponential relationship of the form  $P=ab^t$ , where a and b are constants. Verify this graphically and find the values of a and b. When is the population expected to exceed half a million?

Show that the equation e<sup>2x</sup> - 7e<sup>x</sup> - 8 = 0 has one real solution. Why does the second solution of the related quadratic not produce a solution to the exponential equation?

3 Before Newton's theory of gravitation, the best mathematical model to describe planetary motion was formulated by Kepler (1571–1630). Kepler stated three laws, the third of which gave a relationship between the distance of the planet from the sun. R (millions of km), and the period of its orbit, T (years). Kepler had data for the following six planets.

| Planet  | Distance from the Sun<br>(millions of km) | Period of orbit<br>(years) |
|---------|-------------------------------------------|----------------------------|
| Mercury | 57.9                                      | 0.241                      |
| Venus   | 108.2                                     | 0.616                      |
| Earth   | 149.6                                     | 1.0                        |
| Mars    | 227.9                                     | 1.881                      |
| Jupiter | 778.3                                     | 11.852                     |
| Saturn  | 1427.0                                    | 29.440                     |

Using the model  $T=aR^b$ , where a and b are constants, find Kepler's third law. Check this model on the following data for planets not known to Kepler:

| Planet  | Distance<br>(R) | Period of orbit (T) |
|---------|-----------------|---------------------|
| Uranus  | 2870            | 83.943              |
| Neptune | 4497            | 164.681             |
| Pluto   | 5907            | 248.241             |

How accurate is the model?

4 Find the real value of k for which  $10^x = e^{kx}$  for all values of x.

# Consolidation

#### Exercise A



2 Solve the following inequalities: a ln(x+2) < 3

**b**  $(0.7)^x > 3$ 

The value of a car (in £) can be modelled by the equation  $V=8500e^{-\lambda t}$ , where t is the age of the car in years and  $\lambda$  is a constant.

a State the value of the car when it was new.
 b After two years the value of the car was £6580. Use this information

After two years the value of the car was 20000. Use this information to calculate the value of \(\lambda\).
 Estimate the value of the car after three years.

d How long would it take for the value of the car to be half its original value?

c How many years would it take for the investment to double?

**5** Given that  $y = 10^x$ , show that:

the given equation in x.

a  $y^2 = 100^x$ b  $\frac{y}{12} = 10^{x-1}$ 

c Using the results from a and b write the equation

100° - 10 001(10°-1) + 100 = 0 as an equation in y.

d By first solving the equation in y, find the values of x which satisfy

(ULEAC)

The population of Portugal t years after 1990 can be modelled by the equation  $P = P_0 e^{kt}$ .

a In 1990 the population was estimated to be 10.5 million. Write down the value of P<sub>0</sub>.

b The growth rate was expected to be 0.5% per annum. Explain why the population projection for 1991 is 1.05 × 10<sup>2</sup> × (1.005).
c. Use the result from b to find the value of k correct to three significant.

Use the result from b to find the value of k correct to three significant figures.
 Use the result from c to predict the population for 2000.

Given that y = log<sub>0</sub> 45 + log<sub>0</sub> 25 - 2 log<sub>0</sub> 75, express y as a single logarithm in base b. In the case when b = 5, state the value of y.
(AEB)

For certain planets, the approximate mean distance x, in millions of kilometres from the centre of the Sun, and the orbit T, in Earth years, are recorded.

| x | 57.9 | 108.2 | 227.9 | 778.3 |
|---|------|-------|-------|-------|
| T | 0.24 | 0.62  | 1.88  | 11.86 |

Assuming a law of the form  $T = Ax^{\alpha}$ , draw a graph of  $\ln T$  against  $\ln x$ . Estimate the values of A and n, giving your answers to two significant figures. Use your graph to estimate the approximate mean distance in millions of kilometres of the Earth from the Sun.

(AEB)



y writing sion for x in lown  $f^{-1}(x)$ .  $f(x) = e^{-x^2/2}$ 

10 A slide into a ball pool at a children's play centre can be modelled by the curve y = 3 × 10<sup>-8/2</sup> where x and y are measured in metres. The slide has three supports, fixed to the ground at positions A, B and C as shown in the diagram.



- a Calculate the height of the supports at A and C.
  b The support at B is half the height of the support at A. Hα
- b The support at B is half the height of the support at A. How far along the ground is support B from support A.

#### Exercise B



$$2 \log \left(\frac{5}{\sqrt{2}}\right) + \log 3 + 2 \log 2$$
Solve the following inequalities

a  $\ln(2x) < 5$ 

2 Solve the following inequalities:

**b** 
$$(0.95)^{x+1} > 8$$

3 The value V of a particular car, in pounds, at age t months from new can

be modelled by the equation  $V = 12000e^{-kt} + 2000$ , where k is a constant. Use this model to write down the value of the car when new. h The value of the car is expected to be £8000 after 24 months. On this

basis, calculate the value of k. (AFR)

- 4 An employee joins a large firm on 1 January of a particular year. In order to provide a sum of money for the employee's retirement, £1500 is paid into a special account on 1 January each year for the previous year's work. In addition, on each 1 January, interest is added to the account, the interest being 6% of the total amount in the account immediately prior to the annual payment of £1500.
  - Show that for an employee, who retires on 1 lanuary after serving n years with the firm, the sum of money in the special account is equal to £25 000 (1.06" - 1).
    - Find the least number of years required for the sum to exceed £100 000.

(WTEC) 5 By treating the following equation as a quadratic in ex, find the two values

(WTEC)

6 The population of Iceland t years after 1990 can be modelled by the equation  $P = 0.251e^{it}$ , where P is measured in millions.

- If the growth rate is estimated to be 0.8% per annum, estimate the value of i.
- In what year would the population reach half a million?
- **7** Given than  $\ln(3x 5) \ln 4 = 2 \ln y$ :

of x satisfying  $e^{2x} - 5e^x + 6 = 0$ .

a find the value of v when x = 2b express x in terms of v in a form not involving logarithms.

(AEB)

## **Applications and Activities**

1 Fibonacci numbers

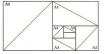
This sequence of numbers owes its name to the Italian mathematician Leonardo da Pisa (1170–1230). Each term of the sequence is the sum of the two previous terms. Since 1+1=2,1+2=3,2+3=5 and so on the sequence becomes  $1,1,2,3,5,8,13,\ldots$  If these numbers are tabulated.

| x | 1 | 2 | 3 | 4 | 5 | 6 | 7  |
|---|---|---|---|---|---|---|----|
| y | 1 | 1 | 2 | 3 | 5 | 8 | 13 |

and then plotted graphically, a curve is formed. Find the equation for the curve generated by the Fibonacci numbers.

2 The logarithmic spiral

This spiral intersects all radii at a fixed angle and the distances from its pole increase in a geometric sequence. To sketch a legarithmic spiral quickly use European DIN paper size A0. Fold the A0 size sheet of paper in descending 'A' size order and draw a line from one corner to the opposite corner of each section in a clockwise or anticlockwise order.



Logarithmic spirals occur often in nature. Investigate!



Hint: Try  $v = ab^x$ .



## Summary

- If  $y = a^x$  then  $x = \log_a y$ .
- Common logarithms have base 10, and are written as log<sub>10</sub> or log.
- Natural logarithms have base e, and are written as log, or ln.
- The five basic properties of logarithms for all bases are:

```
\log ab = \log a + \log b

\log a^a = n \log a

\log \frac{a}{b} = \log a - \log b

\log 1 = 0
```

 $\log_a a = 1$ 

- e<sup>e</sup> is the exponential function and is used to model growth and decay.
- Relationships of the form y = ab<sup>1</sup> can be transformed from an exponential curve to a straight line by plotting log y vertically against x horizontally.
   The gradient of the straight line is log b and the y-intercept is log a.
  - Relationships of the form y = ax<sup>b</sup> can be transformed from an exponential curve to a straight line by plotting logy vertically against logx horizontally. The gradient of the straight line is b and the y-intercept is log a.

## 8 Sequences and Series

## What you need to know

- How to collect 'like terms'.
- How to expand brackets.
- How to substitute values into expressions.
- How to express an algebraic fraction in terms of its partial fractions.

## Review

By collecting together like terms, simplify the following expressions:

a a+a+2d c a+ar+ar b a+a+(n-1)dd  $1+x^2+x^3-\frac{1}{2}(x^2+x^3)$ 

Expand the following: a (n+3)(n+4)

b (r+2)(r-1)d  $(1+x)^2$ 

c r(r + 1) **3** Evaluate:

a 2n+3, when n=3

b 3n - 1, when n = 5c  $n^2 - 1$ , when n = 4

d  $\frac{1}{2}n(n-1)(n-2)$ , when n=3e  $ar^4$ , when  $a=\frac{1}{2}$ , r=2

f  $\frac{a(1-r^n)}{(1-r)}$ , when a = 10,  $r = \frac{1}{2}$ , n = 4.

4 Express each of the following in terms of their partial fractions:

 $\frac{5}{r(r+1)}$  b  $\frac{6}{(r+1)(r+2)}$ 

c  $\frac{7}{(n+1)(n+2)}$  d  $\frac{12}{n(n+1)}$ 

## 8.1 Sequences and Series

#### Sequences

A sequence is a set of numbers occurring in order. Some examples of sequences are:

- 2,4,6,8,... the sequence of even numbers
- 1,4,9,16,... the sequence of perfect squares 1,3,6,10,... the sequence of triangular numbers.

The terms of a sequence are often represented by ordered lower-case letters. Thus  $u_1$  denotes the first term and  $u_2$  denotes the second, and the sequence becomes:

$$u_1, u_2, u_3, ...$$

For the sequence of even numbers,  $u_1 = 2$ ,  $u_2 = 4$ ,  $u_3 = 6$ , and so on. A sequence can be described in several different ways. One method is to give an algebraic expression for the **nth term**. The **nth** term for the sequence of even numbers is 2n. This can be written:

$$u_n = 2n$$

Check that  $u_n = n^2$  and  $u_n = \frac{1}{2}n(n+1)$  generate the sequence of perfect squares and the sequence of triangular numbers respectively.

#### Example 1

Find the first five terms of the sequence whose nth term is given by

$$u_n = \frac{n(n-1)(n-2)}{6}$$

#### Solution

To find the first five terms put  $n=1,\,2,\,3,\,4$  and 5 respectively into the expression for  $u_n$ .

$$u_1 = \frac{1(1-1)(1-2)}{e} = 0$$

$$u_2 = \frac{2(2-1)(2-2)}{\epsilon} = 0$$

$$u_3 = \frac{3(3-1)(3-2)}{6} = 1$$

$$u_4=\frac{4(4-1)(4-2)}{6}=4$$

$$u_5 = \frac{5(5-1)(5-2)}{6} = 10$$

So the first five terms are 0, 0, 1, 4, 10,

There are other types of sequences where the sign oscillates between positive and negative.

#### Example 2

Find the nth term of the sequence -1, 3, -5, 7...

#### Solution

Notice that without the change of sign this sequence is the sequence of odd numbers. For odd numbers,  $u_n = 2n - 1$ .

$$(-1)^3 = -1$$
  
 $(-1)^4 = +1$ 

$$(-1) = +$$

So the *n*th term of the sequence -1, 3, -5, 7 is given by

$$u_n = (-1)^n (2n - 1)$$

Sometimes the rule for defining a sequence can be given in the form of a recurrence relation. This means the nth term  $u_n$  can be calculated only when the preceding terms are known.

#### Example 3

The Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, 21, . . . can be defined by a recurrence relation. Find this rule.

#### Solution

To find the recurrence relation look at how the terms of the sequence are related to each other.

 $u_1 = 1$  $u_2 = 1$ 

Verify this resul n = 1, 2, 3 and 4



$$u_3 = 2 = u_2 + u_1$$
  
 $u_4 = 3 = u_3 + u_2$   
 $u_5 = 5 = u_4 + u_3$   
 $u_6 = 8 = u_5 + u_4$ 

So  $u_n = u_{n-1} + u_{n-2}$ 

The nth term in the Fibonacci sequence can only be found if the previous two terms,  $u_{n-1}$  and  $u_{n-2}$ , are known.

#### Example 4

- a Find the first four terms of the sequence defined by the recurrence relation u<sub>n</sub> = u<sub>n-1</sub> + 2 with u<sub>1</sub> = 3.
  - b Find the first five terms of the sequence defined by  $u_n = 3u_{n-1} - u_{n-2}$ , with  $u_1 = 1$  and  $u_2 = 2$ .

#### Solution

a Given  $u_1$ , find  $u_2$  using the given recurrence relation. Then calculate  $u_3$  and  $u_4$  using the same technique.

$$u_1 = 3$$
  
 $u_2 = u_1 + 2 = 5$   
 $u_3 = u_2 + 2 = 7$   
 $u_4 = u_4 + 2 = 9$ 

So the first four terms of the sequence are 3, 5, 7, 9.

So the first five terms of the sequence are 1, 2, 5, 13, 34.

b Use the values of u<sub>1</sub> and u<sub>2</sub> to find u<sub>3</sub>. Then generate u<sub>4</sub> and u<sub>5</sub> using the same recurrence relation.

$$\begin{split} u_1 &= 1 \\ u_2 &= 2 \\ u_3 &= 3u_2 - u_1 = 6 - 1 = 5 \\ u_4 &= 3u_3 - u_2 = 15 - 2 = 13 \\ u_5 &= 3u_4 - u_2 = 39 - 5 = 34 \end{split}$$

Remember to put n in the recurrence relation.

#### Series

When the terms of a sequence are added together, a series is formed.

If a sequence has five terms,  $u_1$ ,  $u_2$ ,  $u_3$ ,  $u_4$  and  $u_5$ , then the series based on this sequence would be

$$u_1 + u_2 + u_3 + u_4 + u_5$$

This series can be written in a more concise form. Instead of appearing as a string of terms added together, the series is written using sigma notation.

$$u_1 + u_2 + u_3 + u_4 + u_5 = \sum_{r=1}^{5} u_r$$

 $\Sigma$  is the Greek letter, sigms. It is used in mathematics to represent a summation. The letter r is a dimmy variable. The r-1 at the foot of the sigma indicates the term with which the summation should start, and the 5 at the top indicates the term with which the summation should finish. Thus  $\sum_{i}^{T} u_i$ , means start with the fourth term,  $u_i$  and sum to the seventh

Thus  $\sum_{r=4} u_r$  means start with the fourth term,  $u_4$  and sum to the sev term,  $u_7$ .

## Example 5

If 
$$u_r = 2r - 1$$
, find  $\sum_{r=1}^{3} u_r$ .

## Solution

To sum this series, first substitute the values of r from 1 to 5 into the expression for the rth term of the sequence and then sum the results.

$$\begin{split} \sum_{r=1}^{3} u_r &= \sum_{r=1}^{3} (2r-1) \\ &= (2-1) + (4-1) + (6-1) + (8-1) + (10-1) \\ &= 1 + 3 + 5 + 7 + 9 \\ &= 25 \end{split}$$

Sigma notation is particularly useful when the series is infinite. In these cases there is no last term, so writing the series as a summation string would be impossible. In sigma notation, however, we can write:

$$\sum^{\infty}u_r=u_1+u_2+u_3+\cdots$$

So the sum of the even numbers can be written:

$$2+4+6+8+\cdots=\sum_{i=1}^{\infty}2r$$

Writing a series in sigma notation is dependant upon an algebraic expression for the nth term being known.

#### Example 6

Express:

- a 1+3+6+10+15 in sigma notation
- **b** 7 + 10 + 13 + 16 in the form  $\sum_{r=0}^{n} f(r)$

#### Solution

a The terms in this series are from the sequence of triangular numbers. The nth term,  $u_n = \frac{1}{2}n(n+1)$ . Since 1+3+6+10+15 begins with the first term and ends with the fifth term,

$$1+3+6+10+15=\sum_{r=1}^{5}\frac{r(r+1)}{2}$$

b The first step is to find an expression for the nth term. Notice that the sequence 7, 10, 13, 16 increases in equal steps of 3. This suggests the expression for the nth term should contain a 3. Rewrite the sequence using this factor of 3. Note that r = 3 for the first term.

$$u_3 = 7$$
  $u_4 = 10$   $u_5 = 13$   
=  $3 \times 3 - 2$  =  $4 \times 3 - 2$  =  $5 \times 3 - 2$ 

This suggests that we can write the nth term as

$$u_n=n\times 3-2=3n-2$$

The series is finite with last term 16.

Hence 
$$3n-2=16$$
  
 $3n=18$   
 $n=6$ 

Therefore 
$$7 + 10 + 13 + 16 = \sum_{r=3}^{6} (3r - 2)$$

variable.

## 8.1 Sequences and Series Exercise

## Technique

- 1 Find the first four terms of the sequences with the following nth terms:
  - a  $u_n = 3n + 4$  b  $u_n = 4n 4$ d  $u_n = (n + 3)(n + 4)$  e  $u_n = 2^{n-1}$ b  $u_n = 4n - 1$  c  $u_n = 6n - 1$  $f = n^3 + 1$
- 2 Find u<sub>n</sub>, the nth term, for the following sequences:
  - a 6,8,10,12,... d 12,10,8,6,... g 2,2,4,5,5,... b 14.17.20.23.... e -3.-5.-7.-9... h 0.1.2.2...
- c 1.6.11, 16, 21,... f 0, 3, 8, 15, 24,...
- 3 Use the following recurrence relations to find the next four terms of each
  - a  $u_n = u_{n-1} + 3, u_1 = 1$ d  $u_n = 2u_{n-1} - u_{n-2}$ ,  $u_2 = 2$ ,  $u_1 = 1$ b  $u_n = 2u_{n-1} + 1, u_1 = 1$  $u_n = 2u_{n-1} + u_{n-2}, u_1 = 2, u_1 = 1$ 
    - $u_n = 3u_{n-1} 1, u_1 = 2$  $f u_n = \frac{1}{2}(u_{n-1}) + 1, u_1 = 4$
- 4 Express the following series in sigma notation: a 1+4+9+16 d 3+5+7+9+11+13
  - b 3+6+11+18 e 0+2+6+12+20+30+42 c 4+5+6+7+8+9 f 2+6+12+20+30+42+56

### 5 Evaluate:

- a \( \sum\_{r^3} \)
- b  $\sum_{i=1}^{4} (r^2 + 1)$  c  $\sum_{i=1}^{5} r^3$ d  $\sum_{i=0}^{6} (5r-2)$  e  $\sum_{i=0}^{6} r(r+1)$  f  $\sum_{i=0}^{5} (r+1)(r+2)$
- 6 Express the following series in the given form of sigma notation:
  - a 5+8+11+14,  $\sum_{r=0}^{n} f(r)$ 
    - b 5+8+11+14+17+20,  $\sum_{i=1}^{n} f(t)$
    - c 9+11+13+15,  $\sum_{r=0}^{n} f(r)$
    - d 9+15+21+27,  $\sum_{r=1}^{n} f(r)$
    - e 7+10+13+16+19,  $\sum_{r=0}^{n} f(r)$
    - f 6+8+10+12+14+16+18,  $\sum_{i=1}^{n} f(r)$



## 8.2 Arithmetic Progression

An arithmetic progression is a sequence in which each term is produced by adding a fixed number. For example 2, 5, 8, 11,... is an arithmetic progression and 10,7,4,1,-2,... is also an arithmetic progression. Notice that the number that is added throughout the sequence can be positive or negative. It is called the common difference.

The phrase 'arithmetic progression' is often abbreviated to AP. The first term is usually denoted by a and the common difference by d. Consider the AP 2, 5, 8, 11, ... Here a=2 and d=3. This sequence can now be rewritten as

 $2, 2+3, 2+(2\times3), 2+(3\times3), 2+(4\times3), \dots$ 

The nth term would be  $2 + (n - 1) \times 3$ .

In general the *n*th term of an AP is  $u_n = a + (n-1)d$ 

 Learn this important result.

## Example 1

Find an expression for the *n*th term of the AP  $10,7,4,1,-2,\ldots$ 

#### Solution

For this AP, a = 10 and d = -3.

$$u_n = a + (n-1)d$$

$$= 10 + (n - 1) \times (-3)$$

$$= 10 - 3n + 3$$

$$= 13 - 3n$$

The terms of an AP can be added to form an arithmetic series.  $a + (a + d) + (a + 2d) + (a + 3d) + \cdots + (a + (a - 1)d) + \cdots$ 

If this series is finite then it has a last term and it is possible to find an expression for the sum of the series.

#### Example 2

Find the sum of the first 100 natural numbers.

#### Solution

The first 100 natural numbers form an AP, with a = 1 and d = 1. The sum of this AP is a finite arithmetic series:

How can this total be calculated?

Theck this expression  $u_n$  for values of rom 1 to 5.



Let  $S_{100}$  be the sum of the first 100 terms.

$$S_{100} = 1 + 2 + 3 + \cdots + 99 + 100$$

[1]

Now write the sum again in reverse.

$$S_{100} = 100 + 99 + 98 + \cdots + 2 + 1$$

[2]

Adding [1] and [2], term by term,

$$2 \times S_{100} = 101 + 101 + 101 + \cdots + 101 + 101$$

$$2\times S_{100}=100\times 101$$

$$\Rightarrow \ S_{100} = \tfrac{1}{2}(100 \times 101) = 5050$$

The same idea can be applied to every finite arithmetic series.

$$S_n = a + (a + d) + (a + 2d) + \cdots + (a + (n - 1)d)$$

$$S_n = [a + (n-1)d] + \cdots + (a+2d) + (a+d) + a$$

$$2S_n = [2a + (n-1)d] + \cdots + [2a + (n-1)d]$$

There are a terms on the RHS so



The sum to n terms of an arithmetic series can be written in another equivalent form:



#### Example 3 For the AP 5.9.13.17..... find:

a the sixth term, u.

the sum of the first five terms,  $S_z$ .

#### Solution

First identify the first term and the common difference. The standard results for *n*th term and the sum to *n* terms can then be applied. For the AP 5. 9. 13. 17.... a = 5 and d = 4

a 
$$u_n = a + (n-1)d$$

$$\Rightarrow \ u_6 = 5 + (6-1) \times 4 = 5 + (5 \times 4) = 25$$



a = first termI = last term

**b** 
$$S_n = \frac{n}{2}[2a + (n-1)d]$$

$$S_5 = \frac{5}{2} \times [(2 \times 5) + (5 - 1) \times 4] = \frac{5}{2} \times (10 + 16) = 65$$

#### Example 4

Find the sums of the following arithmetic series:

a 2+5+8+11+···+47 b 47+41+35+···+(-43)

#### Solution

a Here a=2 and d=3.

The number of terms in the series, n, can be found by making the last term, 47, the nth term.

 $u_n = a + (n-1)d$ 

 $\Rightarrow$  47 = 2 + (n - 1) × 3 = 3n - 1 So 3n = 47 + 1  $\Rightarrow$  n = 16

The sum to 16 terms of the series can be found by using one of the formulas for  $S_{\rm to}$ .

$$S_{16} = \frac{n(\alpha + l)}{\alpha} = \frac{16(2 + 47)}{\alpha} = 392$$

b Here a = 47 and d = -6. Making -43 the nth term.

$$u_{-} = a + (n - 1)d$$

$$b_x = a + (n - 1)a$$
  
 $\Rightarrow -43 = 47 + (n - 1)(-6)$ 

$$\Rightarrow$$
 -43 = 47 + (n - 1)(-5)  
 $\Rightarrow$  -43 = 47 - 6n + 6 = 53 - 6n

So 
$$6n = 53 + 43 \Rightarrow n = 16$$

This arithmetic series also has 16 terms.

$$S_{16} = \frac{n(a+l)}{2} = \frac{16[47 + (-43)]}{2} = 32$$

Why is this total so low? Recall that many of the terms were negative.

$$S_{16} = 47 + 41 + 35 + \cdots - 25 - 31 - 37 - 43$$

This technique of identifying the first term, a, and common difference, d, for the AP is particularly useful when the information given relates to other terms in the series.

Remember to check to the sequences are AF Identify the first term and common differences before use any other formula.

#### Example 5

The fifth term of an AP is twice the second term. The two terms differ by 9. Find the sum of the first 10 terms of the AP.

#### Solution

The information given is that

$$u_5 = 2u_2$$
 and  $u_5 - u_2 = 9$ 

Using the fact that the nth term of an AP is given by  $u_n=a+(n-1)d$ , these two equations can be rewritten as simultaneous equations in a and d.

$$u_3 = 2u_2 \Rightarrow u_3 - 2u_2 = 0$$
  
 $\Rightarrow (a + 4d) - 2(a + d) = 0$   
 $\Rightarrow a + 4d - 2a - 2d = 0$   
 $\Rightarrow 2d - 0 = 0$  [1]  
 $u_4 - u_2 = 9 \Rightarrow (a + 4d) - (a + d) = 9$   
 $\Rightarrow a + 4d - a - d = 9$   
 $\Rightarrow d = 3$  [2]

Notice that equation [2] gives the value of d. Substituting this value of d into equation [1] gives

$$(2 \times 3) - a = 0 \Rightarrow a = 6$$

The sum of the first 10 terms can now be found. Use these values of  $\alpha$  and d with n=10 in the formula for the sum to n terms.

$$S_n = \frac{1}{2}n(2a + (n - 1)d)$$
  
So  $S_{10} = \frac{10}{2}(12 + (9 \times 3))$   
=  $5(12 + 27) = 195$ 

## Example 6 Evaluate $\sum_{r=1}^{16} (2r+1)$ .

Solution

$$\sum_{r=3}^{16} (2r+1) = (6+1) + (8+1) + \dots + (32+1)$$

This arithmetic series is generated by an AP where a=7 and d=2. Check that there are 14 terms in the series. The sum of the series can now be calculated.

Recall how the sigma notation works; r is a dummy variable.

Hint: Reduce r = 3 to r = 1 in the dummy variable.

$$\begin{split} S_n &= \tfrac{1}{2} n [2 \sigma + (n-1) d] \\ \text{So} &\qquad S_{14} &= \tfrac{14}{2} [(2 \times 7) + (13 \times 2)] \\ &\qquad = 7 (14 + 26) = 280 \\ \text{So} &\qquad \sum^{16} (2 \tau + 1) = 280 \end{split}$$

#### Example 7

Pat saves £10 in the first month, £12 in the second month and increases the monthly savings by £2 each month. How long will it take Pat to save £500?

#### Solution

Notice that the monthly savings form an AP in which a=10 and d=2. Suppose Pat saves £500 in n months. This means the sum of the first n terms of the AP is 500.

So 
$$S_n = 500$$
  
 $\Rightarrow \frac{1}{2} \ln(20 + 2(n - 1)) = 500$   $\blacktriangleleft$  Recall that  $\alpha = 10$  and  $d = 2$ .  
 $\Rightarrow n(20 + 2n - 2) = 1000$   
 $\Rightarrow 18n + 2n^2 = 1000$   
 $\Rightarrow 2n^2 + 18n - 1000 = 0$ 

This is a quadratic equation in n. Solve it using the quadratic formula.

$$R = \frac{-18 \pm \sqrt{18^2 - 4 \times 2 \times (-1000)}}{2 \times 2}$$
= 18.3 or -27.3 (3.8.f.)

savings exceed £500 after 19 months.

The negative answer can be ignored because the number of months cannot be negative.

So £500 is saved in 18.3 months. Given that Pat saves monthly, the

The number of mon must be an integer.

## 8.2 Arithmetic Progression Exercise

## **Technique**

1 Find (i) the next two terms and (ii) the nth term u<sub>n</sub>, of each of the

- following arithmetic progressions:
- b 8.14, 20, 26, ...
- a 13, 15, 17, 19,... c 34.31.28.25....
- d -2, -5, -8, -11,...

2 Given the arithmetic progressions 3, 7, 11, 15, ..., u<sub>n</sub>; 6, 11, 16, 21, ..., v<sub>n</sub>; and 70, 66, 62, 58, ..., we, find:

d Vice

e IV.

3 Find the sums of the following arithmetic series:

b 2+8+14+20+···+38 d 22 + 27 + 32 + · · · + 47

4 Use the method of Gauss (Example 2) to calculate:

c 4+7+10+13+···+25 a 16+14+12+...+2 b 27 + 24 + 21 + ... + 9 c 56 + 52 + 48 + ... + 32

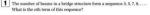
a 1+5+9+13+...+41

d 28 + 27 + 26 + ... + 17 e 22 + 17 + 12 + ... - 18 f =3-5-7-9...-21

5 Evaluate:

- a  $\sum_{r=0}^{10} (3r+2)$
- b  $\sum_{r=1}^{14} (2r-1)$
- c  $\sum_{r=0}^{20} (2r+5)$
- d  $\sum_{r=0}^{16} (3r 10)$

#### Contextual

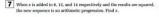


2 Calculate the 20th term of the sequence -8, -2, +4, +10, ....

- 3 Find the sum of the arithmetic series 15 + 18 + 21 + ··· + 60. Check the result using the method of Gauss (Example 2).
  - Find the sum of the first 16 terms of the arithmetic progression 11 + 18 + 25 + 32 + ....

- The ninth term of an arithmetic series is three times the second term and the difference between the sixth term and twice the first term is 10. Find:
  - a the first term

    h the common difference of the AP.
- 6 The sum of the first five terms of an AP is 72. The sum of the first ten terms is 189. Find the sum of the first fifteen terms.





a £10 b £100?

In the week his savings exceeded £100, how much did Luke deposit?



- An AP has three consecutive terms with a sum of 33 and a product of 935.
  Find the terms.
- An AP has first term 10 and common difference 0.8. If the sum of the first n terms is to exceed 250, find the value of n.



## 8.3 Geometric Progression

A geometric progression is a sequence in which each term is produced from the preceding term by multiplying by a fixed number. For example 3.6.12.24... is a geometric progression, and so is  $1, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}$ . Notice

that the multiplier throughout the sequence can be positive or negative. It is known as the **common ratio**. In general the phrase 'geometric progression' is abbreviated to GP. The first term is denoted by a and the common ratio by r.

A GP can then be written as  $a_1ar_1ar_2ar_3ar_4ar_4$ ...

The common ratio can be found by comparing successive terms in the sequence

$$\frac{u_2}{u_1} = \frac{u_3}{u_2} = \frac{u_4}{u_3} = \frac{u_5}{u_4} = r$$

In general, the nth term of a GP

◀ Learn this important result.

#### Example 1

Find an expression for the nth term of the GP 3, 6, 12, 24, ....

#### Solution

Look closely at the sequence.

$$u_1 = 3$$
,  $u_2 = 6$ ,  $u_3 = 12$ ,  $u_4 = 24$ 

So  $\frac{u_2}{u_1}=2$ ,  $\frac{u_3}{u_2}=2$ , and  $\frac{u_4}{u_3}=2$ . This GP has first term 3 and common ratio 2.

$$u_1 = 3$$
,  $u_2 = 3 \times 2$ ,  $u_3 = 3 \times 2^2$ ,  $u_4 = 3 \times 2^3$ , ...,  $u_n = 3 \times 2^{n-1}$ 

So the *n*th term is  $3 \times 2^{n-1}$ 

### Example 2

Find an expression for the *n*th term of the GP  $1, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \frac{1}{16}, \dots$ 

#### Solution

Notice that for this GP, a = 1 and  $r = -\frac{1}{2}$ .  $u_n = ar^{n-1}$ 

$$u_n = ar^{-1}$$
  
=  $1 \times (-\frac{1}{2})^{n-1}$   
=  $(-1)^{n-1}$ 

Check this result by substituting values n = 1, 2, 3, 4 and 5 The terms in a GP can be added to form a geometric series. For example, the GP 3.6.12.24 could be used to create the finite geometric series 3+6+12+24. It is also possible to find a rule to sum a geometric series. The first term, a, and the common ratio, r, of the GP need to be known. Let S = 3 + 6 + 12 + 24

Since this GP has a = 3 and r = 2 this can be written as

$$S = 3 + (3 \times 2) + (3 \times 2^{2}) + (3 \times 2^{3})$$

[1]  $u_{-} = ar^{n-1}$ 

This eliminates man

the terms on the RH

Now multiply each term by the common ratio

$$2S = (3 \times 2) + (3 \times 2^{2}) + (3 \times 2^{3}) + (3 \times 2^{4})$$
 [2]

Subtracting equation [1] from equation [2].

$$2S - S = (3 \times 2^4) - 3$$
  
 $S(2 - 1) = 3(2^4 - 1)$ 

$$S(2-1) = 3(2-1)$$
  

$$S = \frac{3(2^4-1)}{(2-1)} = 45$$

This procedure can be generalised to find the sum of any finite geometric series.

Let 
$$S_n = a + ar + ar^2 + \cdots + ar^{n-1}$$

Then 
$$rS_n = ar + ar^2 + ar^3 + \cdots + ar^n$$

Subtracting [2] from [1].

$$S_n - rS_n = \alpha - \alpha r^n$$

$$S_n(1-r) = a(1-r^n)$$



#### Example 3

For the sequence 3.6.12.24.... find:

- a the next two terms
- h the nth term
- the sum of the first five terms.

[2]

#### Solution

The sequence 3. 6. 12. 24 is a GP with a = 3 and r = 2.

The next two terms are  $u_5$  and  $u_6$ . Using  $u_a = ar^{a-1}$ ,

$$u_5 = 3 \times 2^4 = 3 \times 16 = 48$$

$$u_6 = 3 \times 2^5 = 3 \times 32 = 96$$

- b The nth term is u.
- $u_n = qr^{n-1} = 3 \times 2^{n-1}$ c The sum of the first five terms is S.

$$S_5 = \frac{a(1-r^5)}{1-r}$$

$$= \frac{3(1-2^5)}{1-2}$$

$$=\frac{1-2}{1-32}$$
  
 $=\frac{3(1-32)}{-1}$ 

$$=\frac{3(-31)}{-1}$$

$$= 93$$

Notice that in Example 3c the formula for S, created a negative numerator and denominator. This was because the common ratio, r, was greater than 1. In order to reduce problems with negative results an alternative form of the sum to a terms can be used.

If 
$$r>1$$
, then use  $S_n=\dfrac{a(r^p-1)}{r-1}$  If  $r<1$ , then use  $S_n=\dfrac{a(1-r^n)}{1-r}$ 

■ Learn these results.

reduces negative signs

## Example 4

A geometric series has first term 8 and common ratio 1.4. Find the sum of the first 10 terms.

#### Solution

Since r > 1, use the alternative form for the sum of a GP.

$$S_{10} = \frac{a(r^{10} - 1)}{r - 1} = \frac{8(1.4^{10} - 1)}{1.4 - 1}$$

= 558.51 (2 d.p.)



Finding the number of terms in a geometric series involves solving an exponential equation. Recall from Chapter 7 that this can be done using logarithms.

#### Example 5

Find the number of terms in the geometric series  $4+6+9+\cdots+30.375$ .

#### Solution

Since the series is geometric the ratio of successive terms will give the common ratio.

$$r = \frac{u_3}{u_2} = \frac{9}{6} = 1.5$$

This means a = 4 and r = 1.5. Now examine the last, or nth, term,

$$u_n = \alpha r^{n-1}$$
  
⇒ 30.375 = 4 × 1.5<sup>n-1</sup>
  
⇒  $\frac{1}{4}$  × 30.375 = 1.5<sup>n-1</sup>
  
⇒ 7.593.75 = 1.5<sup>n-1</sup>

Notice that the variable n now appears as a power. Taking logarithms of both sides of the equation,

$$\begin{aligned} \log(7.59375) &= \log(1.5^{n-1}) \\ &= (n-1)\log(1.5) \\ \text{So} & n-1 &= \frac{\log(7.59375)}{\log(1.5)} = 5 \end{aligned}$$

That is, n = 6

So the series  $4+6+9+\cdots+30.375$  has six terms.

Recall that  $\log a^a = n \log a$ .

### 8.3 Geometric Progression Exercise

## Technique



- a 1.2.4.8.... 2 6 18 54 ....
  - c 4,6,9,13<sup>1</sup>.... d 01030927...
- **2** Given the geometric progressions 2, 10, 50, . . . ,  $u_a$ , 48, 24, 12, . . . ,  $v_a$ , and 1, 3, 9, 27, ..., wa, find:
  - a us
- 3 Given the first term and common ratio of a geometric series, find the sum of the terms indicated: a  $a = 2, r = 2; S_c$ b  $a = 10, r = -3; S_r$ 
  - c  $a = 8, r = 1; S_n$ d  $a = -10, r = -1: S_n$
- 4 Find the sums of the following geometric series:
  - a 2+4+8+···+256 d 2-6+18-54+···- 39366 b 2-6+18-54+···+13122 e 20-30+45-···-341.72 c 16+24+36+···+182.25 f 0.1+0.5+2.5+···+312.5

#### Contextual

- 1 Find the ninth term of the geometric series 12 + 8 + 5 \(\frac{1}{2} + 3 \(\frac{3}{2} + \cdots\), correct to three significant figures.
- 2 Find the common ratio of a geometric series given that the third term is 6 and the seventh term is 486.
- 3 Find the sum of the first ten terms of a geometric series with common ratio 2 and first term 11
- 4 Write down the first three terms of  $\sum_{i=1}^{10} 25(\frac{4}{3})^n$ . State clearly:
  - the first term of the GP b the common ratio
    - c the sum of this series.
- 5 Evaluate:
  - $a = \sum_{i=1}^{5} 200(1.1)^{2}$

b  $\sum_{n=0}^{\infty} 80(\frac{2}{8})^n$ 









## 8.4 Convergence, Divergence and Oscillation

Consider the following sequences.

 $3, 5, 7, 9, 11, \dots, u_n, \dots$  $1, 2, 1, 2, 1, \dots, v_n, \dots$ 

 $\frac{1}{2}, \frac{1}{5}, \frac{1}{6}, \frac{1}{11}, \frac{1}{14}, \dots, W_n, \dots$ 

As n increases, what happens to  $u_n$ ,  $v_n$  and  $w_n$ ? Notice that the first sequence is an AP with a=3 and d=2. The nth term,

 $u_n=2n+1$ . As n gets large  $(n\to\infty)$   $u_n$  gets large  $(u_n\to\infty)$ . This sequence is said to **diverge**.

The second sequence simply oscillates between 1, when n is odd, and 2.

when n is even. This sequence is said to be **oscillating**. A sequence that repeats itself in a regular pattern is **periodic**. The third sequence is not an AP or GP, Check this by trying to find a

common difference or common ratio. The sequence has nth term  $w_n = \frac{1}{3n-1}$ . As n gets large  $(n \to \infty)$ ,  $w_n$  gets small  $(w_n \to 0)$ . This

 $w_n = \frac{1}{3n-1}$ . As n gets large  $(n \to \infty)$ ,  $w_n$  gets small  $(w_n \to 0)$ . This sequence is said to converge. The terms of the sequence get closer and closer to a limit of zero.

croser to a limit of zero.

A graph can provide a good illustration of the behaviour of the sequence as n increases.

considering the sequence formed by denominators only Show that this is a with a = 2 and d =



The sequence diverges to infinity. The sequence oscillates.
The values grow in size as n increases.



The sequence converges to a fixed value. In this case,  $w_n \rightarrow 0$  as n increases.

## Example 1 A sequence is de

A sequence is defined by the recurrence relation  $u_{n+1}=|6-u_n|.$  If  $u_1=2$ , describe the behaviour of the sequence.

