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CHAPTER 1

POLYNOMIALS; THE REMAINDER AND FACTOR
THEOREMS ; UNDETERMINED COEFFICIENTS;
PARTIAL FRACTIONS
1.1. Polynomials in one variable
If % is a variable, » is a positive integer and o, py, 4
given constants of which p, is not zero, then
PARHP T L Pt P

is a_polynomial of degree  in x. We shall denote this polynomial
by Px).

1.2, The remainder and factor theorems

Let P(x), a polynomial of degree # in z, be divided by x—a, where
ais aconstant. Then the quotient Q(x) is a polynomial of degree n—1,
the remainder R is a constant and

PlA)=(x-a)Q)+R . . . @
The identity sign = indicates that the equality is true for alf values of
%, An equation such as (i) which is true for all values of # is called an
identity.

Putting x=a in (i), we get P(a)=R.

Hence when P(x) is divided by #—a, the remainder is P(a). This
result is known as the remainder theorem. The factor theorem follows
immediately : if P(x) is a polynomial, x—a is a factor of P(z) if, and
only if, P(a)=0.

1.3. Further properties of polynomials
1. If the polynomial P(x)mpan+px™+ ... +Poyx+po (po#0) is
equal 1o 2670 when % has any one of the  distingt values ay, . - ., ns
PP 4 Lt PaF t Pa=po(s—a)(x—ay). . (5—an).
By the factor theorem, since P(a;) =0, x—a; is a factor of P(x) and
A
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the quotient when we divide P(x) by z—a, is a polynomial of degree
n—1 whose first term is %", Hence we write

Ps) = (2~ a1)Qu(2), F . )
where Qua(®)Spr™ +....
Since P(ay) =0, we have from (i)
0="P(ay) = (23— a1) Qns(as)
ie. Qn-1(34) =0, since a,# a;.
Hence %—a is a factor of Q,-4(x), and we write
Qna(#)= (7~ 32)Qns(z)
and, by (i),
P(z)=(2— u.)(x 09)Qn-o(2),
where Qnal®)=por™ 4. ..

Proceeding in this way, we see that,
P(’)E(’-ﬂﬂ("—ﬂz) «(2=an)Qol2),
where Qol) =,
-, Pe)mpol—edli=ad. (e
1L If the polynomial P(x)Spex™+p s>+ ... +Ppt+py is equal fo
2er0 for more than n distinct values of x, P(x) is equal o zero for all
values of % and each of the coefficients Bo, Pu.» ., by is zero. In this
case P() is identically zev0, that is
DA+ DE A P+ Pa=0.
We suppose that P(x) =0 when x=aj, g,
Then, by I, P(x) =py(x—a,)(%—a,) (x
Now suppose that P(a)=0, where a is fHecent from any of a,
LA
Thm po(a—a)(e—a))...(a—ay) =0,
and since none of the factors (a—ay), (a—ag), ..., (a—ay) is 2ero, py
must be zero. Hence
Plx)=pe 4+ o pe
This polynomial of degree n—1 vanishes for more than (#—1) values
of z and so, applying the same argument, we see that $,=0. Con-
tinuing in this way, we prove that
Pr=pr=...=p,=0.
As a corollary to II, we have the important property that if, for all
values of z,
PP el P DA G . erE e ()
then po=go, 1=01: -+ +» Pn=0n.
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To see this we consider the polynomial

(o=} + (1= @)™+ - .. +(Pn-1—Gn-1)%+(Pn—Gn)
which, by hypothesis, is zero for all values of z. It follows that all its
coefficients are zero, and so
$o=0o r=01. - -+ Pn=0n (i)

The process of deducing from the identity (i) the Tesults (u) is called

equating coefficients.

1.4. Polynomials in several variables

A polynomial in several variables z, y, z,
the form AxPyes" ..., where the indices 2, ¢, 7 .
or zero and £ is a constant.

The degree of any term is the sum of its degrees with respect to the
variables, so that a term 7xy's* is of the sixth degree.

‘The degree of a polynomial is that of the term of the highest degree
in the polynomial. For example x%?+y'+2z—5 is a polynomial of
the fourth degree in x and y; xyz—2x7+32+4 is a polynomial of the
third degree in %, y and z.

is a sum of terms of
are positive integers

1.5. The method of undetermined coefficients

The method of undetermined coefficients is based on the prmuplc
that if two in z are equ
powers of x must be equal. The principle is valid for polynammls

in several variables %, 9, z, . . . and the method of undetermined
coefficients may be applied to such polynomials.
Example 1
Find the values of the constants a, b, ¢ and d such that
r=ar(r—1)(r—2)+br(r—1)+or4d . . (i)

Multiplying out, we have
P=alt =34 2) 4B =)k or+d,
r=artirib—3a)+rlc+2a—b)+d. . . (i)

We shall use the symbol ((r")) to denote the cocfficient(s) of r*.

Equating ((r*)) on each side of (ii), we have 1=,
equating ((r!)), 0=b—3a,
equating (1),  O=c+2a—5,
equating (%)), O=d.

s A== 1) =2+ 3rlr—1) 47,

Alternatively, we may use the fact that identity (i) is true for all
values of 7. Substituting in turn the values r=0, 1, 2 and 3, we obtain
as before d=0, c=1, b=3, a=1.
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Example 2
Factoriss the expression
—35y—2y'+2+13y—15.
Since 207 — 3xy—2p= (25 +9) (v —2y)

we try
200 —3ay— 2+ xt 13y~ 5-((2t+y)+-4)((~—2y)+5) - @
208 3ey_ 2974 A(s—29)+ B2e-+3)+ 4B,
4 and B being constants,
+13y—16=5(4+2B)+y(B—24)+AB . . (i)
Equating ((+)) on each side, we have +2
equating ((y)) on each side, we have

A==,

By equating the constants on each side of (ii) we obtain 4B=—15, so

that our original conjecture is justifid. Hence
— 2yt x4 13y — 15= (25 +y — 5)(x— 2y + 3).

Example 3

Prove that if (a+b+c)=0 and (bo-+ca+ab)+3m=0, then the expression
E whers E=(5'+ax-+m) {5+ bx-+m) (s+cx-+m) will contain no powers of x
except those whoss index is a multiple of three.

Given that the expression x$+10x3+64 has a factor of the form x3—2x4m,

vesolus it into three quadratic factors of the form similar to E. LUl
‘We have E=(y+ax)(y+2)(y+0x),
where y=r+m . C®
E=y’+(u+b+L)J"x+(b¢+ca+ab1yX'+ab‘x‘
1 a4b4-6m0 and (bo-+ca-+ab)+ Im=0,

[E=y*—3mys'+abex®
=y~ 3ma)+ abes®
= () (=t m‘)-)-nbex' by (:)
=t abortemd . P}
Thas 5 contalos no powers of 5 except those whose index is & ‘multiple of

o T8 %44 1655.464 I identically equal to E
ba=md, ., m=4.
Hence if x4+ 165+ 84 has a factor of the form #'—2¢-+m and two other
similas factors, as in E, we may assume that
105 04 (x‘—xz+()(x'+bz+4] (3 4cx+4)

4~ 2bcst+-64, b

P

But 0, S bte=2
Hence b4, o= —2orbm—2, c=4
and #1053+ B4 (57— 25+ 4) (30 4+ 4).

The method of undetermined coefficients may be used to establish
identities between functions other than polynomials.
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Example 4

Show that when a and b are positive consianis, a positive constant R and
a constant acute angle @ may be found such that

a sin 04 cos 6=R sin (0+a).
We have, if possible, to choose R, a so that
asin 645 cos f=R sin (0+a)
=Rsinfcosa+Rcosfsina

(R cos a) sin 0+ (R sin a) cos 6.

‘The identity is valid if
a=Rcosa . . . . . i)

b=Rsina . )
Sqnaring and adding corresponding sides of these equations we get
a+B=R,

S R=4/(a*+bY) (R>0).
When a, b, R are positive, we see from (i) and (ii) that sin « and cos a
are positive, Hence  is an acute angle such that
sina:cosa:l=b:a:R.
With this value of a,
a sin 045 cos f=+/(a’+b1) sin (+a).
Similarly, when & and b are positive,
a sin 6—b cos f=+/(a’+?") sin (§—a),
and a cos f—b sin 0=1+/(a?+5%) cos (§+a),
where a is the same acute angle as above.

Exercises 1 (a)
1. Express n{n-+1)(2n+1) in the form
An+Bu(n—1)+Cnln—1)(n—2),
where 4, B and C are constants independent of .
2. Express (2n—1)(2n+1)(2n+3) in the form
A4 B(2n)+ C(2n)(2n— 1)+ D(2n)(2n—1)(2n—2),
where 4, B, C and D are constants independent of n.
3. Factorise the expressions
(i) 2¢'—3xy—2y"+2¢+11y—12,
(ii) 6s7—Bxy—6y'—br+14y—4,
(i) 5245y —y—37-+y.
4. Express the following functions in the form indicated :
(i) sin 6+ cos §=R sin (8+a),
(if) sin 8—+/3 cos §=R sin (6—a),
(iii) 3 cos 6—4 sin 6= R cos (0+a),
where in ol cutes R s & positive constant and i & constant acute
angle measured in degrees.
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5. Determine the coefficients a, b, ¢ in the polynomul f(x), where
/(.)-w+w+u- u/(-(-+1))—l(u(~—l))=
Hence, or otherwise, find the sum th powers of the first

» integers. LU

1.6. of cyclic

A function of several variables is said to be homogencous if all its
terms are of the same

A function of two or more variables is said to be symmetrical in
these variables when its value is unaltered by the interchange of any
two of the variables ; it is said to be an alternating (or a skew) function
if the interchange multiplies the value of the function by —1.

For example, #+y+2 is a symmetrical function of the first degree
in z and y, x3—y% is an alternating homogeneous function of the
second degree in z and y.

A function of %, y and z which is unaltered when we write y for x,
1for y and # for 2 is said to be cyclic, or to have cyclic symmetry. For
example, x+y+3z is a cyclic homogeneous function of the first degree ;
z’+y’+x‘ and yz+2x+2y are cyclic homogeneous functions of the
second

Evcry symmemu.l function has cyclic symm

The following examples illustrate methods ol “factorising cyclic
homogeneous polynomials.

Example 5

Factorise 4y —1%)+y*(s'— #%) + £z —5").

Let E=st(y'—s)4y'et—a+ale—pn) . . . . . ()

When #=y, E=0, ., #—y is a factor of E.

When #=—y, E=0, .", ¥+y is a factor of E.

Similarly, y—s, y+3, s— and s+ are factors of E.

Now E is of the sixth degree, so that in addition to the six factors
already found there can be only a numerical factor & (say).

Hence E=b(y—s)(s—s)x—y)y+a)+a)x+y) . . . (i)
and comparing the coefficients of +%* in (i) and (ii) we obtain k=

S E=—(y—a)(s—a)x—)0+ )+ =+).

Example 6
Factorise #(y— )"+ y(e— =)'+ 2(x—3)%
Lot E=s(y—a)*+ylr—3)+a(x—y)* @
Asin mpu 5 (y—-l)(x—:)(:—y) isa ﬁmr of E. But E and this
of degree;

heace tho r mmmung hcw “must bo s cyclic homogeneous expression of
the first degree, and the only such expression is A(:+y+l). where & is
a numerical constant.

& E=hx+y+1)y—a)(s—2)(x—y) PR )



1 POLYNOMIALS 7
Comparing coefficients of #y* in (i) and (i), we obtain
E=(s+y+a)y—s)s—2)(s—s).

Example 7
Factorise #(y'— ) +9(# =)+ 5(x*~3").
Let Emalfi=sf) 43 —s)42lt=y) . . . . . @

As in the previous examples, (y—:)(t—x)(x—y) is a factor of E. Since
E and this factor are both cyclic and £ is a homogeneous function of
the Rith degree, the remaining factor is a cyclic homogeneous expression
unh second degree, and the most general expression of this type is
(r-+y'+x-)+A (yx+u+‘.‘/], where &, and 4, are numerical constants.
S E=(y=a)e—ar=y)h(x+y + )t b tartay) o (@)
Comparing coeflicients of s4y in (i) and (ii) we obtain k,=1; comparing
coeflicients of %* we have ky=k,.
S E=(y—a)—a)r =)= +y 2t yrtaxt a).

Exercises 1 (b)

Factorise the following expressions :
L (b+:)'(b—:)+(;+n)l(=_a)+(n+b)-(._b)

2. (bt o)+ b3(et—a") 4 c3a—
3. @+ 504¢3—abe,
4. a\(b—c)+b¥c—a)+cHa—b).
5. a%%(a—b)+bicH{b—0)+c'at(c—a).
6. (5—C)(b+¢c)4+ (c—a)(c+a) -+ (a—b)(a+B)t.
. alb—0)(b+c)-+ble—a)(c+a)’ B)(a+b)"

8. (b=0)t(c—a)"+(a—B)"
9. (bo+cack-ab)—bich— chad —a¥h.
10. a¥(b—c)+b¥(c—a) +c*(a—b).

1.7. Rational functions

A rational function is the ratio of two polynomials,

It P(x)=poxt+p™1+ ... +Paixtpn
and Q) =gp™ + g™+ ... +gmer®+Gm,
where m and » are positive mtegers or zero, the function P(x)/Q(x) is
rational except when x takes any value which makes the divisor Q(x)
zero. The term “ rational function ” includes a polynomial, for if
m=0, Q(x) reduces to the constant gy and P(x)/Q() is a polynomialin z.

If n<m, the rational function P(x)/Q(z) is said to be a proper
fraction, but if #m, it is an improper fraction. An improper fraction
may be expressed, by division, as the sum of a polynomial and a
proper fraction.

2246241

For example,  —to b 2"+2_T2
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1.8. Partial fractions

The sum or difference of a number of proper fractions is itself a
proper fraction. For example,

2,1 845

2+l 242 243742
1 x+2 3

and =1 Pratl 21

The converse result is also true : a proper fraction P(x)/Q(x) whose
denominator Q(z) breaks up into real factors may be expressed as the
sum or difference of simpler fractions, known as partial fractions, each
with one of the factors of Q(x) as denominator. For example,

2% 1 1
P9 73 74
P42t —x43 1
and ottt i —.
1 z+1

We now apply the method of undetermined coefficients to the problem
of expressing as a sum or difference of partial fractions a rational
f\mchon N(#){D(#) given in its lowest terms. Detailed discussion of
this problem is to be found in text-books on algebra; we merely
outline the rules by which the partial fractions may be found.

We assume that N(x) is of lower degree than D(x), i.e. that the
fraction is proper. Should this not be the case the fraction must be
expressed, by division, as the sum of a polynomial and a proper
fraction (see § 1.7).

Rule I
To each non-repeated linear factor (x—a) of D(x), there corresponds
a fraction of the form fa , where 4 is a constant not equal to zero,

Example 8
Espress (++5))(x—3)(x+1) in partial fractions.
Since the given fraction is proper, the vartial fractions must be proper,
and so we assume that
+8 4 B
F=3)x+1) x=3" x+1"
This assumption is justified because it is equivalent to
F+5=A(FE+1)+BFx=3) . . . ()
or #+6=x(4+B)+4-3B;
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and this ideatity is valid since unique values of 4 and B can be found
to satisfy the equations A+B=1, A—3B=5, obtained by equating
coefficients.

In practice, after verifying that the original assumption is vali
shorter to use the method given below.

Substitute x=3in (1) ;  then 8=44, i.e. 4
substitute  x=—11in (i); then 4=—4B, i.e. B=

*+6 2
R P T :+|
From (i) we see that A can be immediately obtained by deleting the
factor (v—3) in (x+5)/(x—3)(x+1) and substituting ¥=3 in the resulting
fraction. Similarly B can be immediately determined.
Partial fractions corresponding to all non-repeated linear factors of
D(z) can be found in this way.
Example 9
Express (38— 7+ 2)/x(x3—1) in partial fractions.
By division the improper fraction
[ Pz
S D=’

where P(x) is of degree less than three. We therefore assume that
Il—at2 B, C
=) Es+;+x+l+
and, clearing fractions, obtain
33— 214 2= 3x('— 1)+ A (' — 1) + Bx(x— 1)+ Cx(s+1). @
Having verified that our first assumption is justified (since by equating
coefficients in identity (i) we obtain three equations from which A, B and
C may be uniquely determined), we substitute in turn the values =0,
—~1and 1 in (i) and obtain A=~2, B=~1, C=
2 1 2
sy
From (i) we see that the value of A can be immediately determined by
deleting the factor x in (3:'—:'+2)/x(,~—l)lx+ 1) and substituting x=0
in the resulting fraction. Similarly B and C may be immediately found.

It is useful to note that when N()/D(z) is a proper fraction, the
number of constants to be determined is equal to the degree of
D(a).
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Rule 11

The quadratic factor ax?+bx+c is said to be irreducible if it has

no real linear factors. To such a factor in D(z) there corresponds a
" < Az+B

partial fraction of the form 22—

Example 10

Ezxpress 2|(x*+x*+1) in partial fractions.

Since #4214 L= (3034 1)(33— 54 1), the given proper fraction must
bo s the sum of two proper fractions with irreducible quadric
donormimators. The aumerators of such fractions ‘may be of the first degree,
and 5o we assume that

: Cx+D
AL Foatl
ie. 2 = (Ax+B)(# =+ 1)+ (Co+ D)t +2+1).
Equating coeficients we have
(M A4C=0,

((*): B+D—A4+C=0,
((?): A—B+C+D=0,

(=) B4D=2.
Solving these equations, we get A=B=D=1, C=—1.
2 _ x4l | l-x

"r+x-+1 Al s'—-x+1'

Example 11
Espress (85— 12)/(x+32)(s"—25++3) in partial fractions.
Assume that

A4 _BxiC
(:+m:' zx+=) e
50 that Br—12=A(s*—2¢+3)+ (Bx+C)(x+2) . ()
This assumption is justified since there are three coefficients to equate,
and so the three unknowns can be found uniquely.
By substituting ¥= —2 we find that 4= —2.

‘Equating coefficients we have
(" 0=4+B, o B=2.
((+9): —12=34+42C, ., C=-3
Heace Gv—12  _ 2-3 2
G —2e43) P23 F+2
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Rule 11T
1f D(x) contains a repeated linear factor, (x—a)? say, it would be
correct to assume that the corresponding partial fraction is of the form
Ax+B,
(x—a)?
undetermined coefficients are required.
But we may write
A%+ By=Ay(x—a)+B,+ad,

, for the denominator is of the second degree and hence two

ie. Aye+By=Ay(x—a) + Ay, where Ay=B,+ad;.
Ax+B, . Ax—a)+4, A, A4
Thus T—2p © map T zma e ™™

in general it is more convenient to have the partial fractions in this
form.

Similarly, if (x—a)r, but not (x—a)™*4, is a factor of D(x), we have
corresponding to this factor # partial fractions of the form

4, Ar
gt Y a—ay
Example 12
Express (204 5= 2)fx¥z—1) in pmm /maim
Assume that 2452 4 B C D

FE=1)  x A e a—1
0 that 204 ¥ 2= AxMx— 1)+ Bx(x—1)+C(x=1)4+D8 . (i)

‘This assumption is justified since there are four coeflicients to equate
and so the four unknowns 4, B, C and D can be uniquely d

Substituting in turn the values ¥=0 and x=1 in (i), we find that C=l
and D=1.

Equating coefficients, we have

((#*): 0=A+D, -

(@): 1=—B+C, . B=
1112
=D a1 —,+,,.+ .

It is useful to note that the value of C can be immediately determined
by deleting #% in the denominator of the given fraction and substituting
#=0 in the resulting fraction. Similarly, D can be immediately found.
‘We may then use the method given below.

From (i),

204 5= 2= A (x— 1)+ Ba(s— 1)+ 2(s— 1) 2
ie. — (#2414 ) =s(s—1)(4+B)
—(s=1)=45+B.
S A=-1, B=l



12 A COURSE IN PURE MATHEMATICS [n

Example 13
Espress (94533 + 45+ 5)/(x—1)(s—1) in partial fractions.
The factors of the denominator are (¥—1)*(s*+ 5+ 1) and so we assume
that
P45 At _ 4 B Cs+D
G0 +a+]) =1 =1 #4a+1
Lo, 434 654 dxt- 6= A(s— 1) (934 5+ 1)+ B(s*+ 5+ 1)+ (Co+ D) r— )%
By putting #=1 we get B=5, and s0
A—x=(s—1D){A(*+2+1)+(Cx+D)(+—1)}
& #r+1)=A( 4 24 1)+ (Co+ D) (x—1).
By putting x=1 we get A=} and so
Hs*+2—2)=(Cx+D)(x—1)
o Hs+2)=CxtD.

PrEArarts 1 2 16 x42
Henee L -1 55{:i+(x— t‘+x+l}
Rule IV
1f D(x) contains a repeated factor (axt+bx-+c)f, where ax*+bz+c is
irreducible, the corresponding partial fractions are
Ax+B, | Ax+By, | Ax+By + Ax+B,
adbatc @ tbato) (@ rbrrop (@t rbatoy

Example 14
Express (24145 4)]x(s*+2)* in partial fractions.
lz'+x+¢_=f+8.’+c. Byx+Cy
a2 B4z (2P
5 2 AR A2 5(Byr+ C) 1+ 2)+5(Byr+Co)e
By substituting ¥=0, we find that 4=1.
‘Equating coefiicients, we have

PR i

(=): 0=4+B, S B=-1
M: 0=Cp
((M): 2=44+42B,+B, .. By=0.
(): 1=26,+C, 2 Cy=1

L 20xt4 1w 1

Sty a mret e



PARTIAL FRACTIONS

Exercises 1 (¢)

Express in terms of partial fractions :
(15 +Tx+12).
(2r=1)/(x*—21—2%).
(16—).

#Yx—2)2.

(s —2)[(s"+25Y).
(1+46)/(25—1)(x+2)%
(=21 +5+2"+2).

(28 —2)/(x*+1).
B1/x(9+57)"

(-1 =25+ s+ 1)
(@8 +x+3)/(x*+ 1%
P+ 4)/(=+2)%

1
3.
5.
7

©

1.
13.
15.
7.
19.
2L
23.

2. 3x/(s—4)(s+2).
4. (39— T)[(1—)(2—)(3—2).
6. (205—0)/(x—1)(2¢+1)(2¥+3).
8. (3x7+5x—4)f(x—1)(x+ )%
10 (13— #)/(x—2)(x-+1)%

12, (1754 53)/(x+ 4] (25— 7).

1. (9—s)x(3+9).

16. 32/x(4—2Y%

18. (= 1)/ats*+1).

20, (4 1f(s—1)%

22, #(145+ 6514 2+ /(1— 2
24. 185/(1—#7%,



CHAPTER 2
THEORY OF EQUATIONS; INEQUALITIES

2.1. Algebraic equations

If f(x) denotes the polynomial

DA PV peam L DA T L Payt P

where the coefficients o, 1, - - -, pn are all real and p, %0, the equation
f(x)=0 is the general algebraic equation of degree #, and we shall
‘assume that every such equation has at least one root.

This is the fundamental theorem of algebra. From it we can deduce
the following theorem :

An equation of the nih degree has n and only n

Let a, be a root of the equation f(x) =0. Thenﬂn,)nOnndbythe
factor theorem x—a, is a factor of /(x)

Sf@=E—a)gaa, . . . @)

where Ena(¥)=pox™*+..., cf§13 1
Again g, ,(x) =0 must have at least one root ay (say). Hence

Ea-1(%)=(2—an)gna(%)

and, by (i), J#)=(%—a,)(x—02)gns(%)
where Laal8) =por™ .
Proceeding in this way we prove that

S =polz—a)(x—a)...(x—a) . (i)
Thus f(x) will vanish when # has any of thevﬂmsu., o
and for 10 ofher valus of #. Hencs the equation f{z)=0 has exactly
# roots.
The roots of the cquation fls)=0 may ot be teal and they need
not all be distinct.

/(x) =(x— o) F(s),

where F(a)#£0, the equation f(x)=0 is said to have an 7-fold root a
(or a Toot a of multiplicity 7). Multiple roots are sometimes re-
ferred to as repeated roots. In particular, if 7=2, a is called a double
root.

In the application of the above theorem any r-fold root is reckoned
7 times,
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22. Relations between the coefficients and the roots of an
algebraic equation
1f a, B, y are the roots of the cubic equation &*+px*+gx+7=0,
(x=a)(z=B)(x—7)
*— 2+ B+y) +x(By+ya+af)—ofy.
By equating coefficients of corresponding powers of #, we obtain
the relations

atBty=—p,
Br+yataf=q,
ofy=—r.
In the same way, if o, B, y, 3 are the roots of the quartic equation
24 prd gt +rx+s=0,
at+Bty+d=—p,
aB+ay+ad+By+pi+yd=g,
ByS+ayd+afd+afy=
afyd=s.
Finally, if ay, ay, a3, ..., an are the roots of the equation
PP AN+ PR L Pt P =0,
then PP+ PN L+ Put b Pa
=pr—a)F—a)lx—as) ... (v—an)
=po{a" — (Zay) 2 + (Zara)ant — (Zayag0,)m—*
+ eer H(=1)"a1000, ... an),
where  Za,=the sum of the roots,
Za,a,=the sum of the products of the roots in pairs,
za,a.a.-zhe sum of the products of the roots in three,

Equating coefficients on each side of the above identity, we have

Zay=—py/po,
Zayay=palpo.
Zayaq03=—palpos

@10983 .+« an={=1)"bn/po-
By means of these relations any symmetrical function of the roots
of an equation may be expressed in terms of the coefficients.
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m;x. 1
a, B, y ave the vools of the equation ¥+pd4gstr=0, express
u'+B‘+v"-m°/P. gandy.
We have atBy=—p
By+yataf= q}
afy=—r
ond *+ B+’ Bafy=(a+B+7)(a*+ B +y"~ fy—ya—af).
S 0t y'=30By+(a+B+Y){(e+B+y)'— 3By +yatafl}
=—{3r+p(p*~39)} by ().

. . . . ®

2.3. The equation whose roots are the reciprocals of those of &

iven equation
Let ay, ay, ..., an e the roots of the equation
Do+ P L ot tp=0 . . ()

and suppose that ay, ay, ..., an are all different from zero.
Writing z=1/y, we obtain the equation
P HDa " k=0 . . (i)
which is satisfied by the values 1/y=a;, ay, -, an,
ie. by y=1/ay, ey, 1fag, +.v Ufane
Hence (ii) is the equation whose roots are the reciprocals of the roots
£ (i)

Example 2

Ifa By uation x+px-+q=0, find the equation
whote pooke wre (-) I/n.‘ x/,‘i-. lly‘ (b) 1By, 1fye, 1faf.

‘We have atfty=
Br+yataf= ;} . [0}
ofy=—¢
(a) We shall find the equation whose roots are a%, %, y* and use the
result of § 2.3 to deduce the required equation.
By (), ot 41+ y*=(a+B+y)'— 2By +ya+af)=—
By +y'al+alf  =(By+yataf)'—2aBylatp+y)=p"
atfryr=gt.
Hence the equation whose roots are at, %, y* is
PEPbp—g=0 . . . . (@)

and so the equation whose roots are 1/a?, 1/8%, 1/y* is
gt 2pr—1=0,
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Equation (i) may be obtained in another way.
‘The given equation #%+ px+¢=0 may be written in the form
ot +p)=—q.
and 50 the roots a, f, y satisfy the equation
AE+p)=gt
Writing y=2, we bave
Yy+p)=g*
e P2y Py —g=0
This is the cubic equation which is satisfied by a*, B*, »*
(8) We shall first find the equation whose roots are By, ya, af.

Since by (i)
By+yataB=p,
a'fy+Byaty'af=afylatf+y)=0,
apryi=gh

and
the equation whose roots are By, ya, af is #'—pt—gt=0
and so the required equation is g4 pr—1=0,
Example 3

Find the conditions that the voots of the equation

Ak prtgrtr=0

should bs

(a) in geometric progression (i.e. of the form £, &, &q®),

(b) in arithmetic progression (i.c. of the form £—n, £, £4n),

(c) in harmonic progression (a, B, y are in harmonic progression if 1fa,

(B, 11y are in arithmetic progression). (Sheffield.]

() Suppose the roots of the equation 3+ px'+gx-+7=0 are £, £n, £
Then by § 2.2,

. )

. (i)

and (]

The required condition is obtained by ehmmaung £ and 7 between the
above equations.
From (i) and (ii), én=—g/p and so, by (iii),
¢=p*.

(b) Suppose the roots of #*+pat+gx+r=0are f—u, £ {+.
Then by § 2.2,

3f=—p . . . . . i)

=+ E—n'+{E+n)=q
3P—pi=g P . . L)
and Ho—n)=—r . P L. ()

From (if) and (iii), Elg—28)=—r
whence, by (i), (09— 2p7 =211,
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(0) The roots of #*+pa*+gx+r=0 are in harmonic progression if the
roots of 7x'+gx'+pr+1=0 are in arithmetic progression. Hence the
required condition is obtained by writing gfs, pjr and 1fr for p, g and ¥
respectively in the result of (8). The condition is
g(0pr—2g%)=27r%

2.4. The equation whose roots are those of a given equation each
increased (or decreased) by the same amount
Let a;, a, ay, .-, an be the Toots of the equation
SO EpPEp T L AP pa=0 . ()
‘The substitution x=y—# transforms (i) into the equation f(y—#&)=0,
which is satisfied by ay+%, ag+#, .., an+
Henu the roots of f(y—k) =0 are those of f(x)=0 each increased

3 k.
Similarly, the roots of f(y+%) =0 are those of f(x)=0 each decreased
by k.

Example 4
Find the equation whose yoofs ars thoss of the equation
s =200 127~3=0
each increased by 1. Honcs, or otherwise, solve the given equation.
The required equation is
(= 1)+ 4ly—1)=2y— 1) 12(y—1)—3=0,

which reduces to  y4—8y'+4=0,

~ y’=4+ 2v3

or y=1/(4£2v/3).
Let Vid12v8)=yat /b
Then 41+2¢/3=a+b+24/(ab)
so that =4 and ab=3.

orl, b=1or3.
Hence (W3£1),

and so F=y—l=14/3, —244/3.
Example 5

If a, B, y are the vools of the equation -+ px-+q=0, find the equation whoss
rools are Bi+ 3, y24al, o+ B
From Example 2(a) we have
olhplyt=—2p.
S By'=—(at+2p),
Yi+at= —(8+2p),
@B =~ (- 2p).
Also, from Example 2(a), the equation whose roots are a, B4, y* is
e+ 2pat4pla—gi=0,
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‘The required equation, found by writing y= — (++2p) in this equation, is
=0+ +2pl+2P) 'y +2p)—g*=0,
ie. P 4Py 5Pty + (2P +¢Y) =0,

2.5. Reciprocal equations
A reciprocal equation is one which is unaltered when the unknown
is replaced by its reciprocal.

For example,

axt 4 bt 4 br 4 a=0
and axt4ba +cxt 4 brka=0
are reciprocal equations.

If a is a Toot of a reciprocal equation, it follows by definition that
1/a is also a root of the equation and that the roots of such an equation
are reciprocal in pairs. 1f a reciprocal equation is of odd degree, one
root must be its own reciprocal and hence +1 or —1 is a root of the
equation.

To solve a reciprocal equation of even degree in #, we use the sub-
stitution x+1/x=¢; then 2*+1/x*=£"—2 and 2*+1/x*=£~3( The
method of solving a reciprocal equation of odd degree is illustrated
in the following example.

Example 6
Solve the equation
8x5-4 62544 1662+ 16637+ 625+ 8=0.
An obvious solution is #=—1 and we factorise the left-hand side of the
equation as follows :
84 (x-4 1)+ 6453w+ 1)+ 10143 (x4 1)+ B4x(¥+ 1)+ 8(x+1) =0,
Soxm—l or 8xi464x+ 101+ 54/x-+8x1=0.
Putting s+ 1fx=1, we get
84541+ 86=0
(264 5)(44417)=0.
St=—2pand x=—2, —},
or #=—4} and x=—4, —}.

2.6. Condition for two quadratic equations to have a common
root

If the equations
@2+ bz 46y =0, g2+ byx + Gy =0
have a common root a,
aat+bate=0
and aga+bya+cy=0.
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Solving these equations simultaneously for a* and a, we have

R S
b-h-m 51“:-‘1‘1 aiby—ah;’
whence, eliminating a, we
e ’M) (lnbn —agby) =(era,—ca).
This is a necessary condition for the existence of a common root.

2.7. Condition for an equation to have a multiple root
‘We prove two theorems :
L If f(%) is a polynomial in z and if the equation f(x)=0 has a
mlanfmlhﬂmlyr (r>1), then the equation f'(x)=0 has a
700t a of multiplicity r—1.
We may write /{x) =(x—a)"F(x), where F(z) is a polynomial in %,
and F(a)#0.
Then 0 =r(x—a)F(x) + (r—a) F'()
=(2—a)™YrF(z) + (= a)F'(x)).
The second factor on the right does not vanish when x=a since
F(a)#0. Hence f'(x)=0 has a root a of multiplicity r—1.
bid I/tl-e aqudnmf‘(z)-o has a root a of multiplicity r—1 then,
that fla)=0, the equation f(x)=0 has a root a of
mﬂiﬂnﬁbf r.
Since f{a)=0, f(z) contains a factor (x—a) and by supposing this
factor to be an #— fold one we can use theorem I to prove that #=r.
From the above theorems it follows that f{x)=0 has a multiple
root if, and only if, the equations /{z) =0 and f"(x)=0 have a common
root.

Example 7

If the equation x*+3ax’+3bx+c=0 has a repeated voot, show that this
700t also satisfies the quadratic equation '+ 2as+b=0; hence show that
the valus of the repeated voot is (c—ab)/2(a*—b).

Solos the equation 43— 1243 — 15— 4=0. U]
By § 2.7, a repeated root of the equation
Bt Bhabo=0 . . . . ()
satisfies the equation Ah2ardb=0 . . . . (i)
Multiplying (ii) by » and subtracting from (i) we get
athbrte=0 . . . (iii)

By eliminating * between (il) and (iif) we find the value of the mpuu
root of (i)
= (c—ab)[2(ad~b).
The equation A — 12— 155 —4=0 . . . . (i)
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has a repeated root if it is satisfied by a root of the equation
—8r—5=0
ie by —jorz=§.

#=—} satisfies (iv) and so — } is a repeated root of (iv). We readily find
that 4x%—12+%—16x— 4= (2v+ 1)(2¥+ 1)(¥—4) since we know that 2¢+1
is a repeated factor of the left-hand side.

Hence 4 is the remaining oot of (iv).

2.8. Note on inequalities

Many properties are common to equations and inequalities: an
inequality remains valid if each side is increased (or decreased) by the
same amount. This means that we can transpose terms from one side
to the other provided we change their signs ; an inequality remains
valid if both sides are multiplied or divided by the same positive
number ; if, however, we multiply or divide both sides by a negative
number, the inequality sign must be reversed.

Three useful inequalities (valid for real numbers) are given below.
We use || to denote the numerical value of z. If 30, |x|=x;
if <0, |2]=—zx.

1. The product (x—a)(x—g)3> 0 unless  lies between a and f.

11 An expression of the form a+8%+ ... 4 is positive unless
a=b= =k=0.

IIL. The arithmetic mean of two positive numbers is greater than
or equal to their geometric mean. The equality occurs when the two
numbers are equal.

The proof is as follows : since (x—)*>0,

Paysay . . 0]
Substitution of x=y/a, y=y/b, where a and b are positive numbes,
gives a+b>2y/(ab)

2~ $a+b)>/(ad).

If zand s of opposite signs, substitution of || for x and |y| for y

in (i) shows tha
sy2wl . . . L (@)

Example 8

Prove the following inequalities, in which a, b stand for unequal positive
numbers :
() d—at>at—a, (a#1);

(i) amH4bmn> amba£amb™  (m, n positive inlegers). LU

(i) @ a—ata= (@ —at)(1— ).

1f a>1, a*—a? and 1—a* are both positive; if a<1, a—a?and 1—a
are both negacive.
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It follows that when a1
Sat—at=at>0
—at> a1 g,
() b bt ame— v (o b (a7 3,

a"—b™ and a"—b" are both positive when a>b and both negative

when a<b.
2 @ bme s gmbe g gobm,

Example 9

1If a, b, ¢, d ave any real wumbers, prove that

@454 2%, Gt bt d> dabed.

Prove also that (a%+5%)+(c'+d*)*> 2(ab+cd)*.
Show that, if a*+b4+-cA+di< ), then

ot 1o+ 1/ct 4 1/d4> 16. LU

By II1 (i), a*+5*> 2a%* and ct4 &3 290
B R )
and so, by III (i), aStbitotbdi>djabed] > dabed . . (i)

Also, (a5 (M @ =at4 b0+ 4 dU 2(atr 4 cha)
> dabed+2(a%*+c*dY), by (ii)
S (@B (B d%)> 2(ab+cd)t.
Finally, by IIT (i), 1/a+1/5¢> 2/a%* and 1/et+ 1/d%3> 2/c%ar,
O 1@t 1604 1/cA 41/ > 2(1/a% - 1/e*d?)
>4 |abed]
2>16/(a*+b44-c*4-dY) by (i)
216if a+ b+t 4d' <L

Exercises 2

1. Find the equation whose roots are those of the equation
F— 40— T4 220+ 24 =0
each diminished by 1.
‘Hence, or otherwise, solve the given equation.
2. Find the equation whose roots are those of the equation
454432004 834147654 21= 0
each increased by 2.
Hence, or otherwise, solve the given equation.

3. Solve the equation
60— 3630+ 0247~ 363+ 6= 0.
4. Solve the oquation
24— P 6r' 5420,
5. Solve the equation
#0244 162+ 1657 — 0¥+ 1= 0.
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6. (i) By substituting #=3%+x, or otherwise, solve the equation
(374 2= 10)(#*+ — 26)=80.
(ii) If s~ yzr=a, y'—zx=b, '~ xy=0, then prove that cx+ay+br=0.
Find another relation of this type and hence, or otherwise, solve
the equations when a=1, b=2, c=3. [Durham.]
1. Ifa, ;9  are the roots of 43+ p?+¢x+r=0, find the equation whose
Toots are 1/at, 1/8%, 1/y".
Find an expression in terms of p, g, r for Z(afly). [Leeds)
8. Find the equation whose roots are the squares of the roots of the
equation

20—t —x47=0, [Sheffield.]
Given that a, B,  are the roots of the equation
B patigrtr=0,
express a’+ f%+? in terms of p, g, 7, and show that
Ya*+1/f+1/y=(3pgr—g*=3r)/r. Lu]
. Find the condition for the roots of the equation
B4 prlgrbr=0
to be in geometric progression, and solve the equation
23026414 52¢— 24 =0, Lu]
. The roots of #'+ pr+g=0are a and f. If y(p—s)=p+, prove that
@p*+9)y*+2y(g— ") +9=0.
Show that the roots of this equation are ff(2a+§) and a/(2B+a).
Express {al(2B+a)}*+{B/(2a+B))
in terms of  and g only. [Durham]

©

H

5

If the roots of the equation
M —ax’+brxt—abx+1=0
are a, B, , 8, show that
(a+B+7)a+B+8)(aty+8)(B+y+8)=1.  [Sheffield]

. Given that the equation whose roots are the squares of the roots of
the cubic

B—pigr—1=0
is identical with this cubic, prove that either (i) p=g=0, or
(i) p=g=3, or (iii) p and g are the roots of A4142=

(Sheffield.]