#### Solution

Start by finding the first few terms of the sequence.

$$u_1 = 2$$

$$u_2 = |6 - u_1| = |6 - 2| = 4$$

$$u_2 = |6 - u_1| = |6 - 2| = 4$$
  
 $u_3 = |6 - u_2| = |6 - 4| = 2$ 

$$u_4 = |6 - u_3| = |6 - 2| = 4$$

The sequence is oscillating between 2 and 4. So  $u_n=2$  for odd n, and  $u_n=4$  for even n.

## Example 2

Describe the behaviour of the GP  $20, -10, 5, -2.5, 1.25, \ldots$ 

#### Solution

This GP has a=20 and  $r=-\frac{1}{2}$ . The nth term  $u_n=20 \times (-\frac{1}{2})^{n-1}$ . As n gets large,  $u_n\to 0$ . This sequence converges and oscillates. The behaviour of this GP can be illustrated on a graph.

un A

The behaviour of a sequence can be very important if the terms are being combined to form a series. This can determine if the series will diverge or converge as a large number of terms are added together. Adding an infinite number of terms of a series is known as a sum to infinity.



#### Example 3

Find the sum to infinity of the series  $1 - \frac{1}{4} + \frac{1}{14} - \frac{1}{14} + \dots$ 

#### Solution

Notice that this series is created from a GP with a = 1 and  $r = -\frac{1}{4}$ . The nth term  $u_n = 1 \times (-1)^{n-1}$ .

As n gets large,  $u_n \to 0$ . This means that the series increases by smaller numbers that oscillate between positive and negative.

To find the sum to infinity of the series write down the sum of the first n terms.

$$S_n = \frac{\alpha(1-r^n)}{1-r} = \frac{1(1-(-\frac{1}{4})^n)}{1+\frac{1}{4}} = \frac{4}{5}(1-(-\frac{1}{4})^n)$$

As 
$$n \to \infty$$
,  $\left(-\frac{1}{4}\right)^0 \to 0$ .  
This means that  $S_{n \to \infty} = \frac{4}{5}$ .  
So  $1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \cdots = \frac{4}{5}$ .

This result can be generalised for any GP in which the common ratio r is such that -1 < r < 1.

his is often writtenathematical short

#### The sum to infinity of a GP

GPs with common ratio r such that |r| < 1 generate convergent infinite



## Example 4

- A GP has first term 500 and common ratio <sup>2</sup>/<sub>5</sub>. What is the sum to infinity of the GP?
- b The sum to infinity of a GP is 90. If the common ratio is <sup>3</sup>/<sub>5</sub>, what is the first term?

#### Solution

a 
$$S_{\infty} = \frac{\alpha}{1-r} = \frac{500}{1-r^2} = \frac{500}{3} = 833\frac{1}{3}$$

b 
$$S_{\infty} = \frac{a}{1-r} \Rightarrow 90 = \frac{a}{1-\frac{2}{5}} = \frac{a}{\frac{2}{5}}$$
  
 $a = 90 \times \frac{2}{5} = 36$ 

Series other than those generated by GPs can have a sum to infinity. These are often expressed using sigma notation and require the use of partial fractions (see Chapter 6).

#### Example 5

Find 
$$\sum_{r=1}^{\infty} \frac{3}{(r+1)(r+2)}$$

#### Solution

Substituting values of r in the sigma notation generates the following

$$\sum_{r=1}^{\infty} \frac{3}{(r+1)(r+2)} = \frac{3}{2 \times 3} + \frac{3}{3 \times 4} + \frac{3}{4 \times 5} + \cdots$$

$$= \frac{3}{6} + \frac{3}{12} + \frac{3}{20} + \cdots$$

$$= \frac{1}{9} + \frac{1}{1} + \frac{3}{100} + \cdots$$

Notice that the generated sequence,  $\frac{1}{2}$ ,  $\frac{1}{4}$ ,  $\frac{3}{26}$ , ..., is neither an AP nor a GP. To sum this series, consider the expression for the *n*th term found from the sigma notation.

$$u_n = \frac{3}{(n+1)(n+2)}$$

This rational expression can be rewritten in partial fractions.

$$u_n = \frac{3}{(n+1)(n+2)} \equiv \frac{3}{(n+1)} - \frac{3}{(n+2)}$$

Now return to the original series.

$$\sum_{r=1}^{\infty} \frac{3}{(r+1)(r+2)} = \sum_{r=1}^{\infty} \left[ \frac{3}{(r+1)} - \frac{3}{(r+2)} \right]$$

Substituting values of r from 1 to n, where n is a large number,

$$\sum_{r=1}^{n} \left[ \frac{3}{(r+1)} - \frac{3}{(r+2)} \right] = \left( \frac{3}{2} - \frac{3}{3} \right) + \left( \frac{3}{3} - \frac{3}{4} \right) + \left( \frac{3}{4} - \frac{3}{5} \right) + \dots + \left( \frac{3}{n} - \frac{3}{n+1} \right) + \left( \frac{3}{n+1} - \frac{3}{n+2} \right)$$

Notice that, except for the first and last terms, all terms are repeated with one positive and one negative. These will cancel each other out.

So 
$$\sum_{r=1}^{n} \left[ \frac{3}{(r+1)} - \frac{3}{(r+2)} \right] = \frac{3}{2} - \frac{3}{n+2}$$

As  $n \to \infty$ ,  $\frac{3}{n+2} \to 0$ . So the series converges to the value  $\frac{3}{2}$ .

$$\sum_{r=1}^{\infty} \frac{3}{(r+1)(r+2)} = \frac{3}{2}$$

Recall from Chapter that since the denominators are all linear factors the cover-up rule can be

Check this by summing successive terms of the series using a calculator. You should find that the sum of the series never exceeds <sup>3</sup>/<sub>2</sub>.

## 8.4 Convergence, Divergence and Oscillation

## **Exercise**

#### Technique

1 Find the sum to infinity for a geometric progression with:

```
a a = 200, r = \frac{1}{2}

b a = 64, r = \frac{1}{8}

c a = 600, r = 0.6

d a = 30, r = \frac{4}{3}

e a = 200, r = 0.88

f a = 1000, r = 0.18
```

2 Describe the behaviour of the following sequences:

```
a u_{n+1} = |8 - u_n| where u_1 = 10
b \cos(30n)
```

c ln 8, (ln 8)<sup>2</sup>, (ln 8)<sup>3</sup>, d ln 1.8, (ln 1.8)<sup>2</sup>, (ln 1.8)<sup>3</sup>,...

e 
$$u_n = \frac{5}{(n+2)(n+3)}$$

$$f u_n = \frac{10}{n(n+1)}$$

3 Find the sums to infinity of the following geometric series:

```
a 243+81+27+... d 100+80+64+...
b 243-81+27-... e 20-8+3.2-...
c 12+4+$\frac{1}{2}$... f 20-18+16.2-...
```

For the following geometric progressions find the values of the unknown terms:

#### Contextual

- Find the sum to infinity of the geometric series with first term 15 and common ratio 3.
- 3 The sum to infinity of a GP is 80 and the first term is 16. Find the common ratio.

#### 8 Sequences and Series

- 4 Given that the common ratio of a geometric series is  $\frac{3}{6}$  and the sum to infinity is 32, find the first term.
- The sum to infinity of a geometric progression is ten times the first term.

  Find the common ratio.
- 6 The sum to infinity of a GP is 81 and the sum of the first four terms is 65. Find the first term and the common ratio.
- Gerry says, 'The sum to infinity of a GP with first term 12 and common ratio \( \frac{1}{2} \) is 48'. John immediately says that it must be wrong.
  - Explain why John is correct.
    - b Given that the sum to infinity and the first term are correct, find the common ratio.



## 8.5 The Binomial Theorem and Power Series

What does 'binomial' mean? 'Bi' is Latin, meaning 'double' so a binomial is an expression with two terms. Some examples of binomials are  $(a + b)^2$ .  $(3+x)^4$ , and  $(5-v)^{\frac{1}{2}}$ .

The binomial  $(a + b)^2$  can be rewritten as a sum of algebraic terms.

```
(a+b)^2 = a^2 + 2ab + b^2
```

There are also algebraic expressions for binomials with powers greater than 2

```
(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
(a + b)^4 = (a + b)(a + b)^3
         =(a+b)(a^3+3a^2b+3ab^2+b^3)
         = a(a^3 + 3a^2b + 3ab^2 + b^3) + b(a^3 + 3a^2b + 3ab^2 + b^3)
         = a^4 + 3a^3b + 3a^2b^2 + ab^3 + ba^3 + 3a^2b^2 + 3ab^3 + b^4
         = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
```

Consider the following structure:

sider the following structure:  

$$(a+b)^3 = a+b$$
  
 $(a+b)^2 = a^2 + 2ab + b^2$   
 $(a+b)^2 = a^3 + 3a^2b + 3ab^2 + b^3$   
 $(a+b)^3 = a^3 + 3a^2b + 5a^2b^2 + 4ab^3 + b^4$ 

Now write down the coefficients only of the terms in these expansions. As they are written down arrange them in a triangular form under each other.

Write down the next row in this triangle. Check that each figure is created

by adding the numbers directly above it. 1 4 6 4 1 that 'polynomial' is Greek for 'many term

> Blaise Pascal (1623-1662) Pascal, a French predited with a patte formed by the coefficients in thes usually called Pascs

So  $(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^3$  Notice:

- the position of the coefficients from Pascal's triangle
  - that the powers of a decrease from 5 to 0 and the powers of b increase from 0 to 5
- that adding the powers of a and b in any term gives 5, which is the power on the original binomial.

It is useful to remember these points when expanding a binomial.

#### Example 1

Expand:

#### a $(2+x)^4$ Solution

a Notice that the index, or power, here is 4. The fourth line of Pascal's triangle is

These will be the coefficients of the terms in the expansion. Build up the expansion in two steps. Insert powers of the first term, '2'.

$$1 \times 2^4$$
  $4 \times 2^3$   $6 \times 2^2$   $4 \times 2^1$   $1 \times 2^9$ 

Insert powers of the second term, 'x'.

Now evaluate any numbers raised to a power, recalling that  $a^0=1$  for all values of a. The expansion now becomes

$$(2+x)^4 = 16 + 32x + 24x^2 + 8x^3 + x^4$$

b The power here is 5. The fifth line of Pascal's triangle is required.

1 5 10 10 5 1

$$1 \times 3^5$$
  $5 \times 3^4$   $10 \times 3^3$   $10 \times 3^2$   $5 \times 3^1$   $1 \times 3^9$ 

Insert powers of the second term, '-x'.

$$1 \times 3^5 \times (-x)^0$$
  $5 \times 3^4 \times (-x)^1$   $10 \times 3^1 \times (-x)^2$   
 $10 \times 3^2 \times (-x)^3$   $5 \times 3^1 \times (-x)^4$   $1 \times 3^0 \times (-x)^5$ 

Remember to include the negative sign.

Even powers of (-x) are positive and odd powers of (-x) are negative, so

$$(3-x)^5 = 243 - 405x + 270x^2 - 90x^3 + 15x^4 - x^5$$

This technique can be used to expand  $(a + x)^n$  or  $(a - x)^n$  for any positive integer n. The problem then becomes finding the values of the coefficients in the nth row of Pascal's triangle.

#### **Factorial notation**

A factorial is a product of consecutive natural numbers, starting at 1. So 3 factorial, written  $3! = 3 \times 2 \times 1$  and  $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1$ A table of factorial totals shows how concise this notation can be.

| 1!=1   | 3! = 6  | 5! = 120 | 7! = 5040   | 9! = 362 880    |
|--------|---------|----------|-------------|-----------------|
| 2! = 2 | 4! = 24 | 6! = 720 | 8! = 40 320 | 10! = 3 628 800 |
|        |         |          |             |                 |

How do factorials fit with the coefficients in Pascal's triangle? The terms of Pascal's triangle are known also as binomial coefficients. The third coefficient on the fourth row can be written using factorials as

$$\binom{4}{3} = \frac{4!}{3!(4-3)!} = \frac{24}{6 \times 1} = 4$$

In a similar way the rth coefficient on the nth row of Pascal's triangle can he written as

The general result for the expansion of  $(q + x)^n$  is:

$$(\alpha + x)^n = \alpha^n + \binom{n}{1}\alpha^{n-1}x + \binom{n}{2}\alpha^{n-2}x^2$$

 $+\cdots + {n \choose r} \alpha^{n-r} x^r + \cdots + x^n$   $\blacktriangleleft$  Learn this result.

## Example 2

Find the values of

a 
$$\binom{6}{4}$$
 b  $\binom{7}{2}$ 

Solution

$$a \qquad \binom{6}{4} \! = \! \frac{6!}{4!(6-4)!} \! = \! \frac{6!}{4!2!} \! = \! \frac{720}{24 \times 2} = 15$$

**b** 
$$\binom{7}{2} = \frac{7!}{2!(7-2)!} = \frac{7!}{2!5!} = \frac{5040}{2 \times 120} = 21$$

To calculate the value of binomial coefficients not all factorials need be remembered. The fraction can be cancelled down quickly since each factorial is a product of numbers beginning at 1.

#### Example 3

Without using a calculator, find  $\binom{8}{3}$ .

#### Solution

$$\binom{8}{3} = \frac{8!}{3!(8-3)!} = \frac{8!}{3!5!} = \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1) \times (5 \times 4 \times 3 \times 2 \times 1)}$$

Notice that 5! is a common factor of both the denominator and the numerator. This means it can be cancelled.

$$\binom{8}{3} = \frac{8 \times 7 \times 6}{3 \times 2 \times 1}$$

Now look for other common factors

$$\binom{8}{3} = \frac{8 \times 7}{1} = 56$$

One advantage of using factorial notation is that particular terms in an expansion can be found without finding the whole series.

## Example 4

Find the term involving  $x^9$  in the expansion of  $(1 + 2x)^{12}$ .

#### Solution

Recall the general result for expanding  $(q + x)^n$ .

Recall the general result for expanding 
$$(a + x)^n$$
,  
 $(a + x)^n = a^n + \dots + \binom{n}{r} a^{n-r} x^r + \dots + x^n$ 

So the term involving x9 in this expansion will be

$$\binom{12}{9} 1^3 (2x)^9$$

$$\binom{12}{9} = \frac{12 \times 11 \times 10}{3 \times 2 \times 1} = 220$$

So the term in x9 is then 220 v 12 v 29x9 = 112640x9 coefficients is often stated as a mathematical theorem.

Notice that this provides a quick method of identifying terms in the series. The expansion of binomials using factorial notation for the binomial

The 3 × 2 in the denominator eliminates

Notice that n = 12, r = 9and a = 1, and x has a multiplier (coefficient)

#### The binomial theorem

$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r}b^r$$
  
 $= \binom{n}{n} a^n + \binom{n}{1} a^{n-1}b$   
 $+ \cdots + \binom{n}{n-1} ab^{n-1} + \binom{n}{n} b^n$   $\blacktriangleleft$  Learn this result.

The expansion of the brackets can be written as a series using sigma notation. The binomial coefficients relate clearly to the powers of the terms a and b. The case where a = 1 and b is the variable x is particularly interesting

 $(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \cdots$ 

#### Example 5

 Find an approximation correct to four decimal places of (1.01)<sup>6</sup>. Find (0.99)4 without using a calculator.

#### Solution

a This approximation can be made by using the binomial series for

$$(1+x)^6 = 1 + \binom{6}{1}x + \binom{6}{2}x^2 + \binom{6}{3}x^3 + \cdots$$
$$= 1 + 6x + 15x^2 + 20x^3 + \cdots$$

Now write 1.01 as (1 + 0.01). This is better expressed as  $(1 + -b_0)$ . Substitute  $x = \frac{1}{100}$  into the series expansion.

$$(1.01)^6 = 1 + \frac{6}{100} + \frac{15}{100^2} + \frac{20}{100^3} + \cdots$$
  
= 1 + 0.06 + 0.0015 + 0.000 02 + ···

-1.06152

So, to four decimal places, an approximation for (1.01)6 is 1.0615. Since 0.99 = 1 - 0.01,  $(0.99)^4$  can be rewritten as  $(1 - 0.01)^4$ .

Use the binomial series for 
$$(1-x)^4$$
 with  $x = \frac{1}{160}$   
 $(1-x)^4 = 1 + \binom{4}{1}(-x) + \binom{4}{2}(-x)^2 + \binom{4}{3}(-x)^3 + (-x)^4$   
 $= 1 - 4x + 5x^2 - 3x^3 + x^4$ 

Notice that (n) and ( both involve 0!.

100 years later

Notice that successi

he first four decima

places.

◀ Learn

this result.

$$\left(1 - \frac{1}{100}\right)^4 = 1 - \frac{4}{100} + \frac{6}{100^3} - \frac{4}{100^3} + \frac{1}{100^4}$$

$$= 1 - 0.04 + 0.0006 - 0.000004 + 0.00000001$$

$$= 0.96059601$$

#### Power series

A power series is a polynomial. The terms of the series are powers of a variable, usually x, multiplied by a coefficient.

$$a_0 + a_1x + a_2x^2 + \cdots = \sum_{i=1}^{n} a_ix^i$$

Power series can be **divergent** or **convergent**. When the series is convergent there is usually a restriction on the range of values of the variable x.

A power series can be created from a binomial expansion where the power is fractional and not an integer. The expansion is now written slightly differently to how it was before, because the binomial coefficient,  $\binom{n}{k}$ , is nonsensical when n is a fraction.

When n is negative or fractional, the binomial series for  $(1+x)^n$  is given by

$$(1+x)^n = 1 + nx + \frac{n(n-1)x^2}{2!} + \frac{n(n-1)(n-2)x^3}{3!} + \cdots$$

Notice that this series will be infinite if n is negative or fractional because the numerator will never contain the factor (n-n). This power series will converge provided -1 < x < 1. This condition is negative because it means that the cartee is not valid for all

This power series will converge provided -1 < x < 1. This condition is particularly important because it means that the series is not valid for all values of x.

#### Example 6

Find the first five terms in the binomial expansion of  $\frac{1}{1-x}$  and state the range of values for which it is valid.

#### Solution

Applying the law of indices,  $\frac{1}{1-x} = (1-x)^{-1}$ . This is a

binomial with power -1. The series can be found by substituting n=-1 into the binomial expansion (carefully checking the sign of x).

$$\begin{split} &(1+x)^n=1+nx+\frac{n(n-1)x^2}{2!}+\frac{n(n-1)(n-2)x^3}{3!}+\cdots\\ &So\ &(1-x)^{-1}=1+(-1)(-x)+\frac{(-1)(-2)(-x)^2}{2!}+\frac{(-1)(-2)(-3)(-x)^3}{3!} \end{split}$$

$$+\frac{(-1)(-2)(-3)(-4)(-x)^4}{(-1)(-2)(-3)(-4)(-x)^4}+\cdots$$

Recall that  $\frac{1}{a} = a^{-1}$ .

$$= 1 + x + \frac{2x^2}{2} + \frac{6x^3}{6} + \frac{24x^4}{24} + \cdots$$
$$= 1 + x + x^2 + x^3 + x^4 + \cdots$$

This series is valid for -1 < x < 1; that is, |x| < 1.

## Example 7

Find the first four terms of the binomial series for  $\sqrt{1+x}$ . State the range of values of x for which the series converges.

#### Solution

 $\sqrt{1+x} = (1+x)^{\frac{1}{2}}$ . This is a binomial, with power  $\frac{1}{2}$ .

$$(1+x)^n = 1 + nx + \frac{n(n-1)x^2}{2!} + \frac{n(n-1)(n-2)x^3}{3!} + \cdots$$
So  $(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(-\frac{1}{2})x^2}{2!} + \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{2}{3})x^2}{3!} + \cdots$ 

$$= 1 + \frac{1}{2}x - \frac{1}{2}x^2 + \frac{1}{4}x^2 - \cdots$$

$$= 1 + \frac{1}{2}x - \frac{1}{2}x^2 + \frac{1}{4}x^2 - \cdots$$

This series is valid for |x| < 1.

The binomial series can be used to provide a power series expansion for rational functions.

#### Example 8

Write  $\frac{1-x}{(1+2x)^4}$  as a series of ascending powers of x, up to and including the term in x3. State the range of values of x for which the series is valid. Solution

Once the rational function is written as a product the application of the binomial theorem can be seen.

Expand  $(1 + 2x)^{-4}$  as a power series, then multiply this result by (1 - x). Check that  $(1+2x)^{-4} = 1 - 8x + 40x^2 - 160x^3 + \cdots$ 

Then 
$$(1-x)(1+2x)^{-4} = (1-x)(1-8x+40x^2-160x^3+\cdots)$$
  
=  $1-9x+48x^2-200x^3+\cdots$ 

This series is valid for -1 < 2x < 1; that is  $|x| < \frac{1}{x}$ .

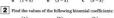
Check what happen when x = 1 and x =

Notice the need for t restriction |x| < 1.

# 8.5 The Binomial Theorem and Power Series Exercise

## Technique







**3** Expand the following using the binomial theorem: **a**  $(1+x)^2$  **b**  $(4-x)^4$  **c**  $(2-3x)^6$  **d**  $(x-2)^4$ 

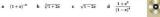
Write the following as series of ascending powers of x, up to and including the term in x<sup>2</sup>:

the term in  $x^3$ : **a**  $(1-x)^{20}$  **b**  $(3-x)^5$  **c**  $(y+x)^7$  **d**  $(2-3x)^5$ 

Find the range of values of x for which the series expansions of the following are valid:

a  $(1+x)^{\frac{1}{2}}$  b  $(3-2x)^{\frac{1}{2}}$  c  $\sqrt[3]{1+\frac{1}{6}x}$  d  $(4-3x)^{-10}$ 

Find the first four terms of the binomial series for the following functions:  $1+x^2$ 



#### Contextual

- 1 Find the binomial expansion of  $(4 + x)^6$ . When is this expansion valid?
- **2** Find the term involving  $x^9$  in the expansion of  $(1 + 2x)^{11}$ .
- 3 Find the coefficient of the  $x^7$  term in the expansion of  $(1-3x)^{15}$ .
- Find the value of  $(1.01)^7$  to four decimal places using the binomial expansion of  $(1+x)^n$ .
- Expand √1-4x as a series of ascending powers of x, up to and including the term in x<sup>2</sup>. State the range of values of x for which the expansion is valid.





### Consolidation Exercise A

1 Find the sum of the arithmetic series  $2 + 5 + 8 + \cdots + 398$ .

The tenth term of the arithmetic progression is zero and the sum of the first 10 terms is 15.

Find the first term and the common difference.

| b   | How many more terms must be added for the sum of the progression to be zero?                                                                | (OCSEB)          |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|     |                                                                                                                                             |                  |
| A   | geometric series has third term 27 and sixth term 8.                                                                                        |                  |
| a   | Show that the common ratio of the series is $\frac{3}{5}$ .                                                                                 |                  |
| b   | Find the first term of the series.                                                                                                          |                  |
| c   | Find the sum to infinity of the series.                                                                                                     |                  |
| d   | Find, to three significant figures, the difference between                                                                                  | the sum of       |
|     | the first 10 terms of the series and the sum to infinity of t                                                                               |                  |
|     |                                                                                                                                             | (ULEAC)          |
| Fir | nd the sum of the series with first term 11 and last term 40,                                                                               | in which         |
| eac | ch term, after the first, exceeds the previous term by $\frac{1}{2}$ .                                                                      | (UCLES)          |
| Th  | se ath term of a sequence is $u_n$ , where $u_n = 95(\frac{4}{3})^n$ , $n = 1, 2,$                                                          | 3                |
|     |                                                                                                                                             |                  |
| •   | Find the values of $u_1$ and $u_2$ .                                                                                                        |                  |
| Gi  | ving your answers to three significant figures, calculate:                                                                                  |                  |
| b   | the value of u21                                                                                                                            |                  |
|     | $\sum_{i=1}^{15} u_{ii}$                                                                                                                    |                  |
| c   | $\sum_{n=1}^{\infty} u_n$                                                                                                                   |                  |
| d   | Find the sum to infinity of the series whose first term is a                                                                                | z, and whose     |
|     | $n$ th term is $u_x$ .                                                                                                                      | (ULEAC)          |
|     | nd, in the simplest form, the first three terms in the expans $+3t)^{\frac{3}{4}}$ , in ascending powers of $t$ , where $ t <\frac{1}{3}$ . | ion of<br>(NEAB) |
| Tw  | so sequences $u_1, u_2, u_3, \dots$ are defined as follows:                                                                                 |                  |
|     | Sequence A: $u_1 = 2$ $u_{n+1} = 3 - u_n$                                                                                                   |                  |
|     | Sequence B: $u_1 = 2$ $u_{n+1} = u_n + \frac{1}{2^n}$                                                                                       |                  |

(NEAR)

- For each of the two sequences, find the values of  $u_1$ ,  $u_2$ ,  $u_4$ , and  $u_5$ . b State for each sequence whether it is convergent, divergent or
- oscillating. (NEAB)
- **8** Given that  $|x| < \frac{1}{2}$ , expand  $\sqrt{1+2x}$  as a series of ascending powers of x, up to and including the term in  $x^3$ , simplifying the coefficients. (UCLES)
- 9 Find the term in  $x^{12}$  in the binomial expansion of  $(x + 2x^2)^{10}$ . (OCSEB)
- 10 Use the binomial theorem to give the expansion of  $(x + y)^4$ .
  - Hence obtain the expansion of  $(x + 2)^4$ , expressing each term in a simplified form. Find the coefficient of  $x^2$  in the expansion of  $(1+x^2)(x+\frac{x}{2})^4$ .

### Exercise B

- Find the sum of the arithmetic series 3 + 7 + 11 + ··· + 79.
- 2 Helen's father gives her a loan of £10 800 to buy a car. The loan is to be repaid by 12 unequal monthly instalments, starting with an initial payment of £A in the first month. There are no interest charges on the remaining debt but the instalments increase by £60 per month so that the second monthly payment is  $\mathcal{E}(A + 60)$ , the third monthly payment is E(A + 120) and so on.
  - a Show that A = 570.
  - b Find an expression in terms of n for the remaining debt immediately after Helen makes her nth payment. Give your answer in a fully factorised form
  - (NEAR)
- ii Hence find the sum of n terms of the series
- $\frac{8}{1 \times 5} + \frac{8}{2 \times 7} + \frac{8}{5 \times 9} + \dots$ 
  - b A sequence of integers  $u_1$ ,  $u_2$ ,  $u_3$  is defined by  $u_1 = 5$  and  $u_{n+1} = 3u_n - 2^n$  for  $n \ge 1$ . Use this definition to find  $u_2$  and  $u_3$ . (OCSEB)

- 4
- The sixth term of a geometric progression is 6.075; the fifth term is 4.05. Calculate:
- i the common ratio
- ii the first term
- iii the 30th term (correct to three significant figures).
   b State, with a reason, whether the geometric series

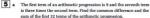
$$\ln 3 + (\ln 3)^2 + (\ln 3)^3 + \cdots$$

is divergent or convergent.

 $\ln 3 + \ln(3^2) + \ln(3^3) + \dots + \ln(3^{30}) = \sum_{r=1}^{30} \ln(3^r)$ 

Show that S is an arithmetic series whose sum is approximately 511. d Show that  $\sum_{n=1}^{\infty} \ln(3r) = n \ln 3 + \ln(n!)$ .

(OCSEB)



sum of the first 32 terms of the arithmetic progression.

b The first term of a geometric progression is 81 and the fourth term is 24. Find the common ratio and the sum to infinity of the geometric

(WTEC)

6 A sequence is defined inductively as follows:

progression. quence is de  $u_1 = 2$ 

 $u_{n+1} = \text{units digit of } 2u_n \text{ (that is, the remainder when } 2u_n \text{ is divided by 10)}$ 

- a Write down the values of  $u_i$  for i = 1, 2, 3, 4, 5 and show that  $u_6 = 4$ .
- b State whether or not this sequence is periodic or convergent

Find the units digit of 2<sup>222</sup>, explaining how you obtain your answer.
(OCSEB)

The nth term, n<sub>o</sub>, of four sequences is defined below. For each sequence decide whether it is convergent, divergent to +∞, divergent to -∞ or oscillating. For each convergent sequence, state the limit to which it tends as n -∞.

- a  $u_a = 2 + \sqrt{n}$
- **b**  $u_n = 5 \frac{1}{n^2}$
- $u_n = \sin(\frac{1}{2}n\pi)$
- $\mathbf{d} \quad u_n = \frac{3n}{1+n}$
- (AEB)

### **Applications and Activities**

#### Loan repayments

The sum of a geometric series can be used to find:

- the time taken to repay a loan given a debt, interest rate and repayment instalments:
- the repayment instalment given a debt, interest rate and repayment term.

1 You borrow £1000 at 14% APR and pay back £300 per year. How long will it take to repay the debt?

2 You borrow £1000 at 14% APR and want to repay the debt in three years.

What should your monthly instalment be?

Investigate credit terms for finance companies and check the repayment tables for the quoted APR. APR is the Annual Percentage Rate and must, by law, be quoted on all credit

### Summary

- A sequence is a set of numbers occurring in order. When the terms of a sequence are added together, a series is formed.
- A sequence can be described using an algebraic term for u<sub>n</sub> or by a recurrence relation.
- A series can be written using sigma notation, which uses the Greek letter Σ to represent summation over a number of terms.
- The nth term of an AP is a + (n − 1)d, where a is the first term, and d is the common difference.
- The sum to n terms of an arithmetic series can be written in equivalent forms



S<sub>n</sub> = 2

 The nth term of a GP is person where a is the first term and r is the common ratio.  The sum to n terms of a geometric series with first term a and common ratio r is given by



- A sequence is said to diverge if u<sub>n</sub> → ∞ as n → ∞, converge if u<sub>n</sub> → a limit as n → ∞, and be periodic if it repeats itself in a regular pattern.
- GPs with a common ratio r such that |r|<1 create convergent infinite series where  $S_n\to S_\infty$  as  $n\to\infty$ , and



- The coefficients in a binomial expansion, (a + b)<sup>n</sup>, can be written down using Pascal's triangle.
- A factorial is a product of consecutive natural numbers; so 3! = 3 × 2 × 1 and 0! = 1 by definition.
- The binomial theorem states that, for positive integral values of n (n ∈ Z<sup>+</sup>) says:

$$\begin{split} (a+b)^n &= \sum_{r=0}^n \binom{n}{r} a^{n-r}b^r \\ &= \binom{n}{0} a^n + \binom{n}{1} a^{n-1}b \\ &+ \dots + \binom{n}{n-1} ab^{n-1} + \binom{n}{n} b^n \end{split}$$

 The binomial theorem can be used to write a binomial series for integer, negative and rational powers. This power series will have a condition on the values for which it is convergent.

# 9 Integration I

### What you need to know

- How to differentiate standard functions.
- How to use the laws of indices.
- How to find the value of an algebraic expression.
- How to sketch graphs.
- How to use sigma notation.

### Review

1 Find:

a 
$$\frac{d}{dx}(x^2+1)$$

$$\frac{d}{dx}(\cos x)$$

b 
$$\frac{dx}{dx}(\frac{3}{2}x^2 - 6x + 2)$$
 e  $\frac{d}{dx}(\sin 2x)$ 

$$c = \frac{d}{dx} \left( x^{\frac{1}{2}} - \frac{1}{x} \right)$$

$$\frac{dx}{dx}$$

f  $\frac{d}{dx}(2-x^2+3\cos 5x)$ 

**2** Write each of the following expressions as  $Ax^n$  or  $(Ax^n + Bx^m)$ , where Aand B are constants.

a 
$$\frac{1}{x^2}$$
  
.  $2x$ 

$$\frac{3x}{x^3}$$

c 
$$\frac{7x - x^2}{x^3}$$
  
f  $\sqrt{x}(1 + \sqrt{x})$ 

3 Find the value of each of the following expressions for the given value of x:

- **a**  $3x^3 + 5x^2 + x$ , when x = 2 **b**  $\frac{1}{2}x^4 x^3 x$ , when x = -2

4 Sketch the graphs of:

- a y = 1
  - b  $y = x^2$  $d v = \sin x$

5 Simplify the following using sigma notation:

 $x = 2x^{\frac{1}{2}} - x^{-\frac{1}{2}} + 1$ , when x = 9

1 + 2 + 3c 2+4+6+8

b 1+4+9+16+25 d 4+7+10+13

### 9.1 Indefinite Integration

Integration can be described as a reverse operation. Consider some familiar reverse operations.

| Operation | Reverse operation | Example              |
|-----------|-------------------|----------------------|
| Add       | Subtract          | 7 10                 |
| Multiply  | Divide            | 12 ×3 36             |
| Cube      | Cube-root         | cube<br>cube<br>root |

Mathematicians studying what we now call differentiation and integration realized that these processes were closely related. Leibniz (1646–1716) and Isaac Newton (1643–1727) independently discovered that integration is the reverse of differentiation. This fact is called the **fundamental** theorem of calculus.

| Operation       | Reverse operation | Example                                                                                                |
|-----------------|-------------------|--------------------------------------------------------------------------------------------------------|
| Differentiation | Integration       | differentiate: multiply by n reduce power by 1  xe integrate: add 1 to the power divide by this number |

The principle of the reverse process will be used to integrate powers of x by increasing the power by 1 and then dividing the new term by this purpose of the reverse of differentiation.

Check this by differentiating the answer; it should reverse the integration process.

But note that 
$$\frac{d}{dt}(\frac{1}{3}x^3 + 1) = 3 \times \frac{1}{3}x^2 + 0 = x^2$$
  
and  $\frac{d}{dt}(\frac{1}{2}x^3 + 2) = 3 \times \frac{1}{2}x^2 + 0 = x^2$ 

The notation use differentiation, integration is based notation developed Lobreit. He was a seventeerah century mathematician, philo and statesman. He published his work of Colonia is 1,084.

ation

the symbol for egrate'

The term that is bei integrated is the integrand. 'dx' means integrate

'with respect to' the variable xSo  $\int f(x) dx$  means

So  $\int f(x) dx$  means integrate the integra f(x) with respect to This means that any of the expressions  $\frac{1}{2}x^3, \frac{1}{2}x^3 + 1, \frac{1}{2}x^3 + 2, \dots$  could be the answer to  $\int x^2 dx$ . Differentiation of each of these expressions gives  $x^2$ . Since there is no definite answer the expression  $\int x^2 dx$  is called an indefinite integral. The complete answer is

$$x^2 dx = \frac{1}{3}x^3 + c$$
, where c is a constant.

All indefinite integrals have +c' at the end where c is a constant. The following table illustrates the basic principles of integration.

| $\int f(x) dx$                                  | g(x)                                                             | Check $g'(x) = f(x)$                                                                                                                                                                                                                                                         | In general:                                                                                                         |
|-------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| $\int dx = \int 1 dx$ $\int 5 dx$               | x+c<br>5x+c                                                      | $\frac{\frac{d}{dc}(x+c) = 1 + 0 = 1}{\frac{d}{dc}(5x+c) = 5 + 0 = 5}$                                                                                                                                                                                                       | $\int k  dx = kx + c,$ where k is any number                                                                        |
| ∫x dx<br>∫7x dx                                 | $\frac{1}{2}x^2 + c$<br>$\frac{1}{2}x^2 + c$                     | $\frac{d}{dx}(\frac{1}{2}x^2 + c) = \frac{1}{2} \times 2x + 0 = x$ $\frac{d}{dx}(\frac{7}{2}x^2 + c) = \frac{7}{2} \times 2x + 0 = 7x$                                                                                                                                       | $\int kf(x) dx = k \int f(x) dx$ ,<br>where k is any constant                                                       |
| $\int x^{2} dx$ $\int x^{3} dx$ $\int x^{j} dx$ | $\frac{1}{2}x^{3}+c$ $\frac{1}{4}x^{4}+c$ $\frac{1}{2}x^{3/2}+c$ | $\begin{array}{l} \frac{d}{d\sigma}(\frac{1}{3}x^3+c) = \frac{1}{3} \times 3x^2+0 = x^2 \\ \frac{d}{d\sigma}(\frac{1}{3}x^4+c) = \frac{1}{4} \times 4x^3+0 = x^3 \\ \frac{d}{d\sigma}(\frac{3}{3}x^{3/2}+c) = \frac{2}{3} \times \frac{n}{3}x^{3/2}+0 = x^{3/2} \end{array}$ | ∫x" dx = <sup>c-1</sup> / <sub>n+1</sub> + c ✓ True for all n, except for the special case n = -1 (see Chapter 12). |
| $\int (2x^2 - x + 6)  \mathrm{d}x$              | $\frac{3}{3}x^3 - \frac{1}{2}x^2 + 6x + c$                       | $\frac{\frac{d}{dx}(\frac{2}{3}x^3 - \frac{1}{2}x^2 + 6x + c) =}{\frac{2}{3} \times 3x^2 - \frac{1}{2} \times 2x + 6 + 0 =}$ $2x^2 - x + 6$                                                                                                                                  | $\int (f(x) + g(x)) dx =$ $\int f(x) dx + \int g(x) dx$                                                             |

If the variable was t, not x, we would 'integrate t2 with respect to t';  $\int t^2 dt = \frac{1}{2}t^3 + c.$ 

outside' the l sign.

#### Summary of the basic principles

- fkdx = kx + c, where k is any number
- $\int kf(x) dx = k \int f(x) dx$ , where k is any number
- $\mathbf{x}^n d\mathbf{x} = \mathbf{x}^{n-1} + \mathbf{c}$ , where n is any number except -1
- [(f(x) + g(x)) dx = [f(x) dx + [g(x)dx]]

### Example 1

Find-

$$\int (1-3\sqrt{x})dx$$

$$b \qquad \int (1-3\sqrt{x}) dx \qquad \quad c \qquad \int \left(\frac{3x^2-1}{x^2}\right) dx$$

### Solution

 $\int x(x-3)dx$ 

The technique here is to expand the brackets first, and then integrate each term separately.

$$\int x(x-3) dx = \int (x^2 - 3x) dx$$

$$= \frac{1}{5}x^2 - 3 \times \frac{1}{2}x^2 + c$$

$$= \frac{1}{5}x^2 - \frac{1}{2}x^2 + c$$

$$= \frac{1}{5}x^2 - \frac{1}{2}x^2 + c$$
indefinite integral.

Use 
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c.$$

b To integrate the square root, first express it in powers of x.

$$\int (1 - 3\sqrt{x}) dx = \int (1 - 3x^{\frac{1}{2}}) dx$$

$$= x - 3 \times \frac{1}{2}x^{\frac{3}{2}} + c$$

$$= x - 2x^{\frac{1}{2}} + c$$

$$= x - 2x^{\frac{1}{2}} + c$$
differentiation.

c First express the integrand as powers of x.

$$\begin{split} \int \left(\frac{3x^2-1}{x^2}\right) dx &= \int \left(\frac{3x^2-x^2}{x^2}\right) dx \\ &= \int \left(3-\frac{x^2}{x^2}\right) dx \\ &= \int 3x - \frac{x^{-2}}{-1} + c \\ &= 3x + \frac{1}{2} + c \end{split}$$
An indefinite integral.

### Example 2

The gradient of a curve v = f(x) is given by  $\frac{dr}{dt} = (2 - x)(2 - 3x)$ . Find the equation of the curve, given that it passes through the point (3, 2).

#### Solution

To find v from \$\preceq\$ reverse the differentiation by using integration.

$$y = \int (2-x)(2-3x)dx$$

$$= \int (4-8x+3x^2)dx$$

$$= 4x - \frac{8x^2}{2} + \frac{3x^3}{3} + c$$

$$y = 4x - 4x^2 + x^3 + c$$

This equation represents a whole family of curves. The graphs can be drawn on a graphical calculator using different values of c. The graphs show that there are many functions with a gradient of (2-x)(2-3x). However, there is only one graph that passes through the point (3, 2). Check that the value of c must he -1



Recall that  $\sqrt{x} = x^{\dagger}$ . Use  $\int x^n dx = \frac{x^{n+1}}{x^{n+1}}$ 

invert and multiply.