£

Given that a, B, y are the roots of the equation

S pathr=0,
express a?+f*+* and fly'+y’a’+a'f" in terms of p and r. Find
also, by means of the relations f*+y*= a4 y4—a, etc. or other-
wise, the equation with roots f*+3y% y'+al, a®+p% [Sheffield.]
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16. The equation
H4pritgrtr=0
has roots a, §, y. By means of the expressions
B+y=(a+B+y)-a
etc., or otherwise, find the equation with roots

a/(B+), Bl(y+a), yl(e+B). [Sheffield]
16. By the substitution #+-1/r=4, or otherwise, solve the equation
254— 13274 242" — 1354 2=0. [Durham.)
17. (i) If o, B, y are the roots of the equation
#prtg=0,

express a*+ B¢+ y* in terms of p and ¢.
(ii) By the substitution y=2+ 1/, or otherwise, solve the equation
65— 2639+ 3741 — 265+ 6=0. [1R33)
18. If one root of #3+as+b=0 is twice the difference of the other two,
show that the roots are
—13b/124, 135/3a, —13b/4a,
and that 144a%+21976*=0, LUl
19. If o and B are the roots of the quadratic equation ax*+2hx+b=0,
find the quartic equation whose roots are + 1/a, + 1
Find the equation whose roots are the roots of the {ollowing quartic
equation, each augmented by 2:
48204+ 1240~ 165—28=0.

Hence, or otherwise, solve the given equation. LU}
20. If a, b and ¢ are the roots of the equation
PP tgatr=0,
express the quantities a-+b-+¢, bo+ca+ab and abs in terms of p, ¢
and 7.
Prove that

(i) a*+b4ct=pt-2q,
() @040 3pg—3r 1,
and, if abes£0,
(i) b/c+cja-+alb+clo+ afc+bla=(pq/r)—3. 1Al
21. (i) Obtain the equation whose roots exceed by 3 the roots of the
equation

#1204 49574 TB¥ 4 42=0.
Hence, or otherwise, solve the original equation.
(i) If the reciprocals of the roots of the cubic equation
#43pa'4 Sgx4r=0
are in arithmetical progression, prove that
2 =r(3pg—r). )
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. If none of the quantities (a+1), (v+1) and (c+1) is zero, and if

ytr=artays,

2+ x=by+ays,

xty=crtayn,
prove that (a+1)x=(b+1)y=(c+1)z, and hence solve the first three
equations for , y and z. LUl

L () It a'=yt+att2ays, yi=st+ati 2, s=sttyi+ay, where

none of the quantities a%, &%, ¢* is equal to unity, prove
#(1—at)=y*/(1-b%)=3(1—c%).
(ii) Prove that, if ¥, , £ are any positive numbers,
P4y 225y, (y+2)(s+2)(x+5)>8xyz.
Prove also that, if a, b, ¢ are any three positive numbers such that
each is less than the sum of the other two,

(b+c—a)(c+a—b)(a+b—c) < abe. (1833}

. () Ifa,b ¢, dand 2y, 5, ware all real, prove that

(@t 8+ @) (e 51+ 2 0) > (ax by Hesdu)h
(i) If #%=aZ3+52%, where Z>x and 4, b, Z, ¥ and y are real and
posifive, prove that y3> 2(ab)/2. LUl

. 1f a, b, ¢ are positive real numbers, prove that

@+ +Y)f(a+b+0) > Hat+ b0 +-eh).
1f y and # are positive real numbers such that y—x> 0, prove that
{4 3R+ 4P =2V (3 — 20 > Hy+ (1—aY13). [LU)

. Prove that the equation ax'+bx*+cx+d=0 has a repeated root if,

and only if,
(bc—9ad)*— 4(5*— 3ac) (¢*— 3bd) = Lu)
If a, b, ¢ are positive, prove that
(i) (b+¢)(c+a)(a-+8)>8abe,
(i) (a"+07)(a*+8% > (a*+5%)(a*+5Y).
If y+2> %, 24+5>9, ¥+y> 1, use (i) to prove that
O+e=2)(s+x—y)(x+y—1) Sxy2 Ly

- 1t Ay ylea, yle-+1fy=b, x[z+2/x=c and %, 3, # are all real, prove

(l) a%, b3, ¢* are each not less than 4,

if two of 4, b, ¢ are equal to —2, the other must be equal to +2,
(o2 V@ A)ox V= )(c (D) =5, where one of the
ambiguous signs is opposite to the other two. [Lu.)




CHAPTER 3

DETERMINANTS
3.1. Definitions
The equations 8yx+byy+63=0,
3%+ byy+e3=0
are satisfied by the values
7= (bycy—bycy)/(asby—ashs), y=(asca—as0s)/(asdy~asbs),
provided that ayb,#asby.
‘These results may be written in the form
_f =y 1
biey—bats  @yCa—asty  @aby—ashy
% -y 1 [E2)]
b a"’las ‘||_ a b
b o a b

b-[ |'s :I
= byt —bycy, =ay0y—
b byts—bacy, B33 —yCy

. |2 ol -

The expression la,

is known as a delerminant of the second order, and the quantities
s, ay, by, by are called its dlements. They are arranged in two rows,
@y, by and ay, by, and two columns, a,, @ and by, b,. The diagonal
consisting of the elements a, and b, is called the leading (or principal)
dugmulmdl.u]mo'nntheludt element.

The condition that the values of = and y given by (3.1) should
satisfy the equation

ax+by+e=0
is @1(beey—byta) — b(ascs—Bsta) +1(asdy— 335y) =0,

b c.| l‘u ¢-| I-. b.‘
L _ + =0.
- “|b. al e ol e b
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‘This condition is written compactly as

4 b a
a b =0
ay by LY

The expression on the left-hand side of this equation is a deferminant
of the third order with a, as leading element and with the elements
Gy, by, ¢ along the leading diagonal. Denoting this determinant by
4, we bave, by definition,

b oq a by
LY a b
If, in 4, we delete the row and column containing a given clement,
we obtain a second-order determinant which is known as the minor of
that element. Denoting by ar, By, yr the minors of ay, by, cr respec-
tively, we have from (3.2)
A=aa,~bfy oy 3.3)
Each term on the right-hand side contains an element of the first row
of 4, and 50 a,a,—b,B, +¢yy, is the expansion of 4 from the first row.
Again, from (3.2),
A=0y(byCy = bycy) = by (8484 — a365) +€1(asbs — asby) 34)
=3By —byea) — Ba{b1s — bstr) + aa(br6a —byc))

by C.| b c.| |b. c.l
- +
DY Il E S

a4 ¢
d=q, a: ‘: +o . (3.2)

—b

=a,

=0,0,—8y03+ 430,

This formula gives the expansion of 4 from the first column, In a
similar way, by re-arrangement of the terms in (3.4) a formula may be
found for expanding 4 from any row or column, the expansion con-
sisting in each case of the three elements of the row (or column) each
multiplied by its minor with the appropriate sign attached. The sign
may be determined by setting up a chessboard pattern with positive
signs along the leading diagonal, as shown below.

+ - +
-+ -
+ - 4+
Thus, for example, 4= —b,8, + 5,8, ;s

=a30,— by +aryse
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The term abyc, obtained by multiplying together the clements of
the leading diagonal is known as the leading term in the expansion of 4.
We shall denote the ith row and the jth column of 4 by Ry and C;
respectively.

Example 1
Evaluate the determinants
3 —4 5 2 7 6
) 4= 6 -5 —3|, @) dy=[4 -1 3.
-2 1 2 3 0 1

Expanding 4, from R, we have
=3(—10+43)+ 4(12—6)+ 5(6—10)
=-17.
!fA, is expanded from C, or from R, the expansion consists of two terms
Expanding from R,, we obtain
8y=3(21+6)+ 1(—2—28)
=51

3.2. Properties of determinants

The process of expanding determinants in the absence of zero
elements is sometimes lengthy. It is greatly simplified if use is made
of the following fundamental properties which apply to determinants
of any order and may be easily proved in the case of third order deter-
‘minants from the definition (3.2).

(i) If two rows (or columns) of a determinant are interchanged, the
determinant retains the same numerical value but changes sign.

(if) If a determinant has two identical rows (or columns), its value
is zero.

(iii) If the elements of any row (or column) of a determinant are all
multiplied by the same factor, the value of the determinant is also
maultiplied by that

(iv) If each element of any row (or column) of a determinant
consists of the sum of two terms, the determinant may be expressed
as the sum of two other determinants, in each of which the elements
are single terms, For example,

Qtz b o 4 b e z b g
aty b oo a4 b e+ boalf.
Gtz by 6 4 b o x b oo
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(v) The value of a determinant is unaltered if the elements of any
row (or column) are multiplied by a constant and the results added to

the corresponding clements of any other row (or column). Thus, by
several applications of the rule,

a b oa atphtge btk o

@y by | = |atpbten  btka o .

aG b o atpbytges  bythe o

When the elements of a third-order determinant are numerical, there
is often little to be gained by simplifying it instead of expanding it
directly as in § 3.1 If, however, th elements are very large, it is
sometimes profitable to simplify the determinant before expansion as
in the following case.

Example 2

Evaluate the determinant
00 101 102
01 102 103
102 103 104

4

By (v), if from R, we take R,, we obtain

100 100 102
1 1 1

02 103 104

Again, taking R, from R,, we have

4=

100 101 102

4= 1 1 1
2 2 2
100 100 102

=21 1 1 [, by property (iii),
1 1 1

=0 by property (ii).

The first two steps of the above simplification may be effected simul-
taneously, but until the processes of manipulation have been thoroughly
mastered, it is advisable to do one simplification at a time.

below.

f the properties of arei
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Example 3
Factorise the determinant
* a @
4= |a x af.
s a x
x+2 x+2 x+2
4=| a x a Ri+(Ry+Ry) ;
a a *
1
=(++2)|a =+ a
s x
1 0 0
=(*+2a) #—a o (€4=Cy); (C—C):
a 0 z—a

= (s++2a)(¥~a)", expanding from R,.

Example 4
Faclorise the deleyminant
11 1
4=1a b ¢ |.
@ B

We note that, if a=b, 4 has two identical columns, and so (a—b) is 2
factor of A (see§ 1.9). Similasly, (5—c) and (c—a) are factors. Now 4
2 cyelic homegeneous polynomial of the fourth degree in the varisbles
a, band c, as can be seen by expanding 4 from R,. Hence (see § 1.8) we
may write
A=k(b—c)(c~a)(a—~b)(a+b+c),

whero & s 8 americal actor

‘The leading term in the expansion of 4 is b¢Y, and this s the only term
inbc‘intheupnsnn From the factorised form of 4 we see that the
term in be? is kbch. Hence k=1 and A=(b—:)(n—a)(u—b)(a+b+;)

Example 5
Prove that
1 & & [r e e
1 8 5| =(ctcatad) 1 b .
‘ 1 & l 1 ¢ @
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This result may be proved by working out or factorising both deter
minants, Alternatively we may proceed as follows :

1a a betcatab o at
A=(bc+catab) |1 b B botcatab b b |, by property (i),
1ca botcatab ¢ o
betale+e) e o
= | catblc+a) b B
abtcla4+d) ¢ o
w a & ab+) & a
=@ b + |bc+a) b 8 |, by property (iv)
& ¢ o datd) ¢ &
=4, +4, say.
Multiplying R, by a, R, by b, and R, by ¢, we have
ac  at @ 1 & &
abe 4,= # B | =abc|1 B 5|, by (),
s @ 1 @
a* a*
Sd= LI N
s &
Also, bte 1
dy=abc | c+a 1 by (i),
atb
atbtc 1 a
=abc |at+btc 1 b (C1+Cy);
atbtc 1 ¢
1 1 a
=abe(a+b+c) 1 b, by (i),
1 e
= 0, by (ii).

Hence =4, and the required result is established.
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Example 6
1f a, b, ¢ all have differsnt values, and if
a @ a1
4= | B B-o1| =0
¢ @ ol
prove that abe=1
a a & a a 1
4= B B|-|b B 1|, byGw
¢ @ 8 ¢ a1
1 & @ 1 & @
=abe (1 b B[-|1 b B,
1 ¢ o 1 ¢ @

making two transpositions of columns in the second determinant.
.

o A=(abe—1) =(abe—1) &', say.

1
Thus, if 4=0, either abc=1, or 4°=0.
But 4’ is a cyclic homogeneous polynomial of the third degree which
vanishes when a=b5, when b=c and when ¢=a. Hence
L (b—o)(c—a)(a—b),
and so, if @, b, ¢ are all different, 4"#0,

2 abe=1.
Example 7
Express the determinant
2 atatbf ab+aff
atat+d+p 2(a+8)(a+p) ab(a+B)+aP(a+b)
ab+af ab(a+B)+afla+b) 2aabf

st um of sight dteminanis, and hence, or otherwiss, show that its valus is

[ X33

We rewrite 4, the given determinant, expressing each element as a sum
of two terms :

1+1 (a+8)+(a+h) ab+af
(a+b)+(¢+5) (a+B)(a+b)+(a+B)(a+b) abla+p)+afla+b)
+af afla+b)+abla+p) abaf+afab

(l) @ @) @ ® ©
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Thus 4 may be regarded as being subdivided into six * subcolumns
numbered as indicated. The scheme for expressing 4 as the sum of eight
determinants using property (iv) is outlined below. We use [(1), (3), (6]
to j:nm the determinant whose columns are the subcolumas (1), (3), (5)
of 4.
A=[(1)+(2). (3)+(4). (5)+(8)].
=[)+(2), @)+ ). (6] + [(1)+(2), (3)+(4), (B)].
=[1)+(2), (3). )] + [(V+() (4, (6] + [(D+(2), (3). (6]
+ [+, (). (6,
=[(1), (3). (&) + [(2). (3). (B} + [(1). (4). (6] + ([(2). (4). (6))
+ (1), 3), (O] + [(2), (3), () + [(1), (4), (®) + [(2), (4), (&)
1 atd ab
a+b  (a+B)(a+b) ablatp)
ab  aflatb) abaf

Now [(1), (3), (5)] =

1 1 1
=ab(a+b) | a+b a+p a+B| =0, by (i)
ab  of aff

Similarly, the other seven determinants vanish; and so 4=0.

3.3. Note on determinants of the fourth and higher orders

By an extension of (3.3), a determinant of any order may be defined
in terms of the minors of its clements. For example, the fourth-order
determinant

o b a4

4 b o 4
4=

4% b a4

a b o dy

= aa—bfi+ory—~didy
where a, is the minor of a, i.e. the third-order determinant which is
obtained by deleting from 4 the row and column containing a;.

by o 4y
Thus a= b o 4
b o 4

and B, y; and 3, are similarly defined.
4 'may be expanded from any row o column, the expansion con-
sisting of the four elements of the row (o column) each multiplied
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by its minor with the appropriate sign attached. The sign may be
determined from the sketch which shows a chessboard pattern with
positive signs along the leading diagonal.

+

I+
L+ 1+
1+ 1

+
-+ +
Thus, for example, 4 = —b,8;+byB3—bBs+biBs,
= a30,—bsfy+ciys—dady
In a similar manner determinants of higher order may be defined.
‘The properties listed in § 3.2 should be used to simplify determinants
of order higher than the third before expansion. We give examples

to show how d:eymybensedsysumthﬂymmdumthgorduo(
a given

Example §
Evaluate the determinant
1 1 1
aa |t M 1 1
=1 1 145 1
1 1 1 14+c [ShefSeld.]
We have
1 0 0 o
1 a 0 o0
4=l o b o (G=Cp: (C4=C): (Co—C).
1 0 0 ¢
a 0 0
=|0 b 0,expanding from R,
0 0 ¢
= abe
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‘We have
1 =2 3 —4
0 -1 2 -1
2= {0 Ty i Tio|ReHIRE (Re3R): (ReH4RY;
0 -7 10 -13
-1 2 -7
—~| 2 -8 10|, expanding from C,.
-7 10 -13
4=

— (104—100)— 2(70— 26)— 7(20— 56), expanding from R,
160.

Exercises 3 (a)

1. By expanding directly, show that

[}
) ¢ 0 a|=2ibs,
b a 0
a b ¢
i) ¢ a  b| =abic-dabs,
5 ¢ a
1 & =b
(i) l —a 1 o =ldadite,
b - 1
11
() ‘ Pz y| =stystoyr—m—sy,
y o =
cos (x+) sin (x+y) —cos (++3)
) sin (v—y) cos(r—p) sin(x—y) | = sin 2Ax+y)
sin 25 0 sin 2y
2.1 1 1 1
4=|snd snB sinC |,
csd cosB  cosC

prove, by expanding from the first row, that
A=sin (4—B)+ sin (B—C)+ sin (C—4).
By subtracting columns before expansion and by converting differ-
ences into products, show that
=4 sin }(4—B) sin }(B—C) sin }(C—4).
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3. Solve the equation
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Axt2 E
x4 2
1 1
4. Evaluate
2 4 16 1
W |3 o 8|, @|2
5 25 625 31
5. Solve the equation
x a b
a x b
a b x
6. Find the roots of the equation
=3 1
1 =5
-1 1
7. Show that
* s b
» a o
atb F+b x+a
8. If a b g
a=|n b f
& f ¢

prove that A=abc+ 3fgh—af*—bg*—ch*.

&}
°
» | =0,
1 [Liverpool]
2t 3l
3 4.
41 81| [Liverpool]
=0.
[Shefield]
1 | =0
-3 [Sheffield.]

=(b—a)(x—a)(x—b)(x+a+d).
s

If B, C and F are the minors of b, ¢ and f respectively in 4, show,

by expressing the determinant | o
determinants, that
BC—F=ad.

9. Factorise the determinants

a 1 1
® |1 & 1, ()
1 1 a
a 3 c
(i) bc  cka  atb|.
b a ab

as the sum of four second-

1 ab  atb
1 be b+e |,
1 @ cta
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10. Show that

1
1 1+a
1
and that
1+a 1 1
1 1+b 1| = abo(1+1fa+1/o+1/0).
1 1 1+e
11. Show that

lgx logy logr
log2s log2y log2r
log3r log3y log3:

=0.

12. Show, without expanding the determinants, that

1 1 1 & b a'
ab be ca | =—abc|ec 13 a
a%t b et 1 1 1

= —abo(b—c)(c—a)(a—b).

13, Show, without expanding the determinants, that

oy oz B4
R N e E
¥ xy 1 1 1

=(y—1)(e—2)x=y)s+2x+3y).
14. Prove that
1 1 1
o—a

a ¢ = —(2a—b—0)(2—c—a)(2—a—b).
(a=d)p* (b—)* (c—ap

16, By expressing the determinant
24y y+r  r4x
y+r  zdx xty
s+x sty y+s
as the sum of eight third-order determinants, show that its value is
x oy =
y & x
s o5y

2
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16. (i) Find the values for p and g such that the determinant

1
a
a

1

26
b

1
¢

g

is a constant multiple of bc+ca-+ab.

(li) Factorise the determinant

17. Factorise the determinants
2
2

a+b

1

a

a

®

@)

18. Evaluate the determinant

btc
a—c

a—b

bte
ct+a
atb

btc
a—c
a

o - a

b—a

19. Solve the following equation in ¥ :

-1
atax

20. Express the determinant

as the product of one quadratic and four linear factors.

21. Evaluate the determinant

Bb—c—a

Aar  axtat

1 a'—bc
1 b'—ca
1 —ab

4a 3a—b—c

4

%—a—b %—a—b

0.

Sa~b—c
8b~c—a
©

[Shefeld.)
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22. By multiplying the first row by abe, and taking factors out of the
resulting columas, prove that

1 1 1

belc—b)  cala—c)  ab(b—a) | =abo(ad+b3+ci—Sabe).
b c'a a%

23. Factorise the determinant

1 1 1
be(b+c) ca(c+a) abla+b) .
b cat atr

24. (i) Find the value of the determinant

ay+Aay  by+Aby 6t

aytpay  bytpby  oytpe,

aytva,  bytvhy, Gt
in terms of A, , v and D, where D is the value of the determinant
when A=p=v=0.

(if) Find the roots of the equation

£ 3 8
x 2 2| =0.
1 3 1 [Durham.]
25. (i) Evaluate
7 13 10 6
5 9 1 4
8 12 1 1|
4 10 6 3
(i) Prove that, if a'+b'+c*+d*=1, then
a—1 ab ac ad
ba -1 be 1%
ca @ a1 a | =
da @ & a1 [Sheffield.]
26. Evaluate the determinant
8 3 4 7
4 1 2 3
n 3 7 6"
9 2 3 § [Leeds.]
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27. Evaluate the determinant

3 13 1 9

1 4 17 8

1 8 o —2|°

2 6 24 1 [Leeds]

=abed(1/a+1/b+1[c+1/d+1).

11 el
1 1 1 d+1
(i) Show that
s 11 1
: '; : i =(a+3)(a—1)%
11 1 .

20. Show that as-+by-cs is a factor of

0 % y 1
0 - b
y ¢ 0 —a’
s -5 a 0
and evaluate the determinant. [Leeds])

3.4. Solution of linear simultaneous equations
‘The solution of the equations
axtby=h,

ayi+byy=hy,
may be written in the form

abtad, (35

b,
| 3 I ﬂ- b
‘This xsnlt may be extended to the equations
atbytor=h
Gyitbyy+oar=hy ]
@z by +or=hy

(3.6)
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where we get
x y = 1
hha| [aha| [ahk] Jatal ©7
By by oy ay ky ¢y ay by by ay by oy
By by oy ay by G ay by ko ay by ¢y
provided that
4 b oq
d=la b ol
a b o

the determinant of the coefficients of the unknowns, does not have
the value zero.
‘This result, known as Cramer’s rule, may be written in the form

1

where 4z, 4y, 4 are obtained from 4 by substituting the ¥'s in place
of the z—, y— and z— coefficients respectively. Cramers rule may be
extended to the case of # simultaneous equations in # unknowns.

3.5. Homogeneous equations
1f in equations (3.6) we write ky=ky=k,=0, we obtain a set of
three homogeneous equations
ayx+byy+6z=0
age+by+er=0 38
ay5+byy+er=0
which are satisfied by the values =y=z=0. If they have any other
solution,

4 b oq
4= [
ay LAY

must have the value zero.

To see this, we suppose that the equations have a solution in which
% 3 and z are not all zero, and that 4£0. Then by Cramer's rule

45_0
w=Gi=d=0,

and, similarly, y=2=0. This is a contradiction. Hence 4=0 is a
necessary condition for equations (3.8) to have a solution other than
z=y=2=0. We state without proof that this condition is also
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sufficient. It follows that equations (3.8) will have such a solution
if, and only if,

o4 b q
a b q|=0 (3.9)
e b o

3.6, Consistency of equations

A system of » linear equations in # unknowns will, if the determinant
of the coefficients of the unknowns is not zero, determine these
quantities uniquely. If, however, the number of equations exceeds
the number of unknowns, it is not usually possible to find values of
the » unknowns which will simultaneously satisfy all the equations.
1f such values can be found, the system is said to be consiste, and,
at most, # of the given equations are independent.

the equations

aby+6=0

a5 +byy+6=0
are consistent, they are satisfied by (say) 2=, y=y,. This is equi-
valent to saying that equations (3.8) have a solution z=1,, y=y,, 2=1
and so, by (39),

ax+by+e=0
(3.10)

a b
4 b =0. (3.11)
4 b o

This is a necessary condition that equations (3.10) should be consistent.
That this condition is not sufficient is clear from consideration of the
equations
2+y+1=0, z+y+2=0, z+y+3=0,

where condition (3.11) is satisfied but the equations are obviously
inconsistent.

1t has been shown in § 3.1 that when a,by—a;b,70, equations (3.10)
are consistent if condition (3.11) is satisfied. Similarly, it can be shown
that if the minor of at least one of ¢, ¢, ¢ is not zero, (3.11) is
sufficient condition for equations (3.10) to be consistent.

Example 10
‘Solus the equations

av+byter=1,

At blycteml,

atx+blytotsml,

simplifying the resulls as far as possibe. Lu]
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By Cramer's rule

* 5 z 1
15 ¢ alc| Jab 1 @b
10 e ’A‘I" ‘a'b‘l a* bt
10 & a1 ¢t at b1 at bt ot
Now
a b ¢ 1 11
b | =abc|a b <
LA @ » &

=abe(b—c)(c—a)(a—b)(a+b+c), see § 3.2, Example 4.
Substituting the values a=1, b=1, ¢=1 in turn in this result, we can
evaluate the other determinants. After simplification we obtain

F=(=H0=cKL+b+ae—bl(a=0)o+b+o)

=]
= (1= @)1= (140 + Bfclo—a)(c— )+ a-+ B).
If any of a, b, ¢ has the value zero, if a-+b+¢=0, or if a=b, b=c or c=a,
the solution is not valid.
Example 11
Express as a determinant equated to sero the condition that the equations
2r—3y+2—3=0,
3r—2y+1=0,
4xr—2y+2=0,
should be satisfied by the same values of % and y. Find the two values of X
for which the equations are consistent and the corresponding solutions.

[L.U. Anc.)
By (3.11) the required condition is

2 -3 |

3 -2 1 |=0

4 -2 2

1f we take 2R, from R, we obtain
2 -3
3 -2
-2 4-2

Expanding from C, we have
(A=3)(8—3)+ 2A*—8)+6=0,
which reduces to (A=3)(6—2)=0,
A=3ore.
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When A=3, the given equations become

which have the solution #=1, y=2.
‘When A=8, the given equations become
126—3y4+3=0,
35—2y4+1=0,
4x—6y42=0,
and these are satisfied by the values =~} , y=}.

Exercises 3 (b)
1. Solve by determinants the equations
5x4+3y+3r=48,
244 6y—3r=18,
8x—3y+20=21
2. Solve by determinants the equations
F+y+a=b,
x4+ 2y43r=11,
3xty+dr=13.
3. Eliminate #, y and # from the equations
ax+hy+gr=0,
hx-by+fr=0,
gx+fy+ear=0.
4. Find the value of A for which the following equations are consistent:
dx4dy=10,
x—2y=8,
Bx+Ty=6.
Find the values of # and y corresponding to this value of A
6. Find the values of A for which the equations
(2—X)x+2y+3=0,
25+ (4—Ay+T=0,
254 5y+6—2=0,
are consistent, and find the values of ¥ and y corresponding to each of
these values of A.
6. Find all the values of f for which the equations
(t=1)x+ (34 1)y + 2s=0,
(1= 1)+ (4= 2)y++ (14 3)s=0,
25+ (34 1)y + 3(t—1)2=0,
are compatible and find the ratios of #: : # when { has the smallest
of these values. What happens when ¢ has the greatest of these values ?
®u)
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7. Solve by determinants the equations
[0} r—ytr=1,
#=2y+de=8,
x4 3y+97=27.
(i)

8. Solve the equations

rtiy+ie=1,
frtiyie=1,
+ir+ie=1

Dby means of determinants.
b

and %, y, £ are not all zero, show, without solving any equations, that

abcta+b+c=0.
9. Prove that
a 3 ¢
bic  cta  atb| =—(a—b)b—0)(c—a)atbto).
a » @

Solve completely the equations

ax+by+.
(b+0)x+ (c+a)y+ (a+b).
@tz by +chr:

where a, b, ¢ are non-zero and distinct.

Miscellaneous Exercises 3
L (i) Prove that the determinant
1 bde  (b+o) ey
1 cta  (c+a) (+a
1 atb  (a+d)(a+bY)

vanishes.
(i) Evaluate the determinant
I 1 b4e
1 cta
1 a+b

(Durham.)
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3
2. (i) Show that (5—c) is a factor of

at be b+e
b a c+a
o ab a+b
and find the other factors.

(ii) Prove that
1 cs2 sina
1 cos28 sinB | =2(sin B—sin y)(sin y—sin a)(sin a—sin f).
1 cos2y siny LUl
3. (i) Express the determinant
1 b4o—a &
1 cta=b B
1 atd—c &
as a product of factors.
(ii) Show that
cos 8 cos a cos § cos (a+6)
cos (a+6) cos § cos a cos (a-+6)
cos (a+6)  cosfsin'a  —cos asinasing
is equal to — costa sin'a cos 6. wLu)
4. (i) Show that a++b+¢ is a factor of the determinant
btoc—a b c
a atc—b c
a b atd—c
and deduce that its value is 3abo—a?—b3—c%,
(ii) If A+B+C=180° prove that
cos (B—C)  cos (C+A)  cos (A+B)
cos (B+C)  cos (C—A)  cos(4+4B) | =0.
cos (B+C)  cos (C+A4)  cos (A—B) L.ul
5. (i) Prove that
3 3 W't2at
3 3504200 30 Bats
3504200 3046a%  Axt+ 12600420

is independent of x
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(ii) Find all the roots of the equation

1 1
5 2
» 8 L)
6. Prove that
() |b+c cta  a+d
@ B @ | =) e—aE—b);
@ B e
G |1 1 1
@ B ;-‘ (b—c)(c—a) (a—b)(ab+be+ca).
@ B @ Lu]

7. (i) Show that sin a, cos a, (sin a—cos a) are factors of the deter-
‘minant

cosa  sin2 cos'a
sina sin 2a  sin'a
sing sinfo cos'a

and find the remaining factor.

(i) Find the values of A for which the following equations are con-
sistent :

3r4dy=5,

Solve the equations for these values of A. (1831

8. (i) Show that

a=b—c 2a 2a
% b—c—a % |=(a+btol
2 2% c—a—b

(ii) By multiplying the second column by b, the third column by ¢,
d subtracting the elements of one column from the other (or
by any other method) show that  is a factor of the determinant

brger ab ac
ab o4at be |
ac b algbt

Evaluate the determinant. U]
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9. (i) Factorise the expression

1 a a
1 B
¢ &

(ii) Prove that

a-1 a—=1 a'—1
=1 a'=1 a'=1 |=at{a=1)%(a+ 1)} +a+1).
a-1 a1 a'-1

ru]

10. (i) Solve the following equation in #
-1 1 1
M2 —ar  axt2a
A42ar art2e'  —ax
(i) Show that (a-+b+¢) and (a%4b%+¢3) are factors of the determinant

& (e b |

=0.

B (cta)  ca
LR )
and find all the factors. mul

11. Prove that
a b o
b ¢ a
¢ a
Show that there are three real values of A for which the equations
(6—X)x+by+cs=0,
byt (c—Ny+ar=0,
exkay+(b—2r=0,
are simultaneously true, and that the product of these values of A is 4.
(A3

4= = — (@b -0) (@ B A b ca—ab).

12. (i) Solve the equation

+1  x+2 3
2 43 x4l

#+3 1 a+2

=0.

(li) Prove that
D+ (42 1
[ T A
[ I T R

-—32

Loy
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13. (i) Show that +=3 is a root of the equation

*
3
-2
and solve it completely.
(ii) Prove that

-6
—2
3

-2
-
1

(2P
(s
1
= (=24 y+ ) (¥ —2y+2)(x+y—2) (s*+ 5+ 8 — 2y~ y5—1%).
L.uj

-1
x—4

1,

(="
==
1

=2

14. (i) Show that #-y-+1 is a factor of the determinant

Yz
-
2%

4
4%
4

#+y

22

- |,

and hence, or otherwise, evaluate the determinant as a product

of linear factors.

(i) Solve completely the equation
* 2
2%—2 3x-2

243 3¢
15. (i) Solve completely the equation :
3 2
6r—2 0x—2
643 ox
(ii) Show that the equations

are consistent for real values of A if
40— 1580439 0.
16. 11 the corresponding elements of two
minant are equal, prove that the value
Prove that
cos §
cos? §
2 sin 6 cos® 30

(144 sec ) sec?
1

c

=} cos 6 sec* }0.

=4

3r—4

4
5

=0.

LUl

4 | =0

LUy
Tows of a three-rowed deter-
of the determinant is zero.

0 sin §
sin § cos 6
sint §— cos §

LUy
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17. (i) Express as a product of linear factors

111
(i) If no two of the numbers a, b, ¢ are equal, find the condition that
the equations
x+y+1=0,
xfa+yfo+s/c=0,
atx4bly+cr=0,

may have a consistent set of non-zero solutions. Find the ratios
:yiswhena=1,b=—3, c=2. LU

18. (j) Factorise
Ftytns (n—1)x (n—1)y
(=12 y+atnx  (a—1y

(n=1)r =1z 24xtmy
(ii) Prove that
cos (v+a)  sin (v+a) 1

cos(r+f)  sin(rtf) 1
cos(x+y)  sin(r4y) 1
is independent of x. Lu]

19. Prove that if, in a third-order determinant, the corresponding elements
of any two columns are identical, the determinant is zero.

(3) Factorise the determinant
1 1 1
a B @
B+ (c+a)  (a+d)
(i) Solve the equation

x+1 2% 1
* 3x—2 2¢ | =0,
1 * * LUy}

20. (i) If 4 is a determinant of the third order, whose elements are
polynomials in x, and if all the rows of 4 become identical when x
talkes the value a, prove that (—a)* is a factor of 4.

(i) Factorise the determinants

1 s a By'+atst  Py+ad 1
@ {1 » 2 ) | Ya*+ P8 yatps 1'.
1 2 atfytst aftys 1| [LU]
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21. Factorise the determinants

1 1 1 2 a+b alybt
a b ¢ | a+d at4b a4b .
e B 1 c o
Hence, or otherwise, show that
2 at+b a4 110 111
a+b a'+b @b |=|a b 0| x|a b ¢
1 c o 001 @b o LU

22. Find the values of A for which the equations

Aoty +/26=0,
A+ 3
V254429 + (A= 2)2=0,
have a solution other than =y=z=0. Find also the ratios #:y:s
which correspond to each of these values of A, L.uj

23. (i) Show that #+y-+1 is a factor of the determinant.

P
HE oy Y
+y &8

and express it as a product of five linear factors.

(ii) Show that ¥=0 satisfies the equation

247 x+6 26410
2414 20412 35420
z+6 #+9 2413 [L.U. Anc]

and solve it completely.

24. (i) Show that
1 a a

cos (n—1)r  cosmx  cos (n+1)x
sin(n—1) sinmr  sin (nt1)x

(i) It @, b, ¢ are three distinct, non-zero numbers, solve the equation.
B a-m
I
e o a—s

=(1—2a cos x+a") sin .

=0

[1 R3]
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25. (i) Determine which, if any, of the following two sets of equations are
consistent and, when possible, solve them.

(@)

Bwby—2=11.

®) 2—y+1=T,
Sxt+y—5:=13,
#4y+1=5.
(if) Factorise
ey x y
z yhat2x y .
s * a2y [L.U. Anc))
26. Show that ¥ and x+y+ 1 are factors of the determinant
(2 » x’
» (a+a) » o
a * (4

Hence, or otherwise, evaluate the determinant as a product of linear
factors. LUl

27. (i) Solve the equations

95+ dy+16:=13,
12+ 10y—3s:

(ii) Show that a+b+c is a factor of

a  b—c c+b
atc b c—a ’ .
a=b b+ta ¢
and factorise the determinant. ru)

28. (i) Factorise

(a=2)*  (@=y)* (a—

[ N G N

== (=" (-2
(i) Find the condition for the equations

(a—b—c)742ay+2a=0,

2bx+(b—c—a)y+25=0,

2+ 2ey+ (c—a—b)=0,

to have a common solution, and show that when this condition is

satisfied the equations have infinitely many common solutions. v

[L.U]




CHAPTER 4
LIMITS AND INFINITE SERIES

4.1. Definitions

The indicated sum s+ tlg+tig F .. 14y
of n terms each formed according to a definite law u,=f(), say, is
called a finite series of 7 terms.* We use the Greek letter 2 (sigma) to

denote summation and write the series briefly as 2 «,. The arithmetic
-

series a+(a+d)+(a+2d)+...+(a+n~1d)
in which each of the # terms is formed by adding a constant d to the
preceding term is an example of a finite series.

When every term of a series is followed by another term as in

thtsgttgt .ttt
the series is said to be infinite and is denoted by Z u, or, where there
=
is no ambiguity, by Zu,. For example, the geometrical progression
ataztaz’+...+axvit.

in which each term bears the ratio  to the preceding term is an
infinite series.

The sum of the first # terms of an infinite series is usually denoted
by Sa. Throughout this chapter the letter # denotes a positive integer.

42. The idea of infinity

Suppose that # takes successively the positive integral values
1,2,3,... Then there is no limit to the values which » can assume.
However large a number we may think of, # will ultimately exceed it.
When  increases in this way we say that # tends to infinity (through
positive integral values) or, in symbols, #—»co.

Again, if f(n)=n*, as # increases without limit, f(r) also increases
without limit and will ultimately exceed and remain greater than any
pre-assigned positive number however large. In this case we say that
fin) tends to infinity as # tends to infinity (through positive integral
values) i.e. f(#)—>c0 as n—»co.

The statement that f(#)—»co as #n—»co implies that there is an integer
* The series could be written f(1) +/(2) +/(3) + ...+ (u) but the notation u, is
more convenient, it being understood that » can take only positive integral values.
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N, such that f() > 1,000, say, provided that #3> N,, and an integer Na
such that f{n) > 100,000, say, provided that #3> N, ; and corresponding
to cach positive number G however large, there is an integer No such
that f(n)> G for all integers #> N,

Although in the above example f()=n? tends to infinity through
certain positive inlegral values, any function F(s) which increases
without limit through positive values as #-»c is said to tend to
infinity as n-»c0. For cxample F(n)=n-+1/n->c0 as n->co.

The function ¢(n)=1/n—n which increases without limit through
negative values as #~>co, is said to tend to negative infinity as #-»co,
and we write $(n)—>— o0 as #->co.

4.3. The idea of a limit

If  takes in succession the values 1, 10, 100, 1,000, 10,000,.... the

values of the function f(n)= 1+ 1/ are respectively
2, 111, 1-01, 1-001, 1-000L,. ..

As 1 increases, /(n) steadily decreases, and the larger # becomes the
more closely f(n) approaches the value 1. There is no value of # for
which f(n) assumes the value 1; but f() differs from 1 by an amount
less than any pre-assigned positive quantity however small if n is
sufficiently large. For example, /() differs from 1 by less than 0-00001
for all values of 7> 100,000.

‘This behaviour is described by the statement: /() tends to 1 as
 tends to infinity (f(n)1 as #->co), or the limit of /() as # tends to
infinity s 1 (lim f(n)=1).

More generally, any function Sy of n is said o tend to a limit S as
# tends to infinity if there exists a efinite number S independent of 1
such that as # increases |Sy—S| ultimately becomes and remains less
than any pre-assigned positive number however small.

This definition implies that there is an integer #, such that
| Sa—S | <10, say, provided #>m,, and an integer n, such that
[ Sa—S <104, say, provided n>#,, and so0 on; and corresponding
to cach positive number ¢, there is an integer i such that

| Sa—S | <« provided #> .

The value of , will (in general) depend on the number «.
‘We state without proof four useful theorems :

L I, as #>c0, #,—S and v,-S, and if #,<S,<v, for each n,
‘then S,—S.

I1. If S,>0 for each », and S,—0 as #—>co, then 1/S,—c0.
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IIL If S, =a for each , then lim S,=a.
fy
1V. If, a5 #->00, Spy—>S and Sppe;—>S, then S,—5.

4.4. Convergent series

The sum S, of # terms of a finite series has an obvious meaning,
but the sum of an infinite series must be defined.

1f S,=tty+ g+ttt .. . +14, is the sum of the first # terms of the
infinite series Zw,, and if, as » tends to infinity, S, tends to a finite
limit S, the infinite series Zu, is said to be convergent and S is called
its sum to infinity (S,,) or, more briefly, its sum.

For example, if 4,=

1
N

1
et

Now as a0, Sy—>1 ; hence the series £
T+

converges and its sum
is 1.

4.5, Series which do not converge

If S, does not tend to a limit as defined in § 4.3, the series Zu, does
not converge and does not possess a sum to infinity.

For example, if #,=7, Sy=14+2+3+...+n=}n(x-+1). Hence
as #n->c0, S,->c0 and the series Zr is said to be dvergent or to diverge
to +co.

1f S,—>— 0 as n—>co, the series is said to diverge to —co.

Again, for the series 1—14+1—1+..., Sy=1if n is 0dd and S,=0
if nis even. Hence the series is not convergent. It is said to oscillate
Sfinitely.

In the case of the series 1—14+3—345=5+..., Spu=0 and
Syaer=2n+1. Hence when #—>c0, Syu—0 and Syun—>co. The series
does not converge and is said to oscillale infinitely.

The reader should note that some writers use the word * divergent *
to describe any series which does not converge. With this terminology
a series is either convergent or divergent, and a divergent series may
diverge to + oo or to — oo, oscillate finitely or oscillate infinitely.
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4.6. Behaviour of x» when n->co, where n is a positive integer
(i) When 0<x<1, 1/x>1 and so we write 1jr=1+y where y>0.
Then by the binomial theorem for a positive integral index
1zm= (145"

=l+ny+"_(';7_l)y‘+ -

>y, since each term on the right is positive.
Hence 0<x"<1/ny, and as #->co, 1/ny—>0 (since, when % is given, y is
fixed).

. %0 by theorem I of § 4.3.

(i) If #>1, 0<1jz<1, and so by (i), 1/">0 as n->co, Hence
#"->00 a3 #—>co by theorem II of § 4.3.

(i) If —1<#<0, let 3= —x 50 that 0<z<1. Then, by (i),

() I z< =1, =2>1 and (=2)"=(=1)"s">c0 as n—>c0 by (ii).
Nwz">0wh=nnlsev=nandz‘<0wh¢nn odd. Hence as #

increases through integral values, the numerical value of #* increases
without limit and the sign of z" oscillates between positive
negative. In this case #" is said to oscillate infinitely (cf. § 4.5).

(v) By theorem III of § 4.3, if x=1, lim 2*=1 and if x=0, lim x"=0.
If x=-1, a"=(~ ) and so as #—>co, 2* oscillates between the
values +1 and —1, i.e. 2" oscillates finitely.

4.7. The geometrical progression

The geometrical progression

a+azdar’+. . dar i,

where a+0, provides an important example of the behaviour of an
infinite series.

When %1, S,, the sum of the first # terms of the series is given by

a(1—x7)
S.-——l_’ .

We apply the results of § 4.6.

If |%] < 1, #°-50 as n—>co; hence S, tends to the finite Limit
af(1—%) and the series converges.

If x>1, 2> as n>0; hence Sp>+ if 6>0, Sp>—co if
<0, and so the series diverges.
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If x< —1, 2" oscillates infinitely ; hence S, oscillates infinitely and
the series cannot converge.

If z=1, the series is a+a+a4+... and S,=#na ; hence S,->+ o if
a>0, S,——co if a<0; and so the series diverges.

Ifz=-1, theseneuu—a+-—a+. ; hence S,=0 or a according
as  is even or odd, and the series oscillates finitely,

1t is important to note that the geometrical progression converges
only when the common ratio x is numerically less than unity.

4.8. Theorems on limits
The following theorems on limits follow from the definition given
in§ds3:

1. Iflim S,=S and k is any constant, then lim £S,=kS; if however
Sy>00 38 =200, KSy—>+ o0 if &> 0 and AS,—— 00 if k<0,
2. 14 5, and T,~T as n->co, then
() Sa+qTw—$S+¢T, where p and g are constants,
(i) S.T.~>ST,
(i) SwTu>S/T it THO.
(i) and (i) may be deduced from the identities
S Tu=ST=SWTa=T) +T(Su—5)
and Sy/TamSIT={T(Sa—S) = S(Ty—TI/T.T respectively.
The use of (i) is demonstrated in the following example :

Example 1

Find the limits of the ﬁzlhmin‘ expressions when n->00 ¢
Akl w43

CF~SRCR-== A

In each case we divide numerator and denominator by the highest
power of n which occurs in the denominator.

. w44 144/m0 . w4d 1

o P v R s
A+l Untlmt | ntl

2] P v
W43 n3m | w43

() AT TR w
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4.9. General theorems on convergence

‘The theorems on limits given in § 4.8 lead to some general theorems
on convergence of infinite series :

(i) 1f Zu, is convergent with sum S, then Zku,, where  is any
constant, is convergent with sum AS. Similarly, S, and Zku,
diverge or oscillate together, unless k=0,

(i) 1 3w, is convergent with sum S, the series 3 u, is convergent
Pt el
with sum S— E'u,, m being any given positive integer. Similarly, if

L‘u, dlverges or oscillates, so also does Eu,. It follows that in

the convergence of a series, any Bmite number of terms at
the beginning of the series may be ignored.

(iii) 1f 2, and Zv, are two convergent series with sums S and T
respectively, the series Z(puy + quy) is also convergent with sum S + g7,
# and g being any constants.

4.10. A necessary condition for convergence
If wy+ g +sus+ ... i @ convergent sevies, then 4,—0 as n->co.
‘We have #y=Sp—Suy
o lim #g=lim S,—lim S,
e mee | meem
=0,

since S, and S,_, have the same limit.
This condition, although necessary, is not sufficient to guarantee the
convergence of Zu,. For example, if

Sa= v1+«/2+v3+"'+v

S.>n.%=\/n.

. Sa>00 as n—>c0 although u,—0 as n—>co.

4.11. The harmonic series
The series Z(1jr)=1+}+§+}-+}+... is known as the harmonic
ser

Now +i>i+i=h i+{+§+i>l-{- and so on.
Hence, if S, is the sum of » terms of the harmonic series ;=1
=1+, S,> 1+}+ Se> 143414 and i ns, Soo 1 £1A
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When #->, p->00, and 5o S,—+c.
Hence Z(1/7) diverges to + co, although #,=1/n—>0 as n—co,

4.12. Series of positive terms
The investigation of the convergence of a series is simplified if the
terms are all positive, for we can then apply the following theorem
which we do not prove but which we illustrate graphically :
If Sy is the sum of the first n terms of a series of positive terms and if,
Jfor all values of n, S, remains less than a fixed number k, independent
of 1, then the series converges, and its sum lo infinity s less than or
equal to k.

On a straight line O (fig. 1) following the usual sign conventions

———
o R R B RLK *
Fig. 1

we mark the points Py, Py, Py,. .. such that
0P,=S5,,0P,=5,,0P;=S,,...
Let OK=Fk. Then since the serics contains only positive terms, S,
increases with #, and 50 Py, Py, Py... advance steadily from left to
right along Oz. For all values of #, S, <% and so every point P, lies
to the left of K. The theorem states that there exists a point L either
to the left of K or coincident with K beyond which Py never passes
and such that P,L—0 as n—>co. Thus if OL=1, lim S,=1, where I<£,
e

and so the series converges.

If no such number % can be found, S, increases without limit and
the series diverges to + . A series of positive terms cannot oscillate.

A series of negative terms will cither converge, or diverge to — co.

A series whose terms are all positive only after the mth term (say)
is said to be ultimately positive. The convergence of such a series is
unaffected by the removal of the first m terms (see § 4.9 (ii)) and we
can apply to the series

B+ UmagFmagt oo

tests for a series of positive terms.

4.13. The comparison tests

Although the question of convergence of an infinite series depends
on the behaviour as n—>c0 of S, the sum to » terms of the series, there
are comparatively few series for which an expression for S, in terms
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of n can be obtained. Hence other tests, applicable to the individual
terms of the series, are used.

TEST 1. A series of positive terms zonvagntj;kmar:less!haﬁ (or
equal 10) the corresponding terms of some convergent series.
Let Zu, and Zv, be two series of positive terms. Let S, be con-
vergent with sum V, and let %, <v, for all values of 7.
Then #+#y+...+4, < +0+...+v,<V for all values of 7;
and so by § 4.12, Zu, is convergent.
For example, the terms of the series

1
TrtatEt et
are less than o equal to the corresponding terms of the convergent
series
1,1,1
Ligh oot

Hence the given series converges.

Corollary to Test 1: If 0<,< kv,, where % is a positive constant
and Zv, converges, then Zi, is also convergent, for Zkv, converges
(see § 4.9 (i)).

TEST 2. A series of positive lerms diverges if ils lerms are grealer than
(or cqual (o) the corresponding terms of a divergent series of
positive terms.

Let Zu, and Sv, be two series of positive terms ; let Zv, be divergent
and let 4, >v, for all values of 7.

Then ty+ 43+ . .. 484,30 +g+ . . . +v, for all values of 7.

But v, +v;+ ... +v,~c0 when 7—>c0

. sk ... +4,—>00 when 7->c0.

Hence the series Zu, diverges.

For example, if r>0,  r(r+1)<(r+1)%,
and so 1 .1

Vo) 7+l

[ . X

But I is a divergent series (see § 4.11);

-
Z— s divergent.
VireFny e
Corollary to Test 2: If 4, v, >0, where & is a positive constant

and 3, diverges, then Zw, is also divergent, for Zkv, is divergent
(see § 4.9 (i).
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Test 3. 1f Zuy and Zo, are serics of positie lerms and if lim lim 2,
where L is @ conslant ofher than zero, then D, and Zop are
series of the same type, that is both are comvergent or both are
divergent.

Since ¥2,L as n—co, then corresponding to any positive number
< there exists a value N of # such that

Yn
=2 <e forn>N.

Choose € so that 0<e<L; then
0<L—c< <L+s

ie 0<(L —:)u.< Uy < (L+ Ve

Since #, < (L+€)v,, for all values of #>N, it lol]ows mm Test 1
(corollary) and § 4.9 (ii) that if Zo, is convergent, Su,

Since u,> (L—€)v, for all values of n>N, it (ollows Irom Test 2
(corollary) and § 4.9 (ii) that if Zv, is divergent, Zu, diverges,
Example 2

Test for convergence the series Zu, where

@) #p=(3r+1)/(3r—2), (ii) ur=(3r—1)/(3r*+2).
3r+1_3r_1

[0} ot 2 is a divergent series.
Hence, by comparison test 2, Ju, is dnvugent.
3r=1_ @3-V

(i) FTETETI when ¥ is large.

Hence we compare the given serics },‘u, with Zv, where v,=1/r.
ur_r@3r—=1)_3-1/r
v 3tz ayom
But Zu, is divergent. Hence by comparison test 3, Zu, is divergent.

‘We have

—>1 as 7->c0.

4.14. Two standard series

series are regarded as standard and are frequently used in
appln:atmns of the comparison tests :

(1) The geometrical series 3 #™1, which (as has been shown in

§4.7) converges only when | % |<1.
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(2) The series i(l/r»). which we now show to converge if #>1 and
diverge if p<1.
(i) Let p>1.
Su= 1'+2’+3’+ ..+—

Now + < =21-7,

1 4,
u+5’+av+1'<4_’=4' ”

1.1
sttt

15'<”‘8“
and so on.

..S<l+—+ 1,1

Tttt

The right-hand side of this inequality is a geometrical series whose
common ratio ()1 is less than unity when $>1

l (ii—”‘ for all values of #

and so by § 4.12 the series converges.

(ii) Let p=1. The series is then Z(1/r), which has been shown
in § 4.11 to be divergent.

(iii) Let p<l.
When <1, 1jr2>1frif r>1.

Hmu  each term of Z(1/r?) after the frst exceeds the correspondi
2(1/r) and so, by test 2, Z(1/r%)

is dlvugem when p<1.
Thus the series Z(1/r?) converges when $>1 and diverges when

<l

4.15. The ratio test for a series of positive terms

1f Zu, uasm&:nfpomwtamtmhthahm 2t p, D, comerges
if p<1 and diverges if p>1.
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(i) Let p<1 and suppose that ¢ is a number such that p<g<l.
‘Then since a,»,/u_ can be made to differ from $ by as small a quantity
as we please by making # sufficiently large, we can find a number N
such that when 53N, tiyft,<g<l.

Then tiy; <quy, ty42<qly41<gy, and so on.

S ugtugytugeet ..y g <uy(lHg+e+ ... +g5)

Y

1-¢

for all values of K however large, since 0 <g <1.
u.+u,+.‘.+u,_,+u,+“A+u,+,<u.+u,+...+u,,,+l"—:’q

for all values of K.
But the right-hand side is a positive number independent of K.

. Zuyis convergent.
(3) Let #>1. Then since lim ﬁﬂ—p “"“>1 ultimately, and so

44 does ot tend to zero, Hence 2w, is divergent (see § 4.10).
‘When p=1, the ratio test gives no conclusive result (see Example 4
below).

Example 3
Test for convergencs the series

W z::—,'wun a>0, (i) L‘T

@ M-_ 0 co.
) ot 0 8
.
Hence £ %] converges.

@ tnsy_ 241 24U
Un B(n+1) 3(1+1/m)

Hence the series converges,

2
g as n>o0.

Example 4
Test for convergence the seriss E(1r).
[
s ”“) 1 33 n>co.
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Now we have shown in § 4.14 that Z(1/r) is convergent when p>>1and
divergent when p<1. It is therefore seen that if Lim ) for a

given series we cannot, from this fact, draw any conclusion as to the
convergence of the series Sy,

4.16. Series of positive and negative terms
A simple type of series in which the terms are not all of one sign
is the allernaling series in which the terms are alternately positive and
negative. For example, the series
Uy =ty Uy — gt . . . @)
where each u is positive is an alternating series.
We shall show that if >ty for all values of #, and if #,~>0 as
0o, then series (i) converges.
We consider separately the sum of an even number of terms and
the sum of an odd number of terms. We have
San= (0= t) + (=4 + ..+ (¥rn-1=th30)-
Each bracket is positive and so S,, increases as n increases.
But San=th— (=) = ... = (Mans—t30-1) ~t43n
S St
Hence (see § 4.12) Sy, tends to a limit which s less than or equal to
e
Now Stat1=Spnttam
2, lm Syppy= Hm Spyblim trgpyy
ey o aee

But since lim 4., =0, im S,,,, exists and is equal to lim Sy,
e vt ——

Hence by § 4.3, theorem IV the given series is convergent.

Example 5

The alternating series 1—§+§—3-+... is convergent, since tn>tns
and uy—>0 as n->00.

Example 6
‘The alternating series 1-1—1:01+1-001—1-0001+ . ..does not converge
because lim up#0 (see § 4.10). In this case
o

Sin=y[1—(0-1)""] >y 23 n>c0
Sentr =142 [14(0:1)**]->}{ as n—>c0.
Hence the series oscillates finitely.
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4.17. Absolute convergence

If Zu, is a series which contains positive and negative terms, Zw, i
said to be absolutely convergent if 5| w, | is convergent.

A series which is absolutely convergent is also convergent.

To prove this result for a series Zu, we construct two series of
positive terms 2o, and Zw, by taking

v,=u, when %,>0, v,=0 when 4,<0;
w,= —u, when 4,<0, ,=0 when u,>0.

Then |4, |=0, 41, )
and "y
Since ,0 and w,>0 we have from (i)

v, <)%, | and w, <[ %, |
Bntby is, Z| u, | is hence by ison test 1
Zv, and Ziw, are both convergent. It follows trom (i) that Zu, is
convergent (see § 4.9 (i

From this important theorem it follows that if a series of positive
terms is convergent and a new series is obtained by changing the signs
of any of the terms of the given series, then the new series is convergent.

1f Zu, is a convergent series of positive and negative terms such that
Z|u, | is divergent, we say that Zu, is conditionally convergent.

-, ... (@)

4.18. Tests for absolute convergence

Any test applicable to series of positive terms can be used as a test
for absolute convergence of the serics Zu, since X | , | is a series of
positive terms. For example, applying the ratio test we see that if

“"" \+$ as n—>co, Du, is absolutely convergent if p<1 and is

L “onvergent if p>1. For if #<1, Z| u, | is convergent, while if
#>1, the terms of Zu, ultimately increase numerically and so Juy
cannot converge (cf. § 4.10). The ratio test is inconclusive when

Example 7
1,1 1 1

] 1 i t
The series 1— 5 —~git i~ gy — g+ - - is absolutel

is convergent.

Example 8

The series 1—}+3—}+...is convergent (sec Example 6), but since
}:(1/1) is dxvurgant (see § 4.11) the given series is only conditionally
rgent.
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Example 9

Examine for absolute convergence the series (i) Z(—1)* n(n+1)/3* and
(i) D=1/ (1),

(i) Here | g |=n(n-+1)/3", | tin4y | =(n+1)(n+2)/3%

and = §(1+2/n)->} when n-»co.

Unty
Un
Hence by the ratio test, Juy is absolutely convergent.
@ [Mh | VD Vls)

U | V(n4+2042) V(14+2/n+2/n?)
‘Hence the ratio test fails,

Now Zuy is an alternating series in which each term is numerically less
than the preceding one and u,—>0 as n—co. Hence Zuy, is convergent

(see § 4.16). Auo|u.p£wh=nxnhxgeudmw=wmpmz:|u.|

—>1 when n—>c0.

with v where .,,-5‘ Then the comparison test in limit form (see
§4.13) gives

Lol =
V' +])
", Z| up | is divergent since Zu, is divergent,
.. Zug is conditionally convergent.

—>1 as 5—>c0.

4.19. Power series

A series of the form ay+a,x+ay2+ay3*+ . . ., where the coefficients
8g, @y, ay,. .. are independent of z, s called a power series in . Such
a series cannot diverge for all values of x since, when x=0, it converges
to the value a,.

Associated with any power series there is a number R such that
the series converges absolutely if | % | <R but does not converge if
|| >R. Ris called the radius of convergence of the series and the
interval containing all the values of x for which the series converges
is called the interual of convergence of the series. Except for its end-
points this interval may often be found by the ratio test. Othermethods
must be used to determine the behaviour of the series at the end-points
of the interval.

Example 10

Find the valuss of = for which the exponential series
ST
+itaitart e

s convergent.
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‘The test ratio is P

tan |_l#]
Uy

o lim I Ut |_0 for any finite value of %,
s

and 5o the exponential series is convergent for any finite value of . The
interval of convergence is (— o, c).

Example 11
Find the vadius and interval of convergence of the logarithmic series

| Hﬁ) tei=(1=) 11

.
umiﬂ*ﬂ|-|.|.
v | ¥n

Hence the logarithmic series converges when | | <1 and does not converge
when | |>1. The radius of convergence is 1 and values of # in the
range —1<x<1 belong to the interval of convergence, The end-points
of this interval, i.e. = 1, must be tested individually,

=1 gives the series 1—}+}—4+... which converges, see § 4.16,
Example 5.

=1 gives the series —(14§+4+1-+...) which diverges, see § 4.11,

Hence the interval of convergence of the series is —1<x< 1.

Example 12
Prove that, when m is not a positive integer, the binomial series

1+m+"'(%x’+"'("—_;)l("‘i) e

converges absolutely if —1<x<1.

The test ratio of this series for #>>1 has the form

ngy_mm—1)m=2)...(m=ntl) | mlm—1)m—2)
T +

Lot
n " (=

and so by the ratio test the binomial series converges absolutely when
l#]|<L
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4.20. Properties of power series

(i) From § 4.9 (iii) it follows that two power series may be added or
subtracted term by term for all values of % for which both series are
convergent. Hence if Za,x"=f(x) when |%|<R, and Zba"=g(x)
when | % | <Ry, Ry<R, then

Z(a+by)an=f(x) +g(x) when | £ | <Ry,

(ii) It can also be shown that the above series may be multiplied
together like polynomials for any value of % for which both series are
absolutely convergent (and thus for every value of x within the smaller
of their intervals of convergence), i.e.

J(2)g(x) = agbo+ (aohy +a,b) v+ (agby+ayby +ashy)a?+ ...

We state without proof further properties of power series :

(ifi) If two power series have the same sum over some interval
—l<x<l, the coefficients of corresponding powers of # in these series
are identical.

(iv) The sum of a power series is a continuous function (cf. § 4.23)
in the interval of convergence of the series. It follows that, if the
radius of convergence is not zero,

lim (ag+ayx+a 53+ ...)=a,
Py

The corresponding result for series other than power series may not
be true,

(v) A power series which converges to (z) in the interval ~i<x</
may be differentiated term by term and the resultant series will
converge to ;‘x‘ /(=) in the interval —I<x<l.

(vi) A power series which converges may be integrated term by term

between any limits lying within the interval of convergence of the
series.

Exercises 4 (a)
1. Discuss the convergence of the series whose uth term is given by
20 1+3m

O e’ [

- 1 - 1—n+n?
@ o)

1 i R —
@) e D s

. 241 »
L v s (i) A/(""*"’)'
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. np " VD) 4/ (n—nt 1)
(ix) o {p constant), (xi) e
1 " V(1) —y/n
NG
2. Det e for what values of # the following series are (a) absolutely
convergent, {b) conditionally convergent :
) S e
(O m ", ™) Z— .
" il (=1ratrst
@ S w 5.

»r
G
3. Prove that an absolutely convergent series with real terms is convergent.

Show that z: =

7% is convergent. LUy

4. Prove that, when [: |<1, n¥"—>0 as n—>co.
[Assume first that 0<x <1 and write £=l+y where y>0; then use the
inequality (14y)*>}n(n—1)y? to show that 0<nx"<2/(n—1)y%.

5. Prove that the following alternating series are convergent :

(@) l—H-i—H-.-».

@ 3 a- a' a- a’+

PO A0

(113,135 1367
37567568 3.66.12

6. Show that the lollow-ing series are conditionally convergent :

3
2

.2
O 32435 4e+""
(i) l_‘/z ‘/3 ‘/‘+ w.
iy 23 AL

251011
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7. Explain the meaning of the statement
“the infinite series fi-+fyh ...+l ... is convergent ",
Prove that the series l+7’+—+ .+L_+..4 is not convergent.
State the comparison test for the convergence of series with positive
terms, and use it to show that il-z“t. is absolutely convergent then so

alsois 510 Lu]
it
8. Define absoluts convergence of an infinite series 3 uy and prove from
et
your definition that E *™1 s absolutely convergent when —1<z<1.

Determine lorwhlrhmdvllnuo(xmum 7(Y+”hwnvar‘ent
=
and for which it s divergent. " [L.U]

4.21. Functions of a continuous variable
We may represent real numbers by points on a straight line #'0x
(fig. 2), the origin O representing the number zero and points to the
right and left of O representing positive and negative numbers
mpectwe!y. the distances of the points from O being proportional to
the magnitude of the numbers they represent.

——
A o B X
Fig. 2

If the points 4 and B represent the numbers a and b respectively,
a number » which takes successively all values between @ and b may be
represented by a point P which moves along the line from A to B.
# is then said to vary continuously from a to b. If P progresses
always to the right, starting from 4, % is said to tend continuously to
infinity.

Suppose that # is a positive integer represented by a point Q moving
along #0x. Then if n-»e0, @ moves progressively to the right along
0 by a series of equal jumps whereas, when #~co, P moves smoothly
along ¥'0x.

If for each value of # in some interval the value of another number
 is uniquely determined, y is said to be a single-valued function of
the continuous variable #,  In what follows we shall assume that the
functions with which we have to deal are single-valued.



4] LIMITS AND INFINITE SERIES 71

4.22. Limit of a function of a continuous variable

Corresponding to the definitions given in § 4.2 and § 4.3 of the
behaviour of f{n) when n—co ( being a positive integer), we have
definitions for f(x) where x is a continuous variable. For example,

(i) A function f(#) is said to tend to a finite limit / as  tends to + o
if, corresponding to cach positive number « there is a number X such
that | f(x)— | <e, provided that x>X.

We then write /(z)—»l as 2>, or lim fla)=

For example, li llm-

(ii) A function /(z) is said to tend to a finite limit / as » approaches 4
if | f(x)—1 | can be made as small as we please by taking values of z
sufficiently near to a.

‘This may be stated more formally : a function /() is said to tend to
a finite limit £ as z tends to , if, corresponding to ach positive number
€ we can find a positive number » (which generally depends on ¢
such that | f(x)~| <« when 0<|z a|<y. In this case we write

lim f(x)=L, or f{x)>l as z-»a.

“Now » can approach the value a through values greater than a
(denoted by z—a+) or through values less than a (z—>a—). When
we write lim f(z)=/, we imply that x may approach the value a

from either side, and the statement lim /(s) =/ is equivalent to the
two statements Tim /i) =/, and lim /(z)=l 1t lim /) lim fis).
lim /() does not exist.

sma

(iii) The function (z) is said to tend to infinity as = tends to + w if,
corresponding to each positive number 4, however large, there is a
number X, (which generally depends on 4) such that f(x)>4 for
all values of x> X,. We then write f(x)->c0 as x—>c0.

Similar definitions describe the behaviour of f(x) as #—— .

If /(x) neither tends to a finite limit nor to +c0 or — as x->c0,
Ji#) is said to oscillate.

The theorems on limits given in § 4.8 are valid for limits of functions
of a continuous variable.
Example 13

Find (i) lim (ax* +bx+0)/(@ 8 +bx-+¢), ¢ £0,

—o
(i) fz’/(\/(ﬂ+’)—\/(ﬂ—’)). a>0.
(i) As x>0, ax*+ by +c—c and @'z} +b'x + ¢
o i aXbEEe o

o e e S 70
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In this case the limit is found by substituting £ =0 in the given function,
. kim £(5)=/(0)-

(i) If we substitute x=0 in W L we nbtam which is
‘meaningless.
But if 0, m=w(n+xl+«/(a—x))

and hence as x>0,

.

VeV "V*

In this case lim f(s) #/(0) since f(0) is not defined.
pit

4.23. Continuous functions
It is natural to call a function continuous if its graph is a
curve. For example, the curve in fig. 25 is continuous ; the curve in
fig. 42 is continuous except at z=0, where it is said to be disconfinuous.
Before we give a definition of continuity for all values of  we must
first define continuity for a particular value of %, =a (say). The
simplest properties of a function /(z) which is continuous when x=a
are

(i) f(z) must be defined for =a, otherwise there would be a point
‘missing from the curve.
(ii) f(x) must be defined for all values of x near x=a.

(iii) f(x)—>f(a) as z—>a from cither side.

These properties lead to the following definition:

A function f(z) is said to be continuous for x=a if /(x) tends to a
limit as x—a from either side and each of these limits is equal to
fla). More formally :

A function f(z) is continuous at x=a if corresponding to each
‘positive number ¢, however small, there is a positive number  (depend-
ing on ¢) such that | /(x) —f(a) | < ¢ whenever 0<| z—a [< 7.

A function f{2) s said to be continuous throughout a certain interval
of values of # if it is continuous for all values of x in that interval ; it
is v if it is is for all values of z.

Using extensions of the limit theorems given in § 4.8, we can show that
the sum (or difference) and the product of two continuous functions is
a continuous function; the quotient of two continuous functions is
continuous except for values of x where the denominator takes the
value zero.

In particular, a polynomial P(z) is continuous for all finite values
of x and the rational function N(z)/D(x) is continuous except at values
of x where D(x)=0.
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Example 14

Iz =£ is continuous for all values of # except x=0.
As 50+, é-»+co; as #>0—, }»-m; when #=0, /() is not defined.

The function ’1{ is said to have an infinite discontinuity at x=0.
Its graph is shown in fig, 42.

Example 15
1) =% has the value x4-2 except when x=2.

‘When #=2, f(») is not defined, hence the function is discontinuous at
#=2 and its graph is that of the straight line y=x-2 except that there is
1o point which corresponds to # =

424. A property of a conti function

Suppose that A and B are the points corresponding to the values
z=a, z=f on the graph of a function y=f().
Then the ordinates of A and B are f(a) and f(8) respectively. We shall
suppose that f(8) > f(a).

‘The fact that the curve is continuous between 4 and B suggests that
the line y=F where f(a) <k<f() will cut the curve at least once, i.e.
there is a value of % between o and § for which f{x) =#. In other words,
as % varies from a to f, y must assume at least once every value between
f(a) and f(B). This is a fundamental property of a continuous function.

In particular, if f(a) <0 and f(8)>0, f(x) takes the value zero at
least once as x varies from a to A.

Exercises 4 (5)
Evaluate the following limits :
. —at 1—y/(1—3)
Lim i mmra 2 lm =
o P43t P—drt3
R i P
- 5+x o VEER)—/x
5 im o hm VIV,
Flnd the values of » for which the fouowm‘ functions are dlseﬂnh.mlonl‘
g 54
t 52"

10. tan 2s.




CHAPTER &

THE BINOMIAL, EXPONENTIAL
AND LOGARITHMIC SERIES

5.1. The binomial series
e series

nx +n(n—l)

l+ 29:"+

nin—1)(n—
T

P NS AL P ®1)

is known as the binomial series and is denoted by z:(';) 7, where
.
w\ _nn=1)...(s—r+1) " f
(') = and (0) is as unity.
1f s a positive integer, the series ends after a finite number of terms
and is in fact the expression for (1+2)" given by the binomial theorem
fora positiv integal index . Tn this case () is equal to °C,, the
number of ways of choosing a group of # things from » different things.
When  is not a positive integer the above series is infinite and con-

verges absolutely for all values of » when | z | <1 (see § 4.19, Example
12).” We shall use Vandermonde's theorem to find its sum when | % | <1.

5.2. Vandermonde’s theorem
1f m and # are positive integers, we have, by the binomial theorem
for a positive integral index,
(14x)™n =1+ ™0C x4 MCH L L +™C 2"+ 2™ (i)
But (14 2)™n= (1+2)™(1+2)
S(L4"Cx+"Cypt . +"C A +27)
X (L4Cyx+"Cogt b ... +°Ca + . 427 . (i)
Equating coefficients of #" in (i) and (ii) we have
C, =mC +7C, "Ci+"Crg"Cot oo +™Cr"Cot ... +"Cp (i)
‘The method of proof of this result assumes that m and # are positive
mtegmsnch that m+n27; but if we write
mCo={m(m=1)...(m—r+1)}rl, *C,={n(n—1)...(—r+1}r!
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we see that equation (i) is of the th degree in m and  and since it is
satisfied by all integers m and # such that m+n > (il is an identity,
true for all values of 7 and n and for all positive integral values of 7.
Hence we may write (iii) in the form

=+ O+ () )+
(2@ ()

5.3. The binomial theorem for any rational index

This is Vandermonde’s theorem.

Let us consider the product of the two series z(’;‘) 2 and z("‘) s
. s

where | # | <1 so that both series are absolutely convergent. Denoting
their respective sums by f(m) and f(r) respectively, we have by
§4.20 (i)

S fin=Fae,

merear= () (2 () + (Z) B+
I ()

= (""'“‘ by Vandermonde's theorem, since  is a positive integer.
o S xSy =1+ (”‘*”) P (””‘”) At ("’:’”)z'+ .

ie. fim) xfom)=fom+n) . . [0)
This result may be extended to any number of factors ; for
10m) % f(n) X f(R) =f(mm -+ m) X f(R) =[(m + 1+ ),
and so on. In general,
S % fin) % oo xflng)=fmtmt oty . (@)
If #y=ty= . .. =np=n we have from (i)
Yeyp=sem . . . . @)
where p is a positive integer and # can have any value.
Putting #=1 in (i), we have
[ =(fr=01+2> . . (i)
‘This is the binomial theorem for a positive integral index
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Next let n be any positive rational number, i.e. let n=g/p, where
# and g are positive integers. Then by (ii)

Yalppr=f=0+2¢ . . . @)
so that Salp)=(1+x)r.

Hence f(g/#) is a pth root of (14+2)%. Now by §4.20 (iv), /(q/p) isa
continuous function of z when | % |<1, and for values of % in
interval f(g/#) does not take the value zero. It follows from § 4 2
that f{g/#) does not change sign in the interval. But when x=0,
flg/p)=1; hence when | z|<1, fg/#) >0 and so flg/p) is the positive
Pt root of (1+x)t.

‘We have now proved that when % is a positive rational number

Joy=42 . Y]

Finally, if m is a negative rational number we put m= —»u, whm »

is a positive rational number. Then from (i),

Jom)fin+1)=£1)
ie. fem(+x)™1=1+2 by (v)
ie. Jom)=(L+2)".

1t follows that for all rational values of #, positive or negative,
1+ar=14+ (';):+ (;)sq- (;);q... + (’;):’+. ..when] x| <1,

5.4. Particular cases of the binomial theorem
When | # | <1, we have by (5.1)
=z =14zt 4204 ...
When [5]<|a],
(n—b)"-(n(l—b/n))"n—{l+26ll+3b'/a‘+lb‘/-'+ 3.
When |a|<]b],
a, 3.4a® 4.5a

(-+b)---{b(x+./b))—--_{1 L T

+H=1)r ('+1L(r+2) (

’+...}.

When | 2| <1,

8

1 .13
(l—zry-!--l+2:|r+—:z'+2 v ﬂx¢+
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and, more generally,

el MY WO YD,

(l_z)_n_1+m+n(n+l)‘, n(n+l)(n+2)

Replacing # by p/g in these last results, we have
apemtop(Z) 4410 (2 HEEQEER (5",
(l—z)‘y/w=1+p(§) +1%;H) (’—;)’+P——-(P+q;‘f+2q) (%)‘4-

Note that when pfg is positive, all the coeflicients in the expansion
(1—2)-7% are positive.

5.5. Miscellaneous examples
Example 1

Express in partial fractions

S(x)=252/(1—2)}(1—6x)

and find the coefficient of x* in the expansion of f(x) in a series of ascending
powers of x.

Deduce, or pmu otherwise, that an integer of the form e-ﬂ—s(u+1)-—1
is divisible by 26. U]

_ s 8 1 5
(1= (1—83) 6x 1—x (1—2)*
1
When | # [ <h =g =1+6r+ (8. .. (6074005
when | x| <1, %=1+x+a’+ +ar

when | 7] <1, S——cel425432%0 b (DAL

(1= ")’
Hence, when | | <i-f(x)=5€(Bx)'—fz’—s{}(y{-l)x'
=3 b+ 1) —1)ar.
o
The coefficient of ¥* in the expansion is the integer 8++1—5(n+4-1)—1.

But f(x) =26x{(1—2)*(1—6x)}* =26x{1— (85— 1as-+ex-))—l and so if we
expand the function in this form, the coefficient of every power of x will be
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an megur of which 25 is a factor, and the expansion will be valid when
Ixl<

Eqnatmg the coefficients of 4" (see § 4.20 (iii)) we establish the required

Example 2

Sum the 1.1 13

3 taget
If 4=23/(1+*) show that jor a given mdiu ujt there ars two values of x
ich are veciprocals and hence prove eries

() ) A )

comverges to x or 1/ according as | # | is lsss or greater than unity.  [L.U]
When | ¢ |<1,

]

P )
see § 6.4

)

and ##1, it follows from the inequality 1-+#*>2x that |:1<1 Hence
substituting from (i) in (i) we obtain the mvergent. seri

x(u.:-)*z 4(1«»4) o 1+x’) e W
whose sum by (i) is

B ]
where ¢ is given by ().
But from (i) om0, . . . . ()
50 that to each value of f there are two values of
=/ and = (- (A= . . (vi])
which are reciprocals.

Now when | ¢[<1, |,,|>\ 3| ie I x1>1 and so [ | <1 since
#ym=l. It follows from (v) and (vii) that series (iv) converges to
#, that root of (vi) which is numerically less than unity. Hence the series
converges to  or 1/x according as | # | is less than or greater than unity.

The reader should verify this result by taking a particular value of 4,
eg. f=¢.

Exercises 5 (a)
" 1-5
1. Find #trand 53+ in o =
in ascending powers of #, and state for what range of values of # the
expansion is valid, [1R33]




5] THE BINOMIAL SERIES 9

lv—2 . N "
2. Express gy in terms of partial fractions.
Show that the coefficient of #*% in the expansion of this expression in
‘positive powers of # is (4n+3)2-311.4-2(— 121, and find the coefficient
of s™+1,  State the range of values of = for which the expansion is v:
ru]

3. Prove that
(a—bp al(a—b) bia—b) 2% | 2abt
Aar Q=6 (l—an T (=B (1—an) T (1—53)"
Find the coefficient of " in the expansion of
(a—b)*
(1—ax)}(1—b2)*
in ascending powers of #, and state the range of values of # for which
the expansion is valid. LU
4. Find a, b, ¢, d so that the coefficient of +* in the expansion of
atbitexttds®
(1=2)¢

is (s+1)%. Deduce that z'n(n-)—l)'(\/a—z)--o. (Sheffield.]

6. Find coefficients a, b and ¢ such that
274-32(1— ) (1—2) =a(l — 22 +b(1 — &) o (1—x) (1—4a)%
27 . in

Express (g in terms of partial fractions, and obtain its

expansion in positive ntegral powers of #, stating the range in which
¢ expansion is valid,

Dedllce that 4%+3(3n+1)+3n+-11 has 27 as a factor for all positive

integral values of n, LU

in terms of partial fractions. If the function

is expanded in positive integral powers of 7, find the coefficient of #*,
and state the range of values of x for which the expansion is valid.
Deduce, or prove by any other means, that the expression
(n1)am3— (n-2)am+ib b4,
where # is a positive integer, contains (a—b)* as a factor. LU

=

Express the function as a sum of partial fractions.

1
+1)(x—2)
For what range of values of ¥ can the function be expanded as a
serics of ascending powers of ¥
Find the coefficients of ' and #*"+1 in the expansion. Lu]
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8.1 Zi=1.243.450 456504 T Bx0 ...
and Z,=2.3+4.65"+ 6. 75+ 8.9+ ..
where x s positive, prove that Zy/Zy=(1+35%/(s*+3). LUl

9. If () =Aot+ A+ AW +...+Aps®+..., show that
(Aot 4yt . +42)
is equal to the coefficient of #® in the expansion of £ "(’) ") in ascending

powers of x.
Obtain the expansion of (1—:)4 in the form

1.3.6
1
1+ix+ x +3 46 e"+
and prove that the sum of the series
1.3,1.3.5 (2n—1)
T et +5 u o...on

3.

is equal to (Ba+l)

5.6. The number e
llS.isthesumofﬂ\eﬁxstntmnsoftheinﬁnitesuiu
1.1
1+ l+ Tt + s
1

Su=l4] 13123 2.3...(n—1)

12 123

1,1 1
Sasl4ldpbmtentary

<3 summing the geometrical progression.

But S, increases steadily as # increases, and so by § 4.12, as #-»a,
S, tends to a limit which s less than or equal to 3 and is denoted by ¢ ;
hence
=1 e
e=1+ l+ +3 l+
The value of ¢ may be calculated to any required degree of accuracy
from the above serics. Correct to 4 significant figures, ¢=2718.
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5.7. The exponential theorem
It has been shown (see Example 10 of § 4. 19) that the series
1+ + + + +~..+ +..
11 3! rl

i
converges absolutely for any finite value of .
Let us now consider the pmduct /(z) J19), where

fl#)=1+ |+2|+ﬂ+'

+”+... R

1424242 b
Jo =1+ T D

Since the series are absolutely convergent, we have

e so=1+ (£ 2)+ (G L)

L
+(31+21u iz 1+ﬂ)+"'
(#+3) (=490 (x+9)°
A TR T I T
the general term being
z‘ arly "ty ey ¥
=11 —2)121+“‘+(y-:)x:1+“'+ﬁ

=(x+3)pr!
S S@ SO =M +y)
Extending this result, we have
S&)f9)-S&)=[x+y+3)
and, more generally,
Sw). flx) f). . Slx)=flrtmt gt 2, o ()

where # is any positive integer.

From (i), putting x=1, we have f(1)=¢, and from (ii), putting

(=),

ie f(n)=e", when x is a positive integer.

In (if) put £, =5,= —mjn, where m and n are positive integers.
Then Jmn) Jofn). tor 1 actorsflmin £ min . oto 5 torms),
ie. {flm[n)}y"=f(m)

=¢m, since m is a positive integer.
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Taking the nth root of each side, we see that f(m/n) is one of the values
of em™ and since, by (i), /lm/n) >0 when m and # are positive, (m/n) is
given by the positive value of e™/»,

Hence if % is a positive rational number,

SiH)=c P 1]

the positive value of ¢¢ being understood.

Finally, if zis a negative Tational number, we write z= —y, where

yis a positive rational number.
Then &) ) =Ste+3) by ()
=f0)=1.
2 fle) = =2 by (i)

19
=%, the positive value being under-
stood.