Note the common denominator

Use 
$$\int x^n \, \mathrm{d}x = \frac{x^{n+1}}{n+1}$$



An alternative to the graphical method is to use algebra to find, or check, the value of c. Substituting the values of x=3 and y=2 into the expression for y.

$$y = 4x - 4x^2 + x^3 + c$$

$$\Rightarrow 2 = 4 \times 3 - 4 \times 9 + 27 + c$$

$$\Rightarrow 2 = 12 - 36 + 27 + c$$

$$\Rightarrow -1 = c$$

So the equation of the curve is  $v = x^3 - 4x^2 + 4x - 1$ .

#### Integration and mechanics

In Chapter 5, mechanics was used as a context for differentiation. Recall that if s-d sistance travelled in time t then the velocity is given by  $v=\frac{t}{2c}$ , and the accoheration is given by  $o=\frac{t}{2c}$ . Using integration as the reverse process to differentiation it is now possible to work backwards. This means that we can find v if we know a, and can find s if we know v. The new equations become:

$$v = \int a dt$$
 and  $s = \int v dt$ .

### Example 3

An aircraft taxies at a constant speed of  $7.5 \, \mathrm{m \, s^{-1}}$  to the start of a straight runway. It then begins to accelerate. Its acceleration after t seconds is given by  $a = 2t - \frac{1}{3}t^2$ .

- Find an expression for the velocity at time t seconds.
- b An observer estimates that 10 seconds after leaving the start of the runway the plane takes off. What distance has it travelled along the runway in that time?

### Solution

Draw a diagram to illustrate the situation.



a  $a = \frac{dx}{2} = 2t - \frac{1}{5}t^2$ 

We know that  $v = \int a dt$ , so we integrate the acceleration to find the velocity.

- $v = \lceil a dt \rceil$ 
  - $= ((2t \frac{1}{2}t^2) dt$
- $= 2 \times \frac{1}{2}t^2 \frac{1}{2} \times \frac{1}{2}t^3 + c$  $=t^2-\frac{1}{2}t^3+c$

There is enough information in the question to calculate c. At the start of the straight runway the speed of the aircraft is 7.5 m s<sup>-1</sup>. So when t = 0, v = 7.5. Substitute these values into the expression for v.

7.5 = 0 - 0 + c

 $\frac{15}{7} = c$  $v = t^2 - \frac{1}{12}t^3 + \frac{15}{2}$ 

**b**  $v = \frac{ds}{dt} = t^2 - \frac{1}{4t}t^3 + \frac{15}{4}$ 

So  $s = \int v \, dt$ 

 $s = \int (t^2 - \frac{1}{15}t^3 + \frac{15}{5}) dt$ 

- $=1t^3-3\times1t^4+15t+c$  $= \frac{1}{2}t^3 - \frac{1}{24}t^4 + \frac{15}{2}t + c$
- The distance is measured from the start of the runway. So when t = 0,
- s = 0. Substitute these into the expression for s. 0 = 0 - 0 + 0 + c

0 = 0  $s = \frac{1}{2}t^3 - \frac{1}{2}t^4 + \frac{15}{2}t$ 

To find the distance covered in the first 10 seconds substitute t = 10into this expression for s.

- $s = \frac{1}{2} \times 10^3 \frac{1}{2} \times 10^4 + \frac{15}{2} \times 10^4$  $=\frac{1000}{3} - \frac{10000}{60} + \frac{150}{3}$ = 1000 - 1000 + 150
- $=\frac{2000}{5} \frac{1000}{5} + \frac{450}{5}$ 
  - = 1439 = 223

So s = 241 m 

■ Always include the appropriate unit.

 $\int t^n dt = \frac{t^{n+1}}{n+1} + c$ 

### 9.1 Indefinite Integration Exercise

### Technique

- 1 Use integration notation to describe each of the following statements:
- a integrate  $2x^2 3x + 1$  with respect to x
  - b integrate e2 with respect to t c integrate  $\cos \theta$  with respect to  $\theta$ .
- 2 Integrate each of the following with respect to x:

| ı | 3       | ь | 2x - 5     | C | $x^2 + x - 7$ |
|---|---------|---|------------|---|---------------|
| ı | x(2-3x) | e | (x-3)(x+5) | f | $(x + 1)^2$   |



- $e \left[ \frac{1}{t^2} dt \right]$ i [100x12 dx a fdx
- b  $\int 10 \, dr$  f  $\int x^{\frac{1}{2}} dx$  j  $\int \frac{1}{\sqrt{r}} dr$ c  $\int (t^{2} + 1) \, dt$  g  $\int 5r^{9} dr$  k  $\int 3x^{-\frac{1}{2}} ds$
- $\mathbf{d} = \int \sqrt{x} \, dx$

4 Find:

a  $\int (x^2 - 3x + 2) dx$  b  $\int (2t - 5)^2 dt$  c  $\int x(2 + x) dx$ d  $\int t(1 - t^2)^2 dt$  e  $\int (x + 1)(x - 3) dx$  f  $\int 14x^3 dx$ 

5 Find:

- a  $\left[\left(\frac{x^4+2}{v^3}\right)dx\right]$  b  $\left[\left(\frac{x+3}{\sqrt{x}}\right)dx\right]$  c  $\left[\left(\frac{1}{t^2}+\frac{2}{t^2}+3t\right)dt\right]$  5 c, e d  $\left[ (\sqrt{x} - 1)^2 dx \right]$  e  $\left[ \left( \frac{1 - 3x^2}{\sqrt{x}} \right) dx \right]$  f  $\left[ (6 + x)\sqrt{x} dx \right]$
- 6 If f'(x) = 8x, and f(1) = 4, find f(x).
- 7 If f(x) dx = g(x), what is the connection between g(x) and f(x)?

### Contextual

1 The velocity of a particle, at time t, is given by v = t + 3. Find an expression for the distance, s. travelled by the particle at time t, given that s = 0 when t = 0.





- 2 Copy and complete the following, where each '•' represents a missing
  - a  $\int (2x^3 10x^2 \bullet + \bullet) dx = \bullet \frac{10}{3}x^3 \frac{1}{2}x^2 + 3x + c$ b  $\int (\bullet - 15t) dt = \bullet \int (2 - 3t) dt = \bullet (\bullet - \bullet) + \bullet$
  - c ∫dy = + •
  - d  $\int \bullet = \theta + c$
  - e  $\int (\bullet \bullet + 1) dx = \frac{4}{3}x^{\frac{3}{2}} \frac{1}{2}x^2 + \bullet + \bullet$ f  $\int (\bullet - \bullet + t^5) \bullet = \frac{4}{2}t^2 - t^3 + \bullet + \bullet$
  - $\mathbf{g} \quad \int (\bullet 3) \bullet = u^2 \bullet + \bullet$
  - **3** If  $g(x) = \int 6x(x+1) dx$ :
- a write down g'(x) and solve g'(x) = 0
   b find g(x) given that g(-1) = 5.
- 4 The gradient of a curve at any point is given by  $\frac{dr}{dx} = 4 2x$ .
  - a Explain why the curve has a maximum value when x = 2.
     b If the maximum value of the curve is 1 find the equation of the curve.
- **6** The gradient at any point (x, y) on a curve is given by  $\frac{dy}{dx} = -\frac{4}{x}$ . If the curve passes through the point  $(2, 3\frac{1}{4})$ , find the equation of the curve.
  - 7 A train starts from rest at station A and 2½ minutes later stops at station B. Its velocity, t seconds after starting, is given by v = 0.6t - 0.004t<sup>2</sup> ms<sup>-1</sup>.
    - Find an expression for the distance travelled from A.
       Find the distance between the two stations.
- **8** A particle leaves a fixed point O with a velocity of  $20 \text{ m s}^{-1}$ . It travels in a straight line and its acceleration after t seconds is given by  $a = (14 8t) \text{ m s}^{-2}$ .
  - a Find an expression for the velocity in terms of t.
  - b Find an expression for the displacement of the particle after leaving O.

del only applies ring the time for t rney from A to B

### 9.2 The Area Under a Graph

Integration is used for summation; usually of lengths, areas or volumes. The S-shaped symbol was devised by Leibniz because integration represents a sum. It was perceived as the sum of the areas of an infinite number of rectangles of height f(x) and infinitesimally small width  $\Delta x$ . So each rectangle would be thinner than a pencil line and its area would be f(x)  $\delta x$ .





We can find the area under the curve  $y=x^2$ , between x=2 and x=3, using Leibniz's idea that  $\int_a^b f(x) dx$  is the sum of the areas of many thin rectangles.



Consider splitting the area into a series of thin rectangles.



Height of pencil line is from the x-axis up to the graph. When the area is split into two rectangles the width of each is 0.5. The height of the first rectangle is f(2.25) and the height of the second rectangle as f(2.75). The two distinct areas are then  $0.5 \times f(2.25)$  and  $0.5 \times f(2.75)$ . Calculate these two values:

$$0.5 \times f(2.25) = 0.5 \times 5.0625 = 2.53125$$
  
 $0.5 \times f(2.75) = 0.5 \times 7.5625 = 3.78125$ 

The total area under the curve is estimated to be

$$2.53125 + 3.78125 = 6.3125$$

Repeat the process, this time splitting the area into four rectangles. The width of each rectangle is then 0.25, and their heights are f(2.125), f(2.375), f(2.625) and f(2.875). Check that the total area is now 6.328 125. This process could be repeated many times. In each case the width of each rectangle gets much smaller. As the width becomes infinitesimally small (as  $\delta x \rightarrow 0$ ), the heights become f(x) for all values of x between x = 2 and x = 3. The total area of all the rectangles then becomes a better approximation to the exact area under the curve. The area can be calculated as

$$\sum_{i=1}^{3} f(x) \, \delta x$$

where this expression represents the sum of the areas of each rectangle with height f(x) and width  $\delta x$ , between x = 2 and x = 3.

The limit as 
$$\delta x \to 0$$
 of  $\sum_{x=0}^{3} f(x) \, \delta x$  is  $\int_{0}^{3} f(x) \, dx$ .

In general, adding the areas of all these rectangles gives the area under the graph between x = a and x = b as

area of the shaded region = 
$$\int_{0}^{b} f(x) dx$$
  $\triangleleft$  Learn this result.

We call 'b' the upper limit of the integral and 'a' the lower limit of the integral. An integral with limits is a definite integral. The shaded area under the curve  $y = x^2$  is given by  $\int_0^3 x^2 dx$ .

$$\int_{2}^{3} x^{2} dx = \left[\frac{1}{3}x^{3}\right]_{2}^{3}$$

$$= \left(\frac{3}{2}\right) - \left(\frac{3}{3}\right)$$

$$= \left(\frac{3}{2}\right) - \left(\frac{3}{3}\right)$$

$$= \left(\frac{3}{2}\right) - \left(\frac{3}{3}\right)$$

= 12 = 61

So the area under the curve is 61 square units. Compare this to the result for four rectangles.

Graphi

calcula pack

down for a definite

gives the area under graph between x = 0x = 3, and x = 0 and the second from the gives the area under graph between x = 2

### Example 1



The graph shows the curve y = (x - 1)(x - 2).

- a Find  $\int_0^1 (x-1)(x-2) dx$  and  $\int_1^2 (x-1)(x-2) dx$ . Comment on your answer.
- b What would you expect \( \int\_{0}^{2}(x-1)(x-2) \) dx to equal?
  c. Find the area of the shaded region.

#### Solution

To use integration first express y as a polynomial in x.

$$y = (x-1)(x-2) = x^2 - 3x + 2$$

$$\int_{0}^{1} (x - 1)(x - 2) dx = \int_{0}^{1} (x^{2} - 3x + 2) dx$$

$$= \left[\frac{3}{2}x^{3} - \frac{3}{2}x^{2} + 2x\right]_{0}^{1}$$

$$= \left(\frac{1}{2} - \frac{3}{2} + 2\right) - (0 - 0 + 0)$$

$$=\frac{2}{6}-\frac{9}{6}+\frac{12}{6}$$
  
= 5

$$= \frac{2}{6}$$

$$\int_{1}^{2} (x-1)(x-2) dx = \left[\frac{2}{3}x^{3} - \frac{3}{2}x^{2} + 2x\right]_{1}^{2}$$

$$= (\frac{1}{3} \times 8 - \frac{3}{2} \times 4 + 2 \times 2) - (\frac{1}{3} - \frac{3}{2} + 2)$$

$$= \frac{16}{6} - \frac{36}{6} + \frac{24}{6} - \frac{2}{6} + \frac{9}{6} - \frac{12}{6}$$

$$= -\frac{1}{6}$$

The value of the integral between x=1 and x=2 is negative. This is because the region bounded by the curve, x=1, x=2 and the x-axis lies below the x-axis.

b Since integration is a summation process we might expect that

$$\int_{0}^{2} (x-1)(x-2) dx = \int_{0}^{1} (x-1)(x-2) dx + \int_{1}^{2} (x-1)(x-2) dx$$

$$= \frac{5}{6} + (-\frac{2}{6}) = \frac{4}{6} = \frac{2}{3}$$

Integrating each separately.

The area between the curve y=(x-1)(x-2) and the x-axis between x=0 and x=1 is  $\frac{3}{6}$ 

x = 0 and x = 1 is  $\frac{2}{6}$ square units. From the first part of the

The value of the integral between x = 1 and x = 2is  $-\frac{1}{6}$ . This is interpreted as an area of  $\frac{1}{6}$  square units below the x-axis. c Looking at the sketch of the function, we can avoid adding the areas algebraically. The graph shows that part of the curve is below the x-axis, and for this region the integral is negative. Adding the integrals, as in b, would give too small a result for the area. Therefore.

total shaded area =  $\frac{5}{6} + \frac{1}{6} = \frac{6}{6} = 1$  square unit.

### Example 2



Find the area of shaded region enclosed between  $g(x) = 8 + 2x^{\frac{1}{2}}$  and  $h(x) = \frac{1}{2}x^2$ .

#### Solution

The area is symmetrical, with the y-axis as the line of symmetry. So we can find the area of the whole shaded region by doubling the area of the part of the region lying in the first quadrant. Call the area under the curve g(x) area A. and the area under the curve h(x) area B.



$$\begin{split} & \text{area } A = \int_0^1 (8 + 2x^4) \, dx & \text{area } B = \int_0^1 \frac{1}{4}x^2 \, dx = \frac{1}{4} \int_0^2 x^2 \, dx \\ & = \left[8x + \frac{1}{3}x^3\right]_0^8 & = \frac{1}{4} \left[\frac{1}{4}x^3\right]_0^8 \\ & = \left[8x + \frac{1}{3}x^3\right]_0^8 & = \frac{1}{4} \left[\left(\frac{1}{3} \times 512\right) - 0\right] \\ & = \left(64 + 5 \times 32\right) - (0 + 0) = \frac{512}{4} \end{aligned}$$

A sketch of the curve will always give you indication of whether the curve crosses the must calculate the ar

of the regions above below the axis separately, and then them together to find

part of the curve who

the v-axis.

On the diagram, noti point where g(x) and b(x) cross. The x-coordinate is 8, so require the area betw

x = 0 and x = 8. Recall that  $\int kf(x) dx = k \int f(x) dx$  So the area of the shaded region =  $2 \times (area \ A - area \ B)$ =  $2 \times (\frac{512}{2} - \frac{128}{2}) = \frac{1292}{2}$ 

Area of the shaded region = 119.47 square units (2 d.p.).

### Example 3



The graph shows a sketch of the curve  $y = x(x-2)^2$ .

- a Find the coordinates of P.
- b Find the shaded area.

#### Solution

$$y = x(x-2)^2$$
  
=  $x(x^2 - 4x + 4)$ 

$$=x^3-4x^2+4x$$

$$\Rightarrow \frac{dy}{dz} = 3x^2 - 8x + 4$$

P is a local maximum point, so  $\frac{dy}{dx} = 0$  at P. That is,  $3x^2 - 8x + 4 = 0$ .

This is a quadratic equation. The coefficient of  $x^2$  is larger than 1, so factorise and solve it using PAFF:

$$3x^2 - 8x + 4 = 3x^2 - 2x - 6x + 4$$
  
=  $x(3x - 2) - 2(3x - 2)$   
=  $(3x - 2)(x - 2)$ 

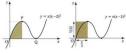
When  $3x^2 - 8x + 4 = 0$ , (3x - 2)(x - 2) = 0. So  $x = \frac{2}{3}$  or x = 2.

Substituting each of these coordinates into the original equation, we find that the coordinates of P are  $(\frac{2}{3},\frac{32}{27})$  and the coordinates of Q are (2,0).

P: 3 × 4 = 1 A: -8 F: -2, -6

Check these against the sketch of the graph.

b The area of the shaded region can be found by subtracting the area of the region below the graph between x = 0 and x = <sup>2</sup>/<sub>3</sub> from the area of the rectangle with corners (0,0), (0, <sup>2</sup>/<sub>3</sub>), P (<sup>2</sup>/<sub>3</sub>, <sup>2</sup>/<sub>3</sub>) and (<sup>2</sup>/<sub>3</sub>, 0).



The area of the rectangle is  $\frac{2}{3} \times \frac{32}{27} = \frac{64}{81}$ 

The area under the graph  $y=x(x-2)^2$  between x=0 and  $x=\frac{2}{3}$  is given by

$$\begin{split} \text{area} &= \int_0^1 (x^3 - 4x^2 + 4x) \, dx \\ &= \left[ \frac{1}{4} x^4 - \frac{6}{3} x^3 + 2x^3 \right]_0^{\frac{1}{6}} \\ &= \left( \frac{1}{4} \times \frac{26}{16} - \frac{3}{3} \times \frac{27}{27} + 2 \times \frac{2}{6} \right) - (0 - 0 + 0) \\ &= \frac{4}{31} - \frac{24}{61} + \frac{26}{61} \\ &= \frac{24}{32} \end{split}$$

So the area of the original shaded region =  $\frac{64}{81} - \frac{44}{81} = \frac{20}{81}$  square units.

### Complete Advanced Level Mathematics: Pure Mathematics

4 Use integration to find the area of the shaded region in each of the following:









- 5 Evaluate the following definite integrals:
  - - a  $\int_{1}^{2} (5x^4 6x^3 + x + 1) dx$  b  $\int_{-1}^{3} (x^2 x 6) dx$
    - c  $\int_{-1}^{1} (10 2x + 6x^2) dx$  d  $\int_{-1}^{1} (1 10x^4) dx$
- 6 The graph shows a sketch of the curve y = (2 x)(x 4). Write down the coordinates of
  - P and Q.
  - b Explain why it is necessary to evaluate two separate integrals in order to calculate the area of the shaded region.
    - c Calculate the area of the shaded region.



- 7 This diagram shows the curve  $v = x^2 - 3x + 3$  and the line y = 2x - 1.
  - Find the value of  $\int_{1}^{4} (x^2 - 3x + 3) dx$ 
    - b Find the value of  $\int_1^4 (2x-1) dx$ . Hence find the area of the shaded region.



8 a Find the area of this shaded region.



b Now find the area of this pattern.



- Evaluate the following integrals:
  - a  $\int_{1}^{4} \frac{2}{\sqrt{x}} dx$ c  $\int_{2}^{6} \frac{4}{x^{3}} dx$

**b**  $\int_{0}^{16} (\sqrt{x} - 1) dx$ **d**  $\int_{1}^{4} 5x^{\frac{3}{2}} dx$ 

### Contextual

1 Find the area of the shaded region in each of the following:



- The diagram shows the vertical section through a tunnel 14 m long. The roof is an arc modelled by the equation  $y = 6 - 0.08x^2 - 0.0006x^4.$ 
  - a Find the area of the cross-section.
     b Find the volume of the tunnel.



### 9.3 The Area Between the Vertical Axis and a Curve

## Exercise

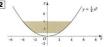
area.

### Technique 1 The graph shows the line v = x + 1.

Find x in terms of y. Use integration to find the sum of an infinite number of horizontal rectangles that describe the shaded

Check your answer for b by finding the shaded area as the area of a





The graph shows the curve  $v = \frac{1}{2}x^2$ . Express x in terms of v and then calculate the area of the shaded region.

3 The graph shows the curve  $y = x^3$ . Express x in terms of v. Hence calculate the area of the shaded region, correct to two decimal places.

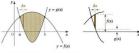


4 The curve shows the graph of  $v = \sqrt[3]{(x-1)}$ . Express x in terms of y. Hence calculate the exact area of the shaded region.





# 9.4 The Area Between Two Curves



The shaded region is enclosed between the graphs of y=f(x) and y=g(x). Divide the area into vertical strips. Notice that when f(x)>g(x) the length of each strip is f(x)=g(x). This is the case for all values of x between x=a and x=b. Adding together the areas of all the thin rectangular strips gives the area of the shaded region.

The area between the two curves is  $\sum_{x=0}^{b} (f(x) - g(x)) \delta x$ . As  $\delta x \to 0$  and the width of each strip becomes extremely small, the area

can be calculated by integration. The area between the two curves is  $\int_{-b}^{b} (f(x) - g(x)) \, \mathrm{d}x.$ 

Example 1

Find the area enclosed between the curves  $v = x^3 + 2$  and  $v = 3x^2 - 2$ .



### Solution

Since  $y = x^3 + 2$  is greater than  $y = 3x^2 - 2$  between x = -1 and x = 2, use

area = 
$$\int_{-a}^{b} (f(x) - g(x)) dx$$

where  $f(x) = x^3 + 2$  and  $g(x) = 3x^2 - 2$ .

 $(f(x) - g(x)) \times \delta x$ 

useful if one of the

#### Solution





The solid formed by the rotation

volume = 
$$\int_{0}^{b} \pi y^{2} dx$$

First find an expression for  $y^2$  in terms of x.

$$y = x^2 + 1$$
  
 $\Rightarrow y^2 = (x^2 + 1)^2 = x^4 + 2x^2 + 1$ 

$$\Rightarrow y^2 = (x^2 + 1)^2 = x^4 + 2x^2 + 1$$

So volume of revolution = 
$$\int_{-1}^1 \pi(x^4+2x^2+1) dx$$
 = 
$$\pi \int_{-1}^1 (x^4+2x^2+1) dx$$

$$= \pi \left[ \frac{1}{5}x^5 + \frac{2}{3}x^3 + x \right]_{-1}^{1}$$
  
=  $\pi \left\{ \left( \frac{1}{5} + \frac{2}{3} + 1 \right) - \left( -\frac{1}{3} - \frac{2}{3} - 1 \right) \right\}$ 

 $=\pi(38+38)=561$ 

Notice that this exact result can be approximated to 11.7 cubic units (3 s.f.).

#### Rotation about the y-axis

Find the volume generated when the shaded area bounded by y = f(x) and the y-axis, from v = a to v = b, is rotated about the v-axis.

The width of the approximate rectangle, δv. is a small measurement along the v-axis. Rotating the shaded area about the v-axis forms a solid.

The rectangle becomes a thin horizontal disc, of depth  $\delta y$  and radius x.



indicates that the integration is carried out with respect to x.

The limits, a = -1 and b = 1, are read from the



The volume of the thin disc is  $\pi r^2 \delta v$ .

The volume of the solid of revolution is found by adding together the volumes of all the discs. Volume of solid revolution  $=\sum_{y=a}^{b}\pi x^2 \delta y$ , where  $\delta y$  is infinitesimally small. For the volumes of the discs.

volume of revolution about the y-axis =  $\int_a^b \pi x^2 dy$ 

Compare this result with the formula for rotation about the x-axis. In particular notice the  $y^2dx$  and  $x^2dy$  terms.

Recall that dy mean integrate 'with resp to' y.

### Example 2



Find the volume of the solid generated by rotating the shaded region about the y-axis.

#### Solution

Make a sketch of the solid.



It is a cylinder with a bowl shape removed, so we can find its volume by subtracting the volume of the bowl shape from the volume of the cylinder.

volume of cylinder = 
$$\pi r^2 h$$
  
=  $\pi \times 1^2 \times 2$ 

= 2π cubic units

The coordinates of the curve at each edge of the shaded region are (0, 1)and (1, 2), so the bowl shaped solid is obtained by rotating the region between the y-axis and the curve between y = 1 and y = 2 through 360°.

 $x = 1, y = 1^2 + 1 = 1$ the height of the sol 2 units.



To use the equation that we know for volumes of revolution around the y-axis, we need to find the equation of the curve in terms of x<sup>2</sup>



$$y = x^{2} + 1 \quad \Rightarrow \quad y - 1 = x^{2}$$

$$volume = \int_{1}^{2} \pi x^{2} dy$$

$$= \int_{1}^{2} \pi (y - 1) dy$$

$$= \pi \left[ \frac{1}{2}y^2 - y \right]_1^2$$
  
=  $\pi \left[ \left( \frac{1}{2} \times 4 - 2 \right) - \left( \frac{1}{2} \times 1 - 1 \right) \right]$ 

 $= \tfrac{1}{2}\pi \text{ cubic units}$  So the required volume  $= 2\pi - \tfrac{1}{2}\pi = \tfrac{3}{2}\pi \text{ cubic units}.$ 

### Example 3

Find the volume generated when the region bounded by the curve  $y=x^3$ , the y-axis, and the lines y=1 and y=3 is rotated through four right angles about the y-axis.

### Solution

First, sketch the curve and the solid of revolution formed by the rotation about the v-axis.



volume of revolution = 
$$\int_0^1 \pi x^2 dy$$
  
=  $\pi \int_0^1 x^2 dy$   
=  $\pi \int_0^1 y^3 dy$   
=  $\pi \left[ \frac{1}{2} y^3 \right]_0^2$   
=  $\pi \left[ \frac{1}{2} y^3 \right]_0^2$   
=  $\pi \left[ (2 \times 3^3) - (2 \times 1) \right]$ 

 $= \frac{3\pi}{5}(3^{\frac{3}{2}} - 1)$ = 9.88 cubic units (3 s.f.)

$$y = x^3 \Rightarrow y^{\frac{1}{2}} = x$$
  
Then  $x^2 = (y^{\frac{1}{2}})^2$   
 $= y^{\frac{3}{2}}$ 

Volume = 4.71 cubic units (3 s.f.)

### 9.5 Volumes of Revolution Exercise

### Technique

1 Find the volume of each of the solids formed by rotating the following areas about the x-axis, showing clearly the necessary integration:







Sketch the solid formed when the area under the curve  $y = x^3 + 1$ , from x = -1 to x = 2, is rotated through four right angles about the x-axis. Calculate the volume of this solid.





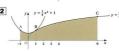
Find the volume of the solid formed when the shaded area is rotated about the x-axis.



### Contextual

1 A ball has a diameter of 6 cm. Its volume can be calculated using integration. The equation of a circle of radius 3 is  $x^2 + y^2 = 9$ . Find the volume of the hemisphere formed when the area under the curve between x = 0 and x = 3 is rotated through one complete turn about the x-axis. Hence find the volume of the ball. Check this result using the formula for volume of a sphere.





A small vase is formed when the shaded region is rotated through one complete turn about the x-axis. The arc AB is the part of the curve  $y = \frac{1}{4}x^2 + 1$  between x = -1 and x = 1. The arc BC is the part of the curve  $y = \frac{5}{4}\sqrt{x}$  between x = 1 and x = 9. Find the volume of the vase.



A funnel is formed when the shaded region, bounded by the line y = x - 1, the y-axis, and the lines y = 0 and y = 4, is rotated through one complete turn about the v-axis. Find the volume of the funnel.

- c Recall that  $\frac{d}{dx}(\sin(ax+b)) = a\cos(ax+b)$ This means  $\int \cos(ax+b) dx = \frac{1}{a}\sin(ax+b) + c$
- d ∫ sin² x dx is not one of the standard integrals. Use the double angle formula from Chapter 3 to rewrite sin² x in terms of a multiple angle.

$$\cos 2x = 1 - 2\sin^2 x$$

$$\Rightarrow 2\sin^2 x = 1 - \cos 2x$$

$$\Rightarrow \sin^2 x = \frac{1}{2} - \frac{1}{2}\cos 2x$$

Now 
$$\int \sin^2 x \, dx = \int (\frac{1}{2} - \frac{1}{2} \cos 2x) \, dx$$

$$= \frac{1}{2} \int (1 - \cos 2x) \, \mathrm{d}x$$

$$= \frac{1}{2}(x - \frac{1}{2}\sin 2x) + c$$
$$= \frac{1}{2}x - \frac{1}{2}\sin 2x + c$$

### Example 2

Find the area enclosed by the x-axis, y-axis and the curve  $y = 1 + \sin x$ .

#### Solution



Sketch the curve to establish the limits.

area = 
$$\int_{0}^{3\pi/2} (1 + \sin x) dx$$
=  $[x - \cos x]_{0}^{3\pi/2}$ 
=  $\left[\frac{3\pi}{2} - \cos\left(\frac{3\pi}{2}\right)\right] - (0 - \cos 0)$ 
=  $\frac{3\pi}{2} - 0 - 0 + 1$ 
=  $\frac{3\pi}{2} + 1$ 

Since we could just write a new constant of integration equal to  $\frac{1}{2}c$ , there is no need to include c in the part of the integral multiplied by  $\frac{1}{2}$ .

> Notice the translation of the sine curve.

Recall the special angles in radian form;  $\cos(\frac{3\pi}{2})=0.$ 

### Example 3

Evaluate 
$$\int_{0}^{\pi/12} (\cos 4x - 6\sin 2x) dx.$$

#### Solution

$$\begin{aligned} \max_{\beta} & & \text{(cons $4x$ $-6$ sin $2x$)} \, dx = \left[\frac{1}{8} \sin 4x - 6 \times \frac{1}{8} (-\cos 2x)\right]_{0}^{8/12} \\ & = \left[\frac{1}{8} \sin 4x + 3\cos 2x\right]_{0}^{16/12} \\ & = \left[\frac{1}{8} \sin \left(\frac{x}{3}\right) + 3\cos \left(\frac{x}{6}\right)\right] \\ & - \left(\frac{1}{8} \sin 0x + 3\cos 0\right) \\ & = \left(\frac{1}{4} \times \frac{\sqrt{3}}{2}\right) + \left(3 \times \frac{\sqrt{3}}{2}\right) - 0 - 3 \\ & = \frac{\sqrt{3}}{6} \times \frac{3}{2} - 3 \end{aligned}$$

### Example 4

Find the volume of the solid formed when the shaded region is rotated through 360° about the x-axis.



Since the solid has been formed by a rotation about the x-axis, use

$$volume = \int_0^b \pi y^2 \, \mathrm{d}x$$

We know that  $v = 2 \sin 2x$ , so  $v^2 = 4 \sin^2 2x$ . From the graph, the limits are a = 0 and  $b = \frac{1}{2}\pi$ .

volume = 
$$\int_{0}^{\pi/4} \pi(4 \sin^{2} 2x) dx$$
  
=  $4\pi \int_{0}^{\pi/4} \sin^{2} 2x dx$ 

$$=4\pi \int_0^{\pi/4} \sin^2 2x \, \mathrm{d}x$$

Take care with the s changes.

Special angles

$$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

$$\cos\frac{\pi}{6} = \frac{\sqrt{3}}{3}$$

Taking the constant multipliers out of th integrand.

The integrand contains  $\sin^2 2x$ , which we can't integrate directly. We must use the multiple angle formula to write it in terms of double angles.

$$\cos 2A = 1 - 2\sin^2 A \Rightarrow \sin^2 A = \frac{1}{2} - \frac{1}{2}\cos 2A$$

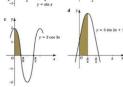
Putting A = 2x gives  $\sin^2 2x = \frac{1}{2} - \frac{1}{2}\cos 4x$ 

volume = 
$$4\pi \int_{0}^{\pi/4} \sin^2 2x \, dx$$
  
=  $4\pi \int_{0}^{\pi/4} (\int_{-\frac{\pi}{2}}^{\pi} \cos 4x) \, dx$   
=  $2\pi \int_{0}^{\pi/4} (1 - \cos 4x) \, dx$   
=  $2\pi \left[ (\pi - \frac{1}{4} \sin x) - (0 - \frac{1}{4} \sin 0) \right]$   
=  $2\pi \times (\frac{\pi}{4} - 0 - 0 + 0)$   
=  $2\pi \times (\frac{\pi}{4} - 0 - 0 + 0)$ 

Take a factor of  $\frac{1}{2}$  outside the integral.

### 7 Find the areas of the following shaded regions:





### 8 Find:

a  $\int \sin^2 x \, dx$ 

**b**  $\int \cos^2 x \, \mathrm{d}x$ 

### Contextual



The graph shows  $y = \sin x$ .

- a Explain why  $\int_{-\infty}^{2\pi} \sin x \, dx = 0$ .
- b What area is represented by sinx dx? Evaluate this integral.
- c Use your answer to b to calculate the area of the shaded region.
- A particle moves in a straight line. Its velocity at time t is given by  $v = 12\cos 3t$ . Find an expression for the displacement, s, after t seconds, if s = 0 when t = 0.

# Consolidation

### 1 Find:

find:  $\int (2x-3)^2 dx$ 

 $\int (2x-3)^2 dx$ the equation for a curve, y = f(x), for which  $\frac{dy}{dx} = 6x - 1$  and which passes through the point (1.9).

**2** The sketch shows the graph of y = x(3 - x).

a Find \( \int x(3-x) \) dx.
 b Hence calculate the area between the curve and the x-axis.

y = x(3-x) y = x(3-x) y = x(3-x)

The sketch shows a graph of the curve  $v = 5x^4 - x^5$ .

a Find <sup>dy</sup>/<sub>dx</sub> and calculate the coordinates of the stationary points.

 $y = 5x^4 - x^5$ 

b Calculate the area of the shaded region enclosed between the curve and the x-axis.

c Evaluate  $\int_0^6 x^4 (5-x) dx$ , and comment on your result.

(MEI)



The diagram shows part of the curve  $y = 7 + 6x - x^2$ . Find:

- the coordinates of the points P, Q, R and S.
- b the area of each shaded region.

(UCLES)



The sketch shows the graph of  $y = x^3 - x$  together with the tangent to the curve at the point A (1,0).

- a Use differentiation to find the equation of the tangent to the curve at A and verify that the point B where the tangent cuts the curve again has coordinates (-2, -6).
- b Use integration to find the area of the region bounded by the curve and the tangent (shaded in the diagram), giving your answer as a fraction in its lowest terms.

(ULLES)

**6** a Find the area of the region enclosed by the curve  $y = \frac{12}{x^2}$ , the x-axis and the lines x = 1 and x = 3.

b The area of the region enclosed by y = <sup>12</sup>/<sub>x<sup>2</sup></sub>, the x-axis and the lines x = 2 and x = a, where a > 2, is 3.6 units squared. Find the value of a.

(UCLES)



The diagram shows part of the curve  $y=\sqrt{1+x^3}$ . Calculate the volume formed when the shaded region is rotated through 360° about the x-axis.



c Evaluate 2 cos 2t dt.

c Evaluate 0 2 cos 2t dt

d Sketch the curve y = 1 + cos x. Find the area enclosed between the axes and curve from x = 0 to x = π.





The shape of a glass paperweight is that of the solid formed by rotating about the y-axis the part of the curve  $3x^2 + 2y^2 - 12y = 32$  for which v > 0 (in centimetres).

- Verify that the paperweight is 8 cm high.
- Calculate the volume of the paperweight. You may leave  $\pi$  in your answer.

(SMP)



Show that  $(\cos x - \sin x)^2 = 1 - \sin 2x$ .



The diagram shows part of the curve  $y = \cos x - \sin x$ . Find the volume generated when the shaded region is rotated through a complete revolution about the x-axis. (UCLES)

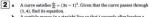
#### Exercise B

t = 0.

1 a Find 
$$\int \left(\sqrt{x} + \frac{12}{x^2}\right) dx$$
.

**b** Hence evaluate 
$$\int_4^g \left(\sqrt{x} + \frac{12}{x^2}\right) dx$$
.

(NEAB)



(1, 4), find its equation. b A particle moves in a straight line so that t seconds after leaving a fixed point A, its velocity  $v \text{ (m s}^{-1}\text{)}$  is given by  $v = t^2 - 4t + 3$ . Find the displacement, s metres, for the particle at t seconds, if s = 0 when

#### Complete Advanced Level Mathematics: Pure Mathematic

The sketch shows the curve  $y = x^3$ . Find a if the area of the shaded region is 1 square unit.



The diagram shows the curve  $y = x^2$ , and the lines x = 4 and y = 8 - 2x.



a Find the coordinates of A.
 b Find the area of the shaded region.

- a On the same graph, sketch the line with equation y = x + 1 and the curve with equation  $y = 5x x^2 + 6$ . Values of x should be taken from x = -2 to x = +8. Shade in the region between the line and the curve. b Calculate the points of intersection of the line y = x + 1 and the curve
  - $y = 5x x^2 + 6$ . c Use integration to calculate the area of the region that you shaded in a.
  - c Use integration to calculate the area of the region that you shaded in a. (MEI)

A cup has the shape made by rotating the graph of y = 3x², for 0 ≤ x ≤ 1, through four right angles about the v-axis. Find the volume of the cup.

(UCLES)

The graph shows part of the curve y = 3 cos.x. The shaded region is rotated about the x-axis through four right angles. Calculate the volume formed.

giving your answer in terms of x.



# **Applications and Activities**

1 Volume of a pyramid

It has been documented that the Greek Democritus (460–361 sc.) may have calculated the volume of a pyramid by considering it as an infinite number of this cross-sections. Let A(z) be the area of the horizontal cross-section z cm from the top, and  $\delta z$  be the thickness of the cross-section.





- a Find A(z) in terms of z, a and h.
- b Investigate how to calculate  $\sum_{z=0}^{h} A(z) \delta z$ . c Find the volume of the pyramid.
- 2 Area under a curve

The area under the curve  $y = x^2$  between x = 0 and x = 1 is divided up into hrectangles of equal width.



- a Using  $\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$ , show that the area of all the rectangles can be written  $\frac{1}{6h^2}(h-1)(2h-1)$ .
- **b** Investigate the total area under the curve  $y = x^2$  between x = 0 and x = 1 for different values of h.
- c Explain why  $\int_{0}^{1} x^{2} dx > \frac{1}{6h^{2}}(h-1)(2h-1).$
- d By writing <sup>1</sup>/<sub>6h<sup>2</sup></sub> (h − 1)(2h − 1) in a different form, deduce its value as h → ∞. Comment on your answer.



This can be investigated using a graphical calculator or spreadsheet.

# 10 Trigonometry II

### What you need to know

- The compound and double angle formulas.
  - How to convert angle measurements between degrees and radians.
  - The trigonometric ratios for the 'special angles'.