Thus, if % is any rational number, /(x) =¢*and 50
Bzt
s‘-l+z+2|+al+ it (65:2)
for all rational values of #. This is the exponential theorem.
Writing —x for x in (5.2), we have

x? xd xt
el T (6.3)
When z is irrational, we define ¢2 by (5.2). It then follows from (i)
that henLemmentntatn L (i)

for all real values of %, %. . %

5.8. Properties of e~
1. ¢ is a continuous function of #, being the sum of a power series
(cf. § 4.20 (iv)).

2. ¢*increases as x increases. This is clear from (5.2) when x>0 and

from e=1/% when £<0.

3. ¢*—>00 a5 x—>co. This is clear from (5.2).

4. €20 as x—— oo since e~*=1/¢*,

It is important to note that ¢* is always positive.

Since the function ¢* can take any value between 0 and +co it
follows that corresponding to any real positive number y there is a
mumber ¢ uch that y=c* L. #=log, . Logarithms to the base ¢ are
called natural or Napicri ‘hen the
base of a logarithm is not e may e assumed that the base is .

The elementary laws of logarithms such as log m-+log #=1log mn,
will be assumed.
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5.9. Series for a*, 4>0

If a is a positive number and # is a positive rational number p/g,
$ and g being positive integers, the positive value y of av/t is given
by y9=a. From this equation we have

qlog y=p log a so that log y=(p/g) log a== log a.

Hence y=cthse
ie. aF=ghee . . . P}

Again, when x is a negative rational number, by writing = —¢
where ¢ is a positive rational number we obtain

—tlog 8 gz log s,

1_1
a*: u; - b=

Hence (i) is true for all rational values of z.

Except in the case when a=¢, a* has not been defined for irrational
values of x. We take (i) as our definition of a* when x is irrational.
For such a value of z, a* is defined only for positive values of a.

From this definition we can show that the laws of indices hold for
irrational as well as for rational indices. For example, by (iv) of § 5.7,

% X Q¥ = 63198 8 x ¥ 106 8 = gl3+9) B 8 = = +¥.
and (a5)v=e1o8 & = gy g 6 = gov,

Again, by definition,

ae=c ht-:xq-"——lﬁ a,# loga) (12‘"13 o, 2 (g 4 (';f s, by (5:2).
The expansion is valid for any finite value of .

5.10. Hyperbolic functions
We define the hyperbolic sine of x (written sinh ) and the hyper-
bolic cosine of x (written cosh ) by the relations

sinh x=§(e—e¥), cosh x=}(e*+c) (5.4)

Writing —# for x in these equations, we have
sinh (—#)=—sinh #, cosh (—2)=cosh . (65.5)
Also, cosh x+sinh x=e (5.6)
and cosh x—sinh x=c-* 7)
whence cosh? x—sinh? x=1, (6.8)

From (5.6) and (5.7) by squaring and adding corresponding sides
we have
cosh? %+ sinh? x=}(¢*+¢2%) = cosh 2z, by definition,
ie cosh 2¢=2 cosh? x—1=2 sinh? x+1 by (5.8).
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Again from (5.6) and (5.7) by squaring and subtracting corresponding
sides we get

sinh 2x=2 sinh x cosh x.
By writing sinh (x+)=}(e*.e"—c*.¢~%) and using (6.6) and (5.7)
we have

sinh (z+) = }{(cosh x+sinh x)(cosh y-+sinh y)
—(cosh z—sinh 2)(ccsh y—sinh y)}
.". sinh (x+y) =sinh x cosh y+cosh # sinh y.
Similarly,
cosh (2+y)=cosh x cosh y+sinh x sinh y.
Substituting —y for y in these results and using {5.5), we obtain
sinh (z—y)=sinh # cosh y—cosh x sinh y,
cosh (x—y)=cosh # cosh y—sinh # sinh y.

It should now be clear that to every trigonometrical relationship
involving sines and cosines there corresponds a hyperbolic identity
involving hyperbolic sines and cosines.

‘The analogy is carried still further by the introduction of hyperbolic
tangents, cosecants, secants and cotangents defined by the relations

tanh z=sinh z/cosh #, cosech z=1fsinh %, sech x=1/cosh z,

coth x=1/tanh x.
Dividing throughout (5.8) by cosh? x and sinh? # in turn we have
sech? x=1—tanh? x and cosech? x=coth? z—1;
from the formulae for sinh (-+y) and cosh (+3) we deduce that
tanh x4 tanh y
Titanh xtanhy’

The following rule (known as Osborn’s rule) enables us to write
down any relationship connecting hyperbolic functions if we know the
one which connects the corresponding circular functions: in any
identity connecting circular functions of general angles replace each
circular function by the corresponding hyperbolic function but change
the sign in front of a product or an implied product of fwo sines ; for
example, in front of sin® x, tan? z, cot? x, sin % sin y.

The identities cos 39 =4 cos* §—3cosd,  sin30=3sin§—4sin*8
give cosh 8x=4 cosh® x—3 cosh %, sinh 3x=3sinh x+4sinh%x;
and from the formulae

sin 8 cos g=4{sin (8+¢)+sin (0—4)}
cos 8 cos $={{cos (0+)+cos (0—4)},
cos 6 sin $=4{sin (6+4)—sin (0—4)},
sin 8 sin ¢=}{cos (8—¢)—cos (0+4)}.

tanh (z1y)=
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we obtain the relations
sinh z cosh y=}{sinh (x+3)+sinh (x—3)},
cosh x cosh y={cosh (x+) +cosh (x—3)},
cosh 2 sinh y = {sinh (x-+3) —sinh (z=3)},
sinh x sinh y=#{cosh (x+y) —cosh (x—3)}.
Al the above hyperbolic identities may be proved from the definitions
of the hyperbolic functions.

5.11. Series for sinh x and cosh x
By addition and subtraction of (5.2) and (5.3) we have (sce § .20 (i))

s o
sinh z=§(=’—r‘)=x+%+i+i+”_

51171
. T
cosh x=4}(¢’ +r’)—l+ﬂ+ﬂ+a+... .

Both series are convergent for any finite value of x.

5.12. Note on the graphs of hyperbolic functions
The graphs of the functions y=sinh % and y=cosh x ure shown in
fig. 3 (a); the graph of y=tanh z is shown in fig. 3 (8).

Y

4 o 1 x

Fig. 3(8)

Fig. 3(a)

‘We note that :

(i) If x is real and y=sinh %, y can take all values, positive and
negative.

(i) If % is real and y=cosh x, y<1; also cosh z=cosh (—2) and so
the graph of y=cosh z is symmetrical about Oy.
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(i) I!y-unhs-

2 it is clear that y=0 when x=0 and that
lyI<l Bya reamngement we can dcduce at once the limiting
values of y as x> c0; for by writing y=

H_r‘.wucethaty-slu

2>+ 00 and by writing y=" a-_: we see that y——1 as z->—co,
5.13. Inverse hyperbolic functions

1f x and y are numbers connected by the relation z=sinh y, we
write y=sinh~! %, and call y the inverse hyperbolic sine of . If
x=cosh y we write y=cosh~1 % and so on.

Inverse hyperbolic functions may be expressed in logarithmic form,
For example, if y=sinh-! x,

sinh y=1, cosh y=+4/(x*+1), since cosh y31,

and by (5.6) =zt /(2+1)
., y=sinbt z=log {x++/(x*+1)}.
It y=cosh- z,
cosh y==, sinh y= * y/(x"~1)
o o=zty/E-),
and s0 y=cosh~t x=log (zt-\/(z'—l)).
But 2 =1) =

+1/(x’—1)
as can be seen by cross-multiplication

< log {z—+/(x*—1)}=—log {x+/(x*~1)}
and so we write cosh? 2= tlog {x++/(x*~1)}.

The double ngn is due to the fact that the graph of y=cosh~t z,
ice. of x=cosh , is symmetrical about the z-axis so that to every
value of z31 there correspond two values of y which are equal in
magnitude and opposite in sign. The principal valu e* of cosh-1 # is
conventionally taken as +log {£++/(#—1)}.

When y=tanhtz, (|z|<1)
"m’=ﬂ+:
ie. ‘"’:“‘T:’
-u..h—u-;xog”" (<),
Similarly, cotht 2= 10g 2L (> 1),

* Seealso§ 9.8
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5.14. Miscellaneous examples
Example 3

Evaluate lim
[

o
By (5.2) ALyt

eh—1
h

and so, by § 4.20 (iv), umt
o B

Example 4
Solve for real values of  the equations
(a) 2 cash 2v—sinh 2x=2,
(6) cosh (log ) =sinh (log 1)+
() It 2 cosh 2 —sinh 2¢=2,
et (et gt =2

Hence L x=
or ", #=}log 3.
(®) cosh (log #) =}(e'o8 e ~18 5)
=x+1/%)
sinh (Iog §5)=}(e% br—e =08 45)
=i(x/4—4/x).
Hence if cosh (log x) =sinh (log }#)+3¢
H+1/7) =Hx/a—4)x)+ 5
351—107420=0,
=g ors,
Example 5
*+:

Prove that tank™! x+tank~} y=tank~! =,
o that tank™ x-+tank~) y=tank~t {75

Let tanh~! =4 and tanh— y=B so that #=tanh 4 and y=tanh B.
Then tanh~! #-+tanh~ y=A+B
—tanh-1 {tanh (4 +B)}
tanh 44 tanh B

—tany- (200 A+ tanh B
tanis (l+tanhAunhB

),m&s.w,
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Exercises 5 (b)
1. Write down the first four terms of series whose sums to infinity are

respectively

) e=e, @) A1, (i) e
11,1

Show that §(1+e)fe=2+ g+ gi+gyeee -
2. Express as power serics in # giving the first four terms and the general

term

@) o, () (14a)en, () (1—s7)/es

Expand ¢*+# as a power series in # as far as the term in x4,

~ @

Find the values of a, b, ¢ o that the coeflicient of " in the expansion
+Of (a-+bx-+cx¥)e® in ascending powers of # shall be (n+1)n 1. [L.U.)
5. Prove that
(i) (cosh 2¥—1)/(cosh 2¢+1)=tanh? x,

(ii) sinh x=2 tanh }/(1—tanh? §x),

(iii) cosh x=(1-+tanh? }s)/(1—tanh? §).
6. Prove that
(i) sinh (#—y)=sinh # cosh y—cosh  sinh y,
(ii) cosh 3x cosh? #-+sinh 3x sinh? x=cosh? 2%,
i) sinh-1($) =log 3. L)
Find real numbers 7 and a such that 5 sinh #+3 cosh x=r sinh (++a)
for all values of #. Hence, or otherwise, find the real value of » which

=

satisfies the equation 5 sinh 43 cosh ¥=—3. [L.u]
8. Solve the equation & cosh x+sinh #="7. LU)
9. (i) Write down the series for sinh %, cosh ¥ and show that when

#>0, %(2+cosh 5)>3 sinh ».
(ii) Solve the equation cosh (log #)=sinh (log §+)+7/4.

(iii) If tan s=tan A tanh g, and tan y=cot A tanh p, prove that
tan (s-+y) =cosec 2A sinh 2p. U]

10. 1f y=log tan (3m+}#), prove that
(i) sinh y=tan #; (i) cosh y=sec x. [1R33]

11. If cot x=sinh » and 0<» <, prove that
(i) cos s=tanh u; ()" =cot §x.

Solve the equation 4 sinh u-3e¥-+-3=0 for real values of .  [L.U)
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If tan }x=tan a tanh f, prove that

tan #=sin 2a sinh 38/(1-+cos 2a cosh 2),
and that sin #=sin 2a sinh 26/(cos 2a-+cosh 28). LU
(i) Define the hyperbolic sine, cosine and tangent and show that
cosh~1 x=#Iog {+1/(3*~1)}, tanh~! x=} log :i:'
and deduce that tanh~? (sin §) =cosh~! (sec ).

(ii) Draw rough graphs of the functions cot # and coth ¥, and show
that there is a root of the equation coth x=cot # in every interval
{nm, (n+1)m), 521, and {wm, (n—1)m}, n<1, » being an integer.
Give an approximate formula for the numerically large roots of
the equation. i3}

Show that cosh #-+sinh x=e* and deduce that
cosh ny+sinh ny=cosh"s+ (’l‘) cosh™=1 x sinh
+ (;) cosh™? # sinht x+ ... +sinh® #.
Obtain a similar expansion for cosh nx—sinh nx.

Prove that
cosh 7x=84 cosh? x—112 cosh® ¥+56 cosh? #—7 cosh #. [Durham.]

. Given that

sinh x_sinh y _sinh (+)
5 9~ '
show that either sinh ¥=0or 5 cosh y=28—9 cosh#. Hence climinate
yand prove that either ¥ =0, y =0, or x=log 3, y=log 5 orx=—log3,
y=—log 5. [L.U. Anc]
Express tanh 2¢ and tanh 3x in terms of tanh #, and show that, if
—1<k<]1, then u=tanh (} tanh~14) is a root of the cubic equation
w3kt 4 Bu—h=0. (Sheffield.]
Prove the formulae

cosh 3¥=4 cosh® x—3 cosh ; sinh 3¥=4 sinh? x-+3 sinh #.
Show that the curves

y=cosh %, y=} cosh 3x

intersect at an angle cos~? (7/9). (Sheffield.]
I tan x=tan A tanh p and tan y=cot A tanh p, prove that
tan (s—y) = —cot 2\ tanh 2. 1 R3]

. Prove that sinh 3u=4 sinh® u+3 sinh .

Deduce that the real root of the equation 4x*+3x=3 is
HE+V/10) 72— (3++/10)17) Loy
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20. Define the functions sinh » and cosh , and sketch their graphs roughly
in the same figure.
Defining cosh™! » to be always positive or zero, show that
cosh~? x=log {#+4/(3*—1)} when x> 1.
Prove that, in the range 0 <0< i, the equation
cosh (sec 6)-+1og (sin 26)=0

has just one solution, viz. §=sin~? §(1/3—1). mLu)

5.15. The logarithmic series
In § 5.14, Example 3, we have shown that

W
\unT-l.

11 we substitute k= £ log (1—2), where 0<z<1 and  is a positive
number, then as k-0, #->0+ and we obtain

L) W (B o |
e Alg (1= = M S Teg =)
Replacing log (1—=), which is negative, by ~ L , we obtain

Ll L LY L——’ A
"0+ 4

Now, by the binomial theorem,
-2 (n—l)
FE

(n—1)(n—2)

s P

=zt

(1—n)2* (L—n)2—n)2*
Tt 1z 3t

Lt
<zttt

since # is positive, and # may be taken less than 1 since » ultimately
tends to zero,
Also

(1=x"-1 (n+l)z’ (n+1)(n+2)~'
" 1.2

2 2
. >’+i+§+"'
since # and  are positive.
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Hence, when 0<n<1,
1-(1—x)"

"

2 2 (-1
<A e

1-(1—2) a1
and since, by (i), tim 220 g @=L L
v o A— 1=
it follows that

z+’;+§+,..when0<z<l L@

1
ey

Again, by putting #* for % in (ii), we have

1 2t %t
=k L, 1
l°gx-x' z+2+3+ when 0<z<
. 1 o 8w
ctog mtog s —a BT T when 0 <,
2w
ie. lognl—xn—z+12—§+%—...when0<x<l. (i)

We have thus proved that

N
log (1+,)=z_f‘2_+’;_'-;+.‘. when 0<x<1

=

and log (1—-#)=—%— —§_... when 0 <z<1

These results can be expressed by writing

= 2

3 4+...when —l<x<l

log (1+x)-x—§+

The series on the right-hand side is known as the logarithmic series

and has been shown in § 4.19, Example 11 to converge when z=1.
Hence by § 4.20 (iv) it converges to log 2.

.
- log (l+z)=x—%+’;—l—%‘+... when—1<x<l  (69)

Replacing # by —%, we have

2o n
log (1-%) (z+§+§+—+

. when —1<z<1. (5.10)
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5.16. Series related to the logarithmic series

By subtraction we obtain from (5.9) and (5.10), cf. § 4.20 (i)
14x_
Tz

‘This series, which converges more rapidly than (5.9) or (5.10), is useful
in numerical computations.

B
}log e+ E+ . when—1<z<l. (6.11)

U=, (611) gives

1
et
1 1 1

log (1+1m) =g+ S I BER AT
‘This series is valid when | 2s+1]>1,
ie. when @ne1p>1,

W +1)>0.
This condition is fulflled when #.< —1 and when >0,

o (512)

L men .
Again, it =720, (6.11) gives

m_m—n 1 mon\t 1 mon\®
m_mon, 1 Lmomy, . .13
Hog L= "3 m+») *5 (m+n) * €19

Thisseﬁesisvalidwhen|";”l<l
m+n
i.e. when (m—n)t < (m+n)t.
‘This condition is fulfilled when  and # have the same sign, Le. when
min>0, and so if we write y=m/n in (5.13) we obtain when y>0
2=l 1(:;;‘ g !GT—“‘)‘ .14
tlogy atiGr) 5Ga + (5.14)
Example 6
Show that, when | x |>1,
1 1 1
;+ﬁ+37+"‘=z{2:_
By (6.10) when | # |>1,

A2 3
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8]
By (5.11) when [ 2x'—1[>1, i.e. when | % [>1,

Joe

Wf 1,1 1
PO Ty T
-

=log

The required result follows.
Example 7

If 0<x <1, prove that (1+3) log (1+2)+(1—3) log (1-x)>o Deduce,
or prove otherwise that, if n>1, (n-+1)141/n. (n—1)i= L]

‘When 0<x<1,
(1+2) 10g (14+2) =(1+2)(x—f*+ 31— fxt-...)
(1=3) log (1—#) = — (1—2)(x+ §s* + §3+ J'h-.
(42 0g (4] + (1= %) log (1—2) =2((1— ha*+ (= D'+ (= P+ }
>0.
‘When x=1/n, where n3>1, this gives
(14+1/m) log (1+1/m)+(1—1/m) log (1—1/m)>0
log {(14+1/m)+1/n . (1—1/m)1=3/} >0

ie.
{(,.H)w”,, ..}M
P

o (1) ()i as g,

Exercises 5 (c)

1. Expand the following expressions in ascending powers of # as far as
the fourth term, giving the coefficient of 2" and stating the values of x

for which the expansions are vali
(V) log (4+)%

(i) 10g (1+2),
(i) log (1—32), (vi) log /(1—x—27),
(i) log (3-+2), (vii) log (1+x+2),
(iv) log (2—3%), (v log 7 +u

2. If log (L+-#+%+27) is expanded in a series of ascending powers of x,
and | # | <1, show that the coefficient of %" is 1/n unless # is a multiple

of 4, in which case the coefficient is —3/
1t | #| <1, expand in powers of x as far as the fourth term
(1—=2) log (1+4#)+(1+%) log (1—2).

®
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4. Find the coefficient of #7 in the following expansions :
() (1434) log (14:34); (i) (1-+24)* log (1-4+2+)
the expansions being assumed
6. Prove that, if —} <x<4, then
log (1+5—2s%) =5— "4 Ja— Rlatt
6. Sum to infinity the series
1 1 1

a+v s+a- x+s' )

and + + gt

6. 2' 1. 2'
7. Find the expansion of log (1+#) in ascending powers of » and deduce
that

=2(s+§5%+}55+...), when | 5 [<1.

Find the range of values of # for which the series
i

converges, and prove that its sum, when ¥ =3, is §—} log 3.

8. Show that, if § is not a multiple of ,
log cosec B=} cos? 6+ cos® B+ cost -+ ... .
9. Show that, if p>1,
1 1 1
PR R
10. Show that, if
=i
Su= bR
then 5,=25,
11. Show thatif y>2o0ry<—2,

1/ 2 \, 1/ 2 \*
+s(m) *'(ﬁy) Foe
=log yﬂﬂ og 222 y_, vy
12. Prove that, if m and » have the same sign,

m—n 1 ‘m—n’
""—"{m’fs m) (.,+.. +}
and state why m and » must have the same sign for the series to
converge.

e
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Deduce, or prove by any other means, that
f=tanh §+} tanh? 64} tanh® 4. [L.U)
13. Prove that }sin® 0+1 sin* O+ sin® 0+ ...

=2(tan® (46)+} tan® (46)+ tan'* (16)+ ...}
and state the range of values of 0 for which this result is true.  [L.U.]

14, Expand log y as a series in ascending powers of 2 s ! 1nd find the
range of values of y for which the expansion is valid.
11~ n <0<, prove that log cos 0 difers from —2 tax® (1) by
than . U]
16. Show that if , g,  are three consecutive positive integers
'“”"““‘P')*zpyu 3<Zpr+l)
Use this series to calculate the value of log 19 correct to four decimal
places, given that
log 2 =0-693147,
log 3 =1-008612,
log 10 =2:302685. Luj
16. Prove that, if , ¢ and x are positive,
e (Ao ) )
o= "{ +iGhts) i) +
4x
~p+e+20 05 BT
Deduce that, if 0<p<g, the effect on the expression ($/g)P*7 of
increasing $ and g by the same positive numbers is to increase its
value, LU
17. I $, g, r are consecutive integers, prove that
. e §
og 4—i(1o8 p+iog =5 3o
where x=1/(2pr+1).
D ¢ .
educe that Iog 2 exceeds -4 + o by less than 0003 (LU
5.17. Limits

‘The following examples illustrate the use of series in the evaluation
of limits, We assume that the method is valid if the functions
involved can be expanded in convergent power series (see § 4.20 (iv))-
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Example 8
Evaluate lim {x3/(s*+a%) —/(x'+a")}.
e

#/(s+at) -x'(1+:—:)'

a(1 lat hen 5*>a?
= +§§_§;-‘+ when 3?>a’

+
Vi e =a (x+:—:)
=,a(1+%£+. . ) when 2*>a?
- /el =y ,;ax_- —+m-m. involving higher
‘powers of (1/+%).
S0 {ry/ Y= (st aY) et
=
Example 9

-~

Bt o

The given function takes the indeterminate form § when #=0,

. 74—— e

lns (=) x—st'—
2—2v+.
T—pt...

Butif 0<|¥|<1,
since 50
1t
Slim =TT g
20 log (1+2)

5.18. Miscellaneous examples
Example 10
Prove that, if n is large,
(n—1/3m) bog o -z+ m‘*" .

nt
and thas(22 -n'(1+ it
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il
S R
o (n—1/3m) lugL— (1_3_”‘)( +znx+w+ )
cfusgter. )

a4 8
(~+1) i

nt1
( ) -"{1+;§+ } by (5.2), page 82.
Example 11
Expand in powers of x as far as the term in x* the logarithms of both sides of
the identity (1—ax)(1—bx)=1—pz-+gs®, where p=a-+b and g=ab. Hence
find values of a3-+b° and as+b* in terms of p and g.
We have log (1—ax)+log (1—bx) =log {1—x(p— qx)) Expanding both
sides and multiplying throughout by —1 we obtais
(ﬂ+b)x+i(a‘+b‘)x'+!(ﬂ‘+'7’)»“‘+i(ﬂ‘+b‘)1‘+
=x(p—g0)+(p— gV + 1P (P — g + 1 P —ax) .o
Equating in turn ((+%) and ((+%)) on each side, we have
@B =pt—3pg
atkbl=pt—api+ 2"

Example 12
By expanding (¢%—1)" in two ways, n being a positive integer, and com-
paring suitable coefiicients in the two expansions, show that

"(;‘ R

n-—’i' (n—1)n
By using a similar method with the expression (e*+1)1—(=—1)", or
otherwise, show that, if #>3,
euln— 1)y —3) - yln—5) 4 . . =i (nh-B)20,
where Cy, Cy,. .. are the usual binomial coefficients. L]
By the binomial theorem
(65— 1) meh5—AC, 6824 nC, elnD)z— .
Flu)r_m 2ol o l) 3 (2
'fan .5 ot 21 ,}‘; 2]

(0]
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2 2 -
By (5.2), page 82,  (e*—1)"= (:+ﬂ|—ﬁ+. . )

mx‘(l+;—lf;—:+“) R )
Equating ((+%) in (i) and (i), we have

w_n (n=1)p nn—1) (1—2)

—)n—2) (n—3)
i U T Ta 31 l
x‘—n(n—l)'-}»”(;_ln(n—!)"—’(i—;)l('—_g)(n—3)”+.‘.—nl.

1f ¢y represents the binomial coefficient "Cy,
(6% 1)n— (2 —1)n =2{c,eA=D2 4 gy e(-7 4 o924 .}

Y U L YO L)
e L

Also (654 1)n—(eF—1)n
N »
=fors (i) o |
=z-+z»—l.:‘x(1+§+:l..A,.)+2w¢,zt(1+g+A )'
s »
+2""";,r'(l+§+...) +...—x‘{l+2l‘+;—"+...} (iv)
Equating ((+¥)) in (i) and (iv), we have, if #>3,
; {ealn—1) - cafn— 3 el B) . .} 20y 21, 4 200,
—4(2%) {4+ Bl — 1)+ nn—1)(n—2)}
S {ealn—1)cy(n—3)P+cy(n—6)P+ .. . =ni(n43)2n-1,
Exercises 5 (d)
1. Evaluate the following limits :
@) @108 A=) @) log (1)
— >

(i) tim 28 (i) —(+9h+1
0 B
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log (1—3x)—(1—x)i+1
—_——

(iv) lim
=
L eT—14x
O e 0

If x and y are small, show that
(1+9)*
aray

provided that the ratio #/y is finite and that terms of the fourth and

higher orders are neglected. LU

=1—fry(y—3)

. If | x|>1, show that (H ) za(l+——A+ )mdmn

prapre)
if x is small, (14#) 922514 542t 20

Yons

120 12n‘+

hence that (1+;) =‘('+i27"ﬁ+‘ . ) .
By using the fact that (1-x/n)8=e" % 1+3 prove that
18 ¥
(l+x/n)»+(l—x/n)—'=2,z{1+;(E+E)}

if 1/ and higher powers of 1/ are neglected. LU}
1 y=(14+#)"5(1—2)1% and 0<x <1, pmve that

P
lnsy=2{7+3 A+6 a+ }

Find the coefficient of #7 in the expansion of
log (1+4ax)+log (1+bx)+log (1+¢cx).
Deduce that, if a+b-+c=0, then
2(be-+ca-+ab)t=at+b4+ct

Write down the expansion of log {1+(a-+b)s-abs?} in ascending
powers of #, and state the range of values of # for which the expansion
s valid.

If a and b are both positive, show that for positive integral n
anbn = (a-+b)"—nab(a+b)"—*

n(n—3) nn—4)(n—8)
BT 31

@ (a4 byt a3 (a-+ b

v
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Prove that the sum of the nth powers of the roots of the equation
#4pr+q=0 is —nay where ay is the coefficient of * in the expansion

of log (1+p+gr).
Find the sum of the ninth powers of the roots in terms of $ and g.
[Sheffield.]

(i) Find the first four terms and the coeficient of + in the expansion
of log (1+%—2+?) in ascending powers of #. For what values of ¥
is the expansion valid ?

(i) 1f log y=1-2¢—2s* where x is small, show that an approximate
value of y is given by y=e(l+2¢— ). [Durham.]

L If | ] <1, show, by s the logarithmic seie, or otherwise, that

(1+5)142. (1—3)-
1f 6, b are positive and unequal, deduce by putting x—m in the

atd
above inequality that 294> (&’b> . LUl

. Show that, if —1<x<+1,

(1—2)7=1—xlog (1—<z)+zi|l[log (1—x)]-—31; flog (1—#)]*+ ...

and hence expand (1—#)- in powers of x up to the term in #*, [L.U.]

. Show that if 50,

1 1
”g‘l“”')‘z{z»ﬂ 3@ 5(2.+1)=
Hence, or otherwise, show that if #>0, log (1+1/n) lies between

1 l
e +ﬂ+l) )
. Show that when n>1,

(1) log (#+1)—log #<1/n,
(2) log n—log (n—1)>1/n.

Deduce that 0<l+i+§+i+-4.+£—log-<l. [L.U]
. Prove that, if p>1
2 P41 2
P+3P,<logP I<P+SP‘+SP'KP‘

By giving $ the values 26, 31, 49, calculate to three places of decimals
the value of log 5. L.U]

. Write down the series for the expansions of log (1-4#) and —log (1—z),

when ¥ is numerically less than unity. Deduce, or prove otherwise,
that if # is a positive integer

1
log 2> >lo8 '—'L



®
S

THE LOGARITHMIC SERIES 101
Prove also that for any integer &,
ntk )
ntk log
log - >(”+’+1+ +n+k >lo
By putting k=2n in this result prove that, when » tends to infinity
the sum

nthtl
.

LSS |
" +" +17 7 T 8n
tends to the value log 3. L.u)
. (i) By writing log (1+1/7) as —log # , or otherwise, prove that,
when n>1,
s 0=t B
(ii) Prove that, when n is large,
1 11
(141 ‘=‘(1—5+m+ ) . L)
. Show that, for all positive values of n,

nt
g ==

1 1
_Zn+l+3(2u+ l)'+6(2n+ l)‘+

and hence, or otherwise, show that the ratio of two consecutive terms

of the 5qUENCE w;, Uy, Was- -, Yim,. .., Where
_mlen
u'_”(‘uﬂ)ll
approaches unity as » increases. (1 R3]

. Show that the coefficient of " in the expum‘on of M is.
1' 2'+§,+ + s )
Hence find the sums of the infinite series
! +:'—,+33'l+4 e
and [ rLu)

1
:) 1og T2 a5 a series in ascending powers of x,

(i) Expand (z T
giving the general term and stating the condition under which the
expansion is v:

(i) Express as an infinite series the coefficient of # in the power
series expansion of 6%, and by summing this series for the case
n=2, or otherwise, find the coefficient of #* in the expansion. [L.U.]




CHAPTER 6
COMPLEX NUMBERS

6.1. Complex numbers

The quadratic equation
A41=0 . . . . G)

has no real roots since there is no real number whose square is —1.
1f, however, we assume the existence of a number i such that = —1,
equation (i) is satisfied by the values x= 1. If, further, we suppose
that # obeys the rules of algebra of real numbers, we find that the
roots of the equation

21-2245=0
are x=14+2i.

If a and b are real, the number c=a-+ib is called a complex number
and a and b are known respectively as its real and imaginary parts.
When a=0, the complex number is said to be purely imaginary;
when 5=0 the complex number s real.

The number a—ib is said to be conjugate to ¢ and is denoted by &

6.2. Operations with complex numbers

We operate with complex numbers in exactly the same way as we
operate with real numbers ; for example :

(a+10)+ (c+id)=(a+c) +i(b+d), . . . . @)
(a+ib)—(c+id)=(a—a)+io—d), . . . . (i)
(a+ib)(c+id)=(ac—bd)+i(bc+ad) . . . (i)

and (a+ib)(a—ib)=a+8%, since 1= —1;
a+ib_ (a+ib)(c—id) _(ac-+bd) +i(bc—ad) .
ko P e o R R

unless ¢=d=0.

Hence, the sum, difference, product and quotient of two complex
numbers is a complex number ; the product of two conjugate complex
numbers is real and so is their sum.
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6.3. Geometrical representation of complex numbers

Complex numbers may be represented geometrically in what is
known as an Argand diagram, as follows :

Let #'0x, y'Oy be rectangular axes with the usual sign conventions.
Then the point P whose cartesian coordinates are (¥, ) may be taken
to represent the complex number #-+iy. Real numbers are represented
by points on the z-axis which is called the real axis, imaginary numbers
are represented by points on the y-axis which is known as the smaginary
axis. The origin O represents the number zero.

We generally write z for the complex number x4y and refer to the
plane of the Argand diagram as the complex or z-plane. 1f P represents
the number z(=z-+iy), the complex number z is said to be the affix
of P (see fig. 4 overleaf).

6.4. Definition of complex numbers
In the preceding sections we have based the study of complex

numbers on the hypothesis that there is 2 number § whose squate

is —1 and which obeys the laws of alg

commutative and distributive.

To place the theory of complex numbers on a sound logical basis
we may define a complex number z+iy as the point in the Argand
diagram with coordinates (x, ). From this definition it immediately
follows that two complex numbers % +iy, %+, are equal if and only
if they are identical, i.c. if they are the same point. This is 50 if, and
only if, z,=%, and y,=y,. Hence if two complex numbers are equal
their real parts are equal and their imaginary parts are equal.

Relations (i), (i, (iii) and (iv) of § 6.2 arc adopted as the definitions
of addition, subtraction, mulhphratmn and division of complex
numbers. From these it is read.lly proved that complex numbers
satisfy the laws of algebi
and distributive. For example, we establish the commautative law of
multiplication as follows :

1f =%+, and z=x,+iyy,
2273= (% + i) (¥ +iys) = (Br% =135 +i(%y2 + 2ayy) by (i) of § 6.2
= (%2 +iy)(x+iyy) =22,

The complex number z+i0 behaves like a real number and so we
identify z+i0 with z; in the same way we write éy for O-+iy. With
this notation

#=(0+1i)(0+1i)= —1+0i by (iii) of § 6.2

ie. =1
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6.5. Modulus and argument of a complex number
I the length of OP is 7 and 2xOP=0, r=+v/(x*+3") and tan 0=y/
(fig. 4). 7 s called the modulus of z and written | z| ; 8 is called the
argument or amplitude of z and written
y ’ arg zor am z. We shall measure 6 in
v
Cl

P(y  radians unless otherwise stated.
Since 7 is by definition positive, and

y sinf:I=x:y: /(@ +y?), for a

glven value of #(=x+iy) there is a

1| fin th g 3

0| x X This is known as the principal value of
arg z, other values being given by the

Fig. 4 formula 8-+ 2k where k is any integer,

not zero. In subsequent work, arg z
will denote the principal value unless otherwise stated.

Since x=7 cos § and y= sin 0, z may be written in the cartesian
form x+iy or in the polar form #(cos 8+ sin 6) which is often
abbreviated as 7£0. The expression cos f+i sin 8 is sometimes
denoted by cis 8 and cos §— sin f=cos (—0)+1 sin (—6) by cis (~6).
Alternatively, since (cos 8-+ sin 6)(cos 0—i sin 6)=1, we may denote
cos 0—i sin 6 by (cis 6.

If two numbers z and 7' are equal, then | z |=| 2’ | and arg z=arg .
Example 1

Represent the following complex numbers in the Avgand diagram and express
them in polar form :

(i) 3—3i, (i) — (iid) 2: (iv) —3-+4i.

Infig. 5,4, B, Cand D represent. Lhecomplex numbers 3—3i, —4, 2 and

—34-4i respectively

D (3+4D |V

c{ @b

B(4) o x

AB-3)
Fig. 5
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(i) 04=3y/2and £504
. 3=3i=8y/2 cis (—im).
(i) OB=4, £x0B=m
S,o—d=dcisw
(i) 0C=2, £x0C=4n
L 2i=2 cis .
(i) DD 5, £x0D=180°—tar? 4/3=126° 6% =2 214 radians
—34i=5 cis (2:214).
Alternatively, let —34 4i=r(cos 0-+sin ).
Then, equating real and imaginary parts on each side of this equation,
we have

~3=rcosf
and 4=rsinf
whence 72=25, 1

Also, sin f=4, cos
oL 0=126° 52 =2" 214 radians.
Hence cis (2:214).
Example 2

Find the modulus and argument of (1—cos 8—i sin 0)(1+-cos 0-+i sin 6)
when 0< @ <. What ave the modulus and argument when m <0< 2m ?
1—cos =2 sin® §0, 14-cos 6=2 cos* 30 and sin §=2 sin 16 cos }0.
1—cos f—i sin §_sin }0(sin 36—i cos 10)

Hence T s a0 1008 075 1)

1 tan 6.
=tan 30 cis (—4m).
When 0<6 <, tan }6>>0 and so the modulus and argument of the given
complex number are tan 40 and —jar respectively.
When 7 <6< 2n, tan $6<0 and we write
1—cos f—i sin
14cos f+isin 6

O (—tan 103
=(—tan }6) cis (n).

Heonce the modulus and argument arc (—tan }6) and §m respectively.
Example 3

(i) Find the modulus and argument of the complex number

(L4+4)(244)/(3—14).

(i) If x+iy=a-+b(1+if)/(1—it), where a and b are real constants and z,y, 1

are veal variables, show that the locus of the point (%, y) as ¢ varies is  circle.
" (1+9)(2+9)
@ 3 3 3

1 #]=1and arg s=im.
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(i) 1 x+|y-n+b(l+“)
a8 (l+-l)'

— 2ibt

“'*”(m)*m

by equating the real parts and the imaginary parts on each side of this
equation we have
-
:-n+b(m

o that (s-alt4yt=be
ence tho locus of the point (x, ) is a circle centre (a. 0), radius b,

EauvTl

Example 4

I s variable compls womber subject o he condison | 1 | =1, and, if
w=2r+1/s, show that the point of the comples plane corvesponding to
describes an eliipse. [

Since [£|=1, we may let r=cos 0-+4 sin 0 then 1/s=cos 6—i sin 6, and
if w=u-+iv where % and v are real,

v =2+ 1/r=3 cos B-+i sin 6.
By equating real and imaginary parts we obtain
%=3cos §, v=sin

so that jut+ot=L1

Hence w moves on an ellipse with centre at (0, 0) and semi-axes of
length 3 and 1 (see § 14.1).

6.6. Vectorial representation of a complex number
Since a complex number  is determined by its modulus 7 and its
argument § we may represent z by a vector of length y drawn in a
direction which makes an angle 8
B with the positive direction of the
realaxis, Forexample, the complex
number #+4y which in fig. 6 is rep-
resented by the point P(, 3) may
also be represented by the vector
OP (which we shall denote by OP)
or by any equivalent vector 4B,
that is by any line equal to, parallel
to and drawn in the same sense as

0P.

A real number x is represented
by a vector of length | % |, drawn




6] COMPLEX NUMBERS 107

along or parallel to the real axis in the positive or negative direction
according as # is positive or negative.

In the same way the purely imaginary number iy is represented by
a vector of length | y | drawn along or parallel to the imaginary axis in
the positive or negative direction according as y is positive or negative.

‘We shall find it convenient to use both the point and vector methods
of representing a complex number.

The length of a vector AB will be denoted by 4B.

6.7. of addition or of
two complex numbers
Let 4 and B represent the complex numbers #(=1,+iy,) and
2,(=x,+iy;) respectively in an Argand diagram (fg. 7). Complete
parallelograms OACB and ODAB.

Fig. 7

Then since the mid-point of AB has affix }{(x,+%,)+i(y,+y.)}.
C has affix {(x,+%) +i(+y), i.e. 2,42,

In the same way, D has affix z,—z,.

In the vector representation 1, z,, z, +2, are represented by 04, 0B,
OC respectively. We thus see that this representation is in conformity
with the usual parallelogram law of vector addition :

04+0B=0C.
2,—1, is represented by OD and also by BA.
In triangle 0AC
0C<04+A4C

Sntnl<lal+al



108 A COURSE IN PURE MATHEMATICS 1}

This result is true for any two complex numbers except when 0, 4 and
C lie in order on a straight line. In this case

|ntn|=5]+] %]
Hence [ERZANNENEIEAN

6.8. Multiplication and division of complex numbers
Let 5,=r, 20, and z,=7, 26, Then
2,2,=1,74(cos B+ sin 6,)(cos Oy-+1 sin 6y)
=r73{(cos B, cos B,—sin 0, sin 6,) +i(sin 6, cos 6+ cos 6, sin 0,))

=7175{cos (6,+6;)+i sin (9, +6y). (6.1)
From this result we see that
(AR EAREA
and arg (2,2,) =arg z,+arg 2.

The latter result is not necessarily true of the principal values since
the right-hand side may exceed .

7_7y(cos Oy +i

in )

Again, % 7a(cos Oy +7 sin B)
-? (cos 8y+4 sin 6;)(cos 8,—i sin 8,)
)
=2 {cos (6,~6)+ isin (6,-6)). (6.2)
A
Hence VAR ENVIES|
and arg (zy/z,)=arg z,~arg z,.

‘The latter result is not necessarily true of the principal values.
1 z,=7.0 and z,=1 2, we have by (6.1)
nzy=r £(8+9).

Thus the effect of multiplying a complex number z, by a complex
number with unit modulus and argument ¢ is to rotate the vector
which represents z, counter-clockwise through an angle ¢.

When $=00°, z,=1, and so the vector which represents iz, is
obtained by rotating counter-clockwise through 90° the vector which
represents z;.

More generally, if z, is represented by the vector OP and z,=r, 26,
the product 2z, is represented by a vector OQ such that ZP0Q=0,
and 0Q=r,.0P.
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6.9. Geometrical construction for the product of two complex
numbers
Let P, P, and A represent the numbers z,, z, and 1 respectively.
Construct the triangle OP,P directly similar to triangle 0AP; (fig. 8).
Then OP:0P,=O0P,:04  :.OP=|zn|.|5|=|zz].
Also
LX0P=£%0P,+ LP,0P = £x0Py+ Lx0OP,=arg z,-+arg z,=arg (57,).
Hence P represents the number 2,2,

Y @
Y P Q
R@
P@
R@
o 1A X
Fig. 8 o A X
R 4f2)
Fig. 9
Example §

1f P vepresents the number z in the Avgand diagram, show how to represent
2 and Us.

Join P to A, the point which represents the number 1 (gig. 9).

Construct triangles ORA, OPQ dircctly similar to triangle OAP. Then,
as above, it may be shown that  represents the number s and R represents
Va.

6.10. Miscellaneous examples
Example 6
In the Argand diagram, PQR is an equilateral triangle of which the civcum-
centre is at the ovigin. If P vepresents the number 2-+i, find the numbers
vepresented by Q and R. LU
In fig. 10 LPOQ=£LQOR=LROP=}n and OP=0Q=0R,
. 00=0Pxcis (§n) and OR=0P X cis (—§n)
ie. 00 =(2+4) x §(—1+iy/3)
I Y
Similarly,  OR=—(1—}v/3)—i(y/3+3).
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8
(3+0i)

R c
Fig. 10 Fig. 11

Example 7

When the vertices of a square, A, B, C, Dnnlakmanl{-dodwucmlhal
order, the points A, B represent the complex numbers — 34-0i in the
Argand diagram. Find the complex numbers vepresented by the other vertices
and by M, the centre of the square. L)

Let 4, B, C, D and M (fig. 11) represent the numbers z,, 25 % %p
and z,, respectivel

Then A5 npusents Tp—r i, —2—4i.
BC represents —iBA or {AB, since AB=BC and £CBA=}um.
BC represents 4—2i, i.e. 5,—rp=4—2i.

L pp=1—2i.
Now Lot rg=rptap=2ey
ie. 0+ 2im(—~34+00) 1y =20y

S 8p=3-+42i and £y =0-+i.
Example 8
Define the modulus of a complex number and prove that
latal<lal+lal
By considering the modulus of ths lefi-hand sids of the following equation
in , or otherwiss, prove that all the yools of

£ cos 2" cos (n—T)a+ ...+ cos a=1,
where a is veal, lie oulside the circle | 5 | =}. LU
‘The modulus of a complex number is defined in § 6.5 and the inequality
is proved in § 6.7,
1 " cos ma-+s"icos (n—l)at...+reosa=1 . (i)
| £ cos ma-+s™1 cos (h—T)a+...4+rcosal=1 . (i)



L] COMPLEX NUMBERS m
But from | #y4+5, | <| 2 |+ 5]
we have | 2,412,425 | <| 2, |+| 2, | +] 2, |, and so on.
Hence | 2" cos na+z*1cos (n—1)a+...+zcos a !
<| 2" cos na |+| 2 cos (n—N)a |+...+]zcos @
<lat |4t 4ot 2L
since, if a is real. | cos na | <1 for all real values of n.
Now if z=r(cos 8+i sin 0) 50 that | z |=r and | 5" [=r",
| 2" cos na+21 cos (n—1)a+...+zcos a|Sr+r it . 4y,
and so, from (i)
Pelp 2l . . . . (i)
This condition is satisfied if > 1.
(1
1

Hr<l, rmgrmig, . fr=
L
<+, since 0<r<1
-
and so from (i) >t

>}
ie | 2]>4
Hence the roots of equation () all lie outside the circle | z |=}.

6.11. Geometrical applications

If the points 4, B, C represent the complex numbers z, 7, 2
respectively, then as in § 6.7, CA and BA represent the complex
numbers z,—z and z,—z, Hence |2~z | and |z,—z| are the
respective lengths of these vectors.

Also, if AB and AC (fig. 12) meet Ox at
D and E respectively,

arg (5,—2,)= £xDA

and arg (z,—2;) = LxEA.
But (see § 6.8)

arg (""' =arg (5,—2) —arg (61— 1)
g1 —2,
= LxEA— £2DA
= £ZBAC.

Hence the argument of the quotient of two complex numbers is the
angle between the vectors which represent the complex numbers.
The above results enable us to interpret loci in the Argand diagram.

Fig. 12
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Example 9

Prove that

() #f | 242, | =| 21—, |, the difference of the arguments of 2, and zyis yu ;

if ag (’——‘+':

Suppose that the points P and Q (ig. 13) represent the complex numbers
£ and z, respectively in an Argand diagram, and complete parallelogram
OPRQ.

Yo, then | 2, |=| 1, ]. U]

R
Y Pz

Q@

Fig. 13

Then the vectors OR and QP represent the complex numbers z,4z, and
2,2, Tespectively.

@) If | 5,42 |=|2,—z|. OR=QP and so parallelogram OPRQ has
equal diagonals. Hence OPRQ must be a rectangle, OP is perpendicular
to 0Q, and so arg z,—arg z,
ntay
x=ry
OPRQ are perpendicular. Hence OPRQ is a thombus, OP=0Q and so
l5]=]2l

(ii) If arg )=;ﬂ, the diagonals OR and QP of parallelogram

Example 10

Interpret. geometrically, or otherwise, ths following loci in the Avgand
diagram :

@ | 2438 =] 2=3i 2=12,

[©) | a4k [*+] =ik [2=108%, A>0.

(i) Let P, 4, B represent the numbers z(=x-iy), —3i and 3i respectively
inan Argand diagram (fig. 14).

Draw PM perpendicular to Oy so that PM =x and OM =y.
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Then | 24+3i |=AP, | 13§ |=BP
and if l24-3i 2=z —8i [?=12
AP'—BP'=12

ie. AM*—BM*=12
20M .AB=12,

ie. OM=1.

Hence P lies on the straight line y=1 which is parallel to the real axis.

B8(31)
M P@
0| X
AE31)
Fig. 14

(ii) Let P, Q, R represent the points z(=%-i), —ik, and ik respectively
in an Argand diagram (fig. 15).
Then if | 2+ik |*+| 2—ik [*=10*

PQ+PR!=10i*
ie. 20P*+20R? =10, since O is mid-point of QR
o OPt=gp?
and so oP=2%.

Hence the locus of P is a circle with centre O and radius 24,

Example 11

Triangles BCX, CAY, ABZ are described on the sides of a triangle ABC.
1f the points A, B, C, X. Y, Z in the Argand diagram vepresent the complex
numbers a, b, c, %, y, # vespectively, and

x=c_y—a_z=b

T c—a a—b
show that the triangles BCX, CAY, ABZ are similar.

Prove also that the centroids of ABC. XYZ are coincidend. L.u
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The vectors CX, AY and BZ (fig. 16) epresent the complex numbers

#—0, y~a and s~ respectively and so if

x—c y—a

b—c =ry

y—a
a

" ox _ 4y
- 5] ac

Also from (), ux( )-us(’

.. LBCX=(CAY=LABZ . . . (i)
because principal values are taken. :

z

<

Fig. 16

From (i) and (i) triangles BCX, CAY, ABZ are similar.

o1t G and G' are the centroids of 8 4BC and AXYZ respoctively, G ia
the point of affix §(a-+5-+-c) and G is the point of affix }(x-+y-+1).

But if in (i) 4 is the common value of the given ratios we have

beh(b B)=0

S tybr=atbie
Hence G and G’ represent the same number and so coincide,
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Example 12
If a and b are complex constants, interpret geometrically in an Argand
diagram the following loci :

@ Ayg( b) —constant.
() :—: = constant.

Let P, A and B represent the complex numbers £, & and b respectively
in an Argand disgram.

) 1

) =constant,

£ BPA =constant

and so P moves on either the major arc AB or the minor arc 4B of a circle
through 4 and B.
[0k

4P
Fp—constant=h (say).

When &=1, P lies on the perpendicular bisector of 4B.
‘When k31, we divide AB internally at C and externally at D in the
ratio : 1 (8g. 17).

AP 4D
PB DB"
3
A c B D

Fig. 17

It follows that PC and PD are the internal and external bisectors of
LAPB and so LCPD is a right angle. But C and D are fixed; bence
P lies on the circle whose diameter is CD.

Example 13

The complex numbers 1, and 1, are represented by poinis Py and Py in an
Avgand diagram. If (1—1,)=z, and P, describes iha lins 2x-+1=0, prove
that P, describes a circle whose centre is af the origin. Find the radius of this
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circle and the sense in which it is described as P, moves along the line in the
direction which makes the ordinate increase. U]

Let 5y=%+iy, and 5=, +iy,

- ¢

i Ftds (vt —mtin)
T I~ (i) [IEFALEEH
Separating the real and imaginary parts we have
_na(l—n)—y}
et oot O

EA "
Q=] s @
But P, describes the line 2¢+1=0, ie. #,=—4, and substituting this
value in (i) we obtain
syi=l
Hence 1, describes the circle
Ayl . L L L L @)
which has unit radius and centre at the origin,
e point (on 8 s ) liesn this il for il values o ,and s0 we may
put#y=cos 4, Gin (). This gives

[)
N=F cos gy 1 SOt -

Hence as y, increases from —co to +co, § diminishes from 2 to 0

L. circle (i) 1 described clockmss,
Exercises 6
1. Express the number (5—i)/(2—3) in ﬂ:e form a-+ib where a and b
are real. Find its modulus and argume:

2. Find the modulus and argununt of (i) cos 0—i sin 6, (ii) 144 tan 6,

where 0<6< jr in both cases [Liverpool]

3. (a) Write down the modulus and argument of each of the complex
numbers 1+, —1+4, 1—i.

(&) The points 4, B, C, D in the Argand diagram correspond to the
complex numbers 9+, 4+13i, —8+-8f and —3—4i. Prove that
ABCD is a square. L.U)

. Find the modulus and argument of of (l+-)/(1—-) and of 4/2/(1—i).
Show, without using tables, that the argument of l+\/2+f)/(l i) u
3m/8.

5. If s=(2+4)/(1—4), find the real and imaginary parts of x+1/:. (L.U.]
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. If the real part of (s-+1)/(z+4) is equal to 1, prove that the point s
LU

lies on a certain straight line in the Argand plae.

7. The point of affix # in the Argand diagram moves in such a way that

s

H

|(26+1)/(iz+1)| =2. Show that it describes a straight line. [Loeds.]
If the ratio (s—i)/(z—1) is purely imaginary, show that the point s

lies on a circle whose centre is §(1-+4) and radius 1/4/2. Lu]
If the argument of (x—1)/(s+1) is }w, show that s lies on a fixed
circle of radius /2 and centre (0, 1). L)
The point P representing Hertiy) in the Argand diagram lies
on the line 6x-+8y=R where R is real. Q is the point representing
R¥s. Prove that the locus of Q is a circle and find its centre and
radi [L.U)
. Pis the point in the Argand diagram representing the complex number
2, and Q is the point representing l/(1—8)+l‘l/3 Find the locus of
@ as P describes the circle | £—3 = LUy
. Interpret the relation | £—a |=| s—b | in the Argand diagram, where

a, b, and z are complex numbers and as£b. Show that, when this
relation holds, arg {(2s—a—b)/(a—b)}= + .
(i) In the Argand diagram, find the locus of the point r if
arg {(s—2)/(s+ 1)} =}
(i) l{thepomudescnbu the circle | s—1 | =1, show that Lhcpmn“’
lescribes the curve =2+2 cos f. [L.U. Anc.]

@ u  is real, and the complex number (l+-)/(z+p;)+(z+ax)/(s+n
represented in the Argand diagram by a point on the line ¥=:
lhow that p=—514/21.

(ii) The complex numbers z,=x,+iy, and '.-t.+»y. are connected
by the relation #,=1,+1/z,. If the point representing z, in the
Argand diagram describes a circlo of radius & with centre at the
origin, show that the point representing #, describes the ellipse

*Y(1+a) -y (1—ar=1/a% LU)

. Show that if 1, 1, are complex numbers,

V5003 | =1 52 |- 5y | and axg (sy29) =arg 4278 50

If the complex number =y (cos 8-+ sin 6) is represented by the

point P in an Argand diagram, find the complex number represented

by the point P, which is the reflexion of Pin the y-axis. If P, represents

the complex number —4/z, show that OP,.OP,=4, where O is the
origin, and that OP, P, is a straight line.

y taking s=#-+iy, and —4/z=u-+iv, where x, y, u, v are real, or
othetwise, show that if P describes the line x=c(c>0), in the Argand
diagram, the point P, describes a circle whose centre is on the real
axis and which passes through the origin. [L.U. Anc]
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16. (i) If 5, £, are two complex numbers, 7, the conjugate of z,and | £ | =1,
and if the numbers s, £y, £F 1, 0 are represented in an Argand
diagram by the points P, Py, 0, 4 and the origin O respectively,
show that the triangles POP,, 40Q are congruent, and hence, or
otherwise, prove that | £—z, | =| s5—1].
(i) Show that, if the points representing two complex numbers , and
1, form with the origin an equilateral triangle, #}—s,¢,+5=0.
[L.U. Anc]

17. Prove that if 7 and 4 are complex numbers
lzta "+ s—a '=2{l s ]"+|a '}
‘The complex number # is represented by a point on the circle whose
centre is at the point 1-+-0i, and whose radius is unity. Show in a
diagram how s—2 may be represented, and prove that
(s—2)/s=i tan (arg 1), L]
in 6) and 6 =7(cos a-+isin a) are
. find the valus of | +—a |1 in terms of the
real quantities 7, p, 6, a. Deduce that if 4 is the conjugate of the
nnmbera.]l u:|--[.-u|-—(l-] 9a—|aly. LU
. @) If 4, B, P represent the numbers ,, £,, # respectively and
2=0z,+puz,, where A and  are real numbers such that A+p=F, a
constant, prove that the locus of P is a straight line parallel to AB.
(i) If P represents the number £ and arg {s/(s—1)} =}, prove that P
lies on a circle. Ul
20. ABCD is a parallelogram whose diagonals AC and BD intersect at E.
The angle AED is 45°, thlengthoh{CutnLhehng\holBDlnthe
tio 3:2, and the sense of the description of ABCD is counter-
clockwise, I the points £ s0d C represent the complex pumbers
—2—3i and 4+i respectively 1n the Argand diagram, determine the
numbers which are represented by the points B and D. [ 3]
21. If the complex numbers £, 1,, , are connected by the relation
2Y5y=1/53+1/2y
show that the points Z,, Z,, Z, representing them in an Argand
diagram lie on a circle passing through the origin, [L 53]




CHAPTER 7

COMPLEX NUMBERS (continued)
DEMOIVRE'S THEOREM; REAL QUADRATIC
FACTORS; GENERALISED CIRCULAR AND

HYPERBOLIC FUNCTIONS

7.1. Demoivre's theorem
By (6.1), page 108,
(cos6y+#sin ;) (cosfy +isinBy) = cos (6, + ) +3sin (6, +05),
and by repeated application of this result we obtain
(cis B)(cis 8y). .. (cis 89) =cis (B,+08+. .. +6,).
Putting 6,=6,

«v.=0g=0, we have
(cos O+isin *=cos nO+isinnd . . ()
or cis® 9=cis 6.
This result is known as Demoivre's theorem for a positive integral
index. We shall now investigate the value of cis® 6 when 5 is a negative
integer and when # is a rational fraction, positive or negative.
‘When # is a negative integer, we let #= —m, where m is a positive
integer.
P 1
Then (cos 8-+i sin ) T
1 o
“mirimm YO
=cos mf—1 sin md
=cos (—m8)-+ sin (~mf)
=cos 0+ sin nb.
Hence (i) is true when n is a negative integer.
Finally, when # is a rational fraction, we put n=p/g, where p and g
are integers, and no loss of generality results by taking ¢ as poslhve.
Smeupmwwnomumnghzsbeenmgnedwthesymbol
‘when z is not real, we adopt the definition used for real values of z
and define z7¢ as a number w which satisfies the equation wi=2».
Then w is a gth root of 2.
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By Demoivre’s theorem for a positive index ¢
(cos ’7”4»" sin P{)":ws $0+i sin p0
= (cos 8-+ sin @), since p is an integer.
It follows that cos?24i sm;q is a gth root of (cos 8+isin @),
ie. cos ”:ﬂ'ﬁn’_' is a value of (cos 044 sin 8)9%,

Hence Demoivre’s theorem has been proved for all rational values of .
To find the other values of (cos 8-+ sin 6)9/¢ we suppose that
(cos 6+i sin 6)9/0=p(cos $-+i sin ¢).

Then (cos 8-+ sin 6)?=pt(cos $-+i sin §)t,
ie. c0s 0+ sin pO=pi(cos g+ sin gg).
Equating real and imaginary parts we have
cos pi=pt cos gp, sin ph=pisingd . . (i)

Squaring and adding, we obtain p=1; and since p, the modulus of a
complex number is positive, p=1.
Equations (i) then become
cos p0=cos g, sin po=sin g¢
and these equations are satisfied when
qé=p0+2km,
+26 "
4=”"—q’_' Lo @
where & is an integer or zero.
When 4 is given by (i, cis ¢ is a value of (cos 6-+4 sin 6)5%e, Now
corresponding to the values #=0, 1, 2,..., (¢—1), the function
’”‘*”" takes g values which are distinct, and there are no further

vahws, for any other value of & gives a repetition of one of the values
already found. Hence

(cos 8-+ sin a;u-,m”“'"' £=0,1,2,..., g-1).

7.2. Roots and fractional powers of a complex number

When # is a_positive integer, the nth roots of a complex number
are by definition the values of w which satisfy the equation

L I
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1t w=p(cos ¢4 sin ¢) and z=r(cos 8-+ sin 6),

7(cos -+ sin #d)=r(cos 8-+ sin 0),
whence g% and ngr=0-+ 2k, where  is an integer or zero. Now by
defimition p and 7 are positive so that p= Y/(r), the unique positive
nth root of 7; also, ¢J‘"2"" where % is an integer or zero; and
taking, in succession, the values £=0, 1, 2,..., (1—1) we find as in

§7.1 that cis ”:"”

has n, and only # distinct values. Hence there

are n distinct nth roots of z given by the formula
0+ 2km

Lk=0,1,2,..., (1=1) @)

In the case where 7 is a rational number, =g, say, where $ and g
are integers and ¢ is positive, the values of z# are the values of W
which satisfy the equation

wy=Ylr) cis

We=2zp
Hence if z= r(cos -+ sin 0) there are ¢ values of 29/ given by the
formula

1:3+ 2mm

W= y(r?) cis L m=0,1,2,..., (g-1)

where §/(r?) is the unique posxtwe gth root of 2.

7.3. The nth roots of unity

1f in (7.1) we put =1, §=0, we obtain the » roots of the equation
wn=1. They are cis (2kn/n), k=0, 1, (n=1). If w denotes the
root cis (2/n) the nth roots of unity may be written in the form
1, w, wh, &%..., w1, whence we see that they form a geometric pro-
gression whose sum (1—w")/(1—w) is zero since w*=1. We note
that the nth roots of unity are represented in the Argand diagram by
points which are vertices of a regular polygon of # sides inscribed in
the circle | z | =1, one of the vertices being z=1.

1f we write 20 = 1 =cos 2k +1 sin 2kw, where k is zero or any integer,
‘we see that the nth roots of unity are given by

2=cos (2knn) +i sin (2hn/n),
where £=0,1,2,..., }(n—1) when nis odd, and £=0, 1,2,
nis even. (Note that k=0 and k=}n give but one root
root.) Hence when # is odd, z=1 and z=cis (+2kn/[n),
<., }(n—1). When » is even, 2=+ 1 and z=cis (+ 2kn/n),
1(r—2).
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From these formulae we see that the roots of unity which are not
real occur in conjugate pairs, and, in the same way, the non-real roots
of any real number occur in conjugate pairs.
Example 1
Find the fifth roots of —1.
—~l=cis 7
Hence if 8= —1=cis (4 2kn), where & is zero or any integer,
z=cis {(2k+1)n/6}, k=0, 1, 2,3, 4
ie 2=cis (/5), cis (3n/5), —1, cis (7n/5), cis (9m/5)
or z=—1, cis (£ w/5), cis (+3n/5).
Example 2
Find the square y0ols of i.
i=cis (m).
Hence if #=i=cis (2kw-+}x), where & is zero or any integer,
re=cis (4k+1)m/4, k=0, 1
ie.  r=cis (m/d)=(1+i)/y/2
and  s=cis (6n/d) = —(1+i)/v/2-
Example 3
Find the three cubs voots of (1—cos $—i sin @) where 0< < 2 and state
the argument and modulus of each.
1—cos ¢—i sin $=2 sin J(sin 3$— cos }¢)
=2 sin §xcis §x (1)
=2sin §¢ x cis 3¢ xcis (—in)
=2 sin §¢$ xcis (}$—im).
Thus, if P=1—cos $—isin ¢
=2sin §¢ xcis (§— fr+2m),
7= (2 sin }g) xcis H{{4r—1)m+4},
where k=0, 1, 2.
Since sin §¢>0, the modulus of each cube root is J(2 sin §$); the
arguments are §(¢—7), H$+3m), $($+Tn).

7.4. Solution of equations

Demoivre’s theorem may be used as in § 7.2 to solve an equation
of the form az%+b=0. We give examples of the solution of equations
of other types.

where 4 is zero or any in

Example 4
Oblain the roots of the equation 38— (2+114)1+3—5i=0 in the form
atib, where a and b are real. [Leeds.]
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Solving this quadratic equation for z we get
2=}{2+11i £ /(104 153)},
where 4/(104i—153) denotes either of the two solutions of the equation

w=104i—163.
Now if w=p-+ig, where p and g are real,
wi=pt—gi+2ipg
o pr—gr=—163
and Pg=52,

50 that p= + 4, g=+ 13, like signs being taken together.
1t follows that +2/(104i—153)= + (4-+13i) and so
z=1+4i or —}(1+i).
Example 5
Solve the equation 3%+ 2542+ 2+ 41+1 =0, and deduce that

cos 21 cos 24 cos
7 7 7
PSSt b 1= (= D/(r—1), £
and so we consider the equation £’—1=0, which is satisfied by r=1
and by z=cis (+ 2tw/7), where k=1, 2, 3.
Hence the roots of the given equation are

z=cis (+2knfT), h=1, 2, 3.

The sum of these roots is 2(ms 2 eos 5,;—'+cos ) ¢ but trom the

given equation the sum of the roots is also —1 (see § 2.2).
2%

==t

Hence cos. 27”+m ‘7"+ms

Example 6
Show that every root of the equation (s-+1)i"-+(s—1)**=0, where n is a
po.utw- integer, is punly imaginary.

Py, Py.oos Py
pnm thas, if O is the origin, OP1+OP .. +0P-..=z..(z,.— 1. LUl
i (D =D=0 . . . . . )

s (25—1)m,

where & is zero or any integer.

:L—eu((u —U)m/2n), k=1,2,3,..., 2n.
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Writing 2aj for (24— 1)m/2n and solving for s we have
o Lcos 2ay4d sin 2y
‘cos Za;+1 sin 2a;—1
2 cos ay(cis az)
2303 cos ay—sin az)

cot ay
i cot {(2k—)m/dn), k=1,2,3,...,2n,

and 50 the roots of (i) are purely imaginary.
11 P, represents the number —i cot oy in the Argand diagram,

cot oy | =cot ay
m
and so 2 OPp?=cot? a,+cot? a;+...+ cot? azy

=

=(cot a;+cot ay+. .. +cot az)?
—2(cot a, cot ay-+cot a, cot agt..
Now writing (i) in the form
PRGINC, gy G it 410

we see by § 2.2 that the sum of the roots is zero, and the sum of the products
of the roots in pairs is **Cy=n(2n—1).

(i)

Hence 2,‘ cot ap=0
i1
and —(cot a, cot ay+ cot ay Ot @yt

Substituting these values in (ii) we get

=
3 0Pyt =2n(2n—1).
i1

Exercises 7 (a)
1. (i) Find the cube roots of (1+4).
(ii) Find all the roots of the equation #¢—2+342=0, [Leeds.)
2. (i) Find the modulus and argument of 1-+cos 0.
(i) Find all the cube roots of 2i—2.

3. Find the roots of the equation #*— (3-+ 5i)s-+8i—4=0.
4. Solve the equation s*+ (4—6i)s =0 15i. [Leeds]

5. Write down the solutions of the equation w*=16 and deduce the
solutions of the equation (z+41)¢=16(z—1)%. [Liverpool.

6. Find all solutions of the equations
@) 2o 41=0, () s*=(+1])" [Liverpool.]
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. Solve the equation s'=i(s—1)%, and show that the points in (he
Argand diagram which represent the roots are collinear.

Express the four roots of the equation (z—2)4-+(r-+1)=0 in the form
a,+ib,(v=1, 2, 3, 4), where a,, b, are real numbers. [Sheffield.]

. Write down the five roots of s8—1=0. Show that the roots of the
equation (5+-2)°—(5—2)*=0 can be written in the form 5i tan (rm/5),
where 7=0, +1, £2. [L.U. Anc]

. Find in the form p+ig, where  and g are real, all the solutions of the
equatios
() = dir—4—2i=0, (i) #*4+8i=0.
. Determine the roots of the equation z*=1 and describe their positions
in the Argand diagram.
Let w be the root, other than 1, which lies in the first quadrant.
If w=ew+w* and v=w'+w? prove that
Utv=uv=—1 and u—vem-+4/6.

Deduce that cos 72°=(y/5—1)/4. (Durham,]
ve that, with the exception of one zero root, the roots of the
equation (14-5)"=(1—2)" are all imaginary. [Sheffield.]

. Solve completely the equation 5¢+3%+1=0, expressing the solutions
in terms of trigonometric functions of acute angles. Make a rough
sketch exhibiting the position of the solutions in the complex plane.

{Sheffield.)

(1+sin 6+ cos )

{T+sin 0—i cos 6)

and hence show that

{L+sin (x/5)+i cos (m/8)}s+i{l+sin (m/5)—i cos (m/6)}$=0.

. Find the nth roots of unity and prove that their sum is zero. Hwisa

Prove that =sin 041 cos §,

complex fifth root of nniry. prove that m+l is real and satisfies the

equation #4+-x—
Hence show thatcos(?yr/ﬁ) H=144/5), eos(vr/ﬁ)—i(l+1/5)

Indicate on the Argand diagram the positions of the pouus
2=1+sin 6+1cos §
for a given value of the angle 6.
Prove that one of the values of M is equal to
sin 0—i cos 0
cos n(fm—0)+i sin njm—0).
V21N :
Vatis)  in the form atib, where o

and b are real. [1832)

Obtain all the values of (
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17. Express the complex number 14 in the form r(cos § + i sin 6).
‘Hence, or otherwise, prove that, » being any positive integer,
(14+9)*+(1—i)"=2(2"" cos }nm).
I (14-2)"=po-+p1¥+Pa3*+ . . . +Pnx", prove that
Po—patpe—... =22 cos fnm,
and Dr—patpy—. .. =2" sin jnm. LU
Show that the equation =1 has one real root and two other roots
‘which are not real, and that, if one of the non-real roots is denoted
by w, the other is then w®. Mark on the Argand diagram the points
which Tepresent the three roots, and show that they are the vertices

of an equilateral triangle.
Prove that 1+w+w=0
and
(a-+b+0)(a-+ wb-+ ') (a+wtb+we) =a+ b3+ 3abe. rLU]
19. What conditions have to be satisfied by the complex number z in order

that the points representing all integral powers of £ should (i) lie on a
circle with centre at the origin, (i) be finite in number ? Mark on
the diagram the points which represent a number s such that there
are only three distinct points in the sequence given by z, ... [L.U.]

20. Solve the equation (x-+1)%+2*=0. [1 R3]

7.5. Complex roots of an equation

Tf z=x+iy and /{z) is a polynomial in z with real coefficients, f(z)
may be expressed in the form X +{¥ where X and ¥ are real. Since
even powers of (iy) are real and odd powers are purely imaginary, X
will contain only even powers of , while ¥ will contain only odd
powers of y. It follows that if we change the sign of y, X will be
unaltered but ¥ will change si

Hence, if f(z+i9) =X +3Y, flz—iy)=X.

If z+iy is a root of f(z)=0, f{x-+iy)=0, ie. X+i¥=0 and so,
equating real and imaginary parts, X =0 and ¥ =0. Hence X —i¥'=0,
i.e. flz—iy)=0 so that x—iy is a root of f(z) =0.

Hence, in_an equation with real coefficients, roots which arc not real
occur in conjugate pairs.

7.6. Real quadratic factors

The problem of factorising a given expression is closely related to
that of solving an equation ; for if 2=z, is a solution of the equation
f(2)=0, z—z, is a factor of f(z).

Suppose that the coefficients which occur in the polynomial f(z) are
real, and suppose that the complex number a(cos 8-+ sin 6) is a root
of the equation f(z)=0. Then, by § 7.5, a(cos §—i sin 6) is also a roat
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of the equation. Hence z—a(cos 8+ sin 6) and z—a(cos 6—i sin 6)
are factors of f(s), and muluphed together they give the real quadratic
factor 22~2az cos 6+

For example, the !actms of F(z)=2*+2%+2'+23+2'+2+1 can be
deduced from the solution of the equation F(z)=0 (sce Example b,
p- 123). They are z—cos (2kn/7) £ sin (2kn/7), k=1,2, 3. Grouped
in pairs they give three real quadratic factors

{~2zcos (2n/7) +1} (;- 22 cos (4nf7) + 1} {£3— 2z cos (6/7) +1}
and we write

F(3)= H(x’ 22 cos (2kufT)+1}.

The symbol IT for products corresponds to the symbol £ for sums,
Thus we denote the product (z—z;)(z—2,). .. (z—2y) by IT (z—2).
o

Similarly, from the result of Example 1, p. 122, we deduce that
L
P+1=(2+1) H{X‘-—ﬁz cos @H} .
Example 7 e
Find all the vools of the equation
1" —2a%" cos nf+atr=0
where n is a positive integer, and  is a veal constant. Show that
#1—2ax cos (0+2rmfn)+at, r=0, 1, 2,..., (1—1)
is @ factor of x"—2a"x" cos n0-+a', and deduce, or prove by any other
means, that
a1
cos np—cos nf=2%-1 11 {cos §—cos (0-+2rm/n)}. LU
=0
Solving the equation ¥*"—2a"s" cos #§+4**=0 as a quadratic in ", we
have

#n=an cos nf +/(at™ cos* nf—atn)
=an(cos nf i sin nf)
=an{cos (n+-2rm) + i sin (#8+-2rm)), where  is zero or any integer.
Hence by Demoivre's theorem,
x=afcos (0+2vm/n) t- sin (§+42rm/n)}, r=0, 1, 2,..., (n—1),
and, asin § 7.6,
¥ —23%5" cos nf+ath= .17‘ {#*—2ax cos (04 2rm/n)+a?} @

‘Hence x‘—ﬂaxcos(ﬂ+2rw/ﬁ)+a‘ r-o, 1, 2,..., (s=1), is a factor of
#1"—2a%" cos nf-+al.
Dividing throughout (i) by #* md putting a=1, we get

=g cos nd= 1T F (e-tm1—2 cas 0+ 2em/m)) ()
.
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If mow we let x=cosgtising so that x~i=cos ¢
#M=c0s n-+i sin ngh and s—=cos ng—i sin ng, we have from (i)

2(cos ng—cos n) =TT {2 cos —2 cos (B-+2rmfn)}
A

2. o8 ng—cos w=2+3 T {cos $—cos (6-+ 2rmm).
B

Example 8
Solue the equation (z-+1)8—z%=0, and prove that
3
(1) 2= 0y (25+1) IT {454 4s-+ cosec? (sm/8)}.
=y
Hence show that
3
16(cos*® §—sin'® B) =cos 20 II, {cos® 20+cof* (sm/8)}. Lu}
b4 (+)P—s=0 . . . . @
T

241N .
( —) =cis 2sm, where s is zero or any integer,

s femfa) =0, 1, 2,0, 7.

2. #{l—cos (sm/4)—i sin (sw/4)}
2z sin (sm/8) cis (sm/8)=1.
Hence ignoring the infinite oot given by s=0 we have
#=—1i cis (—sm/8) cosec (s/8), s=1,2,..., 7.
=—H{1+i cot (sm/8)}.
When s=4, z=—}; the other roots are z=—}{l +i cot (sm/8)} whers
s=1,2, 3, since cot (5/3)=—cot (3n/8) and so on.

1

Hence (s 1)'mstm8(e+4) IT [4+4{1 44 cot (sm/8))]
et

the numerical factor 8 being determined by comparing coefficients of 57 on
the two sides,

=4(2041) ;71 {(z-+1)*+ cot? (sn/8)}

s
=o(2e1) I s+ dr-+cosect (sm9).
=
The substitution s=—sin? § gives

ostt 6—sint* = cos 20 1T {(1—2 sin® 6)*cot? (sm/8l}
prt

2. 10(cost* G—sintt 6) mcos 20 T {cost 20-+cott (sm/8)}.
=
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Exercises 7 (b)
1. Prove that, when # is a positive integer,
#n—2m cos 4 1= :1:1:(,'—2:; cos (8-+2km/m) +1).
Deduce the folowing resalts:
(i) cos ng—cos nf=2m1 :Iz:(c.os $—cos (0-+ 2km/m).
1—sint jngh cosec? w=:1_?:(1_=in= i cosect (10-+m/m).
@) sin® m=s T i 8-+,
:fy: sin {(6k+1)m/6n) =2,
) T 2 con 0+ 24
—(—1)"3(1+2 cos #6) if # is not a multiple of 3,

=(—1)"2(1—cos nf) if  is a multiple of 3.
(Pt $=2m/3 in (i).)

1 at g
() sin 6=271 T sin 2247 and cos g 2mmi 17 sin @R
k=0 " k=0 2n

() sin ..e=2—n:ﬁ°§in (O-+kefn).

1 7 is a positive integer,
20r-1 sin 0 sin (§-+m/s) sin -+ 2m/s). . .sin {0+ (2 —apr}
=(=1)(1—cos 2/6)
2. If  is a positive integer, prove that
ast
A l=(x2—1) 11 {3*—2x cos (km/n)+1}
-
and deduce that
(i) (sin nB)/sin §=22—1 :ﬁ:@os 8—cos (km/m)},
o
@) /=2 Tl s (hr/20),
st
(i) (s n)/sinh 0=27 1T fcosh 0—cos (k).
=
3. By finding the real quadratic factors of #™*#t*it...+x+1,

where # is a positive integer, show that

N
20 sin g sin g sin 2 =/ @ ). LU}
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4. Prove that, if » is a positive integer,
= r'l [#+51—2 cos {(2r—1)m/2n}].
=
Prove that 281 IT sint {(2r—mn) =1,
-
and that cos nf= ﬁ‘ [1—sin? 30 cosec? {(2r— V)m/dn)]. Lu)
Bk
8. Prove that if » is a positive integer
(L42)tn = (L= )t = dnx 'ﬁ:(z-+ran* (rm/2m).
Hence, or otherwise, prove that
1
hlms (rmf2m)=2i=na/m. Ll
6. T n s a positive integer, prove that
atnbins IT [a1—2ab cos {(2—1)m/2n} 4],
£ :
Deduce that "
() cos w2+ T [cos —cos {(2r—1ym/2n)],
-
(i) cos Inpm2int ﬁ‘ [oos? 6—cost {(2r—V)m/dn)],
(iif) [}lain {(er—Y)mfany =2+, LU
7. Prove that, if 4 and b are any given complex numbers, the locus of a
point # in the Argand diagram such “‘"I._b is constant is in
general a circle.
how that ion (1— 1) =32(z-+ 1)
in the Argand diagram by points lying on a circle of radius 4/3, and
that the values of 5

- 3+4|nn(2‘1:/5)}/(5 4 cos (2rm/8)} (r=0, 1,..., 4).
Deduce

2 17 {—3-+4i sin (2rn/0)) =33 | 17 {5—4 cos (2rm)/5}. (LU

8. ABCDEF is a regular hexagon inscribed in the circle |']_g in the
Argand diagram, 4 being the point (4, 0). If P, representing the
complex numbex 1, is any point on the circle, write down the complex
numbers represented by the six points obtained by drawing lines
(mmtheung\noqulllndpanﬂgl to the directed lines

AP. BP. CP. DP. EP. FP.

and prove that their product is s* Hence prove that
AP.BP.CP.DP.EP.FP<2". LUy
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9. Resolve #$--x+1 into real quadratic factors and deduce that
T

Soom, b
(i) cos G+cos F+cos -

(i) cos Z cos 27 cos 771
W) cos gy °F 9 T’
7 1
(iii) sin 1’ sin "’T" sin —" =5V LU
10. () vae that the points which represent the roots of the equation
— )=z in the Argand diagram are collin
(i) sms Demoivre’s theorem, and prove it for integral indices,
positive or negative.
Express #*+1 as a product of one linear and four quadratic
real factors. Ly

7. Expression of powers of cos 8 and sin 0 in terms of multiple

angl
Let zmcos O+isin 0 then z%=cos n-+i sin nf
¥'=coss—is'ma and L =cos a0 sin no
,'.x+;=2wsﬁ] b L a2 cos wh

1 (7.2 1 (1.3)
s-=2isin 9] 1~ =2 sin n
The relations (7.2) and (7.3) enable us to express powers of cos 6 and
sin 8 in terms of sines and cosines of multiples of 0.

Example 9
Express cos® 0 sint 0 as a sum of cosines of multiples of 6.
1f r=cos 6-+i sin 8

(2 cos 6(2i sin O)¢— (:+§)'(:—}) * by (1),
D

5

() Aty

=2 (cos 70—cos 56—3 cos 303 cos 6), by (1.3).
Hence  cos® 6 sin® 6=k (cos 76—cos 56—3 cos 3+3 cos 6).

..(.-—aﬂ+
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Example 10

Espress sin® 6 as a sum of sines of muluplu of 0 and hence find all the
Solutions of the equation 16 sin® §=sin 50.

1f s=cos f+i sin §

(2i sin m=-(:-§)'

1 1 1
(et
=2i(sin 66— 5 sin 30+10 sin 6), by (7.3).
., sin® 8= k(sin 505 sin 39+10 sin 0).
b 16 sin® §=sin 56,
2 sin 6—sin 39=0,
iie. 2sing—(3sinf—4sin® ) =0,
sin 0 (4 sin? §—1)=0.
2. sin 0=0, £}
2. O=km, km{m, where k is zero or any integer,
i Ok, (8h £ 1)mf6.

7.8. Expansions of circular functions of multiple angles

By Demoivre's theorem, when # is a positive integer,

cos #8+1 sin nf=(cos 8+ sin 6)».

If we expand the right-hand side using the binomial theorem and
equate real parts and imaginary parts in the resultant equation,
we obtain expressions for cos #0 and sin #0 in terms of powers of
cos 8 and sin 8.