### Review

c tan 2A

iii 315°

1 Write down the compound angle expansions for the following:

a sin(A + B) d  $cos(x + 60^{\circ})$ b cos(A - B) e  $sin(x - 30^{\circ})$ 

2 a Convert the following angles into radians, leaving the answers in terms of  $\pi$ :

i 45° iv 220° ii 120° v 400°

 $f \tan(x-45^\circ)$ 

vi -40°

b Convert the following angles into degrees:

i § iv ± 20 ii ± v 11/2 iii 5± vi -21/2

3 Without using a calculator, write down the exact value of the following:

a sin 60° d sin <sup>2</sup>π
b tan π
e tan π

b tan π e tan π c cos 90° f cos 120°

# 10.1 The Factor Formulas

In Chapter 3 we established the concept of an identity as an equation that is true for all values of the variable. One set of trigonometric identities is known as the factor formulas. They convert expressions like  $\sin A + \sin B$ into a product; similar to factorising the expression. Another common name for these identities is sum and product formulas.

$$\sin C + \sin D = 2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$
[1]

$$\sin C - \sin D = 2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$$

$$\cos C + \cos D \equiv 2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$
[3]

$$\cos C - \cos D = -2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$$
[4]

These four identities have a straightforward derivation from the compound angle formulas encountered in Chapter 3. To derive identity [1], recall the formulas:

$$\sin(A+B)=\sin A\cos B+\cos A\sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

Adding these two equations,

$$\sin(A+B) + \sin(A-B) = 2\sin A \cos B$$

Now let C = A + B and D = A - B. The LHS becomes  $\sin C + \sin D$ , and we have C + D = (A + B) + (A - B) = 2A and C - D = (A + B) - (A - B) = A + B - A + B = 2B

So 
$$A = \frac{1}{2}(C + D)$$
 and  $B = \frac{1}{2}(C - D)$ 

The RHS of the equation becomes  $2 \sin[\frac{1}{2}(C+D)] \cos[\frac{1}{2}(C-D)]$ 

So 
$$\sin C + \sin D = 2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

Use the same technique to derive identity [2].

Subtract the result sin(A - B) from sin(A + B).

[2]

To derive identities [3] and [4] we need to use the compound angle formulas for cosine.

$$cos(A + B) = cos A cos B - sin A sin B$$
  
 $cos(A - B) = cos A cos B + sin A sin B$ 

Identity [3] can be derived by adding these results.

$$cos(A+B) + cos(A-B) = 2 cos A cos B$$

Now let C = (A + B) and D = (A - B) as before. We find that:

$$\cos C + \cos D = 2\cos \left(\frac{C+D}{2}\right)\cos \left(\frac{C-D}{2}\right)$$

Note carefully the symmetries and patterns in the four factor formulas. They can often be more easily remembered if you say the words as well as write the symbols, for example:

'sine plus sine equals twice the sine of half the sum, cos of half the difference'.

The factor formulas provide a powerful mathematical tool for dealing with trigonometric functions. They can be used to solve equations, simplify expressions and prove more identities.

### Example 1

Find sin 105° - sin 15°, without using a calculator.

# Solution

$$\sin 105^{\circ} - \sin 15^{\circ} = 2 \cos \frac{1}{2} (105^{\circ} + 15^{\circ}) \sin \frac{1}{2} (105^{\circ} - 15^{\circ})$$
  
=  $2 \cos 60^{\circ} \sin 45^{\circ}$   
=  $2 \times \frac{1}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}$ 

### Example 2

Prove the following identities:

- a  $\cos 2\theta + \cos 3\theta + \cos 4\theta \equiv \cos 3\theta (1 + 2\cos \theta)$
- b  $\frac{\sin 3\theta + \sin \theta}{\cos 3\theta + \cos \theta} = \tan 2\theta$

#### Solution

a Notice that the LHS has three terms, one of which is cos 30. This also appears on the RHS so it would be sensible to apply one of the factor formulas on the other two terms. Derive identity [4], by subtracting the cosine results instead of adding them.

Alternatively, 'sine plus sine equals twice the sine the semi sum, cos the semi difference'. Write down a phrase you will remember for the other formulas, taking care to spot the negative signs.

Using the factor formula for the difference of two sines and recalling special angles.

LHS = 
$$\cos 2\theta + \cos 3\theta + \cos 4\theta$$
  
=  $\cos 4\theta + \cos 2\theta + \cos 3\theta$   
=  $2\cos 3\theta\cos \theta + \cos 3\theta$ 

$$= \cos 3\theta (2\cos \theta + 1)$$

$$= \cos 3\theta (2\cos \theta + 1)$$

 $\cos 2\theta + \cos 3\theta + \cos 4\theta \equiv \, \cos 3\theta (1 + 2\cos\theta)$ 

$$LHS = \frac{\sin 3\theta + \sin \theta}{\cos 3\theta + \cos \theta}$$

$$= \frac{2 \sin 2\theta \cos \theta}{\cos 3\theta + \cos \theta}$$
$$= \frac{2 \sin 2\theta \cos \theta}{2 \cos 2\theta \cos \theta}$$

$$=\frac{\sin 2\theta}{\cos 2\theta}$$

$$= \tan 2\theta = RHS$$

$$\frac{\sin 3\theta + \sin \theta}{\cos 3\theta + \cos \theta} \equiv \tan 2\theta$$

# Example 3 Use the factor formulas to express the following as a sum or difference of

two trigonometrical functions:

### Solution

a Notice that 2 sin 2A cos A is a product of two trigonometric terms. Since it contains one sine and one cosine term, it must be the result of summing two sine terms. Compare it with the factor formulas.

If  $\sin x + \sin y = 2 \sin 2A \cos A$ , then

$$x + y = 4A$$
  
and  $x - y = 2A$ 

y = A.

The solutions of these simultaneous equations are x = 3A and

So  $2 \sin 2A \cos A = \sin 3A + \sin A$ 

b —2 sin 4A sin 2A contains two sine terms and a negative sign. The factor formulas suggest that this is a difference of two cosines. Reorder so that the factor formula for th sum of two cosines straightforward to apply.

ctorising.

Apply the factor formulas separately the numerator and denominator.

manhilish manchityton Matari

'Half the sum' must 2A and 'half the

difference' must be .

If  $-2\sin 4A\sin 2A = \cos x - \cos y$ , then

$$x + y = 8A$$
  
and  $x - y = 4A$ 

These simultaneous equations have solutions x = 6A and y = 2A.

So  $-2 \sin 4A \sin 2A = \cos 6A - \cos 2A$ .

### Example 4

Without using a calculator, evaluate 2 cos 75° cos 15°.

### Solution

Notice the two cosine terms. The factor formulas suggest that this is created from the sum of two cosines.

If 
$$2\cos 75^{\circ}\cos 15^{\circ} = \cos x + \cos y$$
, then  $\blacktriangleleft$  Identity 3.

$$x + y = 150^{\circ}$$
  
and  $x - y = 30^{\circ}$ 

These simultaneous equations have solutions  $x = 90^{\circ}$  and  $v = 60^{\circ}$ .

So 
$$2 \cos 75^{\circ} \cos 15^{\circ} = \cos 90^{\circ} + \cos 60^{\circ} = 0 + \frac{1}{2} = \frac{1}{2}$$

When C < D the factor formulas will produce negative angles. Sometimes the ratios could simply be reversed as in Example 5:  $\sin x + \sin 5x = \sin 5x + \sin x$ . In the cases where this is not easily achieved, however, use the following useful results, which can be seen from the granbs for sine and cosine.





sin(-x) = - sin x ◀ Learn these results.

$$\cos(-x) = \cos x$$

These results for negative angles can 'simplify' the factor formulas including negative angles.

### Example 5

Solve:

- $\sin x + \sin 5x = \sin 3x$  for  $0 < x < \pi$
- $\sin 3x \sin 5x = \sin x$  for  $0 \le x \le 180^\circ$ .

#### Solution

a Notice the three distinct angles, x, 3x and 5x. The factor formula will help reduce this to a problem with fewer angles. The equation is easier to manipulate if rewritten as

 $\sin 5x + \sin x = \sin 3x$ 

Then

$$2 \sin \frac{1}{2} (5x + x) \cos \frac{1}{2} (5x - x) = \sin 3x$$

$$\Rightarrow 2 \sin 3x \cos 2x = \sin 3x$$

$$\Rightarrow 2\sin 3x\cos 2x - \sin 3x = 0$$

$$\sin 3x(2\cos 2x - 1) = 0$$

So 
$$\sin 3x = 0$$
 or  $2\cos 2x - 1 = 0$   
 $\sin 3x = 0$  or  $\cos 2x = \frac{1}{2}$ 

$$\sin 3x = 0 \Rightarrow 3x = 0.\pi.2\pi.3\pi...$$

$$\Rightarrow x = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, ...$$
  
 $\Rightarrow 2x = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{13\pi}{3}, ...$   
 $\Rightarrow x = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{2\pi}{3}, \frac{13\pi}{3}, ...$ 

$$\cos 2x = \frac{1}{2} \Rightarrow 2x = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}, \dots$$

The values of x within the given range are: 0, 5, 5, 2x, 3x, x.

b Instead of rearranging  $\sin 3x - \sin 5x = \sin x$  to make all terms positive (giving the equation  $\sin 3x = \sin 5x + \sin x$ , which we solved in a), we can apply the factor formulas to the original equation, and create a negative angle.

$$\sin 3x - \sin 5x = \sin x$$

$$\Rightarrow 2\cos 4x\sin(-x) = \sin x$$

Using the result sin(-x) = -sin x, gives

$$-2\cos 4x \sin x = \sin x$$

$$\Rightarrow 2\cos 4x \sin x + \sin x = 0$$

$$\Rightarrow \sin x(2\cos 4x + 1) = 0$$

range in the questio

# 10.1 The Factor Formulas Exercise

# Technique

### recnnique

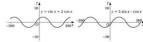
- 1 Solve the following equations for  $0^{\circ} \le x \le 360^{\circ}$ :
  - a  $\sin x + \sin 2x + \sin 3x = 0$ b  $\sin 5x - \sin x = 0$
  - c  $\cos x + \cos 3x + \cos 5x = 0$ d  $\sin 3x - \sin x = \cos 2x$
- **2** Solve the following equations for  $0 \le x \le \pi$ :
  - Solve the following equations  $a \sin x + \sin 2x \sin 3x = 0$ 
    - b  $\sin x + \sin 3x = 2 \sin 2x$ c  $\cos 4x - \cos 2x + \sin 3x = 0$ d  $\cos 5x - \cos x = 0$
- Prove the following identities:
  - a  $\sin \theta + \sin 2\theta + \sin 3\theta \equiv \sin 2\theta (1 + 2\cos \theta)$
  - b  $\frac{\sin 3\theta + \sin 5\theta}{\sin 4\theta + \sin 6\theta} \equiv \frac{\sin 4\theta}{\sin 5\theta}$
  - c  $\sin 3\theta + \sin \theta = 4 \sin \theta 4 \sin^3 \theta$   $\sin \theta + \sin 2\theta + \sin 3\theta$ 
    - d  $\frac{\sin \theta + \sin 2\theta + \sin 3\theta}{\cos \theta + \cos 2\theta + \cos 3\theta} \equiv \tan 2\theta$  $\cos 3\theta - \cos 5\theta$
  - $e \frac{\cos 3\theta \cos 5\theta}{\sin 4\theta} \equiv 2\sin \theta$
  - Write each of the following as the sum or difference of two trigonometrical functions:
  - a 2 sin 4θ cos 2θ
    - b 2 cos 5θ sin θ
    - c  $2\cos 4\theta \cos 3\theta$ d  $-2\sin 4\theta \sin 3\theta$
    - e  $2\sin 4\theta \sin 2\theta$
  - f  $2 \sin 3\theta \sin 6\theta$
- 5 Without using a calculator find the exact value of the following:
  - a cos 105° cos 15° b sin 75° + sin 15°
  - c 2 sin 37 ½ sin 7 ½
  - d sin 37 ½ cos 7 ½

# 10.2 Functions of the form $f(x) = a \sin x + b \cos x$

Using a graphical calculator and making sure you are working in degree mode, set the range as follows.

$$x_{MIN} = -360$$
  $x_{MAX} = 360$   $x_{SCL} = 60$   
 $y_{MIN} = -10$   $y_{MAX} = 10$   $y_{SCL} = 1$ 

Draw graphs of  $y=a\sin x+b\cos x$  for various values of a and b. Try a=1, b=2 ( $y=\sin x+2\cos x$ ) or a=3, b=-1 ( $y=3\sin x-\cos x$ ). What happens? The resulting graph in each case is a 'sine wave' or 'cosine wave'.



Each can be obtained from the graphs of  $y = \sin x$  or  $y = \cos x$  by performing two transformations:

- a translation parallel to the x-axis by some value (called the phase angle)
- a stretch parallel to the y-axis by some scale factor (called the amplitude).

These results suggest that functions of the form  $f(x) = a \sin x + b \sin x$  can be written in the following forms:

$$R\sin(x \pm \alpha)$$
 or  $R\cos(x \pm \alpha)$ .

where z is the phase angle and B is the amplitude. The values of z and B depend on the values of a and b. This can be interpreted algebraically using the necessary compound angle formulas.

Suppose 
$$f(x) \equiv R \sin(x + \alpha)$$
  
Then  $a \sin x + b \cos x \equiv R \sin(x + \alpha)$ 

So  $a \sin x + b \cos x \equiv R \sin x \cos x + R \cos x \sin x$ 

Now compare the coefficients of  $\sin x$  and  $\cos x$  on each side of this identity.  $\sin x$ :  $a = R \cos x$  [1]

$$\cos x$$
:  $b = R \sin x$ 

Udubarachtich oaschützte







Since the values of q and b are known, the simultaneous equations [1] and [2] can be solved. Dividing equation [2] by equation [1] gives

$$\frac{b}{a} = \frac{R \sin x}{R \cos x}$$

 $\Rightarrow \frac{b}{a} = \tan \alpha$ 

arctan(b). We can also find R. Squaring equations [1] and [2] and then adding them together gives.

$$a^2 + b^2 = R^2 \cos^2 \alpha + R^2 \sin^2 \alpha$$
  
 $= R^2 (\sin^2 \alpha + \cos^2 \alpha)$   
 $= R^2$   
So the amplitude  $R = \sqrt{a^2 + b^2}$ 

# Example 1

Write  $f(x) = 3 \sin x + 4 \cos x$  in the form  $R \sin(x + \alpha)$  with  $0^{\circ} < \alpha < 90^{\circ}$ . Hence sketch the graph of v = f(x) for  $0^{\circ} \le x \le 360^{\circ}$ .

### Solution

Let  $3\sin x + 4\cos x = R\sin(x + \alpha)$ .

Then  $3 \sin x + 4 \cos x = R \sin x \cos x + R \cos x \sin x$ 

Equating coefficients of sin y and cos y.  $\sin x$ :  $3 = R\cos x$ 

$$\cos x: \quad 4 = R \sin \alpha$$

Dividing equation [2] by equation [1],

$$\frac{4}{3} = \tan \alpha$$

So  $\alpha = \tan^{-1}(\frac{4}{5}) = 53.1^{\circ} (1 \text{ d.p.})$ 

Find B by squaring and adding equations [1] and [2]:

$$3^{2} + 4^{2} = R^{2} \cos^{2} \alpha + R^{2} \sin^{2} \alpha$$

$$\Rightarrow 9 + 16 = R^{2} (\sin^{2} \alpha + \cos^{2} \alpha)$$

$$\Rightarrow 25 = R^{2}$$

$$\Rightarrow R = \sqrt{25} = 5$$

412

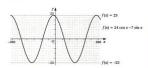
Notice that R will

The principal value can be found using calculator.

[1]

We would usually differentiate f(x) to find its maximum and minimum values, but in this case they can be found without differentiative consider the behaviour of the cosine function. It oscillates between a maximum value of +1 and a minimum value of -1. So  $\cos(x+16.3)$  has a maximum value of +1 and a minimum value of -1. So  $\cos(x+16.3)$  has a stretch factor of 25, f(x) has a maximum value of -25 and a minimum value of -25.

Remember to use radians when differentiating.



### The equation $a \sin x + b \cos x = c$

Equations of the form  $a \sin x + b \cos x = c$ , where a, b and c are real numbers can be solved by first expressing the trigonometric terms as one function (either sine or cosine). The techniques discussed in Chapter 3 can then be applied and appropriate solutions to the equation identified within a given range of values for a

# Example 3

Express  $12\cos x + 5\sin x$  in the form  $R\cos(x - \alpha)$ . Hence solve the equation  $12\cos x + 5\sin x = 10$  for  $0 \le x \le \pi$ .

### Solution

 $\text{Let} \quad 12\cos x + 5\sin x = R\cos(x-\alpha).$ 

Then  $12\cos x + 5\sin x = R\cos x\cos \alpha + R\sin x\sin \alpha$ 

### Equating coefficients of $\sin x$ and $\cos x$ ,

 $\sin x$ :  $5 = R \sin x$  $\cos x$ :  $12 = R \cos x$ 

Dividing equation [1] by equation [2],

$$\frac{5}{12} = \tan x$$
  
 $\Rightarrow x = \tan^{-1}(\frac{5}{27}) = 0.395 (3 s.f.)$ 

 $\Rightarrow \alpha = \tan^{-1}(\frac{2}{12}) = 0.395 (3 \text{ s.f.})$ 

working in radians, since they are used t specify the required range in the question

[1]

[2]

Find R by squaring and adding equations [1] and [2]:

$$5^2 + 12^2 = R^2 \sin^2 \alpha + R^2 \cos^2 \alpha$$
  
 $\Rightarrow 25 + 144 = R^2 (\sin^2 \alpha + \cos^2 \alpha)$ 

$$\Rightarrow$$
 169 =  $R^2$   
So  $R = \sqrt{169} = 13$ 

So 
$$12 \cos x + 5 \sin x = 13 \cos(x - 0.395)$$
.

We know that  $12\cos x + 5\sin x = 10$ . Substituting the new expression we

$$13\cos(x - 0.395) = 10$$
  
 $\cos(x - 0.395) = \frac{10}{2}$ 

have just found.

One possibility for x is given by

$$x - 0.395 = \cos^{-1}(\frac{10}{13}) = 0.693$$
  
So  $x = 0.693 + 0.395 = 1.088$ 

$$x = 1.09 (3 \text{ s.f.})$$



Check that there is only one solution:  $\cos(x - 0.395) = {8 \choose 1}$  has other solutions, including -0.693 and 6.976, but they are outside the given range.

### Maximising and minimising rational functions

Sometimes the denominator of a rational function contains terms involving sin x and cos x. The technique of expressing these two terms as one trigonometric ratio can be useful in identifying the maximum and minimum values of the original function.

### Example 4

Find the maximum and minimum values of 15 cos x = 9 sin x + 2

#### Periodic motion

Periodic motion is any motion that repeats itself in equal intervals of time. Equations used to model this type of motion contain trigonometric terms, because the sine and cosine functions are periodic. Examples of this type of motion include:

- a mass oscillating on the end of a spring:
- a buoy moving up and down on the waves on the surface of the water in a harbour;
- the tip of a sewing machine needle moving up and down.

A special case of this type of motion is known as 'simple harmonic motion'.

### Example 5



A mass is suspended from the end of a spring as shown in the diagram. The mass is oscillating. The distance d cm between the fixture point and the mass is given by

 $d = 17 + 12\sin 2t - 5\cos 2t,$ 

where t seconds is the time after release. Find:

a the maximum and minimum distances from the fixture point reached by the mass

b the time at which the mass is first at its lowest point.

#### Solution

a Notice that the expression for d contains two trigonometric terms.  $12 \sin 2t - 5 \cos 2t$  can be rewritten in the form  $R \sin(2t - x)$ , where  $0 \le x \le \frac{\pi}{2}$ .

 $12\sin 2t - 5\cos 2t \equiv R\sin(2t - \alpha)$ 

 $\equiv R \sin 2t \cos \alpha - R \cos 2t \sin \alpha$ 

Equating coefficients of sin 2t and cos 2t,

 $\sin 2t$ :  $R\cos x = 12$  $\cos 2t$ :  $R\sin x = 5$  Notice that the angle is measured in radians; there is no degree symbol.

[1]

### Contextual

- The depth of water in a leaking storage tank is d cm at time t hours after midnight on Sunday. The value of d is given by  $d = 10 2\sqrt{3} \cos 4t' 2 \sin 4t'$ . Find:
  - a = 10 − 2√3 cos 4r − 2 sin 4r. Find:
    a the least and greatest depth of water possible with this model
- b the time at which the depth first reaches these values.
- A mass is suspended vertically from the end of a spring. It is allowed to oscillate so that the distance of the mass from the fixture point, d cm, is given by d = 23 − 5√3 sin 3t − 5 cos 3t, where t seconds is the time after release. Find:
  - the minimum and maximum distances from the fixture point reached by the mass
    - the times at which these points are first reached by the mass.

# 10.3 General Solutions of Trigonometric Equations

Solve the equation  $\cos\theta = \frac{1}{2}$ , Now check what you have written. A calculator in degree mode given an answer of  $60^\circ$ , but recall that this is only the principal solution. Check that  $\theta = 300^\circ$ ,  $\theta = 420^\circ$  and  $\theta = -60^\circ$  also work. The equation  $\cos\theta = \frac{1}{2}$  had no restriction on the range of values of  $\theta$  that are acceptable as solutions. A check of this equation graphically demonstrates that there is an infinite number of solutions.



These solutions can, however, be written concisely in one algebraic statement. Notice that all of the solutions can be found by adding multiples of  $360^\circ$  to either  $60^\circ$  or  $-60^\circ$ . This means that

$$\theta = 360^{\circ}n \pm 60^{\circ}$$
, where  $n \in \mathbb{Z}$ 

describes all of the possible solutions. The statement  $\theta=360^{\circ}n\pm60^{\circ}$  is the general solution to the equation  $\cos\theta=\frac{1}{n}$ . Substitute appropriate values of n into the general equation to verify that  $\theta=300^{\circ}$ ,  $\theta=420^{\circ}$  and  $\theta=-60^{\circ}$  can be derived from it. Look assin at the structure of the seneral solution. Notice that it has two

distinct parts.

• 360° n multiples of 360°  $(n \in \mathbb{Z})$ 

±60° the principal solution.

This means that the general solution to the equation  $\cos\theta=k$  where  $-1\leq k\leq 1$  can be found by

- finding the principal solution by evaluating cos<sup>-1</sup> k; and
- adding a term to include multiples of  $360^{\circ}$  or  $2\pi$  radians.

### Example 1

Find the general solution, in degrees, of the equation  $\cos\theta=0.3$ .

#### Solution

The principal solution is  $\theta=\cos^{-1}(0.3)=72.5^{\circ}$ The general solution is  $\theta=360^{\circ}n\pm72.5^{\circ}$ , where  $n\in\mathbb{Z}$  Z is the set of all integers (both positive and negative). Now consider the equation  $\tan \theta = k$  where  $k \in \mathbb{R}$ . Notice that all of the solutions can be found by adding on multiples of  $180^\circ$  (or  $\pi$ ) to the principal solution z. This means that the general solution to  $\tan \theta = k$ , where  $k \in \mathbb{R}$ , has the form  $\theta = 180^\circ n + z$ .



# Example 4

Find the general solution, in degrees, of the equation  $\tan\theta=-3$ .

### Solution

The principal solution is  $\theta = \tan^{-1}(-3) = -71.6^{\circ}$ . The general solution is  $\theta = 180^{\circ}n - 71.6^{\circ}$ , where  $n \in \mathbb{Z}$ . Check this solution graphically.



General solutions can also be found in equations involving double angles, multiple angles and both the sine and cosine functions.

### Example 5

Find the general solution to the equation  $\cos \theta = \cos 2\theta$ .

# Solution

One way of solving this would be to expand the double angle using  $\cos 2\theta = 2\cos^2\theta - 1$ . This creates a quadratic in  $\cos\theta$  that can be solved.

Check this by expanding cos 2θ and solving the resulting quadratic. An alternative method is to allow the expression  $2\theta$  to be the principal solution.

If 
$$\cos \theta = \cos 2\theta$$
  
then  $\theta = 2\pi n \pm 2\theta; n \in \mathbb{Z}$ 

Adding and subtracting  $2\theta$  on both sides,

$$3\theta = 2\pi n$$
 or  $-\theta = 2\pi n$   
 $\theta = \frac{2\pi n}{2}$  or  $\theta = -2\pi n$ 

So the general solution is  $\theta = \frac{2}{3}\pi n$ , where  $n \in \mathbb{Z}$ .

### Example 6

Find the general solution of the equation  $3\cos\theta + 4\sin\theta = 1$ .

### Solution

Notice that this equation is of the form  $a\cos\theta+b\sin\theta=c$ . The LHS of the equation can be rewritten using an expression of the form  $R\cos(\theta-z)$ . Check that

$$3\cos\theta + 4\sin\theta = 5\cos(\theta - 53.1^\circ)$$

Now  $3\cos\theta + 4\sin\theta = 1 \Rightarrow 5\cos(\theta - 53.1^\circ) = 1$ 

So 
$$\cos(\theta - 53.1^{\circ}) = \frac{1}{5}$$

The principal solution is given by  $\theta-53.1^\circ=\cos^{-1}(\frac{1}{5})=78.5^\circ$ . So  $\theta-53.1^\circ=360^\circ n\pm78.5^\circ$ ,  $n\in\mathbb{Z}$ .

The general solution for  $\theta$  is in two parts.

$$\theta = 360^{\circ}n + 78.5^{\circ} + 53.1^{\circ}$$
  
 $\theta = 360^{\circ}n + 131.6^{\circ}$ 

and 
$$\theta = 360^{\circ}n - 78.5^{\circ} + 53.1^{\circ}$$

 $\Rightarrow$   $\theta = 360^{\circ}n - 25.4^{\circ}$ , where  $n \in \mathbb{Z}$ 

Notice that the seco

the first set because

multiples of  $\frac{2}{3}\pi$  includes multiples of  $2\pi$ .

set of solutions,  $\theta = -2\pi n$ , is include

# 10.3 General Solutions of Trigonometric Equations Exercise

# Technique

Technique

1 Find the general solutions, in degrees, of the following equations: a  $\cos \theta = 0.9$  d  $\sin \theta = -0.6$ 

**a**  $\cos \theta = 0.9$  **d**  $\sin \theta = -0.6$  **b**  $\cos \theta = -0.25$  **e**  $\tan \theta = 0.5$ **c**  $\sin \theta = 0.2$  **f**  $\tan \theta = -1.5$ 

# 2 Find the general solutions of the following equations:

a  $\cos \theta = \frac{1}{2}$  d  $\sin \theta = -1$ b  $\cos \theta = -\frac{\sqrt{2}}{2}$  e  $\tan \theta = 1$ c  $\sin \theta = \frac{\sqrt{2}}{2}$  f  $\tan \theta = 0$ 

### 3 Find the general solutions of the following equations:

a  $\sin 2\theta = \frac{1}{2}$ c  $\sin \theta = \sin 3\theta$  b  $\cos \theta = \cos 3\theta$ d  $\cos 4\theta = -\frac{1}{2}$ 

Find the general solution, in degrees, of the equation  $\cos \theta + 3 \sin \theta = 2$ .

**5** Find the general solution of the equation  $\cos \theta + \cos 3\theta + \cos 5\theta = 0$ .

**6** Find the general solution of the equation  $sin(x + 30^\circ) = cos(x + 45^\circ)$ .

# Consolidation

### Exercise A

1 Solve the equation  $\cos \theta + \cos 5\theta = 2\cos 2\theta$  for  $0 \le \theta \le 2\pi$ .

**2** Express  $63 \sin x + 16 \cos x$  in the form  $R \sin(x + \alpha)$ , where R is positive and  $\alpha$  is acute. Find:

a the acute angle x for which  $63 \sin x + 16 \cos x = 50$ 

b the obtuse angle x for which 63 sin x + 16 cos x = 0.

(UCLES)

(NICCEA)

3 Express 4 sin θ – 3 cos θ in the form R sin(θ – α), where R is positive and α is an acute angle. Hence, or otherwise, find the greatest and least values of the expression

 $\frac{1}{(10-3\cos\theta+4\sin\theta)}.$ 

**4** Prove the identity  $\cos 2\theta - \cos 4\theta = 2\cos^2\theta - 2\cos^2\theta$ . By substituting  $\theta = 3\theta^*$ , show, without using a calculator, that  $\cos 3\theta^* - \cos 72^* = \frac{1}{2}$ . Hence find the value of  $\cos 3\theta^*$  in the form  $a + b\sqrt{5}$ , where a and b are to be found.

5 Express 3  $\sin \theta - 4 \cos \theta$  in the form  $R \sin(\theta - \alpha)$  where R > 0 and  $0 \le \alpha \le \frac{\pi}{2}$ . Give the value of  $\alpha$  in radians to three decimal places. Determine the greatest and least values of the following:

a  $(3 \sin \theta - 4 \cos \theta)^2$ b  $\frac{1}{(3 \sin \theta - 4 \cos \theta)^2 + 1}$ 

State a value of  $\theta$  in radians for which the least value of the expression in  ${\bf b}$  occurs.

(AEB)

6 a Express the function  $3\cos x^{\alpha} + 4\sin x^{\alpha}$  in the form  $R\sin(x + \alpha)^{\alpha}$ , stating the values of R and  $\alpha$ .

Write down the maximum value of 3 cos x° + 4 sin x°.
 Solve the equation 3 cos x° + 4 sin x° = 0 for 0° < x < 360°.</li>

(NEAB)

**7** Express  $\sqrt{3} \sin \theta - \cos \theta$  in the form  $R \sin(\theta - z)$ , where R > 0 and  $0^\circ < z < 90^\circ$ . Hence, or otherwise, find all values of  $\theta$ , for  $0^\circ \le \theta \le 360^\circ$ , which satisfy the equation  $\sqrt{3} \sin \theta - \cos \theta = \sqrt{2}$ .

(UCLES)

- 8 Prove the identity  $(\cos A + \cos B)^2 + (\sin A + \sin B)^2 \equiv 2 + 2\cos(A B)$ . Solve the equation  $(\cos 4\theta + \cos \theta)^2 + (\sin 4\theta + \sin \theta)^2 = 2\sqrt{3} \sin 3\theta$ , giving the general solution in degrees.
  - (AFR)

- Rewrite  $2 \cos x \sin x$  in the form  $R \cos(x + \alpha)$ , where R is real and  $\alpha$ 
  - Hence find the general solution of the equation  $2 \cos x \sin x = 1$ . (NICCEA)

# Exercise B

- 1 Solve the equation  $\sin 8\theta \sin 2\theta = 0$  for  $0 < \theta < 5$ .
- 2 Find all values of  $\theta$  lying between 0° and 360° satisfying the equation  $4 \sin \theta + 3 \cos \theta = 1$ . Give your answers correct to the nearest degree. (WIEC)
- Given that  $4\cos\theta + 3\sin\theta \equiv R\cos(\theta \alpha)$ , find the value of R and the value of a where R > 0 and 0° < a < 90°
  - a Hence find all values of θ between 0° and 360° satisfying the equations:
  - $4\cos\theta + 3\sin\theta = 2$ 
    - ii  $4\cos 2\theta + 3\sin 2\theta = 5\cos \theta$ .
    - b Find the greatest and least values of the expression  $\frac{1}{(4\cos\theta + 3\sin\theta + 6)}$ , and give the corresponding values of  $\theta$  between 0° and 360°

(WJEC)

- 4 The function f is defined for all real values of x by  $f(x) = (\cos x - \sin x)(17\cos x - 7\sin x).$ 
  - By first multiplying out the brackets, show that f(x) may be expressed in the form  $5\cos 2x - 12\sin 2x + k$ , where k is a constant. State the value of k.
    - **b** Given that  $5\cos 2x 12\sin 2x \equiv R\cos(2x + \alpha)$ , where R > 0 and  $0 < \alpha < \xi$ , state the value of R and find the value of  $\alpha$  in radians to three decimal places.
    - c Determine the greatest and least values of  $\frac{39}{f(x) + 14}$ , and state a value of x at which the greatest value occurs (AEB)

Express  $2 \cos \theta + 2 \sin \theta$  in the form  $R \cos(\theta - x)$ , where R > 0 and  $0 < x < \frac{1}{2}$ , giving the values of R and x in exact form. Hence, or otherwise, show that one of the acute angles  $\theta$  satisfying the equation  $2 \cos \theta + 2 \sin \theta = \sqrt{6}$  is  $\frac{\pi}{2}$ , and find the other acute angle.

(UCLES)

- [6] [In this question, give your answers correct to the nearest 0.1°, where appropriate.]
  - ${\bf a} \quad \mbox{Find the general solution, in degrees, of the equation } 5\cos2\theta = 3.$   ${\bf b} \quad \mbox{Solve each of the following equations, for } 0 < \theta < 180^{\circ}\!\! :$ 
    - i  $5\cos\theta + 2\sin^2\theta = 4$ ii  $5\sin\theta + 3\cos\theta = 5$

(UCLES)

By squaring both sides of the identity  $\sin^2\theta + \cos^2\theta = 1$ , prove that  $4(\sin^4\theta + \cos^4\theta) = 3 + \cos 4\theta$ . Find the general solution in radians of the equation  $4(\sin^2\theta + \cos^2\theta) = 2 - \cos 2\theta$ .

# Applications and Activities

### 1 The mathematical representation of a wave

The general equation for a wave represents every point x on the wave at every time t.

$$v = A \sin(kx - \omega t)$$
.

where A is the amplitude of the wave, k is the wave number and  $\omega$  is the angular frequency (velocity). Then k is the number of waves contained in the interval of  $2\pi$ .

Now consider sound as an example of a wave. If two waves  $y_1$  and  $y_2$  given by

$$y_1 = A_1 \sin(k_1 x - \omega_1 t)$$
 and  $y_2 = A_2 \sin(k_2 x - \omega_2 t)$ 

act at the same time, the resultant sound (from the principle of superposition) is given by  $y_1 + y_2$ . Investigate the behaviour of  $y_1 + y_2$ , and particularly the analysis of the resultant wave in the real world. How is this interpreted?

# 2 Simple harmonic motion (SHM)

SHM is motion in which the acceleration of a body is directly proportional to its displacement from the equilibrium position but in the opposite direction. Investigate SHM when the displacement of the object performing the motion is written in the form

```
x = A\cos \omega t + B\sin \omega t,
```

where  $\omega$  is the angular velocity, t is time and A and B are constants to be determined. What is an advantage of writing displacement in this form?

# Summary

 The factor formulas, used to convert sums and differences of sines and cosines into products, are:

$$\begin{split} & \sin C + \sin D \equiv 2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right) \\ & \sin C - \sin D \equiv 2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right) \end{split}$$

$$\cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$

$$\cos C - \cos D \equiv -2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$$

• The function  $a \sin x + b \cos x$  can be expressed as:

 $B\sin(x + x)$   $B\sin(x - x)$   $B\cos(x + x)$ 

 $R\cos(x-a)$ 

This technique is useful for

- 1. solving equations of the form  $a \sin x + b \cos x = c$ ;
- finding maximum and minimum values of rational functions with trigonometric denominators:
  - analysing periodic motion.
- Trigonometric equations of the form:

 $\sin \theta = k$  and  $\cos \theta = k$ , where  $-1 \le k \le 1$  and  $\tan \theta = k$ , where  $k \in \mathbb{R}$ 

can be solved to give both a principal solution and a general solution. The principal solution can be found using a calculator. The general solution formula can then be used to generate other valid solutions as required. Remember that the general solution can be written in both degree and radian form.

- 1. If  $\cos\theta = k$ , then  $\theta = 360^{\circ}n \pm \alpha$  or  $\theta = 2\pi n \pm \alpha$ .
- 2. If  $\sin \theta = k$ , then  $\theta = 180^{\circ}n + (-1)^{\circ}\alpha$  or  $\theta = \pi n + (-1)^{\circ}\alpha$ .
- 3. If  $\tan \theta = k$  then  $\theta = 180^{\circ}n + \alpha$  or  $\theta = \pi n + \alpha$ .

# 11 Differentiation II

### What you need to know

- How to differentiate rational powers of x, and sine and cosine functions.
- How to use the chain rule to differentiate composite functions.
- How to locate stationary points on a curve and determine their nature by looking at the sign of \$\frac{d}{d}\$ on either side of the stationary point.
- How to find the equation of the tangent and the normal to a curve at a given point.
- How to solve equations involving e<sup>x</sup> and ln x.
- How to write down the Cartesian equation of a circle.
- How to use the binomial theorem to express (1 + ax)<sup>n</sup> as a series of ascending powers of x, where n is rational.

# Review

- Differentiate each of the following with respect to x: a  $y = x^2 - 9x + 11$  e  $v = \sin 4x$ 
  - **b**  $y = x^2 9x + 11$
- $f y = 3\sin^2 x$
- c  $y = x^{\frac{1}{2}} x^{\frac{1}{2}}$ d  $y = 3x + \frac{1}{2x}$
- $y = \cos(\frac{1}{2}x + \frac{1}{4}\pi)$   $h \quad y = 2x \cos 2x$
- Use the chain rule to find  $\frac{dv}{dx}$  for each of the following: a  $v = (x + 11)^4$  d  $v = \sqrt{2 - x^2}$ 
  - b  $y = (4x 1)^6$  e  $y = (4x 1)^6$  f  $y = (4x 1)^6$
- Find the coordinates of the stationary points on the graph of  $v = \frac{1}{2}x^4 x^3 3x^2 + 8x + 3$  and determine their nature.
- **4** Find the equations of the tangent and the normal to the curve  $y = \frac{4}{x}$  at the point where x = 2.
- 5 Find the exact solutions of the following exponential and logarithmic equations:
  - a  $e^{x-3} = 4$ c  $e^{4x} = 10$

b ln(5x) = -3d ln(x-1) = 6 theorem to factorise  $\frac{dr}{dt}$ .



6 Write down the Cartesian equation for each of the following circles:

- a radius 4, centre (0, 0) c radius 7, centre (4, -2)
- b radius 6, centre (0, 3) d radius √3, centre (-1, 6)

7 Use the binomial theorem to express each of the following as a series of ascending powers of x, up to and including the  $x^3$  term:

 $(1+x)^{-2}$ 

**b**  $(1-x)^{\frac{1}{2}}$ 

1-3x

d  $\sqrt{1+4x}$ 

# 11.1 Differentiating Products and Quotients

In Chanter 5, the techniques for differentiating polynomials, functions involving rational powers of x, and sine and cosine functions were developed. Many other mathematical functions are formed by multiplying or dividing two or more of these types of functions. Some of these products and quotients can be differentiated by first expressing the function as a polynomial, and then differentiating term by term.

However, there are many products and quotients, such as  $y = (2x + 3)(x - 1)^4$  and  $y = \frac{(3x+1)}{(x-3)}$ , where it is either difficult or impossible to express the overall function as a polynomial. Functions of this type can be differentiated using two standard results, or algorithms. which are known as the product and quotient rules.