Example 11

Prove that cos 6§ =32 cos® 0—48 cos* §-+18 cos* 0—1. By puiting x=cos*§,
or otherwise, show that the y0ots of the equation 64x’—96314-36x—3=0 are
cos* (n/18), cos* (6m/18), cos* (Tw/18), and deduce that

sect (m/18) +sec® (5m/18)+sec (Tm/18) =12, L.U)
By Demoivre's theorem,
cos 69 sin 60=(cos f+4 sin 6)*
=cos* 0-+6i cost 6 sin §—15 cos* 0 sin® §—20i cos®  sin? §
+15 cos? 8 sint 8-+ 6i cos @ sin® §—sin* 6.
Equating real terms on each side of this equation we have
cos B9=cos® B—15 cost § sin? f+15 cos? § sin f—sin® f.
=cost 6— 16 cost §(1—cos* 6)+ 15 cos? 6(1—cos* ) —(1—cos? 6)*
=32 cos*f—4Bcost f+18costb—1 . . . . ()
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If, in the equation
B4 —00x1430r—3=0 . . . (i)
‘we substitute ¥=cos? 6§, we have
64 cos® 6—96 cos* 0-+36 cos® 0—2.
ie. cos

by @)
60=2kmkjm
where J is zero or any integer,
S 0=(Bkx1)m/18 . . o (i)
For values of 0 given by (iii), #=cos*  is a root of (i), and since (iii)
gives  three distinct values: cos® (w/18), cos? (6w/18) and cos? (7m/18),
these are the roots of (ii).
The equation whose roots are the reciprocals of the roots of (i) is (see
§2.3)
35530314 004 —64=0,
and by § 2.2 the sum of the roots of this equation is 12
. sec? (m/18)-+sec? (5m/18)+sec? (Trr/18)=12.

Exercises 7 (c)
1. Show that
(i) sin 7=7 sin 6— 56 sin? 6+ 112 sin® §—64 sin’ 6,
(ii) 84 sin? =36 sin H—21 sin 36+ 7 sin 56 —sin 70.
2. By writing 2 cos §=z--1 and 2 sin f=r—-?, where r=cos 0+isin§,
or otherwise, show that 2¢ sin® § cos? §=sin 70— 3 sin 50+-sin 36+ 6 sin 6.
L.u)
3. By writing z=cos 8- sin 0, 1 =cos f—i sin § express 32i sin f.cos §
in terms of z, and hence prove that
16 cost 0 sin f=sin 66+3 sin 39+2sin 6. [L.U. Anc))
4. Prove that, if cos §-+4 sin 6=+, then 2 cos nf=1"4£-, 2i sin nf=tr— -,
where  is any integer. Hence, or otherwise, establish the formulae
16 sin® §=sin 56—>5 sin 30+10 sin 6,
32 cos® f=cos 86+-6 cos 40-+15 cos 20+ 10.

Solve completely the equation cos 665 cos 3610 cos §=}, where

6is real. LUl
5. Express (sin 69)/(sin 6) as a polynomial in cos 6. [Sheffield.]
6. Prove that

c0s 84 =cos® A(1—28 tan® 4470 tant 4—28 tan® A +tan® 4)
and that tan (w/16) tan (37/16) tan (6m/16) tan (7/16)=1.
7. Express sin 96/sin 0 as a polynomial in cos @ and deduce, or prove
otherwise, that
(i) sect (m/9)+sec? (2m/9)+sec? (47/9) =36,
(i) sec (w/9) sec (2n/0) sec (4m/9)=8. L.U]
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8. Express the left-hand side of the equation
cos 6¢-+6 cos 4$—9 cos 3¢+15 cos 2 —27 cos $+14=0
as a polynomial in cos ¢, and hence, or otherwise, ﬁndulang)=¢
between 0° and 360° inclusive satisfying the equation.

9. By considering the real and imaginary parts of (cos 0+ sin 0)7,
Where # is a positive integer, obtain formulae expressing cos #8 and
sin # in terms of cos 8 and sin 6, and deduce that

*C, cot=t §—"C, cot™? §+
Ry oy e

Prove that the roots of the equation

A ACETI Ot nCprit f — —.. =0
are cot (3m/4n), cot (Tr/4n), cot (1lm/4n),. .., cot {(4n—1)m/4n).
[Sheffield.}
10. By means of Demoivre's theorem, or otherwise, show that
sin 246
sin § cos 8”

whmkuapmuv:mhgu,mdmyibeexpxmedunpolynomul
insint 6. Obtain this

o Bx4+ 10874 =0, [Durham.)

. By first solving the equation cos 3§+-sin 39=0, or otherwise, show that
the roots of the equation #4+4/41=0 are f=—tan (m/12) and
#=—tan (5/12). L.u)

7.9. Series of complex terms

The series Xz, where z,=x,+iy, and %, y, are real is said to be
convergent if the series of real terms D, and Sy, separately converge.

1f, a5 n-»00, L.’z,—»r and :."y,-.y, then we say that Zz,~x-+iy, and x+iy
i

is called the sum to infinity of Zz,.

The series of positive real terms 27| 2, | is known as the series of
moduli.. 1 ) z,| is convergent, Zz, is convergent ; for since z, and
y, are real, | z,|< /(53 Lo |, |<|z2, Land s0, by com-
parison test 1 (see § 4.13) if Z| z, | is convergent, | z, | is convergent
and hence 2, is absolutely eammgen

Similarly Zy, is if 2|z, is 5
and so, by definition Zz, is wnvergent if Z| 2, | is convergent.

When the series of moduli Z| z, | converges, the series 2z, is said
to be absolutely convergent.
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7.10. ‘The exponential series
Consider the series

]

1+-+2|+H+~[+4..

where
2=p(cos G+i sin 6).
The series of moduli is
pE p?
Lptiy +3]+ |+...

and this series converges for all finite values of p. Hence the given
series converges absolutely for all values of z.

Now when z is real, the sum of the given series is ¢¢ and so we define
¢ when 7 is complex as the sum of series (i) i.c.

-3 (1.4)

orl’

B 2
= ‘+'+2l+31+ I+

The sum of this series is sometimes denoted by exp z.

7.11. Exponential values of circular functions
When z=if, where @ is real, we have from (7.4)

¢u=1+-a-4—‘f+z+

=(1 it “ 6|+..‘ +‘("'_+_x"">

The real and imaginary parts of this series are the Maclaurin expansions
of cos 8 and sin § respectively (See § 11.5)

2. e0=cos B+ sin 0 (.5)
and, writing — for 0,
40=cos 6—i sin 6. (1.6)
From these results,
cos 0= }(e4+6-49) and sin 0= l,(w_r«). @

By means of (1.5) and (7.6) we can express the complex numbers
#(cos 0+i sin 6) and r(cos 87 sin 6) in the compact form 72!, 7z~
or 7 exp(if), 7 exp(—if) respectively.

It is beyond the scope of this book to prove that when z is complex
the function e as defined by (7.4) may be treated in the same way
as we could treat it if z were real ; but we have shown in § 6.8 that,

(e ) =yt
(1) (ra™) = (ra/r)ett=00
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and by Demoivre’s theorem, (e#)#=¢@ when # is rational. Also,
the result ew=c4+% can be proved by multiplication of series
(see § 5.7) and so we shall assume that ¢¢ when 1 is complex obeys the
index laws. With this assumption
eFmeTHY =%, e =¢%(cos y+1 sin y).
Also, since ettr=1, ¢ir=1,  being any integer, and so
oI e g8 i0n o g8,

Hence ¢ is a periodic function, its period being 2.

The following examples illustrate the use of the exponential form of
a complex number.

Example 12
If the complex mumbers £, and 1, ars vepresented in the Avgand diagram by
the points P and ) vespectively, interpret geomeirically the modulus and

amplituds (avgument) of 1y—,.
If a thivd complex wumber 2, is represented by the point R, and the angles
of the triangle PQR at Q and R are cach }(w—a), prove that
(53— 2 =4(5y—1) (1, —3,) sin* fa. Ly
Let QP (6g. 18) meet the real axis at S. Then | £,—s, |=PQ and arg
(t4—s,)=£35Q. Also PQ=PR and ZQPR=a.

Fig. 18

Let PQ represent the complex number ae¥, ThnnﬂncePRh the vector
P turned counter~clockwise through an angle a, PR represeats the number
(ae®). (o%) =aei+) (see § 6.8).

‘The vector QR is obtained by turning the vector QP clockwise through
an angle (}w—ja) and multiplying its length by 2 sin a. Hence QR
represents the number 2sin ja (—as¥){s—Sliv—is)}, i.e. 2aisi0+i0) sin ja.
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But BQ, PR, R represent the numbers £yt £yt 85—, respectively
and 50 &, —z,=—ae¥, z,—z,=acl®+4), 1,—z,=2aie0+i%) sin §a.

(5,—5)! _4a%i9+e) sin? o
* a—n)a—z) | ateeta)

(ra— )t =4(zy—1)(5;— ) sin? a.

Example 13

If a is a complex number, and v and 8 ave real, show that the point repre-
senting z, where 7 is a consiant and s=a-+re® lies on a fixed civcle, whoss
centre is a, for all values of 6.

Leb T be ihe length of the tangent to this circle from the point ing 2.
If Z=a+Re% where R and ¢ are real and R>v, show that

VAT 41t =mod(Z—a).

Explain why the last vesult is independent of $. Lu)
If r=at+rf | . . . . 6]
s—a=r(cos 6-+i sin 6)
. | 2—a | =r=constant.

Hence, if P and C represent z and a respectively, PC is constant and
equal to 7 and so P describes a circle with centre C and radius ». Since
6=arg (:—a), 0 is the angle which the radius CP makes with the positive
direction of the real axis (see fig. 19)

Fig. 19

i ZeatRM. . . L)
the point Q) which represents Z lies on a circle with centre G nd radivs B,
and if T is the length of the tangent drawn from @ to circle (i),

PQr=CQi—
Tt=|Z—a[t—r
2 V(T 1Y) =| Z—a |=R, by ().
'g is constant for all positions of  and hence 4/(T*++?) is independent
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Exercises 7 (d)

1. Find u and v, the real and imaginary parts of
et ivm (1~ L)etet lef(z—1),
where re=x-+iy and a is real.

Prove that the locus of the points on the Argand diagram repre
senting the complex number s such that v=0 is a circle of unit radius
with centre at the point (1, 0) and a straight line through the centre of
the. U]

2. Show that, if £ lies on the circle | |=1 and 2W =s/k-+4/s, where
hmaslas£0, then W lies on an ellipse whose foci are points
W=(x1,0). (Sheffield.]

3. Z and s are two complex numbers represented in the Argand diagram
by the points P and Q respectively, and connected by the relation
Zs4Z—z+1=0. Show that if s=e¥, then | Z [=tan §0. Show also
that if Q describes the circle of unit radius, centre the origin, then P

describes the y-axis. [1 %3]
4 I, and s aco two given complex numbers, descibe th locus in
the Argand diagram represented by

) I wrtivmsml, where s—=s-+iy, and o i seal 10d postiv,
to the linesy

mme.m £.u]

6. If the complex number s=re¥, where 7 and  are real, is represented
in the usual way by a point in the Argand diagram, show that the
point which represents the number as¥-t-Xie%, where a, ), 0 are real,
is such that A is the length of the tangent from the point to the circle
wiioms cxatrs s the origa 0 and whoso rcti i o

nand s by P, and P, and the
hn.P,P.mnnhuthanmtmdewhmunm-metthnpnmt

of contact is outido PyPy The tazgential distances of theso points
from the circle aro A, ‘and Ay A.<A.)rupem I Aty =2ty i
represented bychapmta.ahwthntthammmd-doghh,—)‘.
and that its direction is perpendicular to PyPy. [1R32)

6. If the complex numbers 1, and 2, arc represented in the Argand
diagram by the points P and  respectively, interpret geometrically

1f a third complex number z, is represented by the point R, show that
the triangle PQR is similar to a given triangle 4BC if
(By—2)/(xy—1)) =(bfc)e x4,
thapmﬁworuglhven;nbmg according as the similitude is
U]
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7. The complex numbers z,, 5, 2, are represented in the Argand diagram
by the points 4, B, C in a counter-clockwise order. Prove that a
necessary and sufficient l:ondn.wn that the triangle ABC may be
equilateral s £,—s,=eb"(z,

On the side BC of the z\xzvu tnangle ABC, an equilateral triangle
BCA’ is drawn externally to the triangle 4BC. Find the complex
number represented by the puint a. Lu]

8. The vertices 4, 4,, A, of an isosceles triangle whose equal sides are
Audy and 4,4, ropresent | the complex numbers £,, #,, , respectively
and the angle A, 4,4,

Show that (r,—x,)'+(x,—x,)'—2(t,—x,) (a—zs) cosa. L]

9. ABCD is a parallelogram. The angle 4BC is equal to a, the ratio of
the length of BC to the length of AB is k : 1, and the sense of descrip-
tion is counter-clockwise. 1f 4 and B represent two complex numbers
1, and z,, determine the complex numbers represented by C and D.

U]
10. (i) OABC is a rectangle in which OC=404 and the vertices 0, 4, B, C
occur counter-clockwise. If the vector O4 represents the complex
number s, write down the complex numbers represented by OC,

OB, and CA.

(i) In an Argand diagram L, Z and W are the points representing
the complex numbers /, s and w respectively, the triangle ZLW
being described counterclockwise. 1f LW=ZW and angle
ZLW =0, prove that 2(w—1) cos §=e~¥(z—I). Hence show that,
if Z describes a circle centre the origin, § and 6(< gm) remaining
constant, the locus of W is a circle with its centre at the point repre-
senting lei¥/cos 6 and of radius }| z |/cos 6. L.u)

11. State briefly how complex numbers may be represented by points in
an Argand diagram. Show that, if the point A represents the number
ael, any point on the perpendicular through A to OA is defined by
the number aei?+i)s¥, where a, , A are real,

The vertex 4, of the regular polygon Od, A,...An of  sides
represents the number ae in an Argand diagram with origin at O,
Prove that the vertex Ay, represents al®+r) sin (r+1l)a cosec a
where a=m/n.

(The vertices of the polygon are taken in the anti-clockwise sense.)

Lu]

12. Express 1-i in the form 7/ and hence prove that %) + where n

is an integer, has eight distinct values, and indicate their positions in
the Argand diagram. Show that all but one of these are roots of the
equation 14z4%...+7=0, and deduce the roots of the equation
I=—saim. =5 LU,
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18. Prove that, if  is a positive integer,
#9257 cos nf41= '17:[1'—2: cos (0-+2sm/n)+1].
Pt
By writing =¢#, deduce the result that
cos n—cos n&-z""-f_l:[wl $—cos (0+2sm/n)].
-
By writing §=n/2 and $=0 in the last result, deduce further that
zs—--'ﬁ: sin {(ds+1)m/dn). Ly
i
14, 1 01 real and  is a positive integer, prove that
(c08 8-+ sin 6)(sin 0-+4 cos 6)meires,
Express the three values of (1-+4/3)3/%(y/3-+i)1/ in the form a-+ib,
where g and b are real. (The positive value of y/31s to be used.) [L.U.J
16. Defining e*=cos 5+ sin #, prove that o2, e mgli=+9), and that, for

integral m, ﬁ--(ea x+4isin x)‘
Hence, or otherwise, verify tha

cos Tx =64 cos? x—112 ws'.v+u cos? 5= cos %,
sin T/sin x=64 cos® 5—80 cost 5+24 cost 5—1. [Durham.]

16. Show that, for all integral values of v, #=cos (2rm/5) satisfies the
equation 1858204+ 65 —1=0. [Leeds.)

17. Find all the roots of the equation w"=a* when a is & given complex
number.

By writing w=(s-+1)/(s—1), a=e™, or otherwise, find the roots of
the equation 6~*#(s+4)*—¢n¥(z—i)*=0, and prove that, if 0 is not

a multiple of , i?xm (0+rm/n)=n cot nf. [Durham.)
18. Prove that, if =6 and # is a positive integer,
LAy ety ot esin (2n4-1)0/sin 6.
Deduce that 8 cos? 2-+4 cost 20— cos 29— 1 =sin 70/sin 6.
Prove that cos (2r/7) is one root of the equation 8+ 433 — &y—1=0,
and find the other two roots. (Sheffield.)
19, 1£ 0<O< 7, find the moduluis and amplitude of (14¢%)". Prove that

'_n( ) cos 78=2% cos® §6 cos nd,
where (”') denotes the usual binomial coefficient. (Sheffield.]
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20. Express in partial fractions the function

1

(I—at)(1—bs)"

where the non-zero constants a and b are (i) unequal, (i) equal.
By taking a=1/b=¢% and a suitable value of £ deduce, or otherwise
prove that, if 0<$<im,

cos ¢ »
WZHE 2 tan® §4 cos nf. L)

7.12. Generalised circular and hyperbolic functions

The circular functions of any complex number z are defined by the
relations

sinz=geec®) . L. ()
cos z=}(efe+¢i2) . . . (i)
tan z=sin z/cos z, cosec z=1/sin z, sec 1=1fcos 7,
cot z=1/tan z.
From (i) and (ii),
(cos z+4 sin z)(cos z—i sin 2) =efe x etz
». cost z4sint z=1.

Similarly it may be shown that the circular functions as defined above
for complex z satisfy all the fundamental identities established for
real values of z.

sin z and cos z are periodic functions with period 2= ; tan z is
periodic with period .

We define the generalised hyperbolic functions by the relations

sinh r=§(ef—t) . . . . . . (i)
B R s fz;
1+“+5|+ for all values of z
coshz=f(et+e) . . . . . . (W)
2 2
=l ... fz;
l+21+“+ for all values of z

tanh z=sinh z/cosh 7, cosech 2=1/sinh z, sech z=1/cosh z,
coth z=1/tanh z.
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From (iif) and (iv)

(cosh z+sinh z)(cosh z—sinh 2) =t x ot
cosh? z—sinh? 3=1,

and in the same way it may be shown that the hyperbolic functions
defined in this way satisfy all the fundamental identities established
in Chapter 5 for real values of z.

sinh z and cosh z are periodic functions with period 2 ; tanh z is
periodic with period =i,
7.13. Connection between the circular and hyperbolic functions

There is a simple connection between the generalised circular and
hyperbolic functions.

sin (i:)=2l‘,(r'—-s') sinh z (1.8

and cos (i) =}(e*+e¥) =cosh z. .9
Again, sinh (i) = (et —e-18) =i sin z (1.10)
cosh (i) = H(ets +6-15) =cos z. (.11

(1.8) and (79) justify Osborn’s rule (given in § 5.10) for deducing
formulae connecting hyperbolic functions from the corresponding
formulae for Lhe circular functions.

from the above results we can express sin (v+iy) and
cos (x+iy) where z and y are real in the form a-+4b.
sin (x+iy)=sin x cos (iy)+cos ¥ sin (iy) =sin % cosh y-+i cos ¥ sinh y,
08 (x-+4y) =cos % cos (i) —sin ¥ sin (i) =cos x cosh y—i sin % sinh y.

7.14. Logarithms of a complex number
If 1 is any complex number such that z=¢¥, then wis defined as a
natural logarithm of  and we write w=Log .
If £=r(cos 0+ sin £) and w=wu-+1o, the relation z=¢® becomes
7(cos 8+ sin §) =ewHe
=e*(cos v-+i sin v)
. 7.cos B=e% cos v,
7 sin §=c* sin v,
and so =, that is u=log 7.
Now r is real and positive and u is real, so that « is the ordinary real
natural logarithm of » which is uniquely defined. On the other hand,
=042k, where k is zero or any integer.
Now Log z=w=u+iv
. Log s=log r+i(0-+2kn) (1.12)
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ie. Log s=log | z|+i arg 2.
Hence there are infinitely many logarithms of a complex number z,
each pair differing by a maultiple of 2i.
‘We define the principal value, log z, of Log z by the relation
log z=log r+:¢’,
where @' is the principal value of arg z, i.e. —7 <8<

7.15. The logarithmic series
When  is real and —1<#<1,
log (145) =s—§a+}—Jat4 ...
1 2 is complex, it can be shown that when | 2] <1 the series
P e
converges tolog (1-+2), the principal value of Log (1-+2). We therefore
write

log (1+2) =z— 22+ 30— e+ ..., if | 2] <1 (1.13)
It can also be shown that (7.13) is valid for all values of z for which
| 2]=1 with the exception of z=~1.

7.16. A useful principle

In § 7.6 we showed that if /(z) is a polynomial in # with real
coefficients and f(x+iy) =X+, then f(x~iy)= X —3Y.

We now assume that we can extend this result to functions which
can be represented by convergent series in ascending powers of z
with real coefficients (see § 11.2) and we illustrate its use in the following
examples.

Example 14
If xiy=c tanh (u-+iv) whers 5,y, ¢, w and v are all real, detormine x and y
in ferms of u, v and c.
Prove that this relationship implies both
Hpytch—2ex coth u=0
and Ayt — 42y cot =0, [130A]
i3 #+iy=c tanh (u+iv),
then  x—iy=c tanh (u—iv)
2x/c=tanh (u-+iv)-+tanh (u—iv)
sinh (u-iv) cosh (u—iv)+cosh (u-+iv) sinh (u—iv)
cosh (w+iv) cosh (u—iv)
__ 2sinh2u
~Cosh Zu-t+cosh Ziv
& sinh 2u
Cosh Bu-cos 2"

, see § 5.10,

=
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2¢ sinh 2iv

Sty Ay = St oo %0

. ¢sin 20
Y=o Bueos 3 Y (100

Now since ¢ tanh (u-iv)=s-iy and ¢ tanh (—iv)=s—iy,
cftanh (u--io)+ tanh (u—iv)}

e tanh {(u-+io) o)} = e e o)

N 2%
ie. ¢ tanh 2u: TE0e
tanh hnm.

and so #490-+c3—2cx coth 2um0,

" N 2i)

Similarly, ¢ tanh ((u+iv)—(u—lv))-w .
—2iy

Hence taoh Biv=i tan 2o
and so 4yd— 1 20y cot 200,
Example 15

() Find the geneval solution of the equation sin £=3i cos .
(H) If u-tiv=Ccoth (¥+iy), show that v=—sin 2y/(cosh 2x—cos 2y).

1 1
Henco show that  dom gy — s
and deduce that if <0, v can be expressed as the infinite series
—2 )!lrh sin 2y, [1R2]
Pt
o 1t sin s=3i cos 5
gt — (gl s—)
ie 8= — = - @ +1le, where & is zero or any integer,
2ir=log }+(2k+1)mi
F={(2h+ 144 log 2).
(ii) If w+iv=coth (x+iy),
u—iv=coth (r—iy)
. Ziv=coth (¥+iy) —coth (x—iy)
sinh (x—iy) cosh (x-+iy) —cosh (x—iy) sinh (x-+iy)
sinh (x+4y) sioh (x—iy)




Ul COMPLEX NUMBERS 145
—isingy
‘Cosh 25 —cos 2y
=2 — g%y

o

Now iv=:

e g2 +in)
T e oE "

multiplying top and bottom by ¢'
1

1 __.
St

Hence

v = {1 e} =1 (1 — e} 1,
and expanding by the binomial theorem we have

0= — {o25(eB — g~ %0) - AS(AW - g —4) - g05(S =) 4. ..}

=—2i{e% sin 2y+¢%* sin dy+¢5% sin 6y+...},
v=—2 5 et sin 20y,
=1

The binomial expansion is valid only if | ¢%==#) | and | ¢¥=+# | are both
less than unity. But |e%£#) |=¢% and so ¥ must be negative for the
expansion to be valid.

Example 16
oo, D H)
Yutivmiog 0 show tiat
-4y'—2ax coth u-+a1=0
and #A4y142ay cot v—a=0.
Verify that the circles given by w=constant, veconstant intersect at right
angles. L.U]

Let  xiyta=ret?; then r=y/{(x+a)*+y%, tan 6=y/(x+a) (8]

stiy—amReld,  Remy/{(r—ai+yl), tan pmylr—a) ()
=log (/R)+i0-9) . . (i)
O—F . . - . . @)

and u—iv=log (/R)

. 2u=log (r*/R%)

(rkartryt

=i

vien sayia
—2ax

o sbyi-Zarcothutat=0 . . . (v)

@) and (i,

and —coth
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Again, from (iii) and (iv), v=0—g
tan §—tan ¢

and a "“rmm

'?T—a" by (i) and (i),

o #yrd2ay coto—at=0 . (vi)
When  is constant, coth w=constant=) (say) and (v) becomes
Ayt 2ake+at=0.
Similarly, if v is constant, cot v=constant=j (say) and (vi) becomes
4yt 2apy—at=0.
oo The It two equations represent two systems of coazal circls snch that
y two members of opposite systems cut each other orthogonally (see
§ 120 (o).
Exerclses 7 (¢)
1. I smr-biymtanh (u-fin), where u s e, find # andy in terms of 4*
show that for all values of %, the point £ lies on the circle s4+-yt=1"
2. It sin (u-+i0) =x-+iy, where , v, %,  are all real, find » and y in terms
of wand v,

Show that, if v is constant and u varies, the point whose coordinates
are (x, ) describes an ellipse, while, if « is constant and v varics, the
point (%, 7) describes a hy

By eonsidmng the intersections of the gﬂpb.l of tan u and tanh %,

also that r=y when w=v once in every interval {}(2n—1)m,
o 11} of vatues of w; whers s 40 integer.

3.1If w, v, % y are real numbers such that u-iv=e*Hy, prove that
whot=e® and vju=tan y.

Draw a sketch of the path of the point (u, v) when the point (, )

describes the rectangle formed by the axes of reference and the lines

x=1,y=}m

4. U -+iy=c cosh (u-+iv), where u, v, 0. %, 3 and ¢ aroall real, prove that
#* sinh? u-+y* cosh® w==c? sinh? u cosh? u,

5. If tan~i(s+iy)=u-tiv, where %, y, , v are all real, show that

2% L2
=} tan~! { —— = R ] i
u= {l_"_}‘}mdv }'anhl{‘+,‘+y.}. Show that, if
Bl part o taxs (r+ )b, tho sepresentativ point of the
complex number (+-+iy) on an Argand diagram lies on the circle of
radius 4/2, with its centre at —1+0i. Lu)

(Note: if w=tan-1 s, s=tan w).
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6. Define the functions sinh #, cosh x and show that sin ix=i sioh ,
cos ix=cosh #. If #-+fy=a tan (u-+iv), show that
x y a
sn2u 20" Cos 2u-+cosh 2
1f » and y are the rectangular cartesian coordinates of a point P
in @ plane, show that, for any given value of v, P lies on the circle
#'4y'—2ay coth 2v-4at=0. Lu)

7. (i) Starting from the exponential values of sin s and cos 2, prove that
sin ér==f inh s, cos ir=cosh £ and use these relations to find the
hyperbolic identities corresponding to
sin 35=3 sin s—4 sin® £ and cos 2s=(1—tan? £)/(1+tan® 3).

ﬂ;ﬂu:ﬂ_ﬂﬂ

[OR

prove that cosh #=(5*+¢*—a%)/2bc. Hence show that, if a=8v/2,
b=3, c=17, the value of # is  log 3 and find the

values of y. ]
8. (i) If tanh #=0-5, find the value of sinh 3.
(i) Express as complex numbers siz— 3 and tam? (144). [1RVA]
(sio 3 is defined to be any value of # which satisfies the equation
sins=3).

9. (i) Define sin s and cos z, where s is complex, and show that
ir=i sinh 1, cos ir=cosh z.
Show that the general value of cos~ 2 is Znmti log (244/3),
where # is any integer.
(ii) Prove that, if tan r=cos a-+i sin a where a is real and acute, then
z=(n+})m+i log tan (m+ja), where n is any integer. [L.U]

10. Determine the general values of the complex number s for which
(i) ¢* and (i) cos £ have real values.

If w4, sketch in an Argand diagram the path traced out by the

point w as the point # describes the rectangle whose vertices are at

the points e, a-+ia, where a is real. LUl

1. Express the modulus and argument (amplitude) of e, where z is a
complex number, in terms of the modulus and argument of z.

Find the polar equation of the curve in the Argand diagram described
by the point  when it varies 5o that z¢* is real.

Sketch that part of the curve which is such that arg (z¢¥)=0 and
—m<arg <, indicating the asymptotes. LUy

12. Show that all the points in the Argand diagram which represent the
values of log (1-+4), lie on a straight line parallel to the imaginary axis.
What is the distance between consecutive points ? LU
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13. (i) Given that 6 is real, find the real and imaginary parts of
(L+94/3+4)  cosh (0+inf3)

Ty Ve
(i) Locate on the Argand diagnm all the points which satisfy the
relations (a) 5*+2=2:, (b) <L [Sheffield.]

14. Find the cartesian equation of the curve in the Argand diagram
described by the point s=x-iy when it varies in such a way that
sinh s—z is real, Sketch roughly the shape of that part of the curve
Detween the lines y= - and show that it asymptotically approaches
these lines, LUl

5

1f sin~t (cos -4 sin 3) =u-iv, where x, ¥ and v are real and i
and 0<x<}n whilst v is positive, prove that w=sin-} 4/(1—sin x)
and v=log {y/(sin #)++/(1+sin #)}. wLu]
Find the real and imaginary parts of cos z, where r=z+iy. Solve
completely the equnﬁon cos z=(}/2){e(1—i)+e 2 (1+i)). [L.U]
(a) 1f 2, and z, are two git mplex numbers such that |¢,—z,| < § |z,
prove that (i) || > iI':I ; (") |ntal >4l

(b) If s=-+iy and >0, prove that tanh y< |tan 2| <coth y. [L.U]
If tan (s-iy) =sin (p-+ig), where z, y, p, ¢ are real, prove that

tan p sinh 2y=tanh ¢ sin 2% wu)
. Write down the expressions for sin ¥ and cos x in terms of & and s+,
and for ¢ in terms of sin x and cos ¥,

Show that, if tan §=m and tan § =m’, then

S

s

Deduce that, if §—8' =}, then mm'=—1. LU

20. Find the coefficient of " in the expansion of log{l— (a-+5)x+abs?),
and assuming this expansion is valid for complex values of a and b,
find the coeficient of #* in the real part of log(1-#¢¥) where = and §

are real, [L.U)



CHAPTER 8
SUMMATION OF SERIES

8.1. Standard results
‘We assume that the student is familiar with the following elementary
results :

(i) For the arithmetical progression (A.P.)
a, (a+d), (a+2d)...., (a+5-1d),
Sy, the sum to » terms, is given by

Su=i2a+(1=1)d), or dnfa+]),

where  is the nth term.
(i) For the geometrical progression (G.P.)
a, ax, axh,. .., ax*, where x#1,
the sum 5,=24=%)
1-z

Wh 1,5 =2
en | %<1, 5, =%

»
(iii) Zr=14243+ ... +n=}n(n+1),
-t
E’r‘:l'+2’+3‘+-u+n’={n(n+l)(2n+l),

.
ZP=14 24 +rd=(inln+ )
-t

(iv) The arithmetico-geometrical series is of the form
a, (a+d)z, (@+20)22, (@+3d)2,...

The ath term is {a+ (s—1)djr~, and the sum to # terms, S, is
found as follows

n=ﬂ+(ﬂ+1)x+(a+ﬂ)%‘+...+(a+(n—l)ti)x"‘.
ZSp= ax+ (a+d)xt+ ... +{a+ (n—2d}x" '+ {a+ (n—1)djxn.
Subtracting, we obtain
(1=n)Sp=a+{dx+dzx*+dx*+ ... +dx»"} = {a+ (n—1)d}xn.
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The terms within the square brackets form a G.P. of (1) terms and
common ratio . Summing these, we have
(1—1)5.-A+dx(i;:.—l)—(a+(»—l)d)f, 251,

)

ie.

5.=--x-(1;t£:u—1)d)+dz(l

(1-2p

8.2. Methods of summing series
The types of series whose summation is considered here may be
classified as follows :
(i) series summed by using the results of § 8.1 (iii),
(i) series summed by the method of induction,
(iif) series summed by using the exponential, binomial or logarith-
‘mic series,
(iv) series summed by the method of differences,
(v) series summed by using complex numbers.
8.3, Series whose rth term is a polynomial in r
Example 1
Sum o n terms the sories 2.34-3.44+4.64...
In this case up=(r+1)(r+2).
Hence Sup=Erarty
FUM
=).:r-+s)}+2u
1
=in(n-+1)(2n+1)+ §n(n+1)+2n, by § 8.1 (i)
={n(nt+6n+11).
Example 2
Sum o n terms the series 1+(142) 4 (142+8)+ (1424 3+ 4) 4....
In this case up=(1+2+3+...47)
=irlr+1), by § 8.1 (i),
=dgn(n+1)(2n-+1)+1n(n+1), by § 8.1 (i)
=in(n-+1)(n+2).
If 4, is a polynomial in 7 of degree higher than the third, this method

of solution is not applicable without first calculating sums of higher
powers of 7. In some cases, however, it is possible to sum such a
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series by the method of differences (see § 8.8) or, when the result to
be proved is given, by the method of induction.

8.4, The method of induction
‘This method is best illustrated by an example.

Example 3

Prove that the sum of n terms of the series 1.3.2-+2.4 343.5.41+...
is Pgnin+1)(n+2)(n+3)(2n+3).

First we assume that the result is true when n=p and prove that on this
assumption it is true when n=p-+1.

Suppose, then, that

Bumppprnpnpraey . . . 0
Since Up=rlr+2)(r+1)
=N+
= BumBurtig
:
= 2o+ D+ P+ D+ -+ D+ P+

.
by (i)
=g+ 1)(P+2)(p-+3){(2*+3p)+100p+2)}
=15(P+1)(p+2)(p+3)(p+4)(2p+5).

But this is the result we should obtain by substituting n=(p+1) in
the given result. Hence if the given formula is true when n=p, it is
true when n=p+1. But the formula is true when m=1 since
1.3.2%=,(1.2.3.4.5) ; hence it is true for n=2. Since it is true for
n=2, it is true for n=3, and proceeding in this way we may show that
the given result is true for all positive integral values of .

Exercises 8 (a)
Sum to » terms the following series ;
1 2.543.744.94+
2 P47
3. 1.2.3+3.4.545.6.7+....
4 1.3.442.5.743.7.104....
5. 18342064307+
6. 14254351+ 45+
7. 14+4x 472041053+

‘Use mathematical induction to establish the following results:
8. 424304t 1) (24 1),
9. 1.2.442.3.5+. .. +n(n+1)(n+3)=pyn(n41)(n+2)(3n413).
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8.5. Series reducible to binomial or
series

Example 4

Sum to infinity the series whose vtk term is (3r+4r-+1)/r 1.

The presence of 71 in the denominator suggests an exponential series.
We proceed as follows :

¥
T=Dit (7—1) |+

He=b+1 4
=i vl

(=0

3 71
=r=itenitn >

By inspection, u,-l+l . 01 being defined as 1.

Hence z up=3 2 ('—2)‘+1 3 (,_1)1-1. F1

=

.0

provided that all the series on the R.HLS. are convergent. But by § 6.7,
the first and second of these series converge to the value ¢; the third
converges to ¢—1. Hence by (i) the sum of the given series is 11e—1.
Example 5

Sum to infinity the series

1,13 1.3.5 1.3.5.7
otz stoe st

Here we have a set of factors in A.P. in each numerator, and the same
number of factors in A.P. in each denominator. This suggests a binomial
series. Suppose its sum is S,

The general term in the expansion of (1-+#)8 is

n(n—l)(ylu—l) famrtl)

and so we divide each of the factors in the numerators of the given series
by 2, the common difierence of the A.P. which they form. In the same
way we divide each of the factors of the denominators by 3. Then

102\, @ 2\, D@ (2
s'ﬁ( )"' 3.4 (i) 308 ( ) +
‘The next step is to introduce factorials in the denominators of each term

and to change the sign of each factor in the numerators so that they form
a decreasing A.P.

D HH(yeagpien
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In a binomial series, the number of factors in the numerator of each

coefficient is equal to the number of factors in the denominator. Hence
we introduce two factors § and } in each numerator

2 [ Q@B (?), QE-DED2)
s"mu){ (3 + BATIER )
s DA (2) GE=B=p (2)*

'?;(E) {" ar (i) + 41 (5) _}
The series in the large brackets is the expansion of (1—§)%/* with the
frst three terms missing; and so

s=o[ (=" {5+ %O ]]

Example 6
Find the sum to infinity of the series whose nth term is

2. 5 8...3n—1) 1
3n+3) 3" vy

o “( ) o)
Proceeding as in Example 5 we have
s (5P G +ER () (3. )
_,{u)(—i) (L)’+ m—!{(—g) (,l,)— }

()" od)

—=82/27—28V/3,

(=1r=ig

‘The series

Example 7

o rt2
Show that MWH)( ) —11og 2 F LUy

By partial fractions, u,_{g—m} (3)

‘We therefore consider the two series

ELORS EOF
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The fist by (5.10), page 91, converges to —log (1—3), i.e. to —log §;
the second is §(§)+3H)* -+ +-. .
=3E -+ D+ .}
=3(—log §—3} by (5.10).
Hence the sum of the given series is 1-+10g §.

Exercises 8 (b)

Snmminﬁnitythohﬂawingleﬂu:

1.4 1.4.7 3.5 3.5.7
1 1+ TABT m""m 5. ”+.... 2. l—-‘+4 s et
8 Lk 4 ‘+n+§'x+a'r"-~~

1
trmtEm

1+2 14243 !+2+3+4

- 1|+ FIEA o
3.9.15

8 142 +8 "W-I-....

1
n(z)"' 33 z)+ ()"’
2
12. ﬁ+ﬁ+7_+ e
8.6. The method of differences
»
Consider the series Zu,.
1
If w, can be expressed in the form vpy—v,, Where v, is a known
function of 7, then
»
%‘u,-(v,—v,)+(v,—v,)+(v.-v.)+ o oo (Un—Tpg) + (Vps1—Va)
=Vap =%
The method of differences is particularly useful for summing a series
mhof whose terms is the reciprocal of a product of a constant num-
o

f factors in A.P., the first factors of successive terms being in the
same A.P.
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Example 8

Sum to n terms the series

1 1 1
351567579
and deducs the sum to mﬁmly
1 1 1
Here u,= .
e M= l)(?f+ 1(2r+3) 4{(2’—1)(2'-(-1) (2r+ l)(W+!)}
Summing as above, we obtain

s, 1)1 1
=3 @@t
1
and So=g5

Example 9
Sum 10 n terms the series whose rik term is jr(r+1)(r-+3) and deduce the
sum to infinity.
We write
42 1 2
'('+l)('+ﬂ)('+3) - De+2(+3) " rrFDr+2)+3)

up=

1 1 1
{(r+n(r+2) <v+z)(r+:u {v(v+1)(v+2) <r+u(r+z)(r+a)}
and summing we obtain

1
s““i{a (»+2)(u+3)}+§[5 (n+l)(n+2)(n+3)}
7
and S =z5.

The method of differences may also be used to sum a series each
of whose terms is the product of a constant number of factors in A.P.,
the first factors of successive terms being in the same A.P.

Example 10

Sum 10 lerms the series 3.5.7.9+4+6.7.9.11+....

Here p=(2r+1)(2r+3)(2r+6)(2r+7).
Let Upay=(2r+1)(2r43)(2r 4 5)(2r+7)(2r +9).
Then Op=(2r—1)(2r+1)(2r+3)(2r+5)(2r+7).
and  Upyy—0,=10(2r+1)(2r+3)(2r+5)(2r+7)= 10uy.