### The product rule

Suppose y = u(x)v(x) is the product of two separate functions of x; uand v. Any small change av in the value of v will give rise to corresponding small changes,  $\delta u$  and  $\delta v$ , in the values of functions u and vrespectively. These in turn result in a small change,  $\delta v$ , in the value of v. such that

$$\begin{split} \delta y &= (y + \delta y) - y \\ &= u(x + \delta x)v(x + \delta x) - u(x)v(x) \end{split}$$

It is possible to rewrite this expression for  $\delta v$  in the form

$$\delta y = u(x+\delta x)v(x+\delta x) - u(x+\delta x)v(x) + v(x)u(x+\delta x) - u(x)v(x)$$
 It follows then that

 $\delta v = u(x + \delta x)[v(x + \delta x) - v(x)] + v(x)[u(x + \delta x) - u(x)]$ 

Differentiating from first principles

recentisting from first principles, 
$$\frac{d}{dx} = \lim_{n \to \infty} \frac{dx}{dx} \left[ \sin \left( \frac{dx}{dx} + ax \right) \left( \frac{v(x + dx) - v(x)}{dx} \right) \right] \\ = \lim_{n \to \infty} \left[ u(x) \left( \frac{u(x + dx) - u(x)}{dx} \right) \right] \\ + \lim_{n \to \infty} \left[ v(x) \left( \frac{u(x + dx) - u(x)}{dx} \right) \right] \\ + v(x) + \lim_{n \to \infty} \left[ \frac{u(x + dx) - v(x)}{dx} \right] \\ + v(x) + \lim_{n \to \infty} \left[ \frac{u(x + dx) - v(x)}{dx} \right] \\ = u(x) + \frac{dx}{dx} + v(x) + \frac{dx}{dx}$$

As 
$$\delta x \rightarrow 0$$
,  
 $u(x + \delta x) \rightarrow u(x)$   
 $\frac{v(x + \delta x) - v(x)}{\delta x} \rightarrow \frac{dv}{dx}$   
 $\frac{dv}{dx} \rightarrow \frac{dv}{dx}$   
 $\frac{du}{dx} \rightarrow \frac{dv}{dx}$ 

The product rule for differentiating functions of the form v = u(x)v(x) can he stated as

$$\text{If } y=uv, \text{then } \frac{\mathrm{d}y}{\mathrm{d}x}=u\frac{\mathrm{d}v}{\mathrm{d}x}+v\frac{\mathrm{d}u}{\mathrm{d}x}.$$

Using the abbreviations u' and v' for  $\frac{ds}{dt}$  and  $\frac{dv}{dt}$  respectively, the product rule is more commonly stated as

If 
$$y = uv$$
, then  $\frac{dy}{dx} = uv' + vu'$   $\blacktriangleleft$  Learn this important result.

### Example 1

Using the product rule, differentiate  $y = (2x + 3)(x - 1)^4$  with respect to x.

# Solution

Let  $y = \mu y$  where  $\mu = (2x + 3)$  and  $y = (x - 1)^4$ . Then  $\mu' = 2$  and  $v' = 4(x-1)^3$ .

Using the product rule,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = uv' + vu'$$

$$= (2x + 3) \times 4(x - 1)^3 + (x - 1)^4 \times 2$$
  
=  $4(2x + 3)(x - 1)^3 + 2(x - 1)^4$ 

$$= 2(x-1)^3[2(2x+3)+(x-1)]$$

$$=2(x-1)^3(5x+5)$$

 $=10(y+1)(y-1)^3$ An advantage of the product rule is that it is usually possible to get a factorised expression for dr. This is particularly useful when trying to

# Example 2

locate and determine the nature of any stationary points. Find the gradient of the curve  $y = x^2 \cos x$  when  $x = \pi$ .

### Solution

Let v = uv where  $u = x^2$  and  $v = \cos x$ . Then u' = 2x and  $v' = -\sin x$ . Using the product rule,

$$\frac{dy}{dx} = uv' + vu'$$

$$= x^2 \times (-\sin x) + \cos x \times 2x$$

$$=-x^2\sin x + 2x\cos x$$

$$=x(2\cos x-x\sin x)$$

Remember to use th

Recall the special angles:

 $\cos z = -1$  and

### When $x = \pi$ , the gradient of the curve $v = x^2 \cos x$ is

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \pi(2\cos\pi - \pi\sin\pi)$$

- -2=

The quotient rule

Suppose  $y = \frac{u(x)}{v(x)}$  is the quotient of two separate functions of x; u and v. This can be rewritten as the product of u and  $\frac{1}{2}$ , such that

$$y = \frac{u}{v} = u \times \frac{1}{v}$$

Using the product rule to differentiate  $v = u \times \frac{1}{2}$  gives

$$\frac{dy}{dx} = u \frac{d}{dx} \left( \frac{1}{v} \right) + \frac{1}{v} \frac{du}{dx}$$

$$= u \times -\frac{1}{v} \frac{dv}{dx} + \frac{1}{v}$$

$$= u \times -\frac{1}{v^2} \frac{dv}{dx} + \frac{1}{v} \frac{du}{dx}$$

$$= -\frac{u}{v^2} \frac{dv}{dx} + \frac{v}{v^2} \frac{du}{dx}$$

$$= \frac{1}{v^2} \left[ -u \frac{\mathrm{d}v}{\mathrm{d}x} + v \frac{\mathrm{d}u}{\mathrm{d}x} \right]$$

So we have the quotient rule for differentiating functions of the form  $y = \frac{u(x)}{w(x)}$ . If  $y = \frac{u}{v}$ , then  $\frac{dy}{dv} = \frac{1}{v^2} \left[ v \frac{du}{dv} - u \frac{dv}{dv} \right]$ 

This is more commonly written as



If  $y = \frac{u}{v}$ , then  $\frac{dy}{dv} = \frac{vu' - uv'}{v^2}$  

Learn this important result.

Example 3

Use the quotient rule to differentiate the following functions with respect to x:

$$\mathbf{b} \quad y = \frac{\sqrt{x}}{2x + 5}$$

**a** 
$$y = \frac{3x+1}{x-2}$$
 **b**  $y = \frac{\sqrt{x}}{2x+5}$  **c**  $y = \frac{\sin 2x}{x^2}$ 

$$c y = \frac{\sin 2x}{x^2}$$

Solution

a Let  $v = \frac{u}{2}$ , where u = 3x + 1 and v = x - 2. Then u' = 3 and v' = 1.

# 11.1 Differentiating Products and Quotients

# Exercise

# Technique

1 Use the product and quotient rules to differentiate each of the following with respect to x:

- $v = x(x+4)^6$
- b  $v = (4x+3)(x+1)^4$  $y = (x-6)\sqrt{x-1}$

 $d v = x^3 \sin 2x$ 

- $h v = \sin 3s$
- a  $y = 3x(x-4)^3$  at (5, 15)
- 2 Find the gradient of each of the following curves at the points indicated: d  $y = \frac{x^3}{x-2}$  at (-2, 2)
  - **b**  $y = (x-3)(x+2)^4$  at (-3, -6) **e**  $y = (2x-3)\sin x$  at  $(\frac{\pi}{2}, \pi 3)$
  - c  $y = \frac{x+5}{2x+7}$  at  $(1, \frac{2}{3})$  $f v = (1-2x)\sqrt{x}$  at (4, -14)

### Contextual

1 Find the equations of the tangent and the normal to the following curves at the points indicated:

- a  $y = \frac{x+2}{2x-3}$  at (2, -4) $v = x^2 \cos x$  at  $(\pi, -\pi^2)$
- **b**  $y = (x-2)(x+4)^3$  at (-3, -5)**d**  $y = \frac{x^2}{x^2-x^2}$  at  $(-1, \frac{1}{4})$

|                           | a = 2    | a-25 | a - 2.7 | a = 2.8 | a = 3    | a-4      |
|---------------------------|----------|------|---------|---------|----------|----------|
| $\delta x = 0.1$          | 0.71773  |      |         |         | 1.161 23 | 1.486 98 |
| $\delta x = 0.01$         | 0.695 56 |      |         |         | 1.10467  | 1.395 95 |
| $\delta x = 0.001$        | 0.69339  |      |         |         | 1.099 22 | 1.387 26 |
| $\delta x = 0.0001$       | 0.693 17 |      |         |         | 1.098 67 | 1.38639  |
| $\delta x = 0.000  01$    | 0.69315  |      |         | 0.34    | 1.098 62 | 1.38630  |
| limit as $\delta x \to 0$ | 0.69315  |      | 13      |         | 1.09861  | 1.386 29 |

Notice that as  $\delta x \to 0$ , the factor  $\frac{e^{ix}-1}{\delta x}$  converges to a limiting value, which is different for each value of a. For example,

$$\frac{d}{dx}(2^x)\approx 0.69315\times 2^x$$

$$\frac{d}{dx}(3^x)\approx 1.09861\times 3^x$$

This suggests that there is a value of a between 2 and 3 for which  $\lim_{t \to a} \binom{a^n-1}{4a} = 1$ . For this particular value of a, it follows that  $\frac{d}{dt}(a^n) = a^n$ .

Use a calculator to complete the above table of values of  $\frac{a^n-1}{b^n}$  for a=2.5, 2.7 and 2.8. By further trial and improvement, find the value of a, correct to three decimal places, for which  $\lim_{n\to\infty} \left(\frac{a^n-1}{b^n}\right) = 1$ .

This value of  $\alpha$  is an irrational number. Its value is  $e=2.718\,281\,8$  , correct to seven decimal places. It follows that

$$\lim_{\delta x \to 0} \left( \frac{e^{\delta x} - 1}{\delta x} \right) = 1.$$

This means that the derivative of the exponential function  $y = e^x$  is



The exponential function is the only function that remains unaltered when differentiated.

An alternative way of establishing this result is to use the series expansion of  $\mathbf{e}^x$  introduced in Chapter 7:

$$\sigma^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

Differentiating this infinite power series term by term,

$$\begin{split} \frac{d}{dx}\left(e^{x}\right) &= 0 + \frac{1}{1!} + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \frac{4x^{3}}{4!} + \dots \\ &= 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots \\ &= e^{x} \end{split}$$

It can also be shown that the derivative of any exponential function of the form  $v = q^x$  is

This means that  $\lim_{t\to a} \left(\frac{a^{ta}-1}{dt}\right) = \ln a$ .

The chain rule can be used to differentiate exponential functions of the form  $y = e^{f(x)}$ , where f(x) is some function of x. Let  $y = e^u$ , where u = f(x). Then  $\frac{dy}{dx} = e^u$  and  $\frac{du}{dx} = f'(x)$ 

Using the chain rule,

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$= e^{u} \times f'(x)$$

function

### Example 1

Differentiate each of the following with respect to x:

- $v = e^{3x+1}$  $b y = e^{\sin x}$
- $y = 3^{2x}$

# Solution

a Let  $y = e^u$  where u = 3x + 1. Then  $\frac{dy}{du} = e^u$  and  $\frac{du}{dz} = 3$ .

Using the chain rule.

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$= e^{u} \times 3$$

$$= 3e^{3x+1}$$

This confirms that

 $\frac{d}{d}(e^x) = e^x$ , because

Using the quotient rule,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{vu' - uv'}{v^2}$$

$$= \frac{3e^{x} - (3x + 2)e^{x}}{(e^{x})^{2}}$$

$$= \frac{(1 - 3x)e^{x}}{(e^{x})^{2}}$$

$$=\frac{1-3x}{1-x}$$

c Let 
$$x = uv$$
, where  $u = e^{2t}$  and  $v = \cos 3t$ . Then  $u' = \frac{du}{dt} = 2e^{2t}$  and  $v' = \frac{dv}{dt} = -3 \sin 3t$ .

Using the product rule.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = uv' + vu'$$

$$= -3e^{2t} \sin 3t + 2e^{2t} \cos 3t$$

 $= e^{2t}(2\cos 3t - 3\sin 3t)$ 

# Example 3

As a result of a slump in the housing market, a property initially valued at  $600\,000\,$  on 1 January depreciates. Its value I weeks later can be modelled by  $V=60\,0000^{10}$  where its value is kY and k is a constant to be determined. Exactly one year later, the property remains unsold and is valued at only  $(50\,000)$ .

- a Find an expression for k.
- b Find the market value of the property after 26 weeks to the nearest pound.
- c Find an expression for <sup>dy</sup><sub>d</sub>. Then find the rate at which the property's value is depreciating at the start and end of the year to the nearest pound.

### Solution

a After one year, when t = 52, V = 50 000.
Substituting into the expression for V gives

50 000 = 60 000e<sup>52k</sup>

$$\Rightarrow e^{52k} = \frac{5}{6}$$

$$\Rightarrow 52k = \ln(\frac{5}{2})$$

$$\Rightarrow k = \frac{1}{6} \ln(\frac{3}{2})$$

**b** When *t* = 26

$$V = 60\,000e^{26k}$$
  
=  $60\,000e^{\frac{1}{2}\ln(\frac{3}{2})}$ 

- 501175

YERESER

Take logarithms of b sides.

 $k \approx -0.0035$ ; a negative value is expected for depreciation. c Given that  $V=60\,000e^{kt}$ , where  $k=\frac{1}{52}\ln(\frac{5}{6})$ , differentiate V with respect to t.

$$\frac{dV}{dt} = 60000 \text{ke}^{kt}$$

$$= \frac{60000}{2500} \ln(\frac{5}{2}) \text{e}^{\frac{1}{12} \ln(\frac{3}{2})}$$

At the start of the year, t=0. The rate at which the property's value is depreciating is found by putting t=0 into this expression. Check that

$$\frac{dV}{dt} = \frac{60000}{52} \ln(\frac{3}{6})e^{0}$$
= -210.37

To the nearest pound, the rate of depreciation is £210 per week. Carry out a similar calculation by substituting t = 52. Verify that after one year, the rate of depreciation is £175 per week

#### Logarithmic functions

To differentiate the natural logarithmic function  $y = \ln x$  from first principles, consider the small change,  $\delta y$ , in the value of this function that results from a small change,  $\delta x$ , in the value of x.

Since 
$$\delta y = (y + \delta y) - y$$
  
=  $\ln(y + \delta y) - \ln y$ 

where  $y + \delta y = \ln(x + \delta x)$  is the value of the function corresponding to  $x + \delta x$ , it follows that

$$\frac{dy}{dx} = \lim_{\delta x \to 0} \left( \frac{\delta y}{\delta x} \right)$$

$$= \lim_{\delta x \to 0} \left[ \frac{\ln(x + \delta x) - \ln x}{\delta x} \right]$$

Unfortunately there is no easy way of expanding the  $\ln(x - 4x)$  term in this expression. An alternative approach must be taken in order to find  $\frac{2}{3}$ . Recall that the natural logarithmic function  $y = l \cdot x$  is the inverse of the exponential function  $y = e^{l \cdot x}$ . If  $y = \ln x$ , then  $x = e^{l \cdot x}$ . Differentiating both sides with respect to y.

$$\frac{dx}{dx} = e^F$$

### Example 4

Differentiate the following with respect to x:

- $y = \ln(x^2 + 3x 2)$   $y = \ln(\cos x)$   $y = x \ln x$
- $y = \frac{1}{g^2}$  $y = \log_{10}(x^2 + 1)$

### Solution

a  $y = \ln(x^2 + 3x - 2) \Rightarrow \frac{dr}{dx} = \frac{2x+3}{x^2+3x-2}$ 

**b**  $y = \ln(\cos x) \Rightarrow \frac{dy}{dx} = \frac{-\sin x}{\cos x} = -\tan x$ 

c Let y=uv, where u=x and  $v=\ln x$ . Then u'=1 and  $v'=\frac{1}{x}$ .

Using the product rule,  $\frac{\mathrm{d}y}{\mathrm{d}v}=uv'+vu'$ 

$$= x \left(\frac{1}{x}\right) + \ln x$$
$$= 1 + \ln x$$

d Let  $y = \frac{\pi}{v}$  where  $u = \ln x$  and  $v = e^x$ . Then  $u' = \frac{1}{\lambda}$  and  $v' = e^x$ .

Using the quotient rule,  $\frac{dy}{dx} = \frac{vu' - uv'}{v^2}$ 

$$= \frac{1}{(e^x)^2} \left[ e^x \left( \frac{1}{x} \right) - e^x \ln x \right]$$

$$= \frac{1}{e^x} \left( \frac{1}{x} - \ln x \right)$$

$$= \frac{1}{e^x} \times \frac{1}{x} (1 - x \ln x)$$

$$= \frac{1}{\sigma^x} \times \frac{1}{x} (1 - x \ln x)$$

$$= \frac{(1 - x \ln x)}{x\sigma^x}$$

e Let  $y = \log_{10} u$ , where  $u = (x^2 + 1)$ . Then  $\frac{dy}{da} = \frac{1}{v \ln 10}$  and  $\frac{du}{da} = 2x$ .

Using the chain rule,  $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ 

$$= \frac{1}{u \ln 10} \times 2x$$

$$= \frac{2x}{(x^2 + 1) \ln 10}$$

Use  $\frac{d}{dx}[\ln f(x)] = \frac{f'(x)}{f(x)}$ .

Common factor e<sup>x</sup>.

Take out factor 1.

# 11.2 Differentiation of Exponentials and Logarithms

# Exercise

# Technique

- 1 Differentiate each of the following with respect to x:
  - $V = e^{\chi^2}$ 
    - $y = e^{-x/2} \sin x$ c  $y = e^{1-3x}$ h y = a' + 1d v = e cos z  $i \quad v = e^x \sin 2x$  $v = 4^{-x}$  $V = \frac{\cos^2 x}{x}$
- 2 Differentiate each of the following with respect to x:
  - $v = \ln(4x)$
  - $f v = \ln(\sin x)$  $b \quad v = \ln(x^4)$  $y = x^2 \ln x$
  - $v = \ln(x^2)$ d  $v = \ln(4x + 1)$  $v = \ln(x^4 + 1)$
- $h \quad v = \ln x$  $i \quad v = \ln(1+x) - \ln(1-x)$  $y = \log_{10}(3x - 4)$
- 3 For each of the following curves:
  - i find expressions for  $\frac{dr}{dt}$  and  $\frac{d^2y}{dt^2}$ ii locate and determine the nature of any stationary points.
    - $\begin{array}{lll} \mathbf{a} & y=(2x+1)\mathrm{e}^{\mathrm{x}} & \mathbf{b} & y=\ln(x+2)+\frac{1}{(x+2)} \\ \mathbf{c} & y=\mathrm{e}^{\mathrm{x}}\sin x \; (-\pi \leq x \leq \pi) & \mathbf{d} & y=(x+1)^3\mathrm{e}^{-x} \end{array}$

### Contextual

- 1 Find the equations of the tangent and the normal to the following curves at the points indicated:
  - a  $v = \ln(3x + 1)$  at x = 1 $y = x^2 \ln x$  at x = e
- b  $y = 3e^{2x+3}$  at x = -1d  $y = (x + 1)e^{-x}$  at x = 2
- 2 The population, P, of a new town development grows exponentially for the first 25 years such that  $P = 1000 + 200e^{0.13t}$ , where t is the number of years since its establishment.
  - a What is the initial population of the town?
  - b What is its population after 10 and 20 years?
    - Find an expression for the rate at which the population increases at any time t. Use this to calculate the rate of increase after 10 and 20 years.





- d Calculate, to the nearest month, how long after its establishment it is before the rate of increase in the population reaches 200 people per year.
- A ball-bearing is released from rest from the surface of a large tank of oil into which it drops. After t seconds it has reached a depth d centimetres, where d = 6t - 4e<sup>-1.5t</sup> + 4.
  - Calculate the depth of the ball-bearing to the nearest millimetre, after 1, 2 and 3 seconds.
  - b Find expressions for the velocity, v, and acceleration, a, of the ball-bearing after t seconds
  - c Calculate its velocity and acceleration after 0.5 seconds
  - d Explain what happens to the acceleration and velocity as t becomes large.
  - The price £P of a particular laptop computer t weeks after its release is given by  $P=1100+3t-30\ln(t+2)$ .
  - a After how many weeks does the price reach its lowest value? What is the minimum price?
  - b How much is the laptop after six months and what is the rate at which P is changing at this time?

#### Solution

a Let  $y = \tan u$ , where u = 2x. Then  $\frac{dr}{ds} = \sec^2 u$  and  $\frac{du}{dx} = 2$ .

Using the chain rule, 
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$
  
=  $2 \sec^2 u$ 

$$=2\sec^2 2x$$

**b** Let  $y = \cot u$ , where  $u = (x^3 + 2)$ . Then  $\frac{dy}{du} = -\csc^2 u$  and  $\frac{du}{dx} = 3x^2$ .

Using the chain rule, 
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$=-\mathrm{cosec}^2 u \times 3x^2$$

$$=-3x^2\mathrm{cosec}^2(x^3+2)$$

Let  $y = 2u^3$ , where  $u = \tan x$ . Then  $\frac{dy}{dv} = 6u^2$  and  $\frac{du}{dx} = \sec^2 x$ .

Using the chain rule, 
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$= 6u^2 \times \sec^2 x$$

$$= 6 \tan^2 x \sec^2 x$$

#### Differentiating cosec and sec

The derivatives of the two other reciprocal trigonometric functions,  $\csc x = \frac{1}{\sin x}$  and  $\sec x = \frac{1}{\cos x}$  can also be found using the chain rule.

Let  $y = \frac{1}{u}$ , where  $u = \sin x$ . Then  $\frac{dy}{dx} = -\frac{1}{u^2}$  and  $\frac{du}{dx} = \cos x$ .

Using the chain rule, 
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$=-\frac{1}{u^2}\times\cos x$$

$$= -\frac{\cos x}{\sin^2 x}$$

$$= -\frac{1}{\sin x} \times \frac{\cos x}{\sin x}$$

So  $\frac{d}{dx}(\csc x) = -\csc x \cot x$   $\blacktriangleleft$  Learn this result.

Now find the derivative of secx.

Let  $y = \frac{1}{u}$ , where  $u = \cos x$ . Then  $\frac{dv}{du} = -\frac{1}{u^2}$  and  $\frac{du}{dx} = -\sin x$ 

#### Example 3

Find the derivatives of each of the following functions:

- a  $y = 2x \tan x$
- b v = conec.x
- $c y = \tan 3x \sec x$

#### Solution

a Let y = uv, where u = 2x and  $v = \tan x$ . Then u' = 2 and  $v' = \sec^2 x$ .

Using the product rule, 
$$\frac{dy}{dx} = uv' + vu'$$
  
=  $2x \sec^2 x + 2 \tan x$ 

$$= 2x \sec^2 x + 2 \tan x$$
$$= 2(x \sec^2 x + \tan x)$$

**b** Let  $y = \frac{u}{v}$  where  $u = \csc x$  and v = x. Then  $u' = -\csc x \cot x$  and v' = 1.

Using the quotient rule, 
$$\frac{dy}{dx} = \frac{vu' - uv'}{v^2}$$
 $-x \csc x$ 

$$= \frac{-x \csc x \cot x - \csc x}{x^2}$$

$$= \frac{-\csc x(x \cot x + 1)}{x^2}$$

$$= \frac{-\operatorname{cosec} x(x \operatorname{col} x + 1)}{x^2}$$
c Let  $y = uv$ , where  $u = \tan 3x$  and  $v = \sec x$ . Then  $u' = 3\sec^2 3x$  and

 $v' = \sec x \tan x$ .

Using the product rule, 
$$\frac{dy}{dx} = uv' + vu'$$
  
=  $\tan 3x \sec x \tan x + 3 \sec^2 3x \sec x$ 

$$= \tan 3x \sec x \tan x + 3 \sec^2 3x \sec x$$
$$= \sec x (\tan 3x \tan x + 3 \sec^2 3x)$$

#### Differentiating inverse trigonometric functions

If  $v = \sin^{-1} x$ , then  $x = \sin y$ . Differentiating both sides of this equation with respect to v gives

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \cos y \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cos y} \quad \blacktriangleleft \text{ Using } \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)}.$$

Now, 
$$\cos^2 y + \sin^2 y \equiv 1$$

$$\Rightarrow \cos^2 y = 1 - \sin^2 y$$
$$= 1 - y^2$$

$$\cos y = \sqrt{1-x^2}$$

So 
$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$
 < Learn this result.

Notice that only the positive root is taken. This is because  $-\frac{\pi}{4} \le \sin^{-1} x \le \frac{\pi}{4}$ , so  $-1 \le y \le 1$ , giving  $\cos v > 0$ .

d Let 
$$y = \tan^{-1} u$$
, where  $u = \frac{s}{\sigma}$ . Then  $\frac{dy}{ds} = \frac{1}{1+\sigma^2}$  and  $\frac{dx}{ds} = \frac{1}{\sigma}$ .

Using the chain rule, 
$$\frac{\mathrm{d} y}{\mathrm{d} x} - \frac{\mathrm{d} y}{\mathrm{d} u} \times \frac{\mathrm{d} u}{\mathrm{d} x} - \frac{1}{1+u^2} \times \frac{1}{a}$$

$$= \frac{1}{a \left(1 + \frac{\chi^2}{a^2}\right)}$$

$$= \frac{a}{a^2 + \chi^2}$$

Multiply top and bottom

#### Example 5

Use the product and quotient rules to differentiate each of the following:

a 
$$y = x \sin^{-1} x$$
  
Solution

**b** 
$$y = \frac{\tan^{-1} x}{1+x^2}$$

a Let y = uv, where u = x and  $v = \sin^{-1} x$ . Then u' = 1 and  $v' = \frac{1}{\sqrt{1-x^2}}$ .

Using the product rule 
$$\frac{\mathrm{d}y}{\mathrm{d}x} = uv' + vu'$$

$$= \frac{x}{\sqrt{1-x^2}} + \sin^{-1}x$$

 $\begin{array}{ll} \mathbf{b} & \text{ Let } y=\frac{a}{r}, \text{ where } u=\tan^{-1}x \text{ and } v=1+x^2. \text{ Then } u'=\frac{1}{1+x^2} \text{ and } \\ v'=2x. \end{array}$ 

Using the quotient rule. 
$$\frac{dy}{dx} = \frac{vu' - uv'}{v^2}$$
  

$$= \frac{\left(\frac{1+x^2}{1+x^2}\right) - 2x \tan^{-1}x}{\left(1+x^2\right)^2}$$

$$= \frac{1 - 2x \tan^{-1}x}{\left(1+x^2\right)^2}$$

## 11.3 Further Trigonometric Differentiation

## **Exercise**

## Technique

1 Differentiate each of the following with respect to x:

- a y = tan 7x b y = sec 3x
  - $\begin{array}{llll} \mathbf{b} & y = \sec 3x & \mathbf{f} & y = \sin^{-1}(1-x) \\ \mathbf{c} & y = \cot(x^2) & \mathbf{g} & y = \tan^{-1}x^2 \\ \mathbf{d} & y = \csc^2 5x & \mathbf{h} & y = \tan^{-1}(2x+3) \end{array}$
- 2 Use the product and quotient rules to differentiate each of the following with respect to x:

 $v = \cos^{-1} 9x$ 

a  $y = x^2 \tan x$ b  $y = 5x \sec x$ c  $y = 2x \sin^{-1} x$ d  $y = x^3 \tan^{-1} x$ 

## Contextual

- 1 Find the gradient of each of the following curves at the point indicated and the equations of the tangent and the normal at that point.
  - a  $y = \tan(\S)$  at  $(\pi, \sqrt{3})$
  - **b**  $y = \sin^{-1}(1-x)$  at  $(\frac{1}{2}, \frac{\pi}{6})$
  - c  $y = x \sec x$  at  $(\pi, -\pi)$

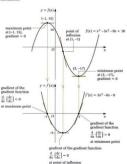
#### 11.4 Using the Second Derivative

#### Stationary points

Recall from Chapter 5 that the stationary points on a graph can be located by solving the equation  $\frac{d_i}{d_i} = 0$ . Their nature can be determined by looking at the gradient of the graph on either side of each stationary point. It is also possible to use the second derivative to help decide whether a particular stationary coint is a maximum or a minimum point.

The gradient of a curved graph is itself a function of x. By drawing the graphs of y=f(x) and its gradient function y=f'(x), it is possible to relate features that appear on the two graphs.

For example, sketch the graphs of the function  $f(x) = x^3 - 3x^2 - 9x + 10$ and its derivative  $f'(x) = 3x^2 - 6x - 9$ . Check the nature of the stationary points as you draw the graphs. Check your results using a graphical calculator.





Notice that at the maximum point on the curve  $y = x^3 - 3x^2 - 9x + 10$ , the function changes from being an increasing function of x to a decreasing function of x. This 'negative' change in the gradient, from positive through zero to negative, as the curve passes through (-1, 15), means that the 'gradient of the gradient function', or second derivative, is negative at the maximum point.

So at the maximum point on the curve,  $\frac{d}{dx}(\frac{dy}{dx}) < 0$ .

At a maximum point, 
$$\frac{d^2y}{dx^2} < 0$$
  $\blacktriangleleft$  Remember this important result.

At the minimum point on the curve  $y=x^2-3x^2-9x+10$ , the function changes from being a decreasing function of x to an increasing function of x. The corresponding change in the spedient is from negative through zero to positive as the curve passes through (3,-17). This indicates that the 'gradient of the gradient function', or second derivative, is positive at the minimum point.

So at the minimum point on the curve,  $\frac{d}{dx}(\frac{dy}{dx}) > 0$ .

At a minimum point, 
$$\frac{d^2y}{dx^2} > 0$$
  $\blacktriangleleft$  Remember this important result.

There is also a point of inflexion at (1,-1) on the curve  $y=x^3-3x^2-9x+10$ . This is where the tangent to the curve crosses from one side to another. This is not a stationary point. Instead it is the point at which the gradient of the curve is at its most negative. The 'gradient of the gradient function', or second derivative, is zero at this point of inflexion.

In fact  $\frac{2\pi}{3z} = 0$  at all points of inflexion, whether they are stationary or not. It is possible, however, for the scond derivative to equal zero at points that care not points of inflexion. Consider the graph of  $y = x^2$ . This has a stationary point at x = 0. Its second derivative  $\frac{2\pi}{3z^2} = 12x^2$  equals zero when x = 0, but this stationary point is clearly a minimum.



The only reliable way of determining the nature of a stationary point at which  $\frac{d^2r}{dx} = 0$  is to look at the gradient,  $\frac{dr}{dx}$ , on either side of the point.



graphical calculate Check also the graphy =  $-x^4$ . This is a maximum at x = 0where  $\frac{d^3y}{dx^2} = 0$ .

#### Summary

- $\frac{dy}{dy} = 0$  and  $\frac{d^2y}{dy} < 0$  at maximum points
- $\frac{dv}{dt} = 0$  and  $\frac{d^2v}{dx^2} > 0$  at minimum points
- if  $\frac{dr}{dt} = 0$  and  $\frac{d^2r}{dr^2} = 0$ , the sign of the gradient,  $\frac{dr}{dt}$ , on either side of the stationary point must then be found to determine its nature - do not assume that it is a stationary point of inflexion.

#### Example 1

Find the coordinates of the stationary points on the curve  $v = (x + 3)(x - 2)^4$ . Use the second derivative to determine their nature. Sketch the curve

#### Solution

Let v = uv where u = (x + 3) and  $v = (x - 2)^4$ . Then u' = 1 and  $v' = 4(x-2)^3$ .

Using the product rule,  $\frac{dy}{du} = uv' + vu'$ 

$$= (x + 3) \times 4(x - 2)^{3} + (x - 2)^{4} \times 1$$

$$= 4(x + 3)(x - 2)^{3} + (x - 2)^{4}$$

$$= (x - 2)^{3}[4(x + 3) + (x - 2)]$$

 $=5(x+2)(x-2)^3$ At stationary points on the curve,  $\stackrel{dy}{=} = 0$ .

$$5(x+2)(x-2)^3 = 0$$
  
 $\Rightarrow x = -2 \text{ or } x = 2$ 

Verify that when x = -2, y = 256 and that when x = 2, y = 0. The stationary points are located at (-2, 256) and (2,0). Their nature can be determined by evaluating the second derivative at x = -2 and x = 2respectively.

 $=(x-2)^3(5x+10)$ 

Use the product rule again to find  $\frac{d^2y}{dx^2}$ . Let  $\frac{dy}{dt} = fg$ , where f = 5(x+2) and  $g = (x-2)^3$ . Then f' = 5 and  $g' = 3(x-2)^2$ . It follows that

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = f g' + g f'$$

 $= 15(x+2)(x-2)^2 + 5(x-2)^3$  $=5(x-2)^{2}[3(x+2)+(x-2)]$ 

$$=20(v-2)^2(v+1)$$

 $=20(x-2)^2(x+1)$ 

differentiate  $(x-2)^4$ .

Use the chain rule to differentiate  $(v-2)^3$ 

fand a have been used here instead of u and v to avoid confusion with the earlier working.

When x=-2,  $\frac{d^2r}{dx^2}=20(-4)^2(-1)=-320<0$ . So (-2,256) is a maximum point.

When x = 2,  $\frac{d^3y}{dx^2} = 20(0)^2(3) = 0$ .

Looking at the gradient of the curve on either side of x = 2:

- when x = 1,  $\frac{dr}{dt} = 5(3)(-1)^3 = -15$
- when x = 3,  $\frac{dr}{dx} = 5(5)(1)^3 = 25$

The gradient changes from negative to positive as the curve passes through x=2, so  $\{2,0\}$  is a minimum point.

This information can now be used to sketch the curve.



#### General points of inflexion

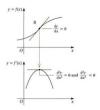
Stationary points of inflexion have two forms. The gradient of the curve can be positive on both sides of a stationary point of inflexion or negative on both sides, as shown in the diagram. Check that a tangent drawn to the curve at a stationary point of inflexion crosses from one side to the other.



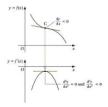
However stationary points of inflexion are special cases. The gradient of a curve does not have to be zero at a point of inflexion. In fact, there must be at least one non-stationary point of inflexion on any smooth continuous curve between two stationary points. This situation can best be described graphically.



Check that the curverses or touches taxes at (-3, 0), (2, 6) and (0, 48).



The gradient reaches a maximum value at point B. This means  $\frac{d^4y}{dz^2}=0$ . Since the gradient of the gradient function is changing from positive to negative as it passes through  $B,\frac{d^4y}{dz^4}<0$  at B.



The gradient of the curve is negative on either side of the point C. Its value is least negative (that is at its maximum) at point C. This means  $\frac{d}{dt} = 0$  at this point. The gradient of the gradient function is changing from positive to negative, so the third derivative  $\frac{d}{dt} < 0$ .

## 11.4 Using the Second Derivative

#### **Exercise**

## Technique

- 1 For each of the following cubic functions:
  - find expressions for f'(x) and f''(x)
    - ii find the coordinates of any stationary points on the graph of y = f(x)and use the second derivative to determine their nature
    - iii sketch the eranh of v = f(x).
      - a  $f(x) = x^3 12x^2 + 45x 40$
      - **b**  $f(x) = 7 12x + 6x^2 x^3$  $f(x) = 2x^3 - 9x^2 - 108x + 40$
- 2 a State the coordinates of the points where the curve
  - $y = (x-5)(x+3)^3$  crosses the axes. b Locate and determine the nature of the stationary points on the curve
    - $v = (x 5)(x + 3)^3$ c Find the coordinates of the non-stationary point of inflexion on this curve. Use the first and third derivatives to determine its nature.
  - Sketch  $v = (x 5)(x + 3)^3$ .
- 3 Locate and determine the nature of the maximum and minimum points on the graph  $y = x^4 - 24x^2 + 32$ . Show that there are two non-stationary points of inflexion on this curve, at x = -a and x = a, where a is a positive integer to be determined.
- Find the coordinates of the stationary points on the curve  $y = x + 2\cos x$  in the interval  $-2\pi \le x \le 2\pi$ . Use the second
  - derivative to determine their nature. b Find the coordinates of the points of inflexion on the curve in this interval.
  - Sketch  $y = x + 2 \cos x$  for  $-2\pi \le x \le 2\pi$ .
- 5 For each of the following curves:
  - write down the coordinates of the points where the curve crosses the axes
    - ii write down the equation of any vertical asymptotes iii find an expression for \$\frac{40}{20}\$
  - iv locate and determine the nature of any stationary points
    - v skatch the curve
      - $v = x(x-1)^4$ **b**  $v = (x+4)^2(x-2)^2$ 
        - $v = \frac{s^2}{\sqrt{s-s^2}}$

Hint: Use the product

rule to differentiate



- 6 For each of the following curves:
  - i find expressions for \$\frac{dy}{dt}\$ and \$\frac{d^2y}{2}\$;
  - ii locate and determine the nature of any stationary points.
    - $v = (2x + 1)e^x$ 
      - b  $y = \ln(x+2) + \frac{1}{(x+2)}$
      - $v = e^x \sin x \text{ (for } -\pi < x < \pi)$  $v = (x+1)^3 e^{-x}$

#### Contextual





The height h metres above the ground of part of a funfair ride, shown above, can be modelled using  $h = 5(x + 2)e^{-x/2}$ .

- a Find expressions for # and #4.
- b Calculate the value of x at which this section of the ride is steepest, and the beight above the ground at this point.
- Calculate this maximum gradient. At what angle, to the nearest degree, is the track to the ground at this point?

(x, y)

## 11.5 Implicit Differentiation

All of the functions that have been differentiated so far have been expressed in the form y = f(s). However there are curves in the x-y plane, with equations linking x and y, that cannot be written in this way. Some examples are circles, ellipses and hyperbolae. The equations for these curves are called **implicit functions**. The method used to find the gradient at any noting other curves is called **implicit differentiation**.

For example, the Cartesian equation of a circle of radius 3, centred at the origin, is  $x^2 + y^2 = 9$ .

origin, is  $x^2 + y^2 = 9$ .



Notice that two explicit functions  $y=+\sqrt{9}-x^2$  and  $y=-\sqrt{9}-x^2$  are needed to completely define this circle. Using a graphical calculator, plot  $y=+\sqrt{9}-x^2$  and  $y=-\sqrt{9}-x^2$ . Check that this draws a circle, centred at the

 $\frac{d}{d}(x^2) + \frac{d}{d}(y^2) = \frac{d}{d}(9)$ 

origin of radius 3.

differentiated:



Both of these explicit functions can be differentiated using the chain rule. Implicit differentiation allows us to find an expression for  $\frac{dr}{dr}$  from the original equation.

Differentiating each term in the equation 
$$x^2 + y^2 = 9$$
 with respect to  $x$ ,

We know that  $\frac{d}{dx}(x^2) = 2x$ , and  $\frac{d}{dx}(9) = 0$ . Use the chain rule to change the variable with which the  $\nu^2$  term is

$$\begin{split} &\frac{d}{dx}(y^2) = \frac{d}{dy}(y^2) \times \frac{dy}{dx} \\ \Rightarrow &\frac{d}{dx}(y^2) = 2y\frac{dy}{dx} \quad \blacktriangleleft \text{ Learn this important result.} \end{split}$$



The limited resolution of your graphical calculator may result in the circle appearing to have been incompletely

[1]

From equation [1], these results give

$$2x + 2y \frac{dy}{dx} = 0$$

$$\Rightarrow 2y \frac{dy}{dx} = -2x$$

$$\Rightarrow \frac{dy}{dx} = -\frac{x}{x}$$

This result is true for all circles centred at the origin, because the radius squared term in the equation of the circle is zero when differentiated. This can be confirmed by considering the radial line from the centre O to some point (x,y) on the circumference of the circle.

Notice that the gradient of this line is  $\frac{\pi}{5}$ . Because it also intercepts the circle at right angles, it is the normal to the circle at this point. This means that the gradient of the tangent to the circle at this point is  $-\frac{\pi}{5}$ .



Remember that the gradient of the tange is also the gradient o the curve (circle) itse at this point.

## Example 1

A circle C is centred at (6, -2) and has a radius of 5 units.

- a Write down the Cartesian equation of this circle
- b Find an expression for #.
- c Find the gradient of the circle at the two points where x = 9.
  Solution
  - Recall that, for a circle of radius r, centred at (a, b).

$$(x-a)^2 + (y-b)^2 = r^2$$

The Cartesian equation of this circle is therefore

$$(x-6)^2 + (y+2)^2 = 25$$

Differentiating both sides of the equation with respect to x,

$$\frac{d}{dx}(x-6)^2 + \frac{d}{dx}(y+2)^2 = \frac{d}{dx}(25)$$

Verify that the equivalent form is  $x^2 + y^2 - 12x + 4y + 1$ Alternatively, different  $x^2 + y^2 - 12x + 4y + 1$ term by term, using the chain rule for the term.

Using the chain rule, 
$$\frac{d}{dx}(x-6)^2 = 2(x-6)$$

and 
$$\frac{d}{dx}(y+2)^2=\frac{d}{dy}(y+2)^2\times\frac{dy}{dx}$$
 
$$=2(y+2)\frac{dy}{dx}$$
 So 
$$2(x-6)+2(y+2)\frac{dy}{dx}=0$$

$$=2(y+2)\frac{\mathrm{d}y}{\mathrm{d}x}$$

$$2(y+2)\frac{dy}{dx} = -2(x-6)$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(6-x)}{(y+2)}$$

Substitute x = 9 into  $(x - 6)^2 + (y + 2)^2 = 25$ .

This gives 
$$3^2 + (y+2)^2 = 25$$
  
 $9 + y^2 + 4y + 4 = 25$ 

$$9 + y^2 + 4y + 4 = 2$$

$$y^2 + 4y - 12 = 0$$

$$(y+6)(y-2)=0$$

$$\Rightarrow v = -6 \text{ or } v = 2.$$

At 
$$(9, -6)$$
,  $\frac{dy}{dx} = \frac{6-9}{6+2} = \frac{-3}{4} = \frac{3}{4}$ 

At 
$$(9, -6)$$
,  $\frac{dy}{dx} = \frac{6-9}{2+2} = -\frac{3}{4}$ 

Notice that in this example,  $\frac{dr}{ds} = \frac{6-x}{c+2}$  is undefined when y = -2. This corresponds to the two points on the circle where the tangents are parallel to the v-axis.

the product rule.



Unlike the equation of a circle, many implicit functions have equations that include product terms. These are expressions such as xy, xy2 and  $x^2v$ . These terms can still be differentiated implicitly but require the use of

The denominator in 5-4 is zero when y = -2.

#### Example 2

For each of the following, find an expression for  $\frac{dy}{dx}$  in terms of x and y.

$$x^2 + 3xy - 4x = 9$$

$$b \quad x^2y^2 + 4x^2 - y^2 = 0$$

#### Solution

a Differentiate both sides of the equation with respect to x.

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(3xy) - \frac{d}{dx}(4x) = \frac{d}{dx}(9)$$

Use the product rule to differentiate the second term. Let u=3x and v=y . Then u'=3 and  $v'=\frac{dy}{dx}$ .

Now 
$$\frac{d}{dx}(3xy) = uv' + vu' = 3x\frac{dy}{dx} + 3y$$

It follows that differentiation of both sides of the equation gives

$$2x + 3x\frac{\mathrm{d}y}{\mathrm{d}x} + 3y - 4 = 0$$

Rearranging to find  $\frac{dy}{dx}$ .

$$3x\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - 2x - 3y$$

$$\Rightarrow \frac{dy}{dx} = \frac{4 - 2x - 3y}{3x}$$

b Differentiate both sides of the equation with respect to x.

$$\frac{d}{dx}(x^{2}y^{2}) + 8x - \frac{d}{dx}(y^{2}) = 0$$

Using the product rule,  $\frac{d}{dx}(x^2y^2) = 2x^2y\frac{dy}{dx} + 2xy^2$ and using the chain rule  $\frac{d}{dx}(y^2) = 2y\frac{dy}{dx}$ 

So 
$$2x^2y\frac{dy}{1} + 2xy^2 + 8x - 2y\frac{dy}{1} = 0$$

$$\Rightarrow (2x^2y - 2y)\frac{dy}{dx} = -(2xy^2 + 8x)$$

$$\Rightarrow 2y(x^2 - 1)\frac{dy}{dx} = -2x(y^2 + 4)$$

$$\Rightarrow y(1-x^2)\frac{dy}{dx} = x(y^2+4)$$

$$\Rightarrow \frac{dy}{dx} = \frac{x(y^2 + 4)}{y(1 - x^2)}$$

Eliminate the comm factor 2. Now factorise and simplify the equation.

$$2 - 8\frac{dy}{dx} + (4 - 4x)\frac{d^2y}{dx^2} = 0$$
$$2 - 8\left(\frac{2y - x}{2 - 2x}\right) + (4 - 4x)\frac{d^2y}{dx^2} = 0$$

Verify that this equation can be rearranged to give

$$4(1-x)\frac{d^2y}{dx^2} = \frac{16y - 4x - 4}{2(1-x)}$$
$$\frac{d^2y}{dx^2} = \frac{4y - x - 1}{2(1-x)^2}$$

When 
$$x = -2$$
 and  $y = -1$ ,  $\frac{d^3y}{dx^2} = -\frac{3}{16} = -\frac{1}{6} < 0$ 

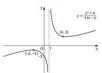
So  $\{-2, -1\}$  is a maximum point on the curve.

When 
$$x = 4$$
 and  $y = 2$ ,  $\frac{d^2y}{dx^2} = \frac{3}{16} = \frac{1}{6} > 0$ 

So (4, 2) is a minimum point on the curve.

Notice that the equation of the curve in this example can be rearranged into the form y = f(x). Show that  $y = \frac{x^2 + \theta}{2x - 1}$ . Its first and second derivatives can then be found using the quotient rule.

Use a graphical calculator to draw the graph of  $y = \frac{x^2+0}{4(x-1)}$ . Confirm that the curve has a maximum point at (-2, -1) and a minimum point at (4, 2).



### 11.5 Implicit Differentiation Exercise

#### Technique

- 1 For each of the following circles:
  - write down its Cartesian equation
  - ii find an expression for  $\pm$  in terms of x and y
  - iii calculate the gradient of the circle at the point P, whose coordinates are indicated
    - a radius 5, centre (1, 2); P (5, 5)
      - b radius 13, centre (3, -4); P(-2, 8)
      - c radius √39, centre (5, 0); P (-1, √3)
- 2 Find an expression for # in terms of x and y for each of the following:
  - $3x^2 2y^2 + xy = 0$ b  $x^3 + 4y - 3xy = 0$
- $d = 4v^3 5x + 2xv + 6 = 0$  $2x + 7y - 3x^2y - 4 = 0$
- c  $6x^2 + 2y^2 y + 4 = 0$
- $5x 3y^2 + 2xy^2 + 1 = 0$
- 3 Find the gradient of each of the following curves at the point indicated:
  - a  $v^3 2x^3 4xy + 24 = 0$  at (2, 2)
    - $4y 3x^2 y^2 + 17 = 0$  at (2, 5)
    - c  $3v^2 3x x^2v 47 = 0$  at (-1, 4)
  - 4 For each of the following curves:
    - find an expression for  $\stackrel{d}{=}$  in terms of x and v ii find the coordinates of the stationary points(s) on the curve
    - iii find an expression for  $\frac{d^2y}{dx^2}$  in terms of x, y and  $\frac{dy}{dx}$
    - iv determine the nature of the stationary point(s):
      - $3x^2 + v^2 3xv 9 = 0$ b  $5x^2 + 2v^2 - 2v - 12 = 0$
      - $x + 12v + x^2v + 2 = 0$
- 5 Find the equations of the tangent and the normal to each of the following curves at the points indicated:
  - a  $2x + 3y xy^2 + 4 = 0$  at (-1, -2)
    - b  $x + 2y^2 + 4xy^2 12 = 0$  at (2.1)
    - $v^3 + 10x + xv 15 = 0$  at (6, -3)



Example 1b is particularly important. The parametric equations of an ellipse centred at the origin are  $x = a \cos \theta$ ,  $y = b \sin \theta$ . Eliminating the parameter  $\theta$  gives the Cartesian equation for the ellipse

as  $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$ .



The Cartesian equation of a curve can usually be obtained from parametric equations. Eliminate the parameter, t, from the two parametric equations, x = f(t) and y = g(t). How is the gradient of such a parametrically defined curve found? First differentiate both x and y with respect to the parameter t, to find  $\frac{\phi}{2}$  and  $\frac{\phi}{2}$  respectively. Then, using the chain rule

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$
, which can be rewritten as

For example, check that the parametric equations that define the circle of radius 3, centred at the origin, are x = 3 cos t and y = 3 sin t. The parameter, t, is the angle, in radians, measured anticlockwise about the origin from the varie.



This parameter can be eliminated by squaring and adding the equations for x and y. Check that

$$x^{2} + y^{2} = (3\cos t)^{2} + (3\sin t)^{2}$$

$$= 9\cos^{2}t + 9\sin^{2}t$$

$$= 9(\cos^{2}t + \sin^{2}t)$$

$$\blacktriangleleft \cos^2 \theta + \sin^2 \theta \equiv 1$$

Thus  $x^2 + y^2 = 9$ , which is the Cartesian equation of this circle.

Differentiating the two parametric equations  $x=3\cos t$  and  $y=3\sin t$  with respect to t gives

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -3\sin t$$
 and  $\frac{\mathrm{d}y}{\mathrm{d}t} = 3\cos t$ .

Recall that 
$$\frac{dx}{dt} = \frac{1}{(\frac{dt}{2})}$$

Using the chain rule, 
$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$
  

$$= \left(\frac{dy}{dt}\right) / \left(\frac{dx}{dt}\right)$$

$$= \frac{3 \cos t}{-3 \sin t} = -\frac{1}{100}$$

 $\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{(\frac{\mathrm{d}x}{\mathrm{d}x})}$ 

Notice that since  $x = 3\cos t$  and  $y = 3\sin t$ ,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3\cos t}{-3\sin t} = -\frac{x}{y}$$

This was the result obtained by implicitly differentiating the Cartesian equation of this circle in the previous section.

#### Example 2

Find an expression for  $\frac{dy}{dx}$  for each of the following parametrically defined curves:

b  $x = 3 \sin \theta$ 

 $v = \cos 2\theta$ 

$$x = 4t^2 + 1$$

$$y = t^3 + t$$

### Solution

a 
$$\frac{dx}{dt} = 8t$$
 and  $\frac{dy}{dt} = 3t^2 + 1$   
So  $\frac{dy}{dx} = \left(\frac{dy}{dt}\right) / \left(\frac{dx}{dt}\right) = \frac{3t^2 + 1}{9t}$ 

b 
$$\frac{dx}{d\theta} = 3\cos\theta \text{ and } \frac{dy}{d\theta} = -2\sin 2\theta$$
  
So  $\frac{dy}{dx} = \left(\frac{dy}{d\theta}\right) / \left(\frac{dx}{d\theta}\right)$ 

$$= -\frac{2\sin 2\theta}{3\cos \theta} \blacktriangleleft \sin 2\theta = 2\sin \theta \cos \theta$$
$$= -\frac{4\sin \theta \cos \theta}{3\cos \theta} = -\frac{4}{3}\sin \theta$$

#### Example 3

Find the coordinates of the point(s) on the following parametrically defined curves where the gradient has the value indicated.

**a** 
$$x = \frac{4}{l}, y = \frac{8}{l^2}, \frac{dy}{dx} = \frac{2}{3}$$
 **b**  $x = \sin \theta, y = 2\cos^3 \theta, \frac{dy}{dx} = -3$ 

Solution

$$\begin{array}{lll} \mathbf{a} & \frac{dx}{dr} = \frac{-4}{r^2} \operatorname{and} \frac{dy}{dr} = \frac{-16}{r^2} \\ & So & \frac{dy}{dx} = \left(\frac{dy}{dr}\right) / \left(\frac{dx}{dx}\right) = \left(\frac{-16}{r^2}\right) / \left(\frac{-4}{r^2}\right) = \left(\frac{-16}{t^2}\right) \times \left(\frac{-t^2}{4}\right) = \frac{4}{t} \\ & \text{if } & \frac{dy}{dy} = \frac{2}{s^2}, & \text{then } & \frac{4}{r} = \frac{2}{s} \implies t = 6 \end{array}$$

When 
$$t = 6$$
,  $x = \frac{4}{6} = \frac{2}{3}$  and  $y = \frac{8}{36} = \frac{2}{9}$   
So  $\frac{dy}{dx} = \frac{2}{3}$  at  $(\frac{2}{3}, \frac{2}{9})$ 

b 
$$\frac{dx}{d\theta} = \cos\theta$$
 and  $\frac{dy}{d\theta} = -6\cos^2\theta\sin\theta$ 

So 
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right) \bigg/ \left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right) = \frac{-6\cos^2\theta\sin\theta}{\cos\theta} = -6\cos\theta\sin\theta = -3\sin2\theta$$

$$\sin 2\theta = 2\sin\theta\cos\theta$$

If 
$$\frac{dy}{dx} = -3$$
, then  $-3 \sin 2\theta = -3$ 

So 
$$\sin 2\theta = 1$$
 Then 
$$2\theta = \frac{\pi}{2}, \frac{5\pi}{2}, \frac{9\pi}{2}, \frac{13\pi}{2}, \dots$$

and 
$$\theta = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}, \dots$$

When 
$$\theta = \frac{\pi}{4}$$
,  $x = \frac{1}{\sqrt{2}}$  and  $y = 2(\frac{1}{\sqrt{2}})^3 = \frac{1}{\sqrt{2}}$ .  
When  $\theta = \frac{6\pi}{4}$ ,  $x = -\frac{1}{2}$  and  $y = 2(-\frac{1}{2})^3$ .

When 
$$\theta = \frac{4\pi}{4}$$
,  $x = -\frac{1}{\sqrt{2}}$  and  $y = 2(-\frac{1}{\sqrt{2}})^3 = -\frac{1}{\sqrt{2}}$ .

So 
$$\frac{dy}{dx} = -3$$
 at  $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ , and  $(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$ .

It is possible to find a general equation for the tangent, or the normal, at some general point (x = f(t), y = g(t)) on a parametric curve. The equation of the tangent, or normal, at a specific point on the curve can then be found by substituting an appropriate value of the parameter t.

#### Example 4

The curve C has parametric equations  $x = t^3$  and y = 6t. Find a general equation for both the tangent and the normal at some point  $(t^3, 6t)$  on the curve. Write down the equation of the tangent to the curve at (8, 12) and the equation of the normal to the curve at (-1, -6).

#### Solution

$$\frac{dx}{dt} = 3t^2$$
 and  $\frac{dy}{dt} = 6$ 

So 
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) / \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = \frac{6}{3t^2} = \frac{2}{t^2}$$

The gradient of the tangent, and the normal, to the curve at some general point  $(t^3, 6t)$  are  $\frac{7}{6t}$  and  $-\frac{1}{6}t^2$ , respectively. Use  $y - y_1 = m(x - x_1)$  to find the equations of these lines.

The equation of the tangent is

$$y - 6t = \frac{2}{t^2}(x - t^3)$$

$$\Rightarrow t^2y - 6t^3 = 2x - 2t^3$$

$$\Rightarrow t^2y - 2x = 4t^3$$
 or  $t^2y - 2x - 4t^3 = 0$ 

Multiply both sides by  $t^2$ 

The equation of the normal is

$$y - 6t = -\frac{1}{2}t^2(x - t^2)$$
  
 $\Rightarrow 2y - 12t = -t^2x + t^3$   
 $\Rightarrow 2y + t^2x = t^5 + 12t$  or  $2y + t^2x - t^5 - 12t = 0$ 

At the point (8, 12), t=2. The equation of the tangent at this point, found by substituting t=2 into  $t^2y-2x=4t^3$ , is

$$4v - 2x = 32$$
 or  $2v - x - 16 = 0$ 

At the point (-1, -6), t = -1. Substituting t = -1 into the general equation for a normal to the curve  $2y + t^2x = t^5 + 12t$ , gives

$$2v + x = -13$$
 or  $2v + x + 13 = 0$ 

#### Stationary points and second derivatives

The second derivative  $\frac{d}{dx}$  of a parametrically defined curve is found by differentiating the first derivative  $\frac{d}{dx}$  with respect to x (that is  $\frac{d}{dx}(\frac{dx}{dx})$ ). But, for most parameter curves,  $\frac{d}{dx}$  will be a function of the parameter, t, and net x. This means the chain rule must be used to change the variable by which  $\frac{d}{dx}$  is being differentiated, so that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) \times \frac{\mathrm{d}t}{\mathrm{d}x}$$

Having found an expression for  $\frac{d^2r}{dx^2}$ , it can be used to determine the nature of any stationary points on the parameter curve.

#### Example 5

Find an expression for  $\frac{dr}{ds}$  and  $\frac{d^2r}{ds^2}$  for each of the following parametrically defined curves:

a 
$$x = 2t + 3$$
  
 $y = \frac{5}{2}$   
b  $x = 4\cos\theta$   
 $y = \sin^2\theta$ 

Solution a  $\frac{dx}{dt} = 2$  and  $\frac{dy}{dt} = \frac{-2}{c^2}$ 

So 
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) / \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)$$

$$\frac{3}{2t^2}$$

Multiply both sides

Now 
$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx}\right) \times \frac{dt}{dx}$$
  
 $= \frac{d}{dt} \left(\frac{-5}{2t^2}\right) \times \frac{dt}{dx}$   
 $= \frac{5}{t^3} \times \frac{1}{2}$   
 $= \frac{5}{t^3} \times \frac{1}{2}$ 

**b**  $\frac{dx}{dt} = -4 \sin \theta$  and  $\frac{dy}{dt} = 2 \sin \theta \cos \theta$ 

So 
$$\frac{dy}{dx} = \left(\frac{dy}{d\theta}\right) / \left(\frac{dx}{d\theta}\right)$$
  
=  $\frac{2 \sin \theta \cos \theta}{-4 \sin \theta}$   
=  $-\frac{1}{2} \cos \theta$ 

$$= -\frac{1}{2}\cos\theta$$
Now 
$$\frac{d^2y}{dx^2} = \frac{d}{d\theta}\left(\frac{dy}{dx}\right) \times \frac{d\theta}{dx}$$

$$\frac{d\theta}{d\theta} \left(\frac{1}{2}\cos\theta\right) \times \frac{d\theta}{dx}$$

$$= \frac{1}{2}\sin\theta \times \frac{1}{(-4\sin\theta)}$$

$$= -\frac{1}{2}$$

#### ---

Find the coordinates of the stationary points on the curve defined in terms of a parameter t by  $x=t^2+1$  and  $y=t^3-12t$ . Use the second derivative to determine the nature of these points.

#### Solution

Example 6

$$\frac{dx}{dt} = 2t \text{ and } \frac{dy}{dt} = 3t^2 - 12$$

$$\frac{dy}{dx} = \left(\frac{dy}{dt}\right) / \left(\frac{dx}{dt}\right)$$

$$\frac{dx}{dt} = \left(\frac{dt}{dt}\right) / \left(\frac{dt}{dt}\right)$$

$$= \frac{3t^2 - 12}{2t}$$

At stationary points on the curve  $\frac{dr}{dt} = 0$ .

So 
$$\frac{3t^2 - 12}{2t} = 0$$

$$\Rightarrow 3t^2 = 12$$

$$\Rightarrow t^2 = 4$$

$$\Rightarrow t = 2 \text{ or } t = -2$$

Remember that  $\frac{dt}{dx} = \frac{1}{\left(\frac{dt}{dt}\right)} = \frac{1}{2}$  in this case.



Solve this equation by equating the numerator to zero.

#### Solution

$$\frac{dy}{dt} = 2t$$
 and  $\frac{dy}{dt} = 4 - 2t$ 

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{\mathrm{d}t}{\mathrm{d}x}$$

$$=\frac{4-2t}{2t}$$

At stationary points on the curve,  $\frac{dy}{dx} = 0$ .

$$\frac{4-2t}{2t} = 0 \quad \Rightarrow \quad 4-2t = 0$$

So the stationary point occurs at (5, 5).

To determine its nature we need to evaluate the second derivative.

$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left( \frac{dy}{dx} \right) \times \frac{dt}{dx}$$

$$= \frac{d}{dt} \left( \frac{4 - 2t}{2t} \right) \times \frac{dt}{dx}$$

$$= \frac{1}{dt} \left( \frac{2t}{2t} \right) \times \frac{1}{dt}$$

$$= -\frac{8}{4t^2} \times \frac{1}{2t}$$

$$= -\frac{1}{4t^2}$$

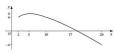
$$= -\frac{1}{t^3}$$

When t = 2,  $\frac{d^2y}{dx^2} < 0$ , so (5, 5) is a maximum point.

To sketch the curve we can evaluate x- and y-coordinates for different values of the parameter.

| t | 1 | 2 | 3  | 4  | 5  |
|---|---|---|----|----|----|
| X | 2 | 5 | 10 | 17 | 26 |
| y | 4 | 5 | 4  | 1  | -4 |

Together with what we know about the stationary points, we can produce a sketch of the curve:



# 11.6 Parametric Differentiation Exercise

## Technique

Eliminate the parameter to find the Cartesian equations of the following

curves:  $\mathbf{a} \quad x = 3t, y = t^2$ 

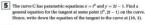
- d  $x = 4\cos\theta, y = 3\sin\theta$
- b  $x = 2t, y = t^3 + 1$ c  $x = 5\cos t, y = 5\sin t$
- $a \quad x = 4\cos\theta, y = 3\sin\theta$   $e \quad x = 1 + 2\cos\theta, y = 3 + 4\cos\theta$   $f \quad x = a\cos\theta, y = b\sin\theta$



- $a \quad x = 1 t^2$ y = 6t + 5
- b  $x = \cos^2 \theta$  $y = 1 - \sin \theta$
- $c x = \frac{1}{t+1}$   $y = \frac{1}{t-1}$

Find the coordinates of the points on each of the following curves where the gradient has the value indicated:

- $x = t^3 3t$  y = 2t + 1  $\frac{dy}{dt} = \frac{2}{5}$
- $\begin{aligned}
   x &= \frac{n}{7} \\
   y &= t^2 \\
   \frac{dy}{dx} &= -9
   \end{aligned}$
- $c \quad x = \tan \theta$   $y = 2 + \sin \theta$   $\frac{dy}{dx} = \frac{1}{8}$
- Find the equations of the tangent and the normal to the curve with parametric equations  $x = e^t$ ,  $y = 1 + e^{2t}$ , at the point where t = 1.



Find the coordinates of the stationary points on each of the following parametrically defined curves. Find also an expression for the second derivative and use it to determine the nature of these stationary points. Hence, or otherwise, sketch the curve.

 $a \quad x = 3t + 1$  $y = t^3 - 6t^2$ 

 $b x = t^3 + 1$  $y = t^2 + t$ 

So the linear approximation to the function gives a value for the definite integral that is correct to two decimal places. This approach is particularly useful when evaluating integrals that are difficult to evaluate exactly.

The binomial theorem can only be used to find the series expansions of functions of the form  $(a + x)^n$ , where n is a rational power. Functions such as  $\sin x$ ,  $\cos x$ ,  $e^x$  and  $\ln x$  can also be expressed as a series of ascending powers of x using the Maclaurin series.

#### The Maclaurin series

Suppose f(x) is some function of x that can be written as a series of ascending powers of x, such that

$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + ... + a_rx^r + ...$$

where  $a_r$  is the coefficient of the x' term. Assume that f(x) is a function that can be continuously differentiated to find f'(x), f''(x) and its higher derivatives. It follows that

$$f(\mathbf{x}) = a_1 + 2a_2\mathbf{x} + 3a_3\mathbf{x}^2 + 4a_4\mathbf{x}^3 + \dots$$
  
 $f'(\mathbf{x}) = 2a_2 + 6a_3\mathbf{x} + 12a_3\mathbf{x}^2 + 20a_2\mathbf{x}^3 + \dots$   
 $f'''(\mathbf{x}) = 6a_3 + 24a_4\mathbf{x} + 60a_3\mathbf{x}^3 + 120a_2\mathbf{x}^3 + \dots$   
 $f^{(0)}(\mathbf{x}) = 24a_3 + 120a_3\mathbf{x} + 360a_3\mathbf{x}^3 + \dots$  and so on.

Substituting x = 0 into these expansions.

Substituting 
$$\mathbf{x} = 0$$
 into these expansions,  
 $f(0) = a_0 = a_0 = f(0)$   
 $f'(0) = a_1 = a_1 = f'(0)$   
 $f'''(0) = 2a_2 = 2! \times a_2 \Rightarrow a_2 = \frac{f''(0)}{2!}$   
 $f''''(0) = 6a_3 = 3! \times a_3 \Rightarrow a_3 = \frac{f'''(0)}{4!}$   
 $f^{(4)}(0) = 24a_4 = 4! \times a_4 \Rightarrow a_4 = \frac{f^{(4)}(0)}{4!}$   
More generally,  $a_0 = \frac{f'''(0)}{4!}$ 

where  $f^{(r)}(0)$  is the value of the rth derivative of f(x) at x = 0. Substituting these values for the coefficients  $a_0$ ,  $a_1$ ,  $a_2$ ,  $a_3$ ,  $a_4$ , ...,  $a_r$ , ... into the series for f(x) gives

$$f(x) = f(0) + xf'(0) + x^2 \frac{f''(0)}{2!} + x^2 \frac{f'''(0)}{3!} + \ldots + x^r \frac{f^{(r)}(0)}{r!} + \ldots$$

is named after Colin Maclaurin (1698-17

◀ Learn this result.

#### Example 5

Use the Maclaurin series expansion to find the cubic approximation of  $\ln(1+x)$ . Hence find the approximate value of  $\ln(1.1)$ .

#### Solution

$$f(x) = \ln(1+x)$$
  $\Rightarrow$   $f(0) = \ln 1 = 0$   
 $f'(x) = (1+x)^{-1}$   $\Rightarrow$   $f'(0) = 1$ 

$$f''(x) = -(1+x)^{-2} \Rightarrow f''(0) = -1$$

 $f'''(x) = 2(1+x)^{-3} \implies f'''(0) = 2$ , and so on.

The Maclaurin series for ln(1+x) is therefore

$$\ln(1+x) = x - \frac{x^2}{2!} + \frac{2x^3}{3!} - \dots$$

and the cubic approximation is  $ln(1+x) \approx x - \frac{1}{2}x^2 + \frac{1}{2}x^3$ 

Substituting x = 0.1 gives

$$ln(1.1) \approx 0.1 - \frac{1}{2}(0.1)^2 + \frac{1}{3}(0.1)^3$$
  
 $\approx 0.1 - 0.005 + 0.00033$   
 $\approx 0.0953 (4 d.p.)$ 

By evaluating the higher derivatives of  $\ln(1+x)$  when x=0, it is possible to show that the Maclaurin series for  $\ln(1+x)$  is

$$ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{2}x^3 - \frac{1}{2}x^4 + \frac{1}{2}x^5 - \dots$$

This expansion is only valid for  $-1 < x \le 1$ . Replacing x with -x in this series gives

$$\ln(1-x) = -x - \frac{1}{2}x^2 - \frac{1}{2}x^3 - \frac{1}{2}x^4 - \frac{1}{2}x^5 - \dots$$

This expansion is only valid for  $-1 \le x < 1$ .

The Maclaurin expansion cannot be used to find a power series for  $\ln x$  because the function and its derivatives  $f'(x) = \frac{1}{x^2}, f''(x) = -\frac{1}{x^2},$  $f'''(x) = \frac{2}{x}$ , and so on, are not defined for x = 0. Recall that  $f'(x) = \frac{1}{(1+x)} = (1 + x)$ 

sck this result us

Notice the condition

#### 11.7 Maclaurin Series Exercise

## Technique

Find the first three non-zero terms in the Maclaurin series expansions for:

Use the quadratic approximation for cos 2x obtained from its Maclaurin series to solve the equation cos 2x = 3x, correct to two decimal places.

3 Find the first three non-zero terms in the Maclaurin series expansion of  $\ln(1+2x)$  and  $\ln(1-2x)$ . Hence, write down a cubic approximation for  $\ln\left(\frac{1-2x}{2}\right)$  and, by substituting x=0.1 into it, find the approximate value of  $\ln 1.5$  to three decimal places.

## Consolidation

#### Exercise A

Given that  $y = xe^{-3x}$ , find  $\frac{dy}{dx}$ . Hence find the coordinates of the stationary point on the curve  $v = xe^{-3x}$ .



a Find 2 in terms of t.

b The normal to the curve at the point P has gradient 2. Determine the coordinates of P.

(AEB)



The diagram shows a rough sketch of the graph of  $y = (x - 1)\sqrt{6 - x}$ . b By considering the gradient of the curve at the point where x = 4,

- Find an expression for #:
- determine whether the x-coordinate of the maximum point on the graph is less than or greater than 4.

(NEAB)



- a Find \$\frac{1}{2}\$ and \$\frac{1}{2}\$ in terms of t.
- b Find the value of the at the point P on C, where t = 1.
- c Find an equation of the normal to the curve at P.

(ULEAC)

5 Use Maclaurin's theorem to show that for sufficiently small values of x,  $(1+x^2)\tan^{-1}x \approx x + \frac{2}{3}x^3 - \frac{2}{37}x^5$ 

(NICCEA)

- A curve is defined implicitly by the equation  $x^2v + v^2 3x 3 = 0$ . Point A has coordinates (1, 2) and point B is where the curve crosses the x-axis.
  - Show that point A lies on the curve. Find the coordinates of point R.
  - Calculate the gradient of the curve at point A.
  - Find the equation of the normal to the curve at point A.

(AEB)

The parametric equations of a curve are  $x = e^{2t} - 5t$  and  $y = e^{2t} - 2t$ . Find

 $\frac{dr}{dt}$  in terms of t. Find the exact value of t at the point on the curve where the gradient is 2.

(UCLES)

The sketch shows the curve with quation  $y = \frac{3x-9}{3}$ 

- Write down the equations of the vertical asymptotes.
- b Find in terms of x and hence determine the coordinates of the maximum and minimum points. A and B, on the curve.



It is given that  $y = \frac{1}{1+ch}$ . Show that when x = 0,  $\frac{d^2y}{dx^2} = 8$ . Find the first three terms in Maclaurin's series for v.

- Use the series to obtain an approximate value for  $\binom{0.1}{n}$ , v dx, giving your answer correct to four decimal places.
- Find the first two terms of Maclaurin's series for \$\frac{dr}{2}\$.

(OCSEB)

10 An oil rig. O, is situated out at sea at a perpendicular distance of 10 km from a straight coastline. The point on the coast nearest to O is P. A. refinery, R, is situated on the coast 10 km from P, A project is being planned to bring the oil ashore by means of pipelines running from O directly to a point Q on the coastline and then along the coast to R. The project will cost £5 million per kilometre under the sea and £3 million per kilometre along the coast. Show that if O is x km from P, the cost of the project will be £C million, where  $C = 5\sqrt{100 + x^2} + 30 - 3x$ . Show that  $\mathfrak{L} = 0$  when x = 7.5. Find  $\mathfrak{L} = 0$  and hence, or otherwise, determine whether C is a maximum or minimum when x = 7.5

(NEAB)

#### Exercise B

A curve has equation  $y=x^2-\frac{id}{dx}$ . Find  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$  in terms of x. Calculate the coordinates of the stationary point of the curve and determine whether it is a maximum or minimum point.

(AEB)

 Use Maclaurin's theorem to derive the series expansion for cosx, giving the first three non-zero terms.

giving the first three non-zero terms. Hence obtain the first three non-zero terms of the series expansions

i cos 2x

ii cos²x

(NICCEA)

A curve C is defined by the parametric equations  $x = 4t + \frac{a}{2}$  and  $y = 4t - \frac{a}{2}$ .

A curve C is defined by the parametric equations x = 4t + 7 and y = 4t − 7
a Express ± in terms of t, simplifying your answer.

**b** At the point on the curve C where t = 2:

i show that  $\frac{dr}{ds} = \frac{5}{3}$ 

1 - 67

ii find the equation of the normal to the curve.

(NEAB)

The number of bacteria present in a culture at time t hours after the beginning of an experiment is denoted by N. The relation between N and t is modelled by N = 100e<sup>3t/2</sup>.

After how many hours will the number of bacteria be 9000?
 At what rate per hour will the number of bacteria be increasing when

(UCLES)

**5** A curve is given parametrically by the equations  $x = 2\theta + \sin 2\theta$ ,  $y = 2\cos^2\theta$ ,  $0 \le \theta \le \frac{\pi}{2}$ . Show that  $\frac{dr}{dx} = -\tan\theta$  (given  $\theta \ne \frac{\pi}{2}$ ). Find the equation of the tangent to the curve at the point where  $\theta = \frac{\pi}{4}$ .

(AEB)

Given that  $f(x) = \frac{6x+3y}{x^2+y^2}$ , show that  $f'(2) = \frac{6(y^2-3x-4)}{(4+x^2)^2}$ . Find the two values of the constant a for which f(x) has a stationary value when x = 2.

A curve has equation x<sup>3</sup> + y<sup>3</sup> + 2x + 5y = 9. Find an expression for defect terms of x and y. Hence show that the gradient of the curve is never positive.

(OCCEP

## **Applications and Activities**

## 1 Making a cone

base radius r cm.

Cut a sector of angle  $\theta$  from a circular piece of card of rudius 20 cm and attach the two straight edges together to make a right-circular cone of height  $\theta$  cm and





- Find an expression for the perpendicular height, h, of the cone in terms of its base radius. r.
- b Use this to find an expression for the volume, V, of the cone in terms of r only.
- c Use the product rule to differentiate V with respect to r. Find the exact value of r for which #E = 0, and the corresponding value of V. Show that this is the maximum possible volume for a cone made from this particular piece of card.
- d Find an expression, in terms of θ, for the length of the circular edge of the piece of card from which the cone is made. Equating this to the circumference of the base of the cone, find the value of θ that corresponds to the maximum possible volume of the cone.
- e Repeat these calculations for a cone made from a circular piece of card of radius R cm. In what way is the angle  $\theta$  that corresponds to the maximum possible volume of the cone dependent on the radius R?

## Summary

The second derivative derivativ

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
 and  $\frac{\mathrm{d}^2y}{\mathrm{d}x^2} > 0 \Rightarrow$  minimum point

 $\frac{dy}{dx} = 0$  and  $\frac{d^2y}{dx^2} < 0 \Rightarrow$  maximum point

When  $\stackrel{dx}{=} = 0$  and  $\stackrel{d^2y}{=} = 0$ , the gradient must be considered on either

- When \( \frac{\pi}{4x} = 0 \) and \( \frac{\pi}{2x} = 0 \), the gradient must be considered on either side of the stationary point to determine whether it is a maximum point, a minimum point or a point of inflexion.
- A non-stationary point of inflexion is a point where the gradient of the curve is at its maximum or minimum value locally. The tangent to the curve at these points crosses from one side of the curve to the other.

 Types of inflexion can be determined by considering the first and third derivatives:

| 如   | 9 | 27 m | Type of inflexion |
|-----|---|------|-------------------|
| +ve | 0 | +ve  | 1                 |
| +ve | 0 | -ve  | 1                 |
| -16 | 0 | -ve  | 5                 |
| -ve | 0 | +ve  | 1                 |

- The product rule for differentiation is:
  - If y = uv, then  $\frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x} = uv' + vu'$
- The quotient rule for differentiation is:

If 
$$y = \frac{u}{v}$$
, then  $\frac{dy}{dx} = \frac{\left(v\frac{du}{dx} - u\frac{dv}{dx}\right)}{v^2} = \frac{(vu' - uv')}{v^2}$ 

- $\frac{d}{dx}(e^x) = e^x \qquad \frac{d}{dx}(a^x) = a^x \ln a$
- $\Phi \frac{\mathbf{d}}{\mathbf{d}\mathbf{x}}(\tan \mathbf{x}) = \sec^2 \mathbf{x} \qquad \frac{\mathbf{d}}{\mathbf{d}\mathbf{x}}(\cot \mathbf{x}) = \csc^2 \mathbf{x}$ 
  - $\frac{\mathbf{d}}{\mathbf{d}x}(\mathbf{cosec}x) = -\mathbf{cosec}x\cot x$   $\frac{\mathbf{d}}{\mathbf{d}x}(\mathbf{sec}x) = \mathbf{sec}x\tan x$
- $\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$

- A function in x and y that cannot be written in the form y = f(x) is an
  implicitly defined function. The method used to find the gradient of
  an implicit function is implicit differentiation, and relies on the
  chain rule. The product rule and/or the quotient rule may also be
  needed.
- The first and second derivatives, \( \frac{dr}{dc} \) and \( \frac{d^2r}{dc^2} \), can be found for parametrically defined curves using the chain rule.
- Maclaurin's theorem can be used to find series expansions for standard functions. For values of x close to 0:

 $f(x) = f(0) + xf'(0) + \frac{x^2f''(0)}{2!} + \ldots + \frac{x'f^{(t)}(0)}{t!} + \ldots$ 

where  $f^{(r)}(0)$  is the rth derivative of f(x) evaluated at x = 0.

## 12 Integration II

#### What you need to know

- How to integrate polynomials and basic trigonometrical functions by reversing differentiation.
- How to use integration to calculate areas and volumes.
- How to differentiate standard functions and use the product rule.
- How to manipulate algebraic fractions.
- How to express rational functions as partial fractions.
- How to differentiate implicit functions.

#### Review

| _ |                                         |
|---|-----------------------------------------|
| 1 | Integrate the following with respect to |

**a**  $x^3 + 5x^2 - x + 10$  **b**  $(x-4)^2$  **c**  $\sin x$ 

Sketch the curve  $y = x^2 + 1$ .

a Find the area under the curve between x = 0 and x = 1.
b Find the volume generated when this area is rotated about the x-axis through one complete turn.

3 Differentiate the following functions with respect to x:

4 Express each of the following as a proper fraction:

a  $\frac{x+1}{x-1}$  b  $\frac{x}{x+1}$ 

5 Express each of the following as partial fractions:

a  $\frac{x-7}{(x+1)(x+3)}$  b  $\frac{3x-1}{(x+1)(x^2+1)}$  c  $\frac{2x^2-7x-1}{x^2-7x+1}$ 

Find  $\frac{dy}{dx}$  for each of the following using implicit differentiation: a  $y^2 = x+1$  b  $y^2 = x^2 + 2x - 3$  integration is the rev

#### Example 1

Find:

a 
$$\int \sin 5x \, dx$$
  
c  $\int_{1}^{1} \cos (3-x) \, dx$ 

b 
$$\int \sin(4 - 2x) dx$$
  
d  $\int_0^{\pi/8} \sec^2 2x dx$ 

#### Solution

$$a \int \sin 5x \, dx = -\frac{1}{2} \cos 5x + c \quad \blacktriangleleft \int \sin kx \, dx = -\frac{1}{k} \cos kx + c$$

b  $\int \sin(4-2x) dx = -\frac{1}{(-2)}\cos(4-2x) + c$ 

$$=\frac{1}{2}\cos(4-2x)+c$$

c 
$$\int_0^1 \cos (3-x) dx = \left[\frac{1}{-1}\sin (3-x)\right]_0^1$$
  
=  $(-\sin 2) - (-\sin 3)$ 

$$= -\sin 2 + \sin 3$$
  
= -0.768 (3 d.p.)

$$\mathbf{d} = \int_{0}^{\pi/8} \sec^{2} 2x \, dx = \left[\frac{1}{2} \tan 2x\right]_{0}^{\pi/8}$$

$$= \left(\frac{1}{2} \tan \frac{\pi}{2}\right) - \left(\frac{1}{2} \tan 0\right)$$

 $= (\tfrac{1}{2} \times 1) - (\tfrac{1}{2} \times 0) = \tfrac{1}{2}$  Remember to use double angle formulas when integrating  $\sin^2 x$  or  $\cos^2 x$  (see Chapter 9). Sometimes the compound angle formulas can be used to transform an integral into a 'simpler form'.