Hence  spmpy(vpn—vy)
I )

=g {(2n41)(2n43)(2n+ ) (2n-+7)(25+8) —1.3.5.7.9).
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The method of differences may be used to sum certain trigonometric
series. For example, to sum the series
Sp=sin 4 +sin (4 +B)+sin (4 +2B)+ ... +sin {4 +(n—=1)B},
when B is not a multiple of 2w, we multiply each term by 2sin §B. Then
2 sin A sin }B=cos (4 —}B)—cos (4 +1B),
2 sin (4 +B) sin }B=cos (4 +}B)—cos (4 +1B),
2 sin (4 +2B) sin §B=cos (4 +3B)—cos (4+4B),
2sin {4 +(n—1)B} sin §B=cos {4+ (n—§)B} —cos {4+ (n—})B},
and by addition,
(2 sin $B)S,=cos (4—}B)—cos {A+(n—HB}
. 5, =S {A+i(= 1By sin B
- sin 1B
The same method may be used to sum the series
Cu=cos A+cos (A+B)+cos (A+2B)+...+cos {A-+(n—1)B}
but we deduce its sum from (i) by substituting (4 +3}n) for 4. This
gives

(0]

. o8 {A+}{n—1)B} sin nB
T smiB

If #+B is written for B in the above two series, we obtain the

sin A—sin (4+B)+sin (A+2B)+...
cos A —cos (4 +B)+cos (A+2B)+...
whose sum to s terms can also be found directly by using the multiplier
2sin §(n+B)=2 cos B.

8.7. Summation of trigonometrical serles using complex
numbers
If we use the identities
€08 844 sin §=¢% and cos #0+1 sin nf=cf0

it will be seen that it is possible to reduce certain trigonometrical series
to algebraic serics of the types already considered.
Example 11

Use complex mumbers to sum to n lerms the series whose rth levm is
sin{A+(r—1)B}, where B is not a multiple of 2.

Let Cp=cos A+cos(4 +B)--cos (4+2B)+...+cos {4+(n—1)B}
and  Sy=sio 4+sin (4+B)+sin (4+2B)+...+sin {4+(n—1)B).
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Then

CortiSmetd o A 4B LA H2E L ol +0-1B)
a1
=‘#@L"’ , summing the G.P., since B is not a maltiple of 2

o4, hinB(g—HnB_ iinB)
)

sin {nB
—tario-nn SR inE
‘ 1B

Equating the imaginary parts on each side of the equation we have

Example 12
Find the sum o infinity of the series whose rth term is (cos v6)[r |

cos ), cos 26 cos 30

Let C=Trt7ar tar too
sin @ sin 20 sin 30

and S=r g g e
o 68 gHO g0

Then CHiS=rtgytgyte-

=et'¥—1 by § .10
=glcos 0+481n 6) _ ]
=508 0 {cos (sin 0)+i sin (sin )} —1.
Equating the real parts on each side of this equation, we have
C=eco8 0 cos (sin 6)—1.

Exercises 8 (c)
1. Sum to » terms and to infinity the series :
1 1

1
O yeztesatsast

@

2. Sum to » terms the series :
() 1.8.543.5.745.7.94....
(if) cos A cos 24 +-cos 24 cos 34 +cos 34 cos dA +....
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3. Prove that if » is real and numerically less thas
14-2% cos 0+ 24° cos 20+2+° cos 30+... -(1-:-)/(1—21 cos §+4%).
4. By expmsm; #42r43 in the form A+B(r+))+0(v+8)(r+3) find
the sum to infinity of the ceries whose #th
("+2v+3)/'('+l)('+!)('+3)-

8.8. Miscellaneous examples
Example 13
Smnlonhmuﬂunmso/whulllhrﬂlkrmu(b 1w,
If a=2mfn, whers n is a positive integer, show
143 cos a5 cos Za-+...+(2n—1) cos (u—x).-—n
and 3 sin a5 sin 2a+...+(2n—1) sin (s—1)a=—n cot ja. .
Let  spml4-345504 ... (20—3)sn 24 (Zn—T)am-1, o
‘The series is arithmetico-geometrical, and summing as in § 8.1 (iv) we

obtain
e “‘:“‘; B LW

1f x=1, the series is the A.P. l+ﬂ+5+...+(h—l) and sy=nt,
Now consider the series
Cn=1+3 cos a6 cos 2a-+...+(2n—1) cos (#—1)a,
and Sp= 3 sin a5 sin 2a+t...+(2n—1) sin (r—1)a.
Then Cp+iSy =1+ 3efa Betlat . 4 (2n—1)eln=)a

since a is not a multiple of 2.
But am2n/n, . enamcos 2r-+i sin Jr=1.
2-2n 2ele

1)
Hence CotiSu=i Tt s

_—in(cos §a—i sin ja)
sin Ja .
Separating the real and imaginary parts we obtain
Cp=—n
and Sy=—n cot ja.
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Example 14
’
Prove that the infinite series whoss +h term is ——— converges when

—1<x<1, and fhat its sum when —1< %<1 s (1/x—1) log (1—)+1.
Find the sum when x=1.

Here Lz“[""‘  as r->co.

Hence by the ratio test (§ 4. m) the given series is convergent when
[ #| <1 and divergent when | =

‘When x=1, fhbmauﬂ'('+l).whld:mmmbaconv=g=ntﬂ

we compare it with the convergent series 27;‘, (see § 4.13).

When y=—1, thcmmz'('+l),whxchmnv=gunnm it is obtaincd
from the convergent series z:'(':_l) y changing the signs of alternate
terms (see § 4.17).

Hence the given series is convergent when —1<7< 1

To sum the series we writs u,-ﬂ(l—xxl) and consider the series
Pt mzm
By (5.10) the first converges to —log (1—3) when —1<x<1; thesecondis

2
TR
1/x 2 ¢
-;(7*—;+7+“')
=;(—log (1—%)—#} when —1<#<1 by (5.10).

Hence L‘«,-(Lx) log (1—%)+1 when —1<¥<1.
When =1, uy=2—1.

Hence ):u,=1-—+—l and Eu,:-l.

Example 15
(1) Sum the infinite series
x sim 04
where x and 0 are real.

#* sin 30
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() In the triangle ABC, show that, with the usual notation and with b<c,
n(n+l) 5

ﬂ{m A+— sin 244 = sin3d 4. ..}:-m- (4+nB) [L.U]

() Let C—:cos3+"c°’ 3&+x'm53+ ..

and S sin 04 "“”4.“"‘" L.

'nmc+;s-n"+" i '+"‘"'+. —sinh (sef0)
(ms1.|z,m.ummauonba'ngvzndhuuvamuouuda

=sinh {x (cos 8-+ sin 8)},

=sinh (¢ cos 6) cosh (i sin 6)

~cosh (x cos 6) sinh (ix sin 6], see § 5.10
=sinh (s cos 6) cos (s sin 6)+i cosh (¥ cos 6) sin (+ sin )
see § 713
Equating imaginary parts on each side of this equation we have
S-m(lmlﬂ)ﬂn(:ﬂnﬂ.

.
(i) Let C=Z{cos A+ u+"("+1’2 cos 34+

b n(-+1)b' .
lndS-‘—'{nnA-ﬁ-? sin 24+ ‘.unaA+.4.}.
Then

c+,s_,§{,u+_,m+.(»+na‘,‘+m}

-:—,_r“{n+(—~)( L) 4 lolon) "(--.u) }

=:_:,u{1_.’3 ,u} the series being convergent when b<s,
G

aneld
=T
anetd
“lacos B—i sin A
s

“{cos B—i sin B
A4,

Equating the imaginary parts on each side o this equation we obtaia
Se=sin (A+nB).
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Example 16

161

@ Etpnxx sin 3 in terms of sin , and find the sum to n lerms and fo

ity of the series whose ih ferm is 374 sin® (6/3").
() l/ o<b<n, sum to infinity the series
(b/a) sin C-(5Y/2a%) sin 2C+(b%/36") sin 3C+...

Ifa b 4, B C are the elements of a plans triangle, prove that this
LUl

sum is equal
) sin 83 sin y— 4 sind
. sin® x=}(3 sin 5—sin 32).
Now consider the series S, where
T
31 0

4y =371 sind 33 =1 (3 sin g

Then u,=;(a sin g—sin a) .
w=3(ssinsing)
.,,=.(s wn fain n)

ESTVARE

Adding : s_=§{z- sin 3‘-'““ a}

-; [5.{“;-—5(9/3')} —sin 0]
As n>c0, 6/3n—>0 and ’—’PMI see §90.3, (2)

o S =H8—sin a).

@ Lot Xemoos Gk con 20+ cos 3C
() hr +3a +g 008 30+
.
wnd YelenCil s 20 s e

" b
Then x+.y-;.lﬂ+§,-v«’+—aw+

=—1log {1—(b/a)e*C} since bja<1, see § 7.16.
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In fig. 20 0P=1
and 0Q=RP=(/a)eiC
.\, OR=1—(b/a)e’®
‘The imaginary part of
—log {1—(b/a)e!%) =— £ POR (see § 7.14)
(b/a) sin C
T—(b/a) cos C.
bsinC } .
b€
If a, b, ¢, 4, B, C are the elements of a
plane triangle

ie. Y=tao—? {

|

b sin Ce=¢ sin B and a—b cos C=c¢ cos B

(.—b o c) =5
Miscellaneous Exercises 8
1. Find i‘l(v-+v—r+l). [Dutham,)
poe

2 Sumtheleriu
@ frtaataat ~~+,.(,.+1)
(0) 1.3+2.44+3.6+...4+100.102. {Durham )
3. Sum the series :
sl 11
(0] Tatggtgqt - tonterms
(i) 1.2.34+2.3.443.4.54... to 16 terms.

(ili) #4204 347+ ...t » terms, [Durham.]
4. Find the sum of the infinite series ﬁ-f.:’l#i l+. ... [Dutham]

5. By uprullnz (2r—1)(2r+41) in the form A+B(M+C(b)(n'_|)
here A, B, C are independent of #, show that the sum to
the series
l—’-1-’—51-ﬂ+...

is (e*+26—1)/26. [L.U. Anc)
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6. Show that, provided | 7| <1, the sum to infinity of the series
7 sin 84-#% sin 20+4+* sin 30+ . .. is ( sin 8)/(1—2~ cos §+92).
L.U.

Anc)
7. Find the sum to infinity of each of the following series :

1 1 1
@ tggtaatee
28, 3 4
®) TyHgytgteee wu]
8. Sum to infinity the series

3x? 42 bxt
L2 gt

3t 4% bixt
and R Ry R L.u)
9. Sum to infinity the series
318
L x L
@ T3—35+aa—ist
# being chosen so that the series is convergent. LU

10. Show that, if —1<x<+1,

* Ll 1
2 :(r+2)"z{

15 42
Sl -+ } .
Lu)
11. (i) Sum to infinity the series having for its #th term (w14-2)/n 1.
(i) Prove that tan @=cot §—2 cot 26, and sum the series

1 6.1 [} 1 ]
tan 0+ tan pobo; tan gk b tan [iRe3)

12. (i) Sum the infinite series

1.3 2.4 3.5 (n—1)(n+1)
Zitsitar et e
(i) Prove that tan~! (n41)—tan—! m=cot™! (1+n-+5?).
Hence, or otherwise, sum the finite series
cot=? 84-cot~? T4cot™? 13+.. . +cot™! (1+n4n¥). [L.u)
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13. Prove that, if  is not an integral multiple of m,
3+4¢08 2608 dx-+...+cos 2nz=4 sin (2n-+1)s/sin ¥
d
sin x-sin 35+ +sin (2n—1)x=sin? nz/sin x.
Hence show that

fEow  aw

sin #

14. () Find the sum to infinity of the series

@ (338 () .

15,2 2020 3120 40,

@ T AT+ e
) 1t (L= )PP may s agei
and (#41)B=Cox?B-Cra¥=t o cyptn—t 4
prove that Go+ay+ay 4. . =1
and oot actat .. =(In)(n (@A) wu]

16. Show that, if —1<#<1, where # is a real variable, the infinite series
whose rth term is (4r—1)#™/r(r+1) is convergent. Assuming that x
has a value in this range, sum the series. L]

16. (i) I 0< (n++1)$ < jm, show that

sin ¢ sec n sec (n+1)p=tan (n+1)$—tan ng,
and sum the finite series
2 sec g sec (r-+1)g
-1

(ii) Find the sum of the infinite series
1010150

z"'xT"’a aitpate Ul
17. Find the sums to infinity of the series
2t g
® 2,+—+—+-.».
Lu]

(i) By expressing 1/x(x+4) in partial fractions, or otherwise, prove
at the sum of the infinite seri

++++ Ea

D
is 26/48.
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(cos nf)
o

(i) Find the value nl.z“ . LU]

19. Show that, if 1>%>—1, the sum to infinity of the series

is

What is the sum of this series when x=17 [L.U. Anc]

20. Shnwthatthnmmc{thninﬁnimnri&whmnhmil
10r+1

TN g"u 2—log 2} log 3. LUl

21. (i) By expressing (2n—1)(2n-+1)(20--9) in the form
A+B(2n)+C(2n)(2n—1)+D(2n)(2n—1)(25—2),
where A, B, C, D are constants independent of », show that the
sum to infinity of the series

is 34+§(Te—e).
(ii) Show that
= /0 sin (2n6)
e
922, Find the sums to infinity of the series

1.3.5
2.4.6

=sin (r sin 6) sinh (7 cos 6). Lu]

1
O 1+ e

15

(“)214 315

(i) —x +— s‘+ x‘+—x e
stating for what range of values of » each result is valid. 1 Ri3)

23, Re.wlve 1/(2n—1)(2n-+1)(2n+3) into partial fractions and show that
m to infinity of the ‘of which this is the nth term is 1/12.
that the sum to infinity of the series whose th term is

(—1)%/(2n—1)(2n-+1)(2n-+3) is dm—i. [L%5]
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24, Sum to infinity the series whose sth terms
@ UntrtDn+2): () (o cos -au(»+m
Deduce from (i), or omxwue prove that

FHRt i LU}

26. (i) Sum to n terms the series whose rth term is 1/(2r—1)(2r-+1)(2r+3),
and find the sum to infinity.
Find the sum to infinity of the series whose sth terms are
(42437 1)/ 1, (sin sB)/r 1. U]
26. () By expressing 4n'—1 in the form A+Bn+Cn(n—1), where
4, B, C aro constants indspendent of , or otherwise, show that
3 ("'""--nﬂ.
Pt
(@) Fmdmvnueolumwmmanpmwnw
@)=+ (14 §a) log (14+%)
contains 1o term in 2%, [L.U. Anc))
21. (i) By expressing n(n-+1)(2n-+1) in the form
An+-Brln—1)+Cnln—1)(n—2),
where 4, B, i show that
) 1'+:'+a'+I +
-1
(ii) By writing the nth term of the series

as a sum of partial fractions, or otherwise, prove that the sum to
infinity of the series is 37/36. L]

28. (i) Prove that
( )mw-mm»amno
=t
(i) Sum the infinite series

] 1
et
29. Find the sum to » terms of the series
1483080+ o4 (41— )1,

I am2a/n, prove that

145 c08 a-+9 co8 2a-+...+(4n—3) cos (n—1)am—2n, an

14580 o-+9sin 2ot +(4n—3) sin (n—1) am—2n cot lu. LUy
30. Show that L‘ {(1/52%) cos jnw)=log 2—} log 3.

Findthammoimml-(-l(w . Lu)
e
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_— = w4045
) (n+1)(2n+3)(2n+B)(n+4) "
prove that 2 un=ty36. LUl
it

3%, () By expressiog r/(&r—D(er (2r+3) in partial fractons, or
otherwise, sum to » terms the series

1 2
T3.573.6.715.7.9 9+"'
and show that the sum to infinity is 1/8.
(ii) Show that the series
1o o3 e
sitsrtatert
converges to the value (¢--3)/16e. L.
33. (i) Find the sum of the series
€08 (#+)+008 (¥+42y) +cos (¥+3y) +. .. +c0s (v+ny).
(ii) Show that the sum to infinity of the series whose rth term is
(F+r+1)r 1 is de—1.
sinh x
O X e s G %0
show that uy =coth n¥—coth (n+1)#, and find the sum to infinity
of the series whose nth term is uy. Distinguish between the cases
when x is positive and when ¥ is negative. U]
34. Find the sum to » terms of the series whose rth term is
1(3r—2)(3r+ 1)(3r+4)
and find the sum to infinity.
Find also the sum to infinity of the series whose sth terms are

@I ) cos (). wu)
35. Evaluate
o fm (ii),fnﬁ tin 4. ol

36. (i) Prove that the sum to infinity of the series
Pl ATHY WY 4(5-+1)
IR 41
is 3e+1.
(ii) By expanding the expression (¢—1)% in two ways and equating
coefficients of ##, show that, if # is a positive integer,
nn— |)

—57 T

nh—n(n— 1)

n(n—1)(n—2)
Lk v

s
wntmueqn;lmnl. [1 R3]
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31, 1f | i|<l find the sum to infinity of the series of which the rth terms
(@) #7/r(r+1); (ii) #* cos rx. Lu]
38. (i) If >0, show that tan~? (1/2r%) =tan™! (2r41)—tan? (2r—1).
Hence find the value ofé‘l tam (1/20%).
(ii) Sum the series

] r
BT ol ©u)

30, () Stow that 4 sod $=3sin $—sin 3¢,
m to # terms and to infinity the series whose mth term is
('““ (3m-1)}/3m-1.
(H) Sum the infinite series

where —jr <0< . 1 RiA]
40. Sum to infinity the series whose #th terms are
1/n(n+1) and (n cos #8)/(n+1)1.
Also sum to » terms the series whose rth term is eo.{.+(r—1)p;.

41, Siotch tho gragh of the curve ymcolty, fo valus of 7 1y|ng
between — and -+, the inverse function being regarded as many-
valued.
1 >0, and the inverse functions are interpreted as acute angles,
prove that tan-! (14a)—tan-! a=cot~! (1+a+a%).
Hence prove that, if » is a positive integer,
ot 340t T-4-0ot1 13+ .. 400t~ (14 m+n%) =cot= (1+42/n),
and deduce that the infinite series z" cot1 (w?) converges,  [L.U]

2. Find the sum of the first # terms of the series whose rth term is
l/r(v+l) and show that the sum to infinity is 25/48.
ow that tanh nf— unh(n—l)a-nnhn ser_h(u—x)v sech nf,
Findmmmolmﬂmuumot series whose rth term is
sech (r—1)8 sech 76 and deduce the sum to infinity.
Find the sum of # terms of the series whose rth term is sin rf. [L.U]

43. (a) Show how to evaluate the sum ):" up given that upmoy—oy_y,
where oy is a known fanction of 7.
Hence sum to # terms the series whose rth term is
@) Urlr+1)(r+2)(r+3) 5 (if) cosec 20.
(b) Sum to infinity the series whose rth term is (sin? ). [L.U.]
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. Prove that
sin a—sin (a- ) +sin (a+28)— .. —sln(u+(21l 18}
—sinnfcos {a-+(n—$)B) sec 46,

-
3

where a and f are real constants.

Ay, Ay.... Ay are the vertices of a regular polygon of 2u sides.
Prove that the sun of the lengths dudy, Aids.... didury diflers
from the sum of the lengths 4,4, A,A.. .., A;Am by a sect (,,/4.-),
where 2a is the length of the side of the polygon. U]

H

. Find the sum to infinity of the series whose rth terms are
@) Yrlr+1)(r+3) 3 (i) (22— 4r+3)/r |5 (i) (cos r8)/(r+1)1. [L.U]
Prove that the infinite series whose nth term is #"/n(n-+1)(n+2)
converges when —1<#<1 and that its sum, when —1<#<1, i
3_1_(1-a2
2 22t
Find the sum when =1. L)

(i) Find the sum to # terms ol the series

3
1234+2345+8456

and show that the sum to infinity is 20/36.

i $ (=1
(ii) Evaluate ¥ e, L.U)
=
48. Express (+*45x+2)/xi(x+1)* as a sum of partial fractions.

Find the sum of the first » terms of the series whose sth term is

(r*+6r+2)/r}(r+1)%. Deduce the sum to infinity.
What is the smallest value of # for which these two sums differ by
less than 0-1? U]

49, Find the sum of the infinite series whose #th term is cos#f sin®
where 0<0 <. LU]

log (1—2).

»
S

+..

80. () Sum the geometsic progression 14x-+... 4%, sad, hence or
otherwise, evaluate the sum 14+2¢+...+ns7~t and the sum to
infinity
R A
(i) Prove that 8C,+2("Cy) +. . . +n(*Cp) =281, Lu)
51. Find the sums to infinity of

’ 5

@ 3.6
(&) L.u)




CHAPTER 9
DIFFERENTIATION AND APPLICATIONS

9.1. Differentiation

Let y be a single-valued continuous function of x defined by the
equation y=fe. . . )

Then an increase in the value of # will produce an increment (positive,
negative or zero) in the value of y. Assuming a fixed initial value for
z, let 8y be the increment in y corresponding to an increment 8z in z.
Then

yHy=fE+d) . . . . ()
so that from (i) and (ii)
8y=[(x+8%) —f(x),
Sz +82) —fiz)
and i e 4
&

measures the average change in ¥ per unit change in z, ie. the
average rate of change of y with respect to  in the interval %,
ll,ukz—»o,j%)—/(’) tends to a finite limit, this limit may be

interpreted as the rate of change of y with tespect to  for the
initial value of #. It is called the differential coefficient (or the
deiatie) of /(o) with respct to = and s denoted by /6], by

d
2 e vy Dr,vy 2 by yyorby y.

In order that e L )
bt
should exist it is necessary that f{z+8%)—/() should tend to zero as
820, i.e. that f(x) should be continuous for the value of # under
consideration. In subsequent chapters it may be assumed that all
functions discussed are differentiable, i.e. their derivatives exist
except possibly at isolated values of .

9.2. General Rules

From definition (iii) the following rules (with which it is assumed
that the student is already familiar) may be established. We use
%,v,w,.. todenote functions of ¥, and 4, b, ¢,. .. to denote constants.
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L %(u+v—w)=:—:+:—:—:—-:.

I dé(ay)m%.

L %(w)wgaf%. (Product rule)
du_ v

. £(2)= » 9 (Quotient rule)

V. If y is a function of «, where % is a function of x,

By way of revision we establish several fundamental results. Other
standard formulae are listed below.

9.3. Two important limits
(1) For all rational values of n

m—an [
h

and lim -1,
a0

e
(i) When  is a positive integer, we obtain by division
an—an
—a
As z—>a each of the n terms on the right tends to an-!

=Ahaxt iy pantizdanel,

(i) When # is a positive rational number, we write #=p/g, where
 and g are positive integers. We also suppose a to be positive.
Then if y=2¥@ and bmatc

Poa_y—t_(9-b3)l(y=b)
z—a Y-t (9-5)[(y~0)

As z->a, y—b, and by (i)

(y7—89)[(y—b)—>pb»= and (y2—59)/(y— b)->gbe—2.
Ead

< lim (Plg)br—2e=(pg)ara-t =nan-1,
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(i) When i & ngative rational number, we write = —m, Whero
m s a positive rational number.

m—an

o lim - _“T_.m-x by (i)

v X=8

= —mami=nan-t,
Hence, for all rational values of »,
;—an
lim

o=
If in this result we replace = by x-+ and a by %, we obtain
lim (_—”+h)'_“-m-l.
m =%
(ﬂ)Wh:nBismusumdinmdims,HmsnTﬂnl.
=

=nanl,

In fig. 21, PQ is an arc of a circle with centre O and radius 7.
£QOP=§ radians and since § must ultimately tend to zero we shall
assume that 0<f<}m. The tangent at P meets OQ produced at T.

Then since the area of sector POQ lies between the areas of the

triangles POQ and POT.

frisin O< <t tan 6,
p
[)
\ l<—<sech,
n o
AN ;
QT 1>"‘+>m 6

‘But cos 61 as 6—»0+, hence also
"“T’..laso-m+.

, it follows that lim ".';-’-1,
il

sin 8
5 lim ——=1.
o 0
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9.4. Differentiation of x2
1f =2, where # is any rational number,
& i (x+ Bx)"—x’l
dx
=nﬁ"“ lmm (1) of §9.3.

9.5. Differentiation of sin x
i y=sinz

dy sin (z+8x)—sm P
F=lim BETATRE

200 (z+}51) sin §8x
=lim —————————=—
s %

—tim cos (x+6). 527, putting 6x=20
lim g
=cos x from (2) of § 9.3.

Similarly we prove that if y=cos , %= —sin %,
9.6. Differentiation of sin™ x

1f % and y are numbers connected by the relation z=sin 3, we
write y=sin"tx and call y the inverse sine of %. To each value of #
in the range —1<x<1 there is an infinite number of values of ¥,
but there is one, and only one, value between —jr and +r. The
angle between —m and 4 whose sine is z is called the principal
value of sin-1x. The principal value of tan-t # is defined similarly.

If y=sin-1z, where —{m<y<inm,

amsing, mens
y G
and so, by rule VI, "’ -l
sy’
Now when —jr<y<im, cnsy>0, hence cos y= ++/(1~#7)
a 1

and

a3

+v/(

The angle between 0 and = whose cosine is  is taken as the principal
value of cos~tz. The method given above may be used to show that if
y=cosz, where 0<y<m,

y_ 1
& VIS
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9.7. Differeatlation of &=
Iy=es,
&y | eee
Fim—y
1
=hml‘( ),

But (see § 6.14, Example 3), lim T" ;
0

©

.y
I 6%,
9.8. Differentiation of log x
Ify=log x
=¥,
ax
G byieT
-
Lol
R
99. Standard results and
functions)
Unless otherwise stated, the base of logarithms is .
y & Notes as to Method
M = | ne See § 9.4,
n au a,. d, . du
(ii) nyun-1 = By rule V, d—z(u') = E(uw) Xgze
(i) = | aess See §9.7 and § 0.13.
(i) logz }‘ See §0.8.
ldu a 4 du
@ logu | 1% | ByrleV, 2 (log u)= 2 log ) x e
(vi) &= | atloga | See§9.15, Example 5.
(vii) logax ; logee | See §9.15, Example 6.
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9.10. Standard results (trigonometrical functions): x is in
radians

dy

y 2 Notes as to Method
(i) sinz cos % See §9.5.
(i) cos x —sinz
(i) tan sectz Write tan z=sin x/cos x and
use rule IV,
(iv) cotx —cosectx Write cot #=cos x/sin ¥ and
use rul
(v) secx sec % tan x Write sec x=1/cos  and use
rule IV,
(vi) cosec x —cosec z cot z | Write cosecx=l/sinz and
use rule
(vii) sin (ax+3)| acos (ax+b) | See§9.13.
(viil) cos (ax+8)| —asin (ax+5) | See §9.13.

9.11. Standard results (hyperbolic functions)

y o4 Notes as to Method
FA
@) smhz | coshx Waie sinh 2= 3(er—) and
use § 9.9 (iii).
(i) coshz | sinhx Write cosh x=}(e*+¢%) and
use § 9.9 (ii).
(i) tanhx | sechdz Write tanh x=sinh x/cosh ¥
and use rule IV.
(iv) cothz | —cosechtx Write coth x=cosh fsinh x
and use rule
(V) sechx | —sech x tanhx | Write sechz=1jcoshx and
use rule IV,
(V) cosechz | —cosechx cothx

Write cosech #=1/sinh x and
use rule IV.
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9.12. Standard results (inverse trigonometrical and hyperbolic

functions)
y % Notes as to Method
Y] 1 L
O sl | | See§98: —dr<y<im
i 2% —1 .
(i) cos™ i | vE—m See §9.6; O<y<m.
T _ g @
@) il |t | s=atany; find ¥ in terms of  and
use rule VI; —}w<y<im.
" bt ® 1 —asinhy: ax
@) sl | ey | #=asinhy: ﬁnddymtumsofzmd
use rule VI.
mE_ L ). ; fnd
(v) cosh 7 | Ve % nooshy.ﬁndd in terms of x and
use rule VI; 0<a<zand y>0.
) tanbe® | A | xm ; find 2
)tk Z | 8 | wmatanhy; fnd i termsof s and
use rule VI; 2?<a?
i A0 eI O ; fnd 2
i) cot 2 | =% | smacothy; find 7 in terms of xand
use rule VI; x'>a?

9.13. Extensions of standard results
The above standard results may be used in conjunction with the
six general rules to find the derivative of a given function.
For example, if y=/f(az-+), we write y=/(«), where umax-+5, and
byruleV, Zaf(ax+).
Applying this result, we have
'%;(u+b)!-ﬁa(u+b]"‘. using § 9.4,
a )
.T;('“) =ae%, using § 9.7,

3
3x+4

';ix sin (25—5)=2 cos (2x—5) using § 9.5.

d N
A log (3x+4)=. , using § 9.8,
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9.14. Differentiation of logarithmic functions
1f y=log f(x), we write y=log %, where w=f(x), and obtain by
rule ¥

32+1 4 .

; £ logsin 22= :

Freopl zlEsn=Reotds
Some logarithmic functions are more easily differentiated if the

1aws of logarithms are used to simplify them.

For example, ;; log (#+5—9)=

Example 1

T D)

=—x+{log (1+24)—log (1—29)},
dy, 2 2
ax _l+i{l+k+l—7;}

14450

—ry
9.15. Logarithmic differentiation

In the case of complicated products or quotients or functions of the
form u®, where % and v are both variable, it is advisable to take
logarithms before differentiating. This process is called logarithmic
differentiation.
Example 2

u y x1+2Y)?

YA’
log y=log x-+3 log (1+4")—} log (1+5%).

Differentiating with respect to # we have, by § .9 (¥),
ldy_1, &

B raras we v

- 147524 65%
A7)

| dy_(1+Ts e (4
o QLRI

tdx
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Example 3
Differentiate with respect to %,

(@) J (“‘+u+’. (i) (cosh #)*.

n'—u+x'

Lot ,-J:

Then log y=Hlog (a*+as+4")—log (a?—ax+4}
L ldy_ 1{ at2r (-¢+z,)}

BT ) G
1{ 2a(a+ ) —dax® }

2| @rarr )@ —arta)
afa’—sY)
s e
(i) Let wm(cosh x)".
Then  log w=s log (cosh #)

l"_“-h, (cosh %)+ tanh ¥,

d—;-(bg (cosh %)+ tanh x}(cosh %),
Example 4
1t y=uow, where 4, v and w are all fanctions of , then
log y=log u+1log v-+log w,

ldy_ldu 1dv ldw
Syaiatiatan IO

Y iy,

This is an extension of the product rule.

Example 5
1t y=a, where a is a positive constant, then
log y=xlog a
. lay
5 d'—log a

dy .
ie. Zmatloga.

[
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Example 6
16 y=loga x, then
aV=x
and so ¥ log a=log #.
dy 1
Hence Floga=_
a_y 1
x Iog a
-; logas.

9.16. Successive differentiation

Ity is & function of z, then, in general, 2 9 s also a function of .
The desivative of & Y62 d’) is denoted by % 7Y by ysorbyy”; the
dcdvaﬁveold‘yudmotedbyd’y by 3 or by y” and so on.

s’

Below are some examples of functions for which a general formula
can be found for the nth derivative; such formulae cannot usually
be obtained.

It y=(ax+b)m™,

y=am{ax+ by,
Yy=atm(m—1)(az+5)™,

and, in general,
Yn=atmim—1)(m—2)...(m—n+1)ax+ b,
(i) If y=log (ax+b),
_(=1 =i
(ax+b)»
(i) If y=sin (ax+5),

yy=a cos (ax+b)=asin (ax+b+in),
4= —a* sin (ax+b)=a* sin (ax+b+7),
Yy=a% sin (ax+b+§n)
and, in general,
Yn=a" sin (ax+b+nm).
Similarly, if y=cos (ax+8),
Yn=aP cos (ax+b+inm).
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(iv) I y=cazsin by,
y=e%%(a sin bx+b cos bx)
=Re% sin (bx+a)
where (see § 1.5, Example 4)
R=+/(@*+5%) and cos a:sina:l=a:b:R.
Repeating the process, we have
y=Rle sin (b5+2a),
and, in general,
ya=Rress sin (bx-+na).
Similarly, if y=e%* cos bz,
ya=R8% cos (bx-+na),
where R and a are as defined above.
Applications of these results are given in the following examples :

Example 7
Find the fourth derivative of =—E%_ with respect 10 1,
e ] g
14+3%
u L= v ]
R
T—2: 242"
24(41) 41
by (), = e
16 1
'“{u—m"(un'}‘
Example 8

Find the sisth derivative of 6% cos 3 with respect fo .
By (i), if Y=t cos 37,
y=e%(3 cos 35—3 sin 3s)
=34/26% cos (3x-+m)
and e=(3v/2)'%* cos (35+}m)
==5832¢% sin 3.

9.17. The theorem of Leibniz
r
Let % and v be functions of » and let “"-f_:" u,-:’:.
Then, if y=uv,
Yr=t0+v,4,
Y=g+ 24,0, + 00y,
Va0 Bthg0, + 34,0, + 40y,
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These results suggest that when # is a positive integer
Ya=tén0+7C,ttn_y0, +9Ctin g0yt . .. +9C thn_eOr+ ...
+Cathaytuve . (i)
where the coefficients 9C,, 7C,,..., #C,,...are those which occur in
the binomial expansion of (1+x)
‘This is Leibniz's theorem, and we prove it by induction.
Assuming that (i) is true for #=#, we obtain by differentiation
s =toppv+ (LHEC v, + (Cy +ECo)up vyt
+(Croy HFC Yk paaVr+ o+ (FChog+ Dbyt wvgy,
=g 0 +EC 0, +RIC e vy L AN Ot L
+EICyuy 0+ Uty
since ¥C,_+¥C,=F*C, by Vandermonde's theorem (p. 74). This
result for y,, is exactly that which we would obtain by substituting
n=k+1in (i) and so, if (i) is true for n=k, it is true for n=k+1.
But the theorem is true for n=1, 2, 3 and so it is true for all positive
integral values of 7.
Example 9
Find the nth derivative of x%% with vespect to x.
Using Leibniz's theorem with u=e? and v=2", we have uy=e%, and
v,=3%%, vy=6%, v =6, Uy =0, when #>3.

;%(M =e7{x*+-3nx* 4 In(n—1)x+n(n—1)(n—2)}.

Example 10
If y=lrt /s hatn, prove that (s54aY) 3345 Zmnty=0, and by
differentiating this vesult k times show that
(5% 0t (ko Dy + (B — Yy =0, whero yg =2,

Frd
y={r+v/ (= +a)r
dy 0 gt x
=V ey "{1+—\/(~' +,.)}
1/("+¢‘)
..\/(3‘+A‘) =ny. .. s s

Differentiating again, we xmve

dy
—nZ=o,

Vittal 3 e U - V(,, T d‘

o (e dx'+xz‘»n‘y=o by ().
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‘We now differentiate this result 4 times using Leibniz's theorem for
each product
{(5*+Myesat2h5ypes+ A= Dye}+ (#9es+hye}—niye =0,
ie. (#*+ 6" miat A+ Dsypn+ (B —ntlyp =0.
Further examples of this kind will be found in Chapter 11.

dy iy
9.18. To find 52 and ZZ

() when x and y are given in terms of a parameter ;

(8) in the case of an implicit function (ie. one in which neither
variable can be conveniently expressed in terms of the other).

(4) Suppose % and y are given in terms of a parameter ¢ by the
equations x=x(), y-:y(
Thmdetwtmg by 2, "byy wbygandz’,byy.weh.ve

A dy, & _dy de
& amata "

By d ot dNE_ o

and F 5@ -a(Da-er-me

Example 11

If xmsinh 8, y=sinh pt, prove that
(l+t')g+x%-fy.
wmsinhf,  y=sinh ph,
$mcosht  ymp cosh pt
#=sivh{  §=psinh pt.
o ¥ _p cosh pt ®

e % cosht
a g-w_n)/y-@-m £ sinh pi—p sinh ¢ cosh ph)jcosh®t . (l)
From (§) and (i) after simplification we obtain
0499 T2t 2 et ot prompty.

(&) The method of dealing with implicit functions is best demon-
strated by an example.
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Example 12
Find '—"' when ax*+ 2hry+by’=1 (a, b and k being constants).
axt+2hay+by'=1 . P . )
5 dy L4
- zu+w-(y+:2;>+2by3=o

dy__axthy

R Py e
(lu+by)(n+»; —(n+hy)(»+bj{)
Gt T
a(-2)
Tt

)(ax*+ 2hxy +by")
(hs+by)*

by ).

P )

&y
2

by (i)

—ab
(hx+by)*
Exercises 9 (a)
For brevity, yy is written for dry[ds".
1. If y=tam! #, prove that (1+2*)y,+2xy,=0 and deduce that
(1+3")ynta+ 201+ Daynpa+n(n+1yn=0.
2. 1f y=log {/(x+1)+4/(x—1)} prove that (#*—1)y,+#y,=0 and that
(#*=Dyatat (2n+1)5Ya4r+92ya =
3. If y=sinlog (14+), prove that (14-2)y,+(1+)y,4y=0 and that
(142) a4+ @0+ )(1+2)ner+ (3 + Dyn=0.
4. If y=4/(1—3") sin™ x, show that (1—3%)y,+#y=1—3and that, when
732, (1=#ta— 20+ 153ty — (92— 1)yn =0.
5. 1f y=(sinh~! z)/a/(145Y, prove thlt (143%)y,+2y=1 and that
(A+2)yea+ (204 3yt (1) yn =
6. If y=sin (m sinh? ), prove that (l+x‘)y|+xy‘+m‘y=0 and that
A+ ntat (294 1)3Ynts+ (3 +m7)ya =
7. Uye(s* 1 where u is  constant, prove that (1—s)y,-+Insy =0,
Deduce that (1—#")ypss—2#ynt1+5(#+1)yn=0. [Leeds.]
8. If y=3m log #, show that xy,=my-+-+. Differentiate this equation
 times, where #>m. L.U]
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9. Find y, when () s¥/ahHyYBr=1; (i) #43+y¥omatlt; (i) %450mab,
10. Find y, when #=3 cos §—cos* 6, y=3 sin f—sin® 0.
11. Find y, when #=a cos*§, y=a sin? 0.
12. I y=(2¢—n)" sin (%/3), find the value of y, when x=}m. L)
13. By first proving that the nth derivative of cos ¥ with respect o
is 1® cos (m#-+}nm), show that the 2mth derivative of 2% cos ¥ when
=1 has the value (— Lym+imim=3{rd.4 s — dm). rLu)
14, I yome® and y,._‘ Y for all positive integers #, prove that
V=25V —2nYp=0.
1t u,,—r"y., prove by induction with respect to r that, for r<,
N L8 ornin—1)...(n—r+ s
dhuy
aad beace evaluate 2.
Miscellaneous Exercises 9
For brevity, y, is written for dry/ds.
1. (i) Differentiate {+(1—#)}# and cot {1/(*+1)).

(i) If y=4/(a*~ 5%, prove that x(a*—x")y,=a%s,. [Durham.)
2. (i) Differentiate (%4 2+7)/(3x— 1)t and 1/{sin (=1)}.
(i) If y = sin (1/x), show that x4y, +y=0. [Durham.)

3. (i) Differentiate (+—1/s} and (1—sin #)/(1—cos ).
(ii) Prove that, if sin #=2 sin $ and x=cos 6—2 cos ¢, then
x/df=x tan §. [Durham,]
4. Differentiate with respect to # :
@ @©) Vot (=)} () o=@ +5)/(Tx—1).
[Sh

5. Differentiate y=sin~? {2axy/(1—a%")} and y=(e==*—1)/(e*=+1).
[Durham]
6. Find the derivatives with respect to # of
(@) v{(2+sin*s)/(1—sinx)};  (b) tan}{1/(1—#")}. [Sheffield]
7. Differentiate with respect to ¥ :
(@) (5*—2) sim? () +15/(4—5") 5 (ii) log sec* (/a) 3
(i) (14e2)/(1—er2). [Sheffield.]
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8. (i) Differentiate with respect to x:
xsinx
{Tcos %)
(i) 1f y*=sec 2, prove that y,+y=3y%.

. tan? ((a4ba)/(a—bx)}, log (sec x+tan x).