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

#### Example 2

Find:

[3]

[4]

Check that differentiation rever

the integration proc

 $-\sin 2 + \sin 3 = -0$ 

 $\int \sec^2 kx dx = \frac{1}{2} \tan k$ 

#### Solution

- Adding formulas [1] and [2].
  - sin(A + B) + sin(A B) = 2 sin A cos B
    - Now let A = 5x and B = 2x
  - Then  $\sin(5x + 2x) + \sin(5x 2x) = 2\sin 5x \cos 2x$  $\sin 7x + \sin 3x = 2 \sin 5x \cos 2x$ 
    - $\Rightarrow \frac{1}{2}(\sin 7x + \sin 3x) = \sin 5x \cos 2x$

The product sin 5x cos 2x has now been transformed into the sum of two trigonometrical functions, which can be integrated.

- $\int \sin 5x \cos 2x \, dx = \int \frac{1}{2} (\sin 7x + \sin 3x) \, dx$ 
  - $= \frac{1}{2} \left[ (\sin 7x + \sin 3x) \, \mathrm{d}x \right]$
  - $= \frac{1}{4}[-\frac{1}{4}\cos 7x \frac{1}{4}\cos 3x] + c$
  - $= -\frac{1}{2}\cos 7x \frac{1}{2}\cos 3x + c$
- Subtracting formula [4] from formula [3],
- cos(A + B) cos(A B) = -2 sin A sin B
  - Let A = x and B = 3x. Then
    - $\cos(x + 3x) \cos(x 3x) = -2\sin x \sin 3x$
    - $-\frac{1}{2}[\cos 4x \cos(-2x)] = \sin x \sin 3x$

Recall that cosine is an even function, so that cos(-2x) = cos 2x.

- So  $\sin x \sin 3x = -\frac{1}{4}(\cos 4x \cos 2x)$
- Now  $\int_{-\pi}^{\pi/4} \sin x \sin 3x \, dx = \int_{-\pi/4}^{\pi/4} -\frac{1}{2} (\cos 4x \cos 2x) \, dx$ 
  - $=-\frac{1}{2}\int_{-\pi}^{\pi/4}(\cos 4x \cos 2x) dx$  $=-\frac{1}{5}\left[\frac{1}{4}\sin 4x - \frac{1}{5}\sin 2x\right]_{0}^{\pi/4}$

  - $= -\frac{1}{4}[(\frac{1}{4}\sin \pi \frac{1}{4}\sin \xi) (\frac{1}{4}\sin \theta \frac{1}{4}\sin \theta)]$  $=-\frac{1}{2}(1\times 0 - 1\times 1 - 0 + 0)$ 
    - =-1(-1)=1



#### The exponential function

Romember that one important feature of the exponential function is equal to the function is equal to the function is edited. By applying the chain rule to the exponential function, derivatives can be found as follows, and by thinking of integration as the reverse of differentiation we can write down another set of standard integrals.



$$\frac{d}{dc}(e^{\alpha}) = e^{\alpha} \qquad \Rightarrow \qquad \int e^{\alpha} dx = e^{\alpha} + c \qquad \text{4 Learn these important results.}$$

$$\frac{d}{dc}(e^{\alpha c}) = oe^{\alpha c} \qquad \Rightarrow \qquad \int e^{\alpha c} dx = \frac{1}{a}e^{\alpha c} + c$$

$$\frac{d}{dc}(e^{\alpha c} + b) = oe^{\alpha c} + b \qquad \int e^{\alpha c} dx = \frac{1}{a}e^{\alpha c} + c$$

#### Example 3

Find:

a 
$$\int e^{-x} dx$$
 b  $\int e^{2x} dx$  c  $\int e^{\frac{1}{2}x} dx$  d  $\int_0^1 e^{2-5x} dx$   
Solution

Solution

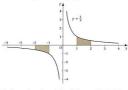
a 
$$\int e^{-x} dx = \frac{1}{-1}e^{-x} + c$$
  $\blacktriangleleft$  Using result [2], with  $\alpha = -1$ .  
=  $-e^{-x} + c$ 

 $\begin{aligned} \mathbf{b} && \int \mathrm{e}^{2x} \, \mathrm{d}x = \tfrac{1}{2} \mathrm{e}^{2x} + c && \blacktriangleleft \text{ Using result [2], with } \alpha = 2. \\ \mathbf{c} && \int \mathrm{e}^{\mathbf{j}x} \, \mathrm{d}x = \frac{1}{(\mathbf{j})} \, \mathrm{e}^{\mathbf{j}x} + c = 2 \mathrm{e}^{\mathbf{j}x} + c \end{aligned}$ 

$$\begin{split} \textbf{d} & \quad \int_{0}^{1} e^{2-5\sigma} \ dx = \left[ -\frac{1}{5} e^{2-5\sigma} \right]_{0}^{1} \\ & = \left( -\frac{1}{5} e^{2-5} \right) - \left( -\frac{1}{5} e^{2-9} \right) \\ & = -\frac{1}{5} e^{-2} + \frac{1}{5} e^{2} \\ & = \frac{1}{5} (e^{2} - e^{-3}) = 1.466 \ (3 \ d, D_1) \end{split}$$

It is always useful to check your integrati by mentally differentiating your answer. In  $\mathbf{b}$ ,  $\frac{d}{dx}(\frac{1}{2}\mathbf{e}^{2x}+c)=\frac{1}{2}\times 2\mathbf{e}$ Recall that  $\frac{1}{(1)}=2$ .

#### Definite integrals involving logarithms



The diagram shows the graph of  $y=\frac{1}{k}$ . The areas of the shaded regions are equal. Since we find the area under the curve by integrating between limits, we would expect  $\int_1^2 \frac{1}{k} \, dx = -\int_{-1}^{-1} \frac{1}{k} \, dx$ .

$$\int_{1}^{2} \frac{1}{x} dx = |\ln x|_{1}^{2}$$

$$= \ln 2 - \ln 1$$

$$= \ln 2$$

$$\int_{-2}^{-1} \frac{1}{x} dx = |\ln x|_{-2}^{-1}$$

$$= \ln(-1) - \ln(-2)$$

But we get stuck here because we cannot find the logarithm of a negative number on a calculator; the logarithmic function is only defined for positive values of x. To avoid unnecessary complications with logarithms of negative numbers, we use the modulus function when integrating with the logarithmic function.

$$\int_{-2}^{-1} \frac{1}{x} dx = [\ln|x|]_{-2}^{-1}$$

$$= \ln|-1| - \ln|-2|$$

$$= \ln 1 - \ln 2$$

$$= - \ln 2$$

In general:

$$\int_{a}^{b} \frac{f'(x)}{f(x)} dx = [\ln |f(x)|]_{a}^{b} \text{ and } \int_{a}^{b} \frac{f'(x)}{f(x)} dx = \ln |f(x)| + c$$

The minus sign indi that the area is below x-axis.

Remember that the modulus function to us to take the absolu value.

Check Example 4. N that the modulus function is needed f parts but **d**, because possible for f(x) < 0

#### Example 5



The diagram shows part of the curve  $y = \frac{8}{1-4\epsilon}$ . Find the area of the shaded region.

#### Solution

$$\begin{array}{l} shaded \ area = \int_{1}^{2} \frac{8}{1-4x} \ dx \\ \\ = -2 \int_{1}^{2} \frac{-4}{1-4x} \ dx \\ \\ = -2 [\ln ] - 4x ||_{1}^{2} \\ \\ = -2 [\ln ] - |\ln |-3|| \\ \\ = -2 [\ln 7] \ln |3| \\ \\ = -2 \ln [_{3}^{2}) \end{array}$$

The minus sign signifies that the area is below the x-axis, so the shaded area is  $2 \ln(\frac{7}{3})$ .

#### Inverse trigonometric functions

Another set of important integrals can be found by studying the results of differentiating inverse trigonometrical functions. Begin with  $\sin^{-1}(\xi)$  and  $\tan^{-1}(\xi)$ , where  $\alpha$  is a constant. Using general functions like these will allow us to establish another set of general integrals.

Let 
$$y = \sin^{-1}\left(\frac{x}{a}\right)$$

Then 
$$\sin y = \frac{x}{a}$$

Differentiating with respect to x,

$$\cos y \frac{dy}{dx} = \frac{1}{a}$$
So 
$$\frac{dy}{dx} = \frac{1}{a \cos y}$$

Remember to take the limits from the diagram.

Use the modulus form because 1 - 4x is negative for  $x > \frac{1}{4}$ .

Recall the alternative notation  $\arcsin \left(\frac{x}{0}\right)$  and  $\arctan \left(\frac{x}{0}\right)$ .

Recall from Chapter 11 how to differentiate sin y implicitly with respect to x.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{a \times \left(\frac{a^2 + x^2}{a^2}\right)}$$
$$= \frac{1}{\left(\frac{a^2 + x^2}{a}\right)} = \frac{a}{a^2 + x^2}$$

So 
$$\left[\frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a}\right) + c\right]$$
 Learn this result.

and  $\left[\frac{1}{a^2+x^2} dx - \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c\right]$ 

Remember that the constant a can be taken outside the integration

## Example 6

Find:  
a 
$$\int \frac{1}{\sqrt{1-x^2}} dx$$

$$\frac{1}{\sqrt{1-x^2}} dx \qquad \qquad \mathbf{b} \quad \int \frac{1}{2+x^2} dx$$

#### Solution

a Using the standard result 
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c$$
, with  $a = 1$   

$$\int \frac{1}{\sqrt{a^{-2}}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c = \sin^{-1}x + c$$

b Using the standard result  $\left[\frac{1}{a^2+x^2}dx = \frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + c$ , with  $a = \sqrt{2}$  $\int \frac{1}{2 + x^2} dx = \int \frac{1}{(\sqrt{2})^2 + x^2} dx = \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{x}{\sqrt{2}} \right) + c$ 

#### Example 7

Evaluate 
$$\int_0^1 \frac{3}{\sqrt{4-x^2}} dx.$$

## Solution

Rearrange the integral in standard form by extracting a factor of 3 outside the integral sign and changing the 4 to 22.  $\int_{0}^{1} \frac{3}{\sqrt{3-x^{2}}} dx = 3 \int_{0}^{1} \frac{1}{\sqrt{3^{2}-x^{2}}} dx$ 

$$= 3 \left[ \sin^{-1} \left( \frac{x}{2} \right) \right]_{0}^{1}$$

$$= 3 \left[ \sin^{-1} \left( \frac{1}{2} \right) - \sin^{-1} (0) \right]$$

$$= 3 \left[ \frac{\pi}{6} - 0 \right] = \frac{\pi}{2}$$

radians Recall the special angles.

## 12.1 Standard Integrals Exercise

## Technique

1 Find:

0 1a

2 Evaluate:

a  $\int_0^{\pi/4} \sin 2\theta \, d\theta$  $c \int_0^{\pi/4} \sec^2 x \, dx$ 

**b**  $\int_{0}^{3/2} \cos(1+2\theta) d\theta$ d [7/6 sec2 2x dx

3 Find:

a [sin 2x cos x dx c f<sup>1/2</sup> sin 3x sin x dx b \[ \cos 2x \cos x \, \dx \] d f sin x cos 2x dx

4 Find:

 $a \int e^{5x} dx$ b fe-x dx c ∫±dx

d ∫e<sup>jx</sup> dx  $e \int e^{ix} dx$ 

 $g \int 2e^{2x} dx$  $h \int_{\frac{1}{2}}^{1} e^{-6x} dx$  0 )af

0 7b

5 Find:

**b**  $\int (1 - e^{-x}) dx$  **e**  $\int_0^1 2e^{4x} dx$  $c \int (1+e^x)^2 dx$ 

a  $[(2x+3e^{2x})dx$  d  $[(1-e^{1-2x})dx$  f  $[a^2(x-3e^{-x})dx]$ 

g [ 1/2 e1+2x dx

6 Find:

7 Find:

a  $\int_{x}^{4} dx$  b  $\int_{2x}^{1} dx$  c  $\int_{x}^{x+1} dx$  d  $\int_{x+2}^{1} dx$  $e \int_{\frac{1}{2\pi k^2}}^{\frac{1}{2}} dx \quad f \int_{\frac{1}{2\pi k^2}}^{\frac{1}{2}} dx \quad g \int_{\frac{1}{2\pi k^2}}^{\frac{1}{2}} dx \quad h \int_{\frac{1}{2\pi k^2}}^{\frac{1}{2}} dx$ 

c [2x+1 dx

a Tax dx d [ - dx

b [ x dx  $e^{\int_{0}^{2} \frac{1}{x_{n-1}} dx}$ f [1 x dx c foordax

8 Find: a ∫cotxdx b ∫sinx dx

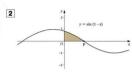
9 Find:  $a \int \frac{1}{\sqrt{1-x^2}} dx$ d  $\int \frac{2}{3\pi r^2} dx$ 

b  $\int \frac{1}{\sqrt{2x-x^2}} dx$ e 1 dx

c ∫ 1/2 dx f [ 1 dx

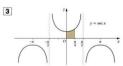
#### Contextual

Sketch the curve y = 1 + sin 2x for 0 ≤ x ≤ π. Find the area bound by the curve, the y-axis and the positive x-axis, leaving your answer in terms of π.



The graph shows the curve  $y = \sin(1 - x)$ a Verify that the x-coordinate of P is 1.

 Calculate the area of the shaded region, giving your answer correct to two decimal places.



The diagram shows part of the graph of  $y = \sec x$ . Find the volume generated when the shaded area is rotated about the x-axis through four right-angles.

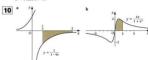
- a Use  $1 + \tan^2 A \equiv \sec^2 A$  to express  $\tan^2 2x$  in terms of  $\sec^2 2x$ . b Find  $\int \tan^2 2x \, dx$ .
- 5 If  $g'(x) = 12 \cos(1 + 2x)$  and  $g(-\frac{1}{2}) = 1$ , find g(x).

#### Complete Advanced Level Mathematics: Pure Mathematics

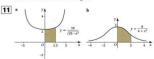
**6** The diagram shows the graph of  $y = e^{1-jx}$ . Calculate the area of the shaded region, leaving your answer in terms of e.



- **7** Sketch the graph of  $y = \frac{1}{2}e^{2x}$ . Find the volume generated when the area under the curve between x = 0 and x = 1 is rotated about the x-axis through one complete revolution.
- 8 If  $2^x = e^m$  find an expression for m in terms of x. Hence evaluate  $\int_0^1 2^x dx$ .
- Sketch the graph of  $y = \frac{2}{s}$ . Calculate the area under the graph between x = 1 and x = 4.



Calculate the areas of the shaded regions.



Calculate the areas of the shaded regions.

## 12.2 Rational Functions

A rational function is a fraction where both numerator and denominator are polynomials (the numerator can be a constant). Some examples are:

$$\frac{x}{1+x^2}$$
  $\frac{x-1}{x+1}$   $\frac{x^2}{1+x}$   $\frac{2x-1}{(x+1)(x-2)}$ 

Recall that when the degree of the numerator is less than the degree of the denominator it is called a proper fraction. When the degree of the numerator is equal to or greater than the degree of the denominator, it is called an improper fraction.

When integrating rational functions, first check to see whether the fraction is proper or improper. For example,  $\frac{K}{16\pi^2}$  is a proper fraction and can be written in the form  $\frac{dF(k)}{f(k)}$ , where k is a constant.

So 
$$\int \frac{x}{1+x^2} dx = \frac{1}{2} \int \frac{2x}{1+x^2} dx$$
  $\blacktriangleleft \text{Recall } \int \frac{f'(x)}{f(x)} dx = \ln[f(x)] + c.$ 

$$= \frac{1}{2} \ln(1+x^2) + c$$

Improper fractions cannot be written in the form  $\frac{f(p)}{f(n)}$ , where k is a constant. To integrate an improper fraction first write it as the sum or difference of proper algebraic fractions. Then try to use the list of standard integrals.

#### Simple improper fractions

All improper fractions can be expressed as the sum or difference of a polynomial and a proper fraction.

#### Example 1

Find:

$$\mathbf{a} \quad \int \frac{x}{1-x} \, \mathrm{d}x \qquad \qquad \mathbf{b} \quad \int \frac{x+1}{x-1} \, \mathrm{d}x \qquad \qquad \mathbf{c} \quad \int \frac{x^3}{7+x^2} \, \mathrm{d}x$$

Solution

a First express \( \frac{x}{1-x} \) as the sum of a polynomial and a proper fraction. Do this by writing the numerator in terms of the denominator

$$\frac{x}{1-x} = \frac{-(1-x)+1}{1-x} = \frac{-(1-x)}{1-x} + \frac{1}{1-x}$$
$$= -1 + \frac{1}{1-x}$$

The modulus function isn't required because  $1 + x^2 > 0$  for all x.

One way of doing this is to write the numerator in terms of the denominator.

First write  $\frac{x+1}{x-1}$  as a sum involving a proper fraction.

$$\begin{split} \frac{x+1}{x-1} &= \frac{(x-1)+2}{x-1} \\ &= \frac{x-1}{x-1} + \frac{2}{x-1} \\ &= 1 + \frac{2}{x-1} \\ \text{Now} & \int \frac{x+1}{x-1} \, dx = \int \left(1 + \frac{2}{x-1}\right) \, dx \\ &= x + 2 \int \frac{1}{x-1} \, dx \quad \text{4 The form } \int \frac{f'(x)}{f(x)} \, dx. \end{split}$$

$$\epsilon \frac{x^{2}}{7+x^{2}} = \frac{7x + x^{3} - 7x}{7+x^{2}} = \frac{x(7+x^{3}) - 7x}{7+x^{2}}$$

$$= \frac{x(7+x^{2})}{7+x^{2}} - \frac{7x}{7+x^{2}}$$

$$= x - \frac{7x}{7+x^{2}}$$

Now 
$$\begin{split} \int \frac{x^2}{7+x^2} \, dx &= \int \left(x - \frac{7x}{7+x^2}\right) dx \\ &= \frac{1}{2}x^2 - 7\int \frac{x}{7+x^2} \, dx \\ &= \frac{1}{2}x^2 - \frac{1}{2}\int \frac{2x}{7+x^2} \, dx \quad \blacktriangleleft \text{The form } \int \frac{f'(x)}{f(x)} \, dx. \end{split}$$

#### Partial fractions

If the denominator can be factorised, partial fractions can be used to simplify the rational function (see Chapter 6).

the standard form where f(x) = 1 - x.

Check this result by differentiation.

Check this result by differentiation.

c Express  $\frac{1}{x^2+x^2}$  in partial fractions.

Check that  $\frac{1}{x^3 + x^2} = \frac{1}{x^2} - \frac{1}{x} + \frac{1}{x+1}$ 

## Example 3

a Find the values of a and b if  $\int_{-1}^{1} \frac{1}{4-x^2} dx = \frac{1}{a} \ln b$ .

b Evaluate  $\int_0^4 \frac{26x^2 + 5x + 31}{(1 + 3x)(x^2 + 16)} dx.$ 

#### Solution

Now

a Notice that the denominator is the difference of two squares. That is,  $4-x^2=(2+x)(2-x)$ . Use this to write partial fractions.

Check that  $\frac{1}{4-x^2} = \frac{1}{4(2+x)} + \frac{1}{4(2-x)}$ Now  $\int_{-1}^{1} \frac{1}{4-x^2} dx = \int_{-1}^{1} \left[ \frac{1}{4(2+x)} + \frac{1}{4(2-x)} \right] dx$   $= \frac{1}{4} \int_{-1}^{1} \frac{1}{2-x} dx + \frac{1}{4} \int_{-2}^{1} \frac{1}{2-x} dx$   $= \frac{1}{4} \int_{-1}^{1} \frac{1}{2-x} dx - \frac{1}{4(2-x)} \int_{-2}^{1} \frac{1}{2-x} dx$   $= \frac{1}{4} \ln |2 + x|_{-1}^{4} - \frac{1}{4} \ln |2 - x|_{-1}^{4} dx$  $= \frac{1}{4} \ln 3 - 0 - 0 + \frac{1}{4} \ln 3 - 4 \ln 1 - 0 dx$ 

b Express the integrand in partial fractions.

Check that 
$$\frac{26x^2 + 5x + 31}{(1+3x)(x^2+16)} = \frac{2}{1+3x} + \frac{8x-1}{x^2+16}$$

 $=\frac{1}{2}\ln 3$  $\frac{1}{2}\ln 3 \equiv \frac{1}{a}\ln b$ , so a = 2 and b = 3. First factorise;

 $x^3 + x^2 = x^2(x+1)$ .  $use_{\frac{1}{x^2(x+1)}} \equiv \frac{A}{x^2} + \frac{B}{x} + \frac{B}{x^2}$ 

Hen I - A + I

Take the factor  $\frac{1}{4}$  out the integral sign. Use  $\int \frac{f'(x)}{f(x)} dx = \ln |f(x)|^2 dx$ 

Note the quadratic fa in the denominator a

use  $\frac{26r^2+5s+31}{128r^2+5s+31} = \frac{A}{128r} + \frac{A}{128r^2}$ 

## 12.2 Rational Functions Exercise

## **Technique**

- 1 Integrate the following, first expressing each as a sum involving a proper
  - b  $\frac{x-1}{x+1}$  c  $\frac{x}{2x-1}$  d  $\frac{x^2}{x-1}$
- 2 Find the exact value of:
  - $a = \int_{-6x+1}^{1/2} \frac{12x-1}{6x+1} dx$ b  $\int_{-1}^{1} \frac{x^2 - 1}{x^2 + 1} dx$
  - 3 Evaluate the following integrals, giving your answers correct to two decimal
    - $a \int_{1}^{2} \frac{4x}{1+2x} dx$

- b  $\int_{-3+x}^{7} \frac{x}{4x} dx$
- 4 Use partial fractions to find:
  - $\mathbf{a} = \left[ \frac{4x + 7}{x^2 + 3x + 3} \right] dx$  $c = \left(\frac{x+5}{x^2-3}\right) dx$
- b  $\int_{-\infty}^{\infty} \frac{5-11x}{x-7x^2} dx$ d  $\left[\frac{4x-5}{(x+1)(x-2)}\right]$  dx
- 5 Find the exact value of:
  - $a \int_{-\sqrt{x}}^{3} \frac{1}{x^3} dx$ 
    - d  $\int_{x}^{4} \frac{9-3x}{(x-2)(5-x)} dx$
  - b  $\int_{-1}^{6} \frac{6x}{(1+2x)(1-x)} dx$  $e^{-\int_{x}^{3} \frac{3}{(y-4)(y-1)} dx}$
  - $c \int_{1-x^2}^{1} dx$  $\int_{0}^{4} \frac{5}{v(5-2v)} dx$
- 6 Find:  $\mathbf{a} = \int \frac{1-3x}{x(1+x^2)} \, \mathrm{d}x$
- b  $\int \frac{3x^2 + 2x + 4}{(x+1)(4+x^2)} dx$
- 7 Find the exact value of  $\int_{1}^{5} \frac{x^2 2x + 24}{(1 + 2x)(25 + x^2)} dx$ .
- 8 Express the integrand as a sum involving a proper fraction before finding the exact value of  $\int_{0}^{1} \frac{2x^{2} + x - 4}{x^{2} - x - 2} dx.$
- 9  $f(x) = \frac{8}{(x+1)(x^2+2)}, x \neq 1$ 
  - a Express f(x) in the form  $\frac{A}{x+1} + \frac{Bx + C}{x^2 + 3}$ .
- b Find the value of a such that  $\int_{0}^{1} f(x) dx = \ln a + \frac{\pi \sqrt{3}}{a^{2}}.$



#### Contextual



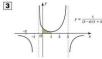
The graph shows the curve  $f(x) = \frac{x+1}{x+2}$ .

- a Express f(x) in the form  $A + \frac{B}{x+2}$ .
  - b Calculate the area of the shaded region.



The graph shows the curve  $y = \frac{x^2}{x^2 + 4}$ .

- a Find the values of A and B if y = A + B/(x<sup>2</sup> + 4).
   b Calculate the area of the shaded region.
  - b Cancalante line area of the sheded region



The graph shows the curve  $y = \frac{1}{(3-x)(1+2x)}$ . Find the shaded area.

### Example 1

Find:

a ∫xe<sup>2x</sup> dx

b  $\int x^2 \ln x \, dx$ 

Solution

a Let u = x and  $v' = e^{3x}$ . Then u' = 1 and  $v = \int e^{3x} dx = \frac{1}{2}e^{3x}$ .

Now. 
$$\int av' dx = av - \int vu' dx$$
 
$$\int xe^{iu} dx = x \times \frac{1}{2}e^{iu} - \int \frac{1}{2}e^{iu} \times 1 dx$$
 
$$= \frac{1}{2}xe^{iu} - \frac{1}{2}\int e^{iu} dx$$
 
$$= \frac{1}{2}xe^{iu} - \frac{1}{2}xe^{iu} + \frac{1}{2}e^{iu} + c$$
 
$$= \frac{1}{2}xe^{iu} + \frac{1}{2}xe^{iu} + c$$

b In this example the choice of u and v' are obvious because ln x cannot be integrated directly. However, it can be differentiated.
So let u = ln x and let v' = x². Then u' = ½ and v = [x² dx = ½x²

Now, 
$$\int uv' dx = uv - \int vu' dx$$
 So 
$$\int x^2 \ln x dx = \ln \times \frac{1}{2}x^2 - \int (\frac{1}{2}x^3 \times \frac{3}{2}) dx$$
$$= \frac{1}{2}x^3 \ln x - \frac{1}{3} \int x^2 dx$$

$$= \frac{1}{3}x^3 \ln x - \frac{1}{3} \times \frac{1}{3}x^3 + c$$
  
=  $\frac{1}{3}x^2 \ln x - \frac{1}{6}x^3 + c$ 

$$=\frac{1}{6}x^3(3\ln x - 1) + c$$

## Example 2



The graph shows part of the curve  $y=(2x+1)\sin 2x$ . Find the area under the curve between x=0 and  $x=\S$ .

Choose which part c integrand is u and w is  $\frac{dc}{dt}$  so that  $\int v \frac{dc}{dt} dx$  simpler integral that original. See what w happen if we had ch  $u = e^{2a}$  and  $\frac{dc}{dt} = x$  in case.

case.

Notice that the secon integral is much sim

Sometimes integration by parts has to be used more than once in the same problem. Try finding  $\int x^2 \sin x \, dx$ . Integration by parts gives

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2 \int x \cos x \, dx$$

Notice that the second integrand is a simpler product than the original one, but still cannot be integrated directly. However, it can be successfully integrated using integration by parts a second time giving:

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2 \cos x + c$$

The following example is an unusual demonstration of how integration by parts is used twice. When integration by parts is used for a second time the original integral appears again.

#### Example 4

Find [e2 sin t dt. Solution

$$\left[u\frac{dv}{dt}dt = uv - \left[v\frac{du}{dt}dt\right]\right]$$

Let  $u = e^{2t}$  and  $\frac{dv}{dt} = \sin t$ . Then  $\frac{dv}{dt} = 2e^{2t}$  and  $v = \int \sin t \, dt = -\cos t$ .

Now 
$$\int e^{2t} \sin t \, dt = e^{2t} \times -\cos t - \int -\cos t \times 2e^{2t} \, dt$$
  
=  $-e^{2t} \cos t + 2 \int e^{2t} \cos t \, dt$ 

Using integration by parts again to integrate the second integral, let  $u_2 = e^{2t}$  and  $\frac{dv_2}{dt} = \cos t$ . So  $\frac{du_2}{dt} = 2e^{2t}$  and  $v_2 = \int \cos t \, dt = \sin t$ .

Now 
$$\int e^{2t} \sin t \, dt = -e^{2t} \cos t + 2 \left( e^{2t} \sin t - \int \sin t \times 2e^{2t} \, dt \right)$$

$$\left[ e^{2t} \sin t \, dt = -e^{2t} \cos t + 2e^{2t} \sin t - 4 \right] \left[ e^{2t} \sin t \, dt \right]$$

Notice that the integral now appears twice. The equation can be rearranged by treating this integral as a distinct term. Adding  $4 \lceil e^{2t} \sin t \, dt$ to both sides.

$$5 \int e^{2t} \sin t \, dt = -e^{2t} \cos t + 2e^{2t} \sin t$$
  
 $\Rightarrow \int e^{2t} \sin t \, dt = \frac{1}{5}e^{2t}(2 \sin t - \cos t) + c$ 

Check this answer using the product rule. Differentiating  $\frac{1}{2}e^{2t}(2\sin t - \cos t)$  should give the original integrand,  $e^{2t}\sin t$ .

Use u+ and v+ so as a

Remember to add a constant of integration

#### 12.4 Integration by Substitution

Integration by substitution is a technique used to transform difficult integrals into simpler ones in which the standard integrals can be used. How could  $\int (1+3x)^6 dx$  be found quickly? We could expand  $(1+3x)^6$  using the binomial expansion and integrate the resulting polynomial term by term. An alternative is to make the substitution t=1+3x.

Use that technique to find  $(1 + 3x)^6 dx$ .

Then 
$$(1+3x)^6 dx$$
 becomes  $f^6 dx$ .

Although the integral has been simplified we cannot integrate  $t^6$  with respect to x. We need a dt rather than a dx after the integrand.

Let 
$$I = \int t^6 dx$$
, then  $\frac{dI}{dx} = t^6$ 

theorem of calculus from Ch. 9.

The chain rule gives

 $\frac{\mathrm{d}I}{\mathrm{d}t} = \frac{\mathrm{d}I}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = t^6 \frac{\mathrm{d}x}{\mathrm{d}t}$ 

Integrating both sides with respect to t gives,

$$I = \int t^6 \frac{dx}{dt} dt$$

Comparing this to equation [1], we see that dx is effectively replaced by  $\frac{dt}{dt}$  dt.

Since t=1+3x in this case,  $\frac{dt}{dt}=3$ . So  $\frac{dx}{dt}=\frac{1}{3}$ , and dx is replaced by  $\frac{1}{3}dt$ .

So 
$$\int (1 + 3x)^6 dx = \int t^6 \times \frac{1}{3} dt$$
  
 $= \frac{1}{3} \int t^6 dt$   
 $= \frac{1}{3} \times \frac{3}{3} t^7 + c$   
 $= \frac{1}{32} (1 + 3x)^7 + c$ 

integrated.  $\label{eq:substitute} \text{Substitute}\ t = 1 + 3x.$ 

Notice that the substitution makes the integrand simpler. The difficult part is changing the variable with respect to which the integration is carried out from x to t.

#### Find the values of the new limits:

- when x = 1, t = 1 1 = 0
- when x = 2, t = 1 2 = -1

So 
$$\int_{1}^{2} (1-x)^{3} dx = \int_{0}^{-1} t^{3} \times (-1) dt$$
$$= - \int_{0}^{-1} t^{3} dt$$

 $= -[\frac{1}{4}t^4]_0^{-1}$  $= -[\frac{1}{4} - 0]$ 

 $= -\frac{1}{4} - 0$  $= -\frac{1}{4}$ 

Integration by substitution can be used to establish other standard integrals. For example to find  $\int (ax+b)^n dx$ , where a,b and n are real numbers, use the substitution t=ax+b. Then  $\frac{dt}{dt}=a$ , and  $\frac{dt}{dt}=\frac{1}{a}$ .

Now 
$$\int (ax + b)^n dx = \int t^n \times \frac{1}{a} dt$$

$$= \frac{1}{a} \int t^n dt$$

$$= \frac{1}{a} \times \frac{t^{n+1}}{a+1} + c$$

Therefore

$$\int (ax+b)^n dx = \frac{1}{a} \times \frac{(ax+b)^{n+1}}{n+1} + c \quad \blacktriangleleft \text{ Learn this result.}$$

Look back again at Example 1 where  $(ax+b)^n=(5x+1)^{\underline{1}}.$  Here a=5, b=1 and  $n=\frac{1}{2}.$ 

So 
$$\int (5x+1)^{\frac{1}{2}} dx = \frac{1}{5} \frac{(5x+1)^{\frac{3}{2}}}{(\frac{1}{2}+1)} + c$$
$$= \frac{2}{15} (5x+1)^{\frac{3}{2}} + c$$

More complex integrals require a higher level of algebraic skill to make sure that the integral has been expressed entirely in terms of the new variable only. Do not worry that the upper limit is now less than the lower limit.

Replace dx with  $\frac{\partial}{\partial t} dt$ , so here replace dx with -dt.

Replace dx with 1 dt.

Check the integrals in Examples 2 and 3 using this result.

## Example 4

Evaluate  $\int_{-1}^{0} x \sqrt{1+x} \, dx$ .

#### Solution

Let 
$$t = 1 + x$$
. Then  $\frac{ds}{dx} = 1$  and  $\frac{ds}{dt} = 1$ .

When x = -1, t = 0 and when x = 0, t = 1.

Now 
$$\int_{-1}^{0} x \sqrt{1+x} \, dx = \int_{0}^{1} (t-1)\sqrt{t} \times 1 \, dt$$

$$\int_{-1}^{1} x^{3/2} + \lambda dx = \int_{0}^{1} (t^{3/2} - t^{1/2}) dt$$

$$= \left[ t^{3/2} - t^{3/2} \right]_{0}^{1}$$

$$= \left[ t^{3/2} - \frac{1}{2} t^{3/2} \right]_{0}^{1}$$

$$= \frac{12}{15}t^{5/2} - \frac{2}{5}t^{3/2}]_0^1$$

$$= (\frac{2}{5} \times 1 - \frac{2}{3} \times 1) - (0 - 0)$$

$$=\frac{2}{5}-\frac{7}{5}$$

$$=-\frac{4}{15}$$

## Example 5

Use the substitution  $u^2 = 5 - x$  to find  $\int_0^5 (x+1)(5-x)^{\frac{1}{2}} dx$ .

#### Solution

Let  $u^2 = 5 - x$ , and differentiate implicitly with respect to x. Then 2u = -1 and so  $\frac{dx}{dx} = -2u$ .

When x = 1,  $u^2 = 5 - 1 = 4 \implies u = 2$ When y = 5,  $y^2 = 5 - 5 = 0 \Rightarrow y = 0$ 

Also,  $y = 5 - u^2 \implies y + 1 = 6 - u^2$ 

Now  $\int_{-1}^{5} (x+1)(5-x)^{\frac{1}{2}} dx = \int_{-1}^{0} (6-u^2)(u^2)^{\frac{1}{2}} \times -2u du$ 

$$= -2 \int_2^0 (6 - u^2) u^2 \, \mathrm{d}u$$

$$= -2 \int_{2}^{0} (6u^{2} - u^{4}) \, \mathrm{d}u$$

$$= -2[2u^3 - \frac{1}{3}u^5]_2^0$$
  
= -2[(0 - 0) - (2 \times 2^3 - \frac{1}{2} \times 2^5)]

$$= -2[(0-0) - (2 \times 2^{2})]$$
$$= -2(-16 + \frac{32}{5})$$

$$=-2(-\frac{40}{3})$$
  
 $=\frac{56}{3}$ 

$$=\frac{96}{5}$$
  
= 191

Choosing suitable substitutions

Try finding fxex dx. Using a systematic approach, integration by parts may be your first choice, but the second integral is too difficult to integrate. A good strategy is then to try a substitution.

Replace dx with dt.

Notice that the integran

 $x\sqrt{1+x}$  is written in terms of t only;

Replace dx with -20 dz

An alternative method i to use the result  $\int_{0}^{b} f(x) dx = - \int_{0}^{a} f(x) dx$ In this case we would evaluate 2  $\int_{0}^{2} (6u^{2} - u^{4})$  Spotting the substitution t = g(x), where g(x) is some function of x, often depends on recognising a common factor that appears in the integrand and in g'(x).

Step ① Let t be some function of x so that a factor is created that will cancel or simplify the integrand.

Step 2) Write dx in terms of dt.

$$\frac{dt}{dx} = 2x \implies dx = \frac{1}{2x}dt$$
Now  $\int xe^{x^2} dx = \int xe^{x} \times \frac{1}{2x}dt \blacktriangleleft \text{Notice that the } x \text{ will cancel.}$ 

$$= \frac{1}{3} \int e^t dt$$

Step (3) Integrate with respect to t.

$$\int xe^{x^{t}} dx = \frac{1}{2} \int e^{t} dt$$
$$= \frac{1}{2} e^{t} + c$$

Step ⊕ Substitute for t throughout to express the integral in terms of the original variable. x.

$$\int x e^{x^2} dx = \frac{1}{2} e^{x^2} + c$$

#### Other useful hints

- For integrals containing  $e^x$ , try  $t = e^x$ .
- For integrals containing  $\sqrt{a^2-x^2}$ , try  $x=a\sin\theta$ . For example, with  $\sqrt{4-x^2}$ , use  $x=2\sin\theta$ .
- For integrals containing  $\sqrt{a^2 + x^2}$ , try  $x = a \tan \theta$ . For example, with  $\sqrt{9 + x^2}$ , use  $x = 3 \tan \theta$ .

#### Example 6

Find:

a 
$$\int \sin^2 \theta \cos \theta \, d\theta$$

$$b = \int \frac{e^x + e^{2x}}{1 + e^{2x}} \, dx$$

#### Solution

a Let  $t = \sin \theta$ .  $\blacktriangleleft$  ① Differentiating  $t = \sin \theta$  gives us a factor of  $\cos \theta$ . Then  $\frac{dt}{dt} = \cos \theta \implies d\theta = \frac{1}{\cos \theta} dt$ .  $\blacktriangleleft$  ② Write  $d\theta$  in terms of dt. At this stage some algebra may be necessary to write the integrand in terms of the new variable t.

Check this result using differentiation.

Now 
$$\int \sin^2\theta \cos\theta \, d\theta = \int t^2 \times \cos\theta \times \frac{1}{\cos\theta} \, dt$$

$$= \int t^2 \, dt$$

$$= \int t^2 + c \quad \blacktriangleleft \text{ (3) Integrate wrt } t.$$

$$= \pm \sin^2\theta + c \quad \blacktriangleleft \text{ (4) Substitute for } t.$$

b Let p = e<sup>x</sup>. ◀ ① Exponential functions in the integrand can be simplified

Then  $\stackrel{d_{\bullet}}{=} = e^{x} \implies dx = \frac{1}{e^{x}} dp = 2$  Write dx in terms of dp.

Now, 
$$\begin{cases} \mathbf{a}^a + \mathbf{e}^{2a} & \text{dx} = \left[ \frac{p+p^2}{1+p^2} \times \frac{1}{\mathbf{e}^a} & \mathbf{d}p \right] \\ &= \left[ \frac{p+p}{1+p^2} \times \frac{1}{p} & \mathbf{d}p \right] \\ &= \left[ \frac{1+p}{1+p^2} & \mathbf{d}p \right] \end{cases}$$

 $= \left[ \frac{1}{1 + p^2} dp + \left[ \frac{p}{1 + p^2} dp \right] \right]$  Integrate wrt p.  $= \left[ \frac{1}{1 + n^2} dp + \frac{1}{2} \right] \frac{2p}{1 + n^2} dp$ 

$$= \int \frac{1}{1 + p^2} dp + \frac{1}{2} \int \frac{1}{1 + p^2} dp$$

$$= \tan^{-1}(p) + \frac{1}{2} \ln(1 + p^2) + c$$

 $= \tan^{-1}(p) + \frac{1}{2}\ln(1+p^2) + c$  

Substitute for p.  $= \tan^{-1}(e^x) + \frac{1}{2}\ln(1 + e^{2x}) + c$ 

## Example 7

Evaluate:  $a = \int_{-\pi/2-2}^{2} \frac{x}{\sqrt{2-2}+4} dx$ 

**b**  $\int_{-2}^{2} \sqrt{3-x^2} \, dx$ 

Solution

a Let  $u = 2x^2 + 1$ .  $\blacktriangleleft$  (i) Differentiating  $u = 2x^2 + 1$  gives us a factor of x. Then  $\frac{dx}{dx} = 4x \implies dx = \frac{1}{4x} du \blacktriangleleft ②$  Write dx in terms of du. When x = 0, u = 1 and when x = 2, u = 9

Now, 
$$\int_{0}^{\pi} \frac{x}{\sqrt{2x^2 + 1}} dx = \int_{1}^{\pi} \frac{x}{\sqrt{a}} + \frac{1}{4x} du$$
  

$$= \frac{1}{4} \int_{0}^{\pi} u^{-1/2} du \qquad \blacktriangleleft \textcircled{3} \text{ Integrale wet } a.$$

$$= \frac{1}{2} (2x^{-1})^{\frac{a}{4}} = \frac{1}{2} (2x^{-2} - 2x^{-2})$$

$$= \frac{1}{4} (3 - 1) = \frac{1}{4}$$

Notice that the  $\cos \theta$ terms cancel.

ex and e2x can then b replaced by p and p2

Use ( f(x) dx Remember that  $1+p^2>0$  for all p

Notice that the x terr cancel.

## 12.5 The Area Under a Parametrically Defined Curve

In Chapter 9 we developed a technique for finding the area under a curve. The equation of the curve was expressed in Cartesian form as y = f(x) and the area calculated as the integral  $\int_{0}^{b} f(x) \, dx$ . The limits x = a and x = b define the boundaries of the area along the x-axis.

What happens when the curve is expressed in parametric form? Instead of y = f(x) we have y = g(t) for some parameter t. Since the integrand is now a function of the parameter t, we cannot use the operator dx. Instead whave to make a substitution and replace dx by  $\frac{dx}{dx}$ . Also, since the integrand and operator are expressed in terms of the parameter, so are the limits.

#### Example 1

A circle can be described by the parametric equations

$$x = 3\cos\theta$$
  $y = 3\sin\theta$   $0 \le \theta \le 2\pi$ 

- a Find the area of the first quadrant.
- b Verify the answer to a using the result

area = 
$$\int_{t_i}^{t_2} y(t) \frac{d}{dt}(x) dt$$

#### Solution

a  $x=3\cos\theta$ ,  $y=3\sin\theta$ ,  $0\le\theta\le2\pi$  are the parametric equations of a circle, centre the origin and radius 3 (see p. 473).

area of quadrant = 
$$\frac{1}{4} \times \pi r^2$$
  
=  $\frac{1}{4} \times \pi \times 3^2$   
=  $\frac{9\pi}{2}$ 

b To verify this result, notice that the first quadrant is described by parametric equations for 0 ≤ θ ≤ ξ.

area = 
$$\int_{0}^{t_{0}} y(t) \frac{d}{dt}(x) dt$$

To find the values of  $t_1$  and  $t_2$ , the lower and upper limits on the integral in terms of the parameter  $t_1$ , we first need to consider the corresponding values of x. The first quadrant of the circle is bounded by x=0 and x=3. When x=0,  $t=\frac{\pi}{2}$  and when x=3, t=0. This means that  $t_1=\frac{\pi}{2}$  and  $t_2=0$ .

$$\begin{aligned} \text{Area} &= \int_{1}^{0} 3 \sin \theta \, \frac{\mathrm{d}}{\mathrm{d} \theta} \left( 3 \cos \theta \right) \mathrm{d} \theta \\ &= \int_{1}^{0} 3 \sin \theta (-3 \sin \theta) \, \mathrm{d} \theta \\ &= -9 \int_{0}^{0} \sin^{2} \theta \, \mathrm{d} \theta \end{aligned}$$

To integrate  $\sin^2\theta$ , recall that we can use the double angle formula from Chapter 3. This gives

$$\int \sin^2 x \, \mathrm{d}x = \frac{1}{2}x - \frac{1}{4}\sin 2x + c$$

area = 
$$-9\left[\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta\right]_{\parallel}^{0}$$

$$= -9 \left[0 - \left(\frac{\pi}{4} - \frac{1}{4}\sin \pi\right)\right]$$
$$= \frac{9\pi}{4}$$

See p. 391.

Recall special angles:

#### Example 2

An ellipse can be described by the parametric equations

$$x = 3\cos\theta$$
  $v = 2\sin\theta$   $0 < \theta < 2\pi$ 

Calculate the area of the ellipse that is above the x-axis.

#### Solution

The parametric equations  $x=3\cos\theta$ ,  $y=2\sin\theta$ ,  $0\leq\theta\leq2\pi$ , define an ellipse centred on the origin. The ellipse crosses the x-axis at x=-3 and x=+3, and crosses the y-axis at y=-2 and y=2.



#### In parametric form this integral becomes

$$V = \int_{t_i}^{t_2} \pi(y(t))^2 \, \frac{\mathrm{d}}{\mathrm{d}t} \left( x \right) \mathrm{d}t$$

So  
Volume = 
$$\int_{1}^{4} \pi \left(\frac{4}{t}\right)^{2} \frac{d}{dt} (4t) dt$$
  
=  $\int_{1}^{4} \frac{16}{t^{2}} \times 4 dt$   
=  $64\pi \int_{1}^{4} \frac{1}{t^{2}} dt$   
=  $64\pi \left[-\frac{1}{t}\right]_{1}^{4}$   
=  $64\pi \left[-\frac{1}{t} + 1\right]$   
=  $48\pi$ 

Now consider the first order differential equation  $\frac{\pi}{6}$ — xy. The algebraic solution cannot be found by simply integrating both sides with respect to x. Instead we must first separate the variables so that all the y terms appear on the same side of the equation as  $\frac{\pi}{6}$ , and all the x terms appear on the other side.

Step (1) Separate the variables.

Since 
$$\frac{dy}{dx} = xy$$
,  $\frac{1}{y} \frac{dy}{dx} = x$ 

Step ② Integrate both sides with respect to x.

$$\int \frac{1}{y} \frac{dy}{dx} dx = \int x dx$$

$$\int \frac{1}{y} dy = \int x dx$$

Notice that the terms have been separated so that all the x terms will be integrated with respect to x and all the y terms with respect to y.

Thus 
$$\ln |y| = \frac{1}{2}x^2 + c$$
, giving  $|y| = e^{\mathbf{j}t^2 + c}$   
Therefore  $v = \pm e^{\mathbf{j}x^2 + c}$  or  $v = \pm e^{\mathbf{j}x^2} \times e^c$ 

the question). Since if c is a constant then  $e^c$  is also a constant, we can write

 $A = \pm e^c$ .

Then 
$$y = Ae^{jx^2}$$
.



A particular solution can be found if more information is given. This is called the variable separable method of solving first order differential equations. Recall that  $\frac{dy}{dx} dx$  can be

Use law of ind  $a^{m+s} = a^m \times a$ 

If A>0 the curves above the x-axis are generated. If A<0 the curves below the x-axis are generated.

## Example 1

Find the general solutions to:

$$a \frac{dy}{dx} = xy^2$$

$$\mathbf{b} \quad \frac{\mathrm{d}y}{\mathrm{d}t} - 2y = 1$$

Solution

a  $\frac{1}{v^2} \frac{dy}{dx} = x$  

(1) Separate the variables.

 $\int_{\frac{x^2}{x^2}} \frac{dy}{dx} dx = \int x dx \quad \blacktriangleleft \text{ 2 Integrate both sides wrt } x.$ 

 $y^{-2}dy = \int x dx$ 

 $\frac{y^{-1}}{1} = \frac{1}{2}x^2 + c$  $-\frac{1}{v} = \frac{1}{2}(x^2 + 2c) = \frac{x^2 + 2c}{2}$ 

 $y = -\frac{2}{3 + 1}$   $\blacktriangleleft$  ③ Simplify the constant.

This is the general solution.

 $\frac{dy}{dy} = 2y + 1$ 

⇒  $\frac{1}{2a+1}\frac{dy}{dx} = 1$  < ① Separate the variables.

 $\int \frac{1}{2w+1} \frac{dy}{dx} dx = \int dx \quad \blacktriangleleft \text{ 2 Integrate both sides wrt } x.$  $\frac{1}{2} \left[ \frac{2}{2x + 1} dy = \int dx \right] dx = \text{The form } \left[ \frac{f'(x)}{f(x)} dx \right].$ 

 $|\ln |2v + 1| = x + c$  $\ln|2y+1| = 2x + 2c$ 

 $|2y + 1| = e^{2x + k}$  $2y + 1 = +e^{2x} \times e^k$ 

 $2v = Ae^{2x} - 1$ 

 $y = \frac{1}{2}Ae^{2x} - \frac{1}{2}$  

Simplify the constant.

So the general solution is  $y = Be^{2x} - \frac{1}{5}$ , where B is a constant.

## Example 2

Find the solution of the differential equation  $(1+x)^{\frac{dy}{2c}} = 1 - \sin^2 y$ , for which  $y = \frac{\pi}{4}$  when x = 0. (OCSEB)  $\frac{dy}{dx}$  dx is replaced with

Only one constant of If c is a constant ther

is 2c: let k = 2c.

 $\frac{dy}{dx}$  dx is replaced wi

#### Solution

$$\frac{1}{1-\sin^2 x} \frac{dy}{dx} = \frac{1}{1+x}$$
 < 1 Separate the variables.

$$1 - \sin^2 y \, dx \qquad 1 + x$$

$$\int \frac{1}{1 - \sin^2 y} \frac{dy}{dx} \, dx = \int \frac{1}{1 + x} \, dx \quad \blacktriangleleft 2 \text{ Integrate both sides wrt } x.$$

$$\int \frac{1}{\cos^2 y} \, \mathrm{d}y = \int \frac{1}{1+x} \, \mathrm{d}x$$

$$\int \sec^2 y \, dy = \int \frac{1}{1+x} \, dx$$
$$\tan y = \ln|1+x| + c$$

When 
$$x = 0, y = \frac{\pi}{2}$$
.

Thus  $\tan \frac{\pi}{2} = \ln 1 + c$   $\triangleleft$  3 Find the constant. 1 = 0 + c

So 
$$\tan y = \ln|1+x|+1$$

$$y = \tan^{-1}(\ln|1+x|+1)$$

#### Modelling with differential equations When there is sufficient information to describe how one variable changes

with respect to another, the situation can often be modelled by a differential equation.

#### Newton's law of cooling This states that the rate of

change in temperature of an object is proportional to the difference between its temperature and that of its surroundings. Newton's law can be modelled by a differential equation.



For hot water cooling, let  $\theta$  be the temperature of the water at time tminutes, and the surrounding temperature be 18°C. The difference between them is then  $\theta = 18$ . Then Newton's law gives

$$\frac{d\theta}{dt} \propto (\theta - 18)$$

Writing this as an equation.

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k(\theta-18), \quad \text{where} \quad k \in \mathbb{R}.$$

Use the Pythagorean

To model a real situation to be made. In this case it is assumed that the temperature of the surroundings is constant.

The negative sign indicates that  $\theta$  is decreasing. If it were to be omitted the constant k would work out to be negative.

#### Population growth

Scientists have crudely suggested that the populations of certain organisms grow at a rate that is proportional to the size of the population. Let N be the population at time t. Then

$$\frac{\mathrm{d}N}{\mathrm{d}t} \propto N$$

Writing this as an equation,

$$\frac{dN}{dt} = kN$$
, where  $k \in \mathbb{R}$ .

## Example 3

According to Newton's Law, the rate of cooling of an object is proportional to the temperature difference between the object and its surroundings. Warm water is poured into a basin, and cools from 41.1° to 40.0°C in 5 minutes. The temperature of the room is a constant 17°C.

- Write down a differential equation to model the temperature of the
- water.

  b Solve the differential equation, and find the temperature of the water after 10 minutes.
- c Find the time taken for the water to cool to 37 °C.

#### Solution

a Let  $\theta$  be the temperature in degrees Celsius of the water at time t. Then according to Newton's Law the rate of change of  $\theta$  with respect to time is proportional to  $\theta-17$ .

$$\frac{d\theta}{dt} \propto (\theta - 17)$$

 $\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k(\theta-17), \text{ where } k \text{ is a constant}$ 

b 
$$\frac{1}{\theta - 17} \frac{\mathrm{d}\theta}{\mathrm{d}t} = -k \blacktriangleleft \textcircled{3}$$
 Separate the variables. 
$$\begin{bmatrix} \frac{1}{\theta - 17} \mathrm{d}\theta = \int -k \, \mathrm{d}t & \blacktriangleleft \textcircled{2} \text{ Integrate both sides wrt } t. \end{bmatrix}$$

$$\int_{\theta-17} d\theta = \int_{-k} dt$$

$$\ln(\theta-17) = -kt + c$$

$$\theta - 17 = e^{-kt+c}$$
  
 $\theta - 17 = e^{-kt} \times e^{c}$ 

 $\theta - 17 = Ae^{-kt}$ , where A is a constant

$$\theta = 17 + Ae^{-kt}$$

Here it is assumed the environment renconstant. The model probably more realisover a short period of



Remember that the negative sign indica cooling.

Since  $\theta > 17$  the modulus function is required.

## 12.6 Differential Equations **Exercise**

## **Technique**

1 Find the general solution to the following differential equations:

$$\begin{array}{lll} \mathbf{a} & \frac{d \sigma}{d x} = 3 x^2 + \frac{1}{x} & \qquad \mathbf{d} & \frac{d \sigma}{d x} = \sqrt{x} + 2 e^x & \qquad \mathbf{g} & 2 + x = x^2 \frac{d \sigma}{d x} \\ \mathbf{b} & \frac{d \sigma}{d x} = x - \frac{1}{x} + e^x & \qquad \mathbf{e} & \frac{d \sigma}{d x} = x^{\frac{1}{3}} + \sin x & \qquad \mathbf{h} & \frac{1}{2} e^x + 3 \frac{d \sigma}{d x} = 1 \end{array}$$

c 
$$\frac{dr}{ds} = x + e^x$$
 f  $x\frac{dr}{ds} = 1 - xe^x$  i  $10\frac{dr}{ds} = x^{\frac{1}{2}} + \frac{20}{x}$ 

**2** Find the general solution to the following differential equations.  
a 
$$\frac{dy}{dx} = 12x^2$$
 e  $\frac{dy}{dx} = 2y$  i  $\frac{dy}{dx} - y = 1$   
b  $\sec x \frac{dy}{dx} = 1$  f  $\frac{dy}{dx} = 6x^2y$  i  $(x + 1)^{\frac{dy}{dx}} - 2y = 0$ 

c 
$$\frac{dy}{dx} = \frac{x+1}{y}$$
 g  $\frac{dy}{dx} = y^{\frac{1}{2}}$  k  $\frac{dy}{dx} = \frac{x^{2}}{y}$   
d  $\frac{dy}{dx} = \frac{1}{y}$  h  $\frac{dy}{dx} = xe^{-y}$  l  $\frac{dy}{dx} = \frac{xy}{y}$ 

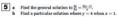


**b** Use your result to **a** to find the general solution to 
$$e^{-x} \frac{dy}{dx} = \frac{x}{y}$$

The variables x and y satisfy the differential equation 
$$\frac{dy}{dx} + y \tan x = 0$$
.

a Find the general solution.

b Find a particular solution where y = 1 when x = 5.



#### Contextual

- 1 An object cools from 100°C to 70°C in 34 minutes. Assume Newton's law of cooling applies. The surrounding air temperature is 20°C.
  - a State Newton's Law of cooling.
  - b If T is the temperature of the body at time t minutes, write down a differential equation that describes how the body cools
  - c Solve the differential equation to find T in terms of t and use it to find the temperature after 45 minutes.
    - d How long will the body take to cool to 50°C?



a If N represents the number of bacteria after t hours write down a differential equation connecting N and t.





## Consolidation

## Exercise A

| 1 | Integrate | the follo | owing | with | respec | tox: |
|---|-----------|-----------|-------|------|--------|------|
|   |           |           |       |      |        |      |

a 
$$\frac{1}{x^2}$$
 e  $\sin 5x \sin x$  i  $\cot 3x$   
b  $4\cos(2x+7)$  f  $1+e^{3x}$  j  $\frac{1}{25+x^2}$   
c  $\sin 2x + \cos 1x$  e  $\frac{1}{x^2}$  k  $\frac{1}{x^2}$ 

c 
$$\sin 2x + \cos \frac{1}{2}x$$
 g  $\frac{1}{e^2}$  k  $\frac{1}{\sqrt{23-x^2}}$  d  $\sec^2 4x$  h  $\frac{4(x+6)}{x^2+3x}$  l  $\frac{x}{x+3}$ 

2 Use integration by parts to find the indefinite integral 
$$\int x^4 \ln x \, dx$$
. (SMP)

5 Find the values of a and b if 
$$\int_{a}^{2} \frac{3}{x^2 - 9} dx = -\frac{1}{a} \ln b$$
.

6 Use the substitution 
$$u = 1 + 3 \sin \theta$$
 to evaluate  $\begin{bmatrix} 1 & \cos \theta \\ 2 & \sqrt{1 - 3 \sin \theta} \end{bmatrix} d\theta$ . (Sh

Find the value of 
$$\int_0^4 x(x-3)^{17} dx$$
. (ULEAC)

Find v in terms of x given that 
$$\frac{4v}{2} = ve^x$$
 and that  $v = 1$  when  $x = 0$ .

A balloon is expanding and at time t seconds its surface area is s cm.

The expansion is such that the rate of increase of s is proportional to

\_b. When the surface area is 900 cm², it is increasing at a rate of 60 cm² s -¹.

- $\frac{1}{\sqrt{s}}$ . When the surface area is  $900 \, \text{cm}^2$ , it is increasing at a rate of  $60 \, \text{cm}^2 \, \text{s}^{-1}$ . **a** Show that  $\frac{ds}{ds} = \frac{1800}{s}$ .
- Solve this differential equation given that s = 400 when t = 0.
   Find to the nearest second the time at which s = 900 cm.

(NEAB)

(ULEAC)

10 At time t hours the rate of decay of the mass of a radioactive substance is proportional to the mass x kg of the substance at that time. At time t = 0 the mass of the substance is A kg.

- a By forming and integrating a differential equation, show that x = Ae<sup>-kt</sup>, where k is a constant.
- b It is observed that x = \(\frac{1}{2}A\) at time t = 10. Find the value of t when x = \(\frac{1}{4}A\), giving your answer to two decimal places. (ULEAC)

## Exercise B

The curve shown has parametric equations  $x = 4 \cos \theta$ ,  $y = 5 \sin \theta$ ,  $0 < \theta < 2\pi$ .

The straight line PR is a tangent to the ellipse at P, where  $\theta = \frac{\pi}{2}$ . Find the area of the shaded region, bound by the curve, the x-axis and the tangent PR.



2 Evaluate the following integrals exactly:

 $a \int_{0}^{1} \sin x \cos 3x \, dx$ 

 $\mathbf{b} = \int_0^1 \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x$ 

3 a Use integration by parts to find ∫xe<sup>-x</sup> dx.

 $y = (x + 1) \cos x$ 

The graph shows part of the curve  $y=(x+1)\cos x$ . Calculate, correct to two decimal places, the area of the shaded region.

- 4x<sup>2</sup> + 2x + 1 in the form  $A + \frac{B}{(x+1)(2x-1)}$ . Use this to find  $\begin{cases} \frac{4x^2 + 2x + 1}{(x+1)(2x-1)} dx \end{cases}$ .
  - b Express  $\frac{3x^2 + 3x + 4}{x(x^2 + 4)}$  in the form  $\frac{A}{x} + \frac{Bx + C}{x^2 + 4}$ . Then find  $\left[\frac{3x^2 + 3x + 4}{x(x^2 + 4)}dx\right]$ .
  - c Evaluate  $\int_{0}^{2} \frac{x(13-3x)}{(x+1)(x-3)^{2}} dx.$
- **5** a By means of the substitution u=6-x or otherwise, show that  $\int_{\frac{1}{6-x}}^{1} dx = -\ln|6-x| + c.$

- b As a mathematical model for my regular 6 km morning jog, I assume that my speed is proportional to the distance that I still have to go to reach the end.
  - i If I start off at a speed of 8 km h<sup>-1</sup>, and after t hours have travelled x km, explain why dx/dt = k(6 − x), where k is a constant.
  - ii Show that  $k = \frac{4}{5}$ .
- c By solving the differential equation  $\frac{dt}{dx} = \frac{1}{4(6-x)}$ , find the time taken for me to complete 4 km of the jog, and state my predicted speed at the time.
- time.
  d By considering the predicted time taken for me to complete the jog. comment on the suitability of the model.

(SMP)

- Water flows out of a tank through a pipe at the bottom, and at a time t pminutes the depth of water in the tank is x metres. At time t = 0 the depth of water in the tank is x m. After 10 minutes the depth is 1.5m is desired to find the time T, correct to the nearest minute, at which the depth is 1.5m.
  - In a simple model the rate at which the depth of water in the tank decreases is taken to be constant. Find Tusing this model.

     In a more refined model the rate at which the depth of water.
  - remaining in the tank is decreasing at any instant is proportional to the square root of the depth at that instant.
    - Explain how the more refined model leads to the differential equation − <sup>dx</sup>/<sub>x</sub> = k√x, where k is a positive constant.
    - ii Find the general solution of the differential equation in i.
    - iii Find T using the more refined model.

(UCLES

- A mathematical model for the population growth of a certain country
  assumes that the country has a constant birth rate of 22 per thousand and
  a constant death rate of 7 per thousand. The population of the country at
  the end of 1995 was 4.80 million and the population of the country at time
  t years later is denoted by x.
  - a Show that  $\frac{dx}{dt} = 0.015x$ .
  - b Find x in terms of t.
  - Use the mathematical model to estimate: c the population of the country at the end of 1998
    - d the year in which the population of the country will exceed 6 million.

(WJEC)

## **Applications and Activities**

#### 1 Cooling

Fill a container with hot water. Note the room temperature and place a thermometer in the hot water and wait until it has adapted to the temperature of the water. At this point begin to note the water temperature every  $2\frac{1}{2}$  minutes. Record your results in a table similar to the one helow

| Time (t)    | 0 | 2.5 | 5 | 7.5 | 10 | 12.5 | 15 | 17.5 | 20 | 22.5 | 25 | 27.5 |
|-------------|---|-----|---|-----|----|------|----|------|----|------|----|------|
| Temp. (0°C) |   |     |   |     |    |      |    |      |    |      |    |      |

- Write down Newton's law of cooling
- b Write down a differential equation that will model the temperature of the water.
- c Solve the differential equation and use the first and third entries in the table to find θ in terms of t.
  - d Investigate how well your differential equation models this situation.
     e Investigate Newton's law of cooling for different shaped containers.

#### 2 Integration spotting

The fundamental theorem of calculus states that differentiation is the reverse of integration. In this activity an integral in the form  $\int f(x)g(x) dx$  must be made by selecting two function from the box below.



The answer must contain a combination of terms from the second box, below.



One example is  $\int_{x}^{1} \times x^{2} dx = \frac{1}{2}x^{2} + c$ . A more complex example is  $\int xe^{x^{2}} dx = \frac{1}{2}e^{x^{2}} + c$ , because

 $\frac{d}{dx}(e^{x^2}+c) = 2xe^{x^2}$ . How many different integrals complete with answers can you spot?

## Summary

 Standard integrals that are the reverse of differentiating standard functions are:



- If the integrand has cos<sup>2</sup> x or sin<sup>2</sup> x terms, use the double angle formulas before integrating.
- If the integrand is a product of trigonometrical functions, use the compound angle formulas to transform the integrand into a sum of trigonometrical functions.
- Integrate rational functions by first expressing them in proper fraction form and then use partial fractions if required.
- Use integration by parts to integrate a product of functions:

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

- Substitute suitable functions to simplify the integrand.
- The area under a parametrically defined curve is given by
   <sup>t</sup><sub>2</sub>, y(t) <sup>t</sup>/<sub>2</sub> (x) dt, where t₁ and t₂ are the values of the parameter t
   corresponding to the lower and upper values of x.
- Solve a differential equation by separating the variables to find either a general solution or a particular solution.
- Newton's law of cooling and rate of change of population are both modelled by differential equations.

## 13.1 Approximate Solutions of Equations

Try solving the equations  $2\cos x - x + 1$  and  $e^2 - x + 3$ . If you tried to solve them using algebraic techniques the temptation is to give up and say the equations cannot be solved. However, graphical, or iterative methods can be used to find an approximate value for the solution to these equations. These techniques generate numerical values of increasing accuracy. They are based on repeating a procedure or **algorithm** until sufficient accuracy has been eachieved.

#### Graphical methods

The root(s) of any equation of the form f(x) = 0 can be found by drawing the graph of y = f(x) and reading off the approximate values of x for which y = 0.

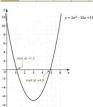
f(x) = 0 where the g

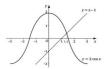
#### Example 1

Construct a table of values for  $y=2x^2-12x+11$  with  $0 \le x \le 6$ . Draw the graph of  $y=2x^2-12x+11$  in that range, and use it to find approximate solutions of the equation  $2x^2-12x+11=0$ , to one decimal place.

#### Solution

| 0010110 | ** |   |    |    |    |   |    |
|---------|----|---|----|----|----|---|----|
| x       | 0  | 1 | 2  | 3  | 4  | 5 | 6  |
| y       | 11 | 1 | -5 | -7 | -5 | 1 | 11 |

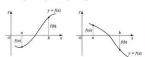




There is only one point of intersection. Since the graphs of  $y=2\cos x$  and y=x-1 do not intensect anywhere else, the equation  $2\cos x - x + 1 = 0$  has only one solution. The x-coordinate at the point of intersection is about 1.4, so the approximate value of the root to this equation is x=1.4 (t d.p.).

Use a graphical calculator to plot the graphs of  $y=2\cos x$  and y=x-1 on the same axes, and use the TRACE function to confirm that x=1.4 is the approximate solution of the equation  $2\cos x=x-1$ . Remember to work in radians.

#### Locating roots by a 'change of sign'



Suppose f(x) is a continuous function, defined for all points between x = a and x = b. If f(a) and f(b), the values of the function at x = a and x = b. respectively, are opposite in sign to each other, then f(a) < 0 and f(b) > 0. or vice versa. This is illustrated in the diagrams above. Since the graph changes from negative to positive, or from positive to negative, somewhere between a and b, there must be a solution to the equation f(x) = 0 in the interval  $a < x \le b$ .

So by looking for a change of sign in the value of f(x) between nearby values of x, the approximate location of the roots of the equation f(x) = 0 can be found.

The graph of y=2 o is periodic, oscillating between maximum a minimum values of and -2 respectively, graph of y=x-1 is straight line.



Investigate whether calculator has an INTERSECT function that will find values at which the two gra

This means that

$$\frac{x_1-a}{p} = \frac{b-x_1}{q}$$

where p and q are the absolute values of f(a) and f(b), and  $x_1$  is the approximation to the root a. This equation can now be rearranged to make  $x_1$  the subject.

$$(x_1 - a)q = (b - x_1)p$$

$$x_1q - aq = bp - x_1p$$

$$x_1p + x_1q = aq + bp$$

 $x_1(p+q) = aq + bp$  aq + bp

◀ Learn this important result.

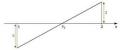
This formula can now be used to find the first and subsequent approximation to the root of the equation.

#### Example 5

The equation  $x^3 + x - 7 = 0$  has a root in the interval 1 < x < 2. Use linear interpolation to find the approximate value of this root, correct to two decimal places.

#### Solution

Let 
$$f(x) = x^3 + x - 7$$
. Check that  $f(1) = -5$  and  $f(2) = 3$ .



Now use the formula  $x_1 = \frac{\alpha q + bp}{p + q}$  with a = 1, b = 2, p = 5 and q = 3. This will calculate the value of  $x_1$  at which the interval 1 < x < 2 is divided in linear proportion.

The curve has not be drawn here. We only need to know the absolute values of f(and f(2).

$$x_1 = \frac{(1 \times 3) + (2 \times 5)}{5 + 3}$$

$$= \frac{11}{8}$$

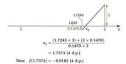
$$= 1.625$$
Now  $f(1.625) = -1.0840 \text{ (4 d.p.)}$ 

Notice that there is a change of sign in the value of f(x) between x = 1.625and x = 2. This means that the root lies in the interval 1.625 < x < 2, so now repeat the process using the same formula, with a = 1.625, b = 2, p = 1.0840 and q = 3.



Now f(1.7245) = -0.1470 (4 d.p.)

There is a change of sign in the value of the function f(x) between x = 1.7245 and x = 2 so the root lies in the interval 1.7245 < x < 2. Repeat the process again, using the formula, with a = 1.7245, b = 2, p = 0.1470 and q = 3.



There is a change of sign in the value of function f(x) between x = 1.7374and x = 2, so the root lies in the interval 1.7374 < x < 2. The table overleaf shows how the repeated use of the linear interpolation algorithm narrows the interval within which the root can lie. Recall that f(1) is negative and f(2) is positive.

| interval within which<br>the root lies | approximate value of the root, x, | $f(x_n)$           |
|----------------------------------------|-----------------------------------|--------------------|
| 2 < x < 2.5                            | $x_1 = 2.1175$                    | f(2.1175) = 0.0800 |
| 2.1775 < x < 2.5                       | $x_2 = 2.1924$                    | f(2.1924) = 0.0063 |
| 2.1924 < x < 2.5                       | $x_3 = 2.1936$                    | f(2.1936) = 0.0004 |
| 2.1936 < x < 2.5                       |                                   |                    |

Since the value of f(x) at x=2.1936 is so close to zero, the root is probably very close to x=2.19. In fact, f(2.195)=-0.0066, so there is a change of sign in the value of f(x) between x=2.1936 and x=2.195. This means the root must lie in the interval 2.1936 c. x<2.195, and can be taken to be 2.19 (2.4p.). The graphs of  $y=\sin x$  and  $y=x^2-4$  therefore intersect at x=2.19 (2.4p.).

# **₩**

Check this figure using the ZOOM and TRACE functions on a graphical calculator; remember to use radian mode to

#### The Newton-Raphson method

The Newton–Raphson method is often simply called Newton's method. In usually rapidly converges to the root of an equation of the form f(x) = 0. It is quicker than both the interval bisection method and linear interpolation. Suppose  $x = x_0$ , is a first approximation to the root of the equation f(x) = 0. A tangent drawn to the curve y = f(x) at the point where  $x = x_0$  can be extended to meet the x-axis at the point where  $x = x_1$ .



In most cases,  $x_1$  will be a better approximation to the root  $\alpha$  than  $x_0$ . By considering the gradient of this tangent, it follows that

$$f'(x_0) = \frac{f(x_0)}{x_0 - x_1}$$

Now rearrange to make  $x_1$  the subject of this equation.

$$\begin{aligned} x_0 - x_1 &= \frac{f(x_0)}{f'(x_0)} \\ x_1 &= x_0 - \frac{f(x_0)}{f'(x_0)} \end{aligned}$$

Spot the right-angled triangle formed by the tangent, the x-axis and the line  $x=x_0$ .

The process can be repeated, with a tangent drawn from the point on the curve where  $x=x_1$ . The tangent meets the x-axis at  $x=x_2$ . This is usually an even better approximation to the root  $\alpha$ . By considering the gradient of this tangent, we find that

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

This process can be repeated as often as required.



In general, if  $x_n$  is a good approximation to the root of an equation of the form f(x)=0, then a better approximation,  $x_{n+1}$ , can be found using the iterative formula

formula until the required level of accuracy is achieved.

Here  $f(x_n)$  and  $f'(x_n)$  are the values of the function f(x) and its derivative f'(x) at  $x = x_n$ . The Newton–Raphson method makes repeated use of this iterative

## Example 7

Use Newton's method to find, correct to four decimal places, the root of the equation  $e^c - x - 3 = 0$  that lies between x = 1 and x = 2.

#### Solution

In order to avoid rounding errors in the calculations, working should be done to at least two more decimal places than are required in the final answer. So in this example, working should be carried out to six decimal places.

Let 
$$f(x) = e^x - x - 3$$
  
Then  $f'(x) = e^x - 1$ 

an iterative formula one in which the out of one step of a alculation is used a apput for the next ste Take  $x_0 = 1$  as a first approximation to the root. Using Newton's method,

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
  
=  $1 - \frac{e^1 - 1 - 3}{e^1 - 1}$   
= 1.745 930 (6 d.p.)

Then 
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$
  
= 1.745 930  $-\frac{e^{1.745 990} - 1.745 930 - 3}{e^{1.745 990} - 1}$ 

and 
$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

= 
$$1.537\,676 - \frac{e^{1.537\,676} - 1.537\,676 - 3}{e^{1.537\,676} - 1}$$
  
=  $1.505\,904$  (6 d.p.)

Check that 
$$x_4 = 1.505242$$
 (6 d.p.)

and that 
$$x_4 = 1.505242$$
 (6 d.p.)

Notice that the value of  $x_a$  has only changed in the sixth decimal place during this last iteration. So the value of the root of the equation  $\sigma^a - x - 3 = 0$  must be x = 1.5052 (4 d.p.). We could have taken  $x_0 = 2$  as a first approximation to the root. Verify, using Newton's method, that the results of subsequent iterations are:

$$x_1 = 1.626\,071$$
  $x_2 = 1.513\,974$   $x_3 = 1.505\,290$   
 $x_4 = 1.505\,241$   $x_5 = 1.505\,241$ 

Again the conclusion is that the root of the equation is 
$$x = 1.5052$$
 (4 d.p.).

It is possible to generate successive iterations quickly using the last answer (ANS) facility on a graphical calculator. For Newton's method, you would first enter the value of the first approximation  $x_0$ . The value of  $x_1$  can then be found using the expression:

$$ANS - \frac{e^{ANS} - ANS - 3}{e^{ANS} - 1}$$

Using the last entry facility on the calculator, this expression can be entered again automatically, this time using the value of  $x_1$  to produce  $x_2$ , and any further approximations that are required can be generated in the same way. Pressing the EXE or ENTER key gives the successive values  $x_2$ ,  $x_3$ ,  $x_4$ , ... This method has the advantage of using the maximum number of decimal places available on the calculator in working out successive iterations of Newton's method.

All are obtained using six decimal places of



Notice that ANS replaces x<sub>0</sub> in the Newton-Raphson iterative formula. We have solved the same equation in Examples 4 and 7. Using the interval bisection method it took five bisections fould the yalue of the root called to just one decimal place. After five iterations, Newton's method produced a value correct to at least four decimal places. This identifies the we quickly the Newton-Raphson method usually converges to the root of an

Occasionally, the Newton-Raphson method 'fails' and instead produces a series of values x<sub>0</sub>, x<sub>1</sub>, x<sub>2</sub>,... that either diverge, or converge to a different root of the equation to that expected. These two different types of behaviour are illustrated in the following diagrams.





The main reason for these failures of the Newton-Raphson method is that the value of  $x_\alpha$  chosen as the first approximation is not close enough to the root for convergence to occur. Fortunately there are other iterative methods that can be used if a different choice of  $x_0$  still proves unsuccessful.

#### Fixed point iterative methods

It is usually possible to express an equation f(x) = 0 in the form x = g(x). The root  $\alpha$  of this type of equation can be found graphically by reading off the x-coordinate at the point of intersection of the y = x and y = g(x) Notice how the value,  $x_0, x_1, x_2, \dots$  diverge

Notice how the valu  $x_0, x_1, x_2, \dots$  generat by the Newton-Rap iterative formula converge towards a different root of the equation.

Notice that the same iterative formula car used to locate differences to locate differences roots provided that suitable starting points are used.

graphs.

$$x_{n+1} = \frac{1}{4}(x_n^3 - 5)$$

$$x_{n+1} = \frac{5}{x_n^2 - 4}$$

$$x_{n+1} = \frac{4x_n + 5}{x_n^2}$$

However,  $|g'(\alpha)| > 1$  in each of these cases, so the results of successive iterations starting with  $x_0 = 2$  or  $x_0 = 3$  do not converge. Instead they diverge. Check this using a graphical calculator.



## 13.1 Approximate Solutions of Equations

## Exercise

## Technique

- 1 a Show that the equation  $x^3 3x 5 = 0$  has a root in the interval
  - b Use linear interpolation to find a first approximation for this root and state the interval that contains the root. Give a reason for your answer.
- a Find the consecutive integer values of x between which the equation  $x^5 3x^2 + 10 = 0$  has a root.
  - b Use the interval bisection method to find the value of this root, correct to one decimal place.
  - c Taking a suitable value for the first approximation x<sub>0</sub>, use the Newton-Eaphson method to find the value of this root correct to four decimal places.
- 3 The sequence of values generated by the iterative formula  $\mathbf{x}_{n-1} = \sqrt[n]{\mathbf{x}_n + 1}$ , with  $\mathbf{x}_n = 3$ , converges to a value  $\alpha$ . Use this formula to find the value of  $\alpha$  correct to three decimal places. State an equation satisfied by  $\alpha$ .



- c Taking x<sub>0</sub> = -2 as an initial approximation, use Newton's method to find the value of the negative root. Write your answer correct to four decimal places.
- d Use linear interpolation to find a first approximation for the value of the root that lies in the interval a < x < b. Give your answer to two decimal places.
- a Show that the equation 2x<sup>3</sup> 3x + 17 = 0 has a root in the interval -3 < x < -2.</li>
   b Decide which two of the following iterative formulas could be used to







c Taking x<sub>0</sub> = -2 as an initial approximation, determine which of these two iterative formulas converges towards a value for the root. Find this value correct to three decimal places.

#### Contextual

- 1 a Show that the equation  $\ln x x + 3 = 0$  has a root in the interval 4 < x < 5.
  - Taking x<sub>0</sub> = 4 as an initial approximation:
  - i use the iterative formula x<sub>n+1</sub> = ln(x<sub>n</sub>) + 3 to find the value of this root, correct to two decimal places
     ii use the Newton-Raphson method to calculate its value, correct
  - to four decimal places.
  - Comment on the differences in the efficiency of these two methods.





- a Show that point A is located between x = -2 and x = -1.
- Using the Newton-Raphson method, calculate the x-coordinate of A, correct to three decimal places.
   Explain why the x-coordinates of B and C satisfy the equation
- $3x^2 2 3 \sin x = 0$ . By taking  $x_0 = -1$  as a first approximation, use the Newton-Raphson method to solve this equation. Find the coordinates of B correct to three decimal places.
- d Show that  $3x^2-2-3\sin x=0$  can also be solved numerically using the iterative formula  $x_{n+1}=\sqrt{\frac{1}{3}}+\sin x_n$ . Taking  $x_0=1$  as a first approximation, find the coordinates of C correct to three decimal places.
- The depth, D metres, of water in a barbour t hours after midday, is given by  $D = 5 + \sin(0.48t) 2\cos(0.48t)$ .
  - a Show that when D=6.5 metres, time t must satisfy the equation  $\sin(0.48t) 2\cos(0.48t) 1.5 = 0$ .
  - Show that the water first reaches a depth of 6.5 metres between 3 and 4 o'clock in the afternoon.
     Use Newton's method to find this time to the nearest minute.

COMPLETE ADVANCED LEVEL MATHEMATICS

# **Pure Mathematics**

FREE! CD-ROM

Advanced Level Mathematics Tutorials Sample inside this

DOOK

Andy Martin • Kevin Brown • Paul Rigby • Simon Riley

STANLEY THORNES