9. (i) If x=a(2 cos t-rcos %), y=a(2 sin t—sin ), find dy/dx in its
simplest form in terms of ¢ and prove that
sa %‘;=cosec sec® i,
- d 1 2 1
@) Prove "““ﬁ(m Tos a) NI

a8
and hence find ."m. Ly
10. (i) If y=(log »)%, find dy/dx.
(i) If y=tan (m tan-12), prove that (1+3%y,=2(my—2)y,.
(iii) Gmn that x=4b cos §—b cos 40, y=4b sin §—b sin 40, find dy/dx
terms of 6, and prove that d?y/dx?=(5/16b) sec® §6 cosec 30.
11. (i) If y=sin (m sin? 2), prove that (1—#})yy— 1y, +miy=0.
(if) If y=tan™? (sinh %), prove that y+(tan y)y,*=0. rLu]

12. (i) Evaluate % (%% log 2) when ¥=}.
(ii) If y=3s/(x—2)(x+1), show that dy/dx is negative for all real
values of #.

(i) If y=(n--142)"Y/(n+2)", n is a fixed positive integer and x is
positive, find dy/dx by logarithmic differentiation, and show that
 increases wif

Honce, ot otherwise, show that a+ {x/n))"<(l+z/(n+l))""
18. (i) Differentiate with respect to x
sec (+/4) and log (tan ev2).
(ii) 1f y=a cos (log bx)+b sin (log ax), show that
Fyatay,+y=0. [L.U]
14. (i) Obtain in their simplest forms the derivatives of
(a) loglog z,  (b) tanh~1{(24/%)/(1+)}+tan? {(2v/3)/(1—5)},
(ii) If =41, y=A-+1, where A is a variable, show that.

o/
[ \ax, o

is constant.
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16 1 y—g(url #), show that (s3+1)y,+2(n-+ )y, + n(n-+ 1)y =0.

16. Differentiate with respect to » the following functions :
@) —#)/(1—+)¥; (i) tan? (mtan); (i) sec{} log ('”-H")}ELU]
17. Differentiate with respect to ¥ h
Tog (1-+sin 24)+2 log {sec (n—=),
and xprss the result i it smplst form. Explaia wh the reult
s of such simple form. B
18. Find from first principles the derivative of ¥ sin » with respect to ».
Express in their simplest forms the derivatives with respest to # of
(i) tan? {2¢//(1—2)}; (i) log [*{(x—1)/(x+1)}}].
1f ¥=tan ¢ and y=tan pf, where p is a constant, show that
(L) /ds* =2(py —)dy/ds. Ly
10. Find the nth differential cocfficients with Tespect to x of
(i) cos x; (i) log {(1—2)/(1+)}.
Find the value of 2 = (n sin¢ # cos 3) when ¥=u/10, Lu]

20. (a) Differentiate (z/za) log((x-ﬂ)/()v+u))+(l/a) coth=!(s/a). What
deductions can

® I(y_‘"ﬂcm b, show t.haty,.=v'o“ccs (bx+m, where r*=at+4-b%,
=b/a. Lu]
21. (a) Differentiate
@) tan~ {(1—v/2)/(1+v/x)}; (i) =2
(8) If x=cost, y=cos 2p#, prove that (l—x‘)d‘y/h'—xly/d:+lp’y—0.
and deduce that (1—2")ypsa— (28+1)3Yn4+ (41— nt)yq =
[I-U]

22, (4) Define the derivative of a function and from your definition,
assuming the exponential theorem, prove that the derivative of
a%is a* log a.
(8) 1f y=t®4.4-m and x =4+, prove that
(@) (3= 4)(dy/ds) = (5 —4).
() (21— 9)dty/ds*+2dy]dz—my=0. L]
23, Differentiate with respect to 7, expressing each differential coefficient
in its simplest form :
(@) B3x+1)%/(2—2): () {#+v/ A+ (9 liﬂ"("\/“"-‘&)-)b]
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24. Differentiate tan~?{}2%/4/(1+4%)} ; also show that

2ot (¥ tan™? 5) =2 sint 6, where x=cot 6. L.u]

26. (i) Differentiate with respect to #, the functions log tanh j» and
(1—x2)302 ginr.

i) Fmd and simplify the differential coefficient of log #— (¥—1)/v/%

th respect to #, and hence show that, if > 1, log ¥ < (x—l)/\/z.

26. Find from first principles the derivative of # cos x with rupec! tox.
Express in their simplest forms the derivatives with respect to x of
(i) tan{(3—#)/*/(1—8#)},  (ii) 4 log . Ly
. T y=sin nf cosec § and x=cos 6, prove that
(1—#%)dyJdz—zy+n cos nf=0
and (1= dty[dzt —Bxdy[dx+ (n*—1)y =0.
Show that, if n="7, the latter equation is satisfied by a polynomial
of the form #*4-b#*+-cx*-+d, and find the values of b, c and d. [L.U.]
28. Define the derivative of a function, and from the definition find the
derivative of sin 5%
Find (i) dy/dx if y=sin (s+3)?,
(i) dty/ds* if x=3 cos 6—cos 30, y=3 sin f—sin 3.  [L.U]
29. (i) Differentiate sin?{x*/(at+#%)} with respect to x.
(ii) 1 y=" log 7, prove that zyn4,=n | LU

9
3

@
.=

Find from first principles the differential coefficient of tantx with
respect to x. Hem:s prove that

;, {tan™? (as+b)}=af{1+(ax+0)"

stating any general theorems on differentiation used in your proof.
If y=27—tan~? z, prove that

a
& o —2(14 (1420, L)
31. Obtain and simplify the first derivatives of the two functions
cos™1 {(a cos x+b)/(a+b cos #)} and tan~1 [1/{(a—b)/(a-+b)} tan 5]
and explain the significance of your results. L.U]
" 1/4\" 1 (=1» 1
32. (i) Prove u’“.‘:(a_x) e T

(i) If y=A tan §6+B(2--0 tan §6), where 4 and B are any constants,
L)

prove that (1+cos §) :'—:"
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33. Differentiate with respect to »
(i) cos™t 2v4/(1—2);  (ii) tan~2{(cos x—sin )/(cos x+sin x)}
reducing each result to its simplest form.
1f y=ax sin (b/x), prove that x'y,+bly=0. Lu)
34. Find the functions p(x) and q(+) such that y=(sin~! %) satisties the
differential equation p(%)yata+q(*)yat1+n'ya=0 provided n>1.
[Durham.]
35. (i) Find the derivatives with respect to » of the functions
sin? {y/(=1)}, tanh~? {y/(2—#)}
for 1<x<2.
(i) 16 (x—u)'+(y—b)'-", where a, b, v are independent of x and y,
tion between ¥,, ¥, ¥, Which is independent of a, b, 7.
LU
36. (i) Differentiate with respect to x
(a) sin™2 4/(1—2%);  (b) tan? (x/e*')+tan? (%)),
(ii) Find the nth differential coefficient of 1/(v—1)*(x—2). LU
37. (i) Diflerentiate with respect to »
(a) tan{4y/5/(1—~4x)};  (b) log [%{(+—2)/(x+2)}*/].
(i) 1 x=a sin b sin (alfb),
y=a cos t—b cos (aift),
where 4, b are independent of £, obtain expressions for dy/dx, dy/dxt
in terms of £.
38. (a) Differentiate the following functions with respect to » 3
log (sin ), tan? (log #), (¥+1/2)%.
(b) Prove that the differential coefficient of the function
GHD(E+2). . (x+n)
has the value 1 {14—;+§+..'+%}
when #=0. wu)
39, Find the {nlluwlng derivatives :
(6] E: {sio (cos x)} (o<x<n).

(n) 2 where x=cos 20 and y=~0+sin 26,

() = (.u tan~ ) when #=0. Luy
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9.19. The gradient of a curve. The positive tangent

If P and Q are neighbouring points on a continuous curve, the
tangent to the curve at P is defined as the limiting position of the
chord PQ as Q moves along the curve towards P. The gradient of
the curve at P is defined as the gradient of the tangent at P.

A line PT drawn along the tangent at P in the direction of  in-
creasing is said to be drawn in the positive direction of the tangent at P
and is called the positive tangent at P. The angle between the positive
-axis and the positive tangent at P is gencrally denoted by y, and
fig. 22 shows that y is cither a positive or negative acute angle.

Fig. 22 Fig. 23

In fig. 23, P(x, ) and Q(x+ 5%, y+3y) are neighbouring points on
the continuous curve y=f(x). PM, QN are perpendicular to Oz, PR is
perpendicular to QN and the positive tangent PT at P makes with Ox
an angle i where —}m<yi<}m We shall assume that the curve
has a unique tangent at P,

We have PR=5z, QR=38y={(x+8x)f(x) and tan RPQ=8y[sx
As Q moves along the curve towards coincidence with P, 8x-0
LRPQ— and so

i & g L 80—
bR i =

ie. %:./'(,) =tan §.
Hence :_i measures the gradient of the curve at P(z, ).

Note that the fact that the tangent at P is not parallel to Oy implies
that 3y/8x tends to a finite limit as 8x—>0. If the tangent at P is
parallel to Oy, 3y/5x docs not tend to a finite limit,
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9.20. The tangent and normal to a curve

‘The equation of the tangent at the point (x;, ,) to the curve y=f(x) is

y=n=L=)=-x)

where f'(x;) denotes the value of f'(x) when x=1,.

‘The equation of the normal at the same point is

S @) =3)+(x=2)=0.

Example 13

The tangent to the curve y([+;a)-2 at the point P (2, §) meets the curve
again at Q. Find the coordinates

Hy(14+2Y) =2, (1457 %+z-y-n.

Hence at P(2, §), :i:-—s/zs and so the equation of the tangent at P is

84-+26y=26.

‘This tangent meets the curve again where

2 26—8%
1+s 25 °
4r'— 135" 4 43+ 12=0.

This equation gives the abscissac of the three points in which the tangent
at P meots the curve, and since two of these points coincide at P we know
that (¥—2)* is a factor of 45*—13+*44x+12. The remaining factor is
4x43, whence Q is the point (4, §§)-

9.21. The mean value theorem

The mean value theorem states that if f(s) is differentiable in the

interval a< z<b, there is a number ¢ between a and b such that
SO0

Geometrically this means that if 4 and B are the points on the curve
y=/(a) (fig. 24) at which z=a, x=b respectively, there is at least one

O wa x=f xsb  x
Fig. 24
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point on the arc AB at which the gradient is equal to that of the chord

‘The analytical proof of the theorem is beyond the scope of this book.

9.22. The significance of the sign of £(x)

A function /(x) is increasing in the interval a<z<b if /() increases
as x increases from a to b inclusive. A function f{z) is decreasing in the
interval << b if f(x) decreascs as  increases from a to b inclusive.

I f'(x)>0 throughout an interval, or even if f'(x)>0 except at a
finite number of points at which f/(x)=0, then f(s) is increasing in
the interval. This appears from consideration of the curve y=/(x) ;
for /() measures the gradient of the curve at any point (%, ).

‘There is a similar test for a decreasing function.

Fig. 25

Fig. 25 shows the graph of a continuous function f(x) which is
increasing between the points 4 and B, and between the points D and G.
Between the points B and D, f(s) is decreasing.

9.23. Maximum and minimum points

11 f'(x) changes sign from + to—as # increases through the value ,

(%) has a mazimum value when x=h, i.e. the ordinate f(A) of the curve
¥=, f(x) ‘exceeds (algebraically) neighbouring ordinates on either side.

is clear from the fact that () is increasing immediately to the

}3(& of x="h since f'(x)>0, and decreasing to the right of x=b since

Slnoe F(H)=0, it follows that the tangent to the curve y=fn) ata

ﬁg

There s a similar test for a minimum point : if f'(z) changes sign
from — to + as x increases through the ‘value 4, then /() bas a mini-
mum value at x=F.

Since f'(£) =0, the tangent to the curve y=/() at a minimum point
is parallel to the z-axis. In fig. 25, D is a minimum po

Points on the curve y=/(x) at which f(z)=0, ie. st which the
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tangent to the curve is parallel to the z-axis are called stationary
points. In fig. 25, B, D and F are stationary points. The points B
and D at which f'(x) =0 and changes sign are called turning poinis.

9.24. Concavity and convexity

11 the gradient of an arc of a curve increases as  increases, the arc
bends upwards and it is said to be concave up or convex down. The
arc lies above the tangent at any point of it.

i the gradient of an arc of a curve decreases as * increases, the arc
bends downwards and it is said to be concave down or convex up.
The arc lies below the tangent at any point of it.

If f*(x)>0 at every point of an arc, the arc is concave up, for

2 /61>0 and s0 /'), the gradient of the curve is an increasing

1unchon 1£ f7(3) <0 at every point of an arc, the arc is concave down
ce the gradient of the curve is a decreasing function.

Tt points where f*(x)=0 and changes sign, the curve changes the
direction of its concavity and crosses its tangent. Such points are
called points of inflexion.

A point of inflexion may occur where f'(x) <0, as at C (fig. 25),
where f*(x) >0, as at E, or where f"(x)=0 as at F.

9.25. Other tests for maxima and minima

Considerations of the concavity of a curve lead to other tests which
provide sufficient conditions for maxima and minima of a function
with continuous second derivatives :

if f'(a)=0 and f*(a) <0, f(x) has a maximum value at x=a;

i€ f(8)=0 and f() >0, f(x) has a minimum value at x=b.

Example 14
In the triangle ABC, the side BC is of length a. P is a point between B and
C such that BP=x. The perpendicular from P o AB meets AB in D, and
the perpendicular to AC through P meets AC at E. Find the position of P
when PD.PE is a maximum.
Show that DE is a minimum when x=AB cos B, and show that the greatest
value of DEis asin BorasinC.  (LU]

A 1 y=PD.PE (ig. 26)

—x(a—3) sin Bsin C
3 ay o

D, P (-2 sin Bsin G
Bx P a-x € & o 2sinBsinC.

ad
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ds

=0 when ¥=}a and for this value of » g<0, since ZB and
£C are both less than 7. It follows that the product PD.PE is a maxi-
‘mum when P is mid-point of BC.
i ADPEiscyclic and AP i its i
Hence, applying the sine rule to A DAE we get DE=AP sin A.
us DE is a minimum when AP is a minimum, i.e. when AP is per-
‘pendicular to BC and x=AB cos B.
DE has its greatest value when P coincides with B or C depending on
whether AB or AC is greater. This value is cither 4B sin 4 or AC sin 4,
i.e. asin Corasin B.

Hence

Example 15

The brightness of an illuminated surface varies inversely as the square of
the distance from the sousce and divectly as the cosine of the angle which the
rays make with the mormal to the surface. Find at what height on the wall of
a room a source of light must be placed to produce the grealest brighiness at a
point on the floor af a given distance a from the wall.
1f, owing to the wall being insuficiently high, it is impossible o place the
source of light at the point which gives maimum mathematical brightness,
]
Lt I be the brightness of the illumination at P, a point distant # from
the source O, and let § be the angle which the rays
make with the normal to the surface at P (g. 21).
Then  I'=(k cos 6)/s* where k is a positive constant é
=(HaYsin*fcosd . . . ()

:—;—(k/a‘) sin 6 (2 cost f—sin* ), P
P a
From (i), =0 gives zero brightness Fig. 27

di
and ;-;=o when 0=0, or tamizy/2.

1f 0 is slightly less than tan-14/2, %w; if @ is slightly more than
dr
19,4
tan™ ‘/2‘.13<°'

‘Thus tan~ 4/2 gives Iy and in this case O must be placed at a height
}ay/2 up the wall.

11 the height of the wall is less than ja4/2, the source of light O should
be placed at the top of the wall, for 7 increases from zero (when 6= and
0 is at the foot of the wall) to its maximum value (when O is at a height
"’_},/’) and then decreases as § tends to zero and O moves further up the
wall.
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Example 16

Ths onds of a right prism .m vegular polygons of n sides and the area of the
whols surface of the prism is S, When the vohume of the prism is a mazimum,
pm:lhallhamnfnnludumdcpmn/lkl value of n. Deduce that,
when n=4, the right prism of maximum volums is a cubs L.U]

Let the polygonal ends of the prism have sides of length 2a. Then their
area 4 is made up of » isosceles triangles of semi-vertical angle 7/n and
base 2,

s A=natcot (mjm) . . [0}
1 4is the length of the prism, i total surface area and ¥ ts volume
S=24+2nal . . (i)
and Vel A(S—24)/200, foom (i)
={a cot (m/n){S—2na’ cot (m/m)} by (i),

"_"-i <ot (m/n){S—Ona® cot (x/n)},

and .w =—6na cot? (m/n), since S is constant.

2—'-0 when S=6na® cot (m/n)
and a=/{(§S/n) tan (m/m)}.
‘When a has this value, %«, and from (i)
A= . . . L L @)

Hence when V is a maximum, 4 is independent of .

When #=4, 4=da? by (i) and S=G8a%+8al by (i).

Hence, by (iii), for maximum volume

4a*=}(8a"+8al),

ie. l=2a.

It follows that the prism of maximum volume is a cube.

Exercises 9 (5)

1 A curve is traced out by the point whose co-ordinates are
#=2 cos f+cos 20, y=2 sin §—sin 26, where 8 varies from — to .
Find dx(d6 and dy/df, and deduce that the gradient at the point §
is —tan §0. Show also that the equation of the tangent o the curve at
this point is # sin }6-+y cos }f=sin §. LU,
2. Find the equation of the tangent to the curve y=s-x* at the point
(—1,0). Findalso the maximum and minimum ordinates.  [L.U.]
3. Show that the tangent to the curve s-+y%=3asy at the point (. y,)
is #(x,’—ay,)+y(y,'—ax) =axy,. Write down the equation of
tangent at the point (8a/7, —124/7), and verify that it meets the curve
again in the point (—164/21, 44/21). L]
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4. 11 the tangent at the point P(af’, af*) on the curve ay*=3* meets the
curve again at 0, find the coordinates of Q.
If N s the foot of the perpendicular from P to the z-axis, R is the
point where the tangent at P cuts the y-axis, and O is the origin, prove
that OQ and RN are equally inclined to the z-axis. Lu]

5. Find the equation of the normal to the curve y=2s/(s*-+1) at the
point (3, §). What is the equation of the tangent at the origin ?
Sketch the curve mugmy, giving the coordinates of the maximum
and minimum turning-poin

6. Show that the equation of the tangent at the point ¢ on the curve
#=a cos* f, y=a Sind £ is # sin f-+y cos f—a sin  cos =0,

Prove that the locus of interscction of tangents at right angles to

one another is the curve whose equation in polar coordinates can be

expressed in the form 2'=a? cos* 2. U]

=

Sketch the curve y=#°.

A s the point (1, 1) on this curve. Find the equation of the tangent
to the curve at A. If this tangent meets the curve again at B, show
that B is the point (—2, —8).

. Sketch the graphs of the functions 142x and 6% with the same axes,
and prove that the greatest value assumed by the fanction 14 25—e%
is log (4/e).
Find the greatest value assumed by the function sinh (2¥—e%). [L.U.]

»

50

cmn that £(0)=0 and f(x)> 0 when x>0, prove that f(x) >0 when
0.

prove that (i) V/(144%) > 142v—2¢ when >0,
(ii) log (14+%)<#—}s*+15* when x>0,  [Sheffield.]
0. Show that if f(0) is positive, and f(0)=0, then /() has the same sign
as x for values of » near
T T S T TR el i l)
,).—- Nt
=1 n 1tz
find and simplify the differential coefficients of f(x)—1og (1-+#) and of

F(x)—log (1-+2) and prove that, for all positive values of , log (x+~)
lies between f(z) and F(x).

and  Fla)=s—j#*+...+

1. By considering the derivative of the function
f(x)=sin = tan x—2 log sec =
prove that f(x) steadily increases as x increases from 0 to fw. Show
also that the graph of the function has no inflexion between these
limits.
Show that the function 2 sin » tan x—5 log ser. ¥ has one minimum
wvalue in the range 0.<x <}m. L.u]
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12. u S(¥)=e%(s*—6x+12) — (+'+65+12), show that f*/(x)>0 when

" Deduce that £(x)> 0 when #>0 and that tanh x> 3:/(»-(»3) when
x>0, U]

B

. Discuss the stationary values of the function 6 log (x/1)+(~—7)(x— 1)
for positive values of 7.
Deduce that the oqmmn 6108 (#/7)+ (x—7)(x—1)=0 has only one
real oot and state its val (Sheffield.]
14, Find the equations of the inflexional tangents of the curve y=3—3/x
and the coordinates of the points where they meet the curve again.
[Sheffield.]
16. ¥ind all the maxima and minima of the function (35— 5)/(2+’——6).
[Durham.]

16. (i Discuss the stationary values of #4—2:34-
(ii) Prove that the maximum value of .a/(.z+n is 1‘(1&!)"‘ where ¢
is a constant such that 0<f<1. heffield.]
17. Determine the gradients of the inflexional tangents of the curve
Y= 127 4x2
Prove that (0, b), (5, 0) are the only points of inflexion of the curve
whose equation is #°+ 3azy+y*=b? (b#a). [Sheffeld.]
. From a fixed point A on the circumference of a circle of radius a the
perpendicular AQ is drawn on to the tangent at a variable point P.
i AP makes an angle § with the diameter through A, prove that the
area of the triangle APQ is 2a* sin  cos® 6.
Find the maximum area of the triangle. [1RVA]
. Prove that the weight of the heaviest right circular cylinder that can
be cut from a given sphere of uniform material is §4/3 times the weight
of the sphere. U]

20. Show that the points of inflexion on the curve y'=a?(a—s)/x are
(13, £iav/3).

21. A curve is given by the parametric equations x=1/(1+£), y=£/(1+#).
Find the equation of the tangent to the curve at the point whose
‘parameter is 4, and show that the area of the triangle formed by the
‘tangent and the coordinate axes is not greater than (31/3)/8 units.

Sketch the curve. L.u]

©
8

. (i) Obtain the values of # for which x*(x—1)?is stationary, determining
which give maxima and which minima. Sketch the graph of the
function.

(i) A unuu:, of total length J, is made of metal which is thin com-
pared with the dimensions of the canister. It consists of a cylinder
of ndiu- ¥ closed at its ends by cones of vertical angle 2. The
weight of metal per unit area for the cones is  times that for the
cylinder. Prove that if only § varies, the weight of the canister
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cannot have a true minimum unless » s greater than 2 and 7 is less

than Hy/(n*—4). LUl

. 1f y=24-2v—* for —1<x<2, and y=16/x+x—8 for 2<x<8, find

() the maximum and misimun valuss of . () the greatest and least
values of y for values of # between —1 and 6. LU

. The equation of a plane curve is y*-+5—9xy-+1=0, and (s, ) is a

point on the curve at which the tangent is parallel to the s-axis.
Prove that, at (s, %), m/:w-xa/(z’l—‘,')

Prove also that the stationary values of y occur at the points for
wmmx-(zuz‘/n)m and determine which of these gives a maximum
value of y and which a minimum. [L.U]

. Show that cos /(1-4-cos® 5)** has 2/3y/3 and —1/2¢/2 as maximum

values, and 1/2¢/2 and —2/34/3 as minimum. Illustrate by drawing
2 rough graph of the function. U]

. 4 and B are two points on either side of a straight line which separates

two different types of country. M and N are the feet of the per-
pendiculars from 4 and B respectively on this line, MA =a, NB=b,
MN=c, and P is a point on the line between M and N distant # from
M. Ii, in the type of country containing A, a man can walk with
velocity  and, in the type containing B, with velocity v, find the time
taken along the path A PB, and show that when this time is a minimum
sin ZMAP/sin ZNBP=ulv L.U)

. Show that the function ¢3%/(1+-?), where a is real, has a maximum or

a minimum value if |a| <1, but that there are no turning points if
|a|>1. Draw rough graphs of the function for the cases a=3, a=1
a=2, for values of # from — o to + 0 showing clearly how they differ.

L.u]

. (i) A right circular cylinder is inscribed in a given right circular cone

50 that one circular end is on the base of the cone and the circum-

{erence of the other end an the susface of the cans, Prove that
‘maximum volume of such a cylinder is 4/9 that of the cone.

i) by chord which cats off a given segment of & certain parabola is

lar to the axis of the parabola. A rectangle is inscribed

i thnugment, Tith oneside lymg sloug the chord aad the vertices

area of such a rectn.ngla s 1/3/3 that of e segmenL LU,

. A right circular cylinder is inscribed in a right circular cone of height i
an

d with base of radius 4, one plane end of the cylinder being in
contact with the base of the cone. Show that there is always a cylinder
of maximum volume, but that there is no proper cylinder of maximum
total superficial area (that is, the sum of the areas of the curved surface
and the two plane ends) unless 2a is less than k. LUl

Show that y=tan® » tan® (}r—s) has a maximum value when

Fmtans (3. 1
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31. A right circular cone is circumscribed o a sphere of radius a, with the
base

cone, and show that when the volume of the cone is a minimum it is
double the volume of the sphere.

Find also the smallest volume of the cone if its semi-vertical angle is
restricted to lie between sim-! (}) and sin~! (3) inclusive. L.U)

32. Amtnmk,mthalmmolllnutumnllwnsnhmtlong.-nd'.ha

the beam has maximum volume when its length is $4a/(a—8). What
is the length of the beam for maximum volume when 2a<36? [L.U.]

33. The brightness of a small surface varies inversely as the square of its
distane r from the sourvs of light sud directly a3 the cosne of the
angle between 7 and the normal to the surface. Two equal light
sources are situated at the points 4 and B, not in the same vertical
Iine, at heights a and 2a above a horizontal plane. The verticals
through A and B meet the plane at M and N, where MN=3a. Ifa
small parallel to the plane is moved along the line MN, show
that its brightness is a minimum when it is situated at a point of
trisection of MN. L.u)

34. Sketch the graph of the curve y=4 cos #—3 cos 27, from =0 to x=m.
Find tho vals of # giving maximom and minimum values of the
function y=4a cos #—f cos 2+, where a and f are positive numbers.
Distinguish between the cases (i) > B, (i) a=F and (i) a<f. [L.U

36. The illumination of an area by a source of light is proportional to

* *
Eragt @’

where a and b(> a) are constants, and » can be varied, Find the value

of x which gives maximum illumination. LU

36. The vertices of a quadrilateral are the centres of the circles
A4y 25=0, #*4y'+2y/A=0,
and the points of intersection of these circles. Prove that the area of
the quadrilateral is the same for all values of A.
Find the length of the common chord of the circles, and show that
it has a stationary value when the circles are of equal radius. (L.U]

. ur,,y,bev.huwndsmmuonpomemm.-_mp.enhmmm
axis is 2, find the maximum and minimum values of r,r.(r,—-v,),
(r,>v,L distinguishing between the cases where the eccent
ter than or less than 1/4/3.
Tllustrate by sketching the graph of the function #(¥—a)(2a—%).
Loy

@
8
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38, P is a variable point on a parabola of latus rectum 4a and vertex 0.
The ordinate at P meets the axis at M, and Q is the foot of the per-
pendicular from M to OP. Find the length OM when QP—0Q is a
maximum, [LU)

39. (i) Find all maxima and minima of (+'+ 55+ 8-+ 8)¢2.

(ii) Find the minimum value of the function a-+b+c+x— 4(abex)V/s,
where a, b, ¢ are positive constants, and sketch the graph. Hence,
or otherwise, show that

atb4o+d—4{abed)V* > a-+b-+c—3(abe) 2,
for any positive numbers g, b, ¢, d. L.u]

40. Show that the distance 7 between a point P on the curve »=2a cos*#,
y=2asin*¢ and the point (a, 0) is least when the parameter of the
point P is given by 8 cos f=1/33+1.

Draw a rough graph shovnng the variation of 7 with ¢ as the point P
completely describes the curve L.U]

a. vae um the length of the tangent to the ellipse b%4aty?=atbt
intercepted between the axes has one finite stationary value. Prove
analyma.lly that it is a minimum and find this value, LU

&

(i) Find uw Jeast value of each of the following expressions, » and §
‘being real
\/(x“+4:+ﬂ), cos® 044 cos §+6.
(i) Find the greatest value assumed by the function #%-%, Sketch
the graph of the function and indicate where it has inflexions,
wug



CHAPTER 10
INTEGRATION
10.1. Integration as the inverse of differentiation
In Chapter 9 we dealt with the process of differentiation. The
inverse process, that of finding a function whose derivative is a given
continuous function, is known as sntegration. It will be assumed that
every continuous function is the derivative of some function.
10.2. The Indefinite Integral
A function F(2) is an integral of f{s) if
4
ZFER= . . . . 0
and we write F(z)-J'/(z)dx;
fls) s called the integrand of [ fiz)d.
1f G(#) is any other integral of f{), then
a "
ZEE=M) . . . . @
and so, from (i) and (i),
d
Z G- Fey=0,

so that Gl =F(®)+C,

where C is a constant., Hence every integral of /(2) is of the form
F#)+C (c constant) . . . (i)

Conversely, since "(F(x)-i-q- {F(x)}=/lx), we see that cvery

fanction of the form (iii), whatever be the value of the constant C, is
an integral of f(x). Thus the number of integrals of f(s) is infinite.
They are obtained by giving C all values in (ifi). The constant C is
known as an arbitrary constant or constant of integration. Also, F(x)+C
is called the indefinite ntegral of f(z) with respect to z.

Th ‘this chapter, for jence, th

will be frequently omitted.
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10.3. The definite integral
If fi#) is continuous when a<x<b, and if & 7 F@)=/), we use

the symbolj f(x)dx to denote F(b) - F(a), aand b being assumed finite.
B

r i) is called the definite integral from a to b of /(x) and is so called
because its value does not involve an arbitrary constant but depends
on the values of b and @ which are known respectively as the upper
and lower limits of the integral.
In evaluating the integral it is convenient to write
X
'[' fix)ds [F(x)] = F(§)~F(a).
. A
Three elementary properties of the definite integral should be noted :

.
1L j * ) dx=F(a)—F(8) = — J' fe)dx.
] .
:
2. [\feras=r0)-Fla=[ 1o
J B
N
3. J"f(z) dz+j () dx=F(c) — Fa) + F(8)— F(e)
. E
=Ft)-F)= [ fad.
The significance of the definite integral is explained in Chapter 20.
10.4. Standard integrals
We give three lists of results—a set of general rules and two lists of
standard forms. In these, %, v, w,...denote functions of x, and
a, b, c,...denote constants. Unless o'.henwse stated, the base of
logarithms is ¢. To avoid repeated use of the modulus sign in this and

subsequent chapters it is to be understood whenever the logarithm
of a function occurs that only positive values of the function are

&
considered. Thus we write I;"=1ogz instead of J‘df=lng 1%

which is established in § 10.5. It is also implied that # is confined
to values for which the integrand exists.

‘GENERAL RULES
L [(u+v-w)ds= [uds+ [viz— [wdr.

1. [afts)ds=af fa)dx.
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L. j@u-ugﬂx). See §10.7.
. I\%f(z)))h“/w‘))' See § 10.7.
V. j/(x)dx-]}(u) du. (Rule for change of vasiable.) Sec§ 10.5.
VL. [udv=u—[odu. (Rule for integration by parts,) See§10.17.

STANDARD FoRMS

0@ Jrae=ig wh—
® j(at+b)“dz=: “:"ﬂm, n =1, See§10.6.
(i) (&) j;nlog % See§108.
©® j’ ‘%b-}los (ax+8). See §10.8.
@) Jomdem
() [oin s2s=—cos 5.
© [eos sdxmsin =,
O )
(vii) When =t <a?, L, 2alng‘—f—:-l‘;umr-
(o) When 21>, (% tog T2 L o

In (ix), (x) and (xi) @ is supposed positive.
(ix) When z<a?, jﬁ-m—l z

z
R iy
(xi) When x>a, I V(:i‘,)=ln5 {1@} e,
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OTHER STANDARD RESULTS

(xii) When a>0, Ia'dz=1;—--

(i)
(xiv)
(xv)
(xvi)
{xvii)
(evi)
(xix)
(xx)
(xxd)
(exi)
(i)
(xxiv)
(xxv)
{xxvi)
(xxvii)
o)
(xix)
(xxx)
(xxi)

(ocxii)

.
g

[sect xdx=tan x.

foosect zdz=—cot 5.

[sec = tan zdz=sec x.

foosec x cot xdx= —cosec =,
[tan sdz=logsecz. See§10.
Jeot xdz=log sin z. See §107.

log tan 7. See §10.10 (b).
I osec "’”"{log (cosec x~cot ). See § 10.7.

_[log tan (Fr+32). See §10.10 (b).
j““ "’”“{1ag (sec 5-+tan 2). See §10.7.

fsin? xdz=j(s—} sin 2). See §10.11.
Joost sdr=4(x+ sin 2. See§10.11.
[sinh xdz=cosh 7.

Jcosh zdz=sinh z.

funh xdx=log cosh 7. See §10.7.
Jcoth sdz=log sinh ." See § 10.7.

2 tan-* (tanh §).
2 tan~? (¢9). See § 10.14,

jcom xdz=log tanh }x.. See § 10.14.
[sech xdv=tanh .

Joeet was={

[cosech? zdx= —coth .
[sech # tanh xdz= —sech z.
Jeosech = coth zdz= —cosech x,
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10.5. Integration by substitution
Suppose that, in the indefinite integral,

_fj(z)dz P (i)
we wish to change the variable from ¥ to u by means of the substitution
x=2x(u) which transforms f(s) into $(x).

By definition,

and

1-j¢(u) Zawo .. .G
Hence, when changing the variable from x to  we replace /(z) by $(u)
dx
and dx by 7. du.
Example 1
When x>0, K-‘=1¢;g =
1f £<0, we put x=—u where u>0 Then dx is replaced by —du and
= —ln
P (—u) =log u.
Hence when »<0, J-‘;Llog ()
We can summarise the result for both positive and negative values of x
by writing i
I; =log | x|.
Example 2
I & Put=gsi that dx is replaced by 3 cos uds
o= Put#=3sinu 5o that dris replaced by 3 cos wd.
Then I-!du—u_lin“ .
Example 3
8r .
I—j(z+—wd'. Put 3+ 2¢=u so that dx is replaced by jdu.
Then 1=jz“j ® du
"
1,2
=—wata
(1+2x)
(3+2%)°
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From the result I /(z)dz-jﬁu)—du, it follows that if an integral is
recognised to be of the form Ida(u) “Zdu it may be replaced by
[ 1125, where fix)= $(u).
Example 4

T [sintu cosudu. Let x=sinw, dx=cos uds.

o I= [t dx ==} sin’w.
‘With practice it will be found to be more direct to write
1=_"m-u mudu=_[sin-ud(sinu)=wnm

1 a definite integral is to be evaluated and a change of variable is

required to perform the i we may first find th
indefinite integral in terms of the original " ariable and then insert the
limits of i we may, if ch

the given limits of integration to the corresponding values of the now
variable as shown in Examples 5 and 6. This makes it unnecessary to
restore the original variable after integration.

Example 5
I M“,x:. Lot u=2" so that jdu=s*ds.
When x=—2, u=—8 and when ¥=2, u=8.

PN
- "*I_.M«}—u 8

.
tant 1‘] by standard form (vi).
"

=sltan? 1—tant (~1)]
=lir—(— )]

=48,
Example 6

I=[ se*ds. Lot umstso that jdu~sds.
.
‘When =0, ¥=0; when ¥=2, u=4.

- 1-}_|':r-du-§ [—r‘]:—}(l—r‘)-o-ﬂ(n.
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10.6. Extensions of standard forms
By substituting ax-+b= and applying standard forms we establish

the results I(u+,).d,_(,,+b)»:/¢(n+1), nE-1,
J";i”= (1/a) log (ax-+3),
J’ oty = (1/a)est,
f““ (ax+b)dx=(1/a) sin (az+b),

10.7. Two useful results

(@ Iin 1=j/—(;;)u, we put w={z), du=/"(x)dx

"ds
1= [ mtog u=log )
ie J’%’;’dx-log S (10)

Hence the integral of a fraction whose numerator is the derivative cf
the denominator is the logarithm of the denominator.

(8) The substitution %={x) shows that

"(x)dx
A (102)

Example 7
It b is a constant, Imtha—(l/ﬁ)]‘%‘k
=(1k) log sin hx by (10.1).
Similarly, J‘mua-—u/ﬁ)mmh-(x/»)hgaeenx.
J'hnhkxd:—(l/b)logmhkt and Imthhsb-(l/h)hﬂs(nhh.

Example 8
When 4 is a constant,
_ [lsec? e +-sec h tan Ay
I it -y ey
=(1/k) log (sec kx-tan kz) by (10.1).
Similarly, Iwnc hxd=(1/R) log (cosec hx—cot Ax).
Example 9

—1

I#ma=v("—u+s) by (10.2).
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Example 10

I ~/ G)e- Ivua =

.
=‘.[ «/(M—x')'.“ Vo= >
= 45itr }-+4/(16—3") by standard form (ix) and (10.2).
Exercises 10 (a)

Use the principle given in § 10.6 and the tables of standard forms to
integrate with respect to # the fanctions in Nos. 1-8:

1 1
1L (@e=3 2 5 Goap
1 s 1 o 1
(6+24)*+9 C V(I-B+a} " V{394
1

1
v =
By a suitable substitution evaluate the integrals in Nos. 9-23:

=
[ I /@+a)dx 10, .‘-\/(”;—5) an 1L Ima

12. L s 1. Iw_x‘d" . I:V(0+x')h.
1. J’dn'smxd:. 16. [costxsinrde. 17, [sintxcost xds.
cosx sectx o
18 IE"" |25 J'W""
(sin=2 )2 J‘ (log #)*
et dy, 22, | *——dx.
V== F
Integrate with respect to # the functions in Nos. 23-323
B = by ey s-+u 5
42 cosx
v ot 28. cot 3.
sin x e
20. tan 4x. 30. m;- 31. H"T"

E
alvry
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10.8. Integration of rational functions

The fractions are assumed to be proper, i.c. the degree of the
numerator is less than the degree of the denominator. In cases where
this is not so, the fraction should be converted by division into the
sum of a polynomial and a proper fraction.

Case 1. Denominator of first degree
Example 11
=1 x(x+2)—2(s+2)+3
T2 12
524342

Imzmpa-zu,a log (¥+2).

CasE 2. Denominalor of the sccond degree, i.c. functions of the form

Pz+Q
axd+bxitc

(2) Denominator expressible as a product of linear faclors with rational
coefficients.
Here we resolve the integrand into partial fractions.
Example 12
18—x ax ax
J’m-—'lx—ud’"_‘.a:—rs_[uﬁ
=} log (3x—4)—1 log (4x+3),
by standard form (ii).

Example 13

6x—10 J’B(Rz-f—l)—ls
[V A

ax

dx dx
= J 2x+1_“I [ezayd
=§{3 log (2¢-+1)+13/(25+1)}. See § 10.6.

(b) Denominator which does not resolve inlo linear factors with rational
coeffcients.
Here the denominator is a product of two linear factors with
irrational coefficients or it can be expressed in the form (x+a)t+ 5%,
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Example 14
ar ar
.[ FreE1 =I oo
=J-“:‘_ 5 where w42,
=} tan™? 4u, by standard form (vi).
=} tan~? }{x+2).
Example 15

I ‘.[ 9.--—~4x— 1%

Since % (28 —4r—1)=4+—4, we express the numerator in the form
A(4%—4)+p, where A and s are constants. I can then be divided into two
parts: an integral of the form If (:) ds and another reducible to one of
the standard forms (vi), (vi) or (viil). We have, by inspection,

=3
! -Ib'—u—l

4x—4 [__ax
e L P s
=log (2#'—dx—1)+1, by (10.1),

where

L
"’IW
1 x—1
5yl ,_T‘L‘/(b by standard form (viii).
ety SR
Example 16
3+4x 5—3(4—8x)
I“I) T I rrav g
o 1t iy e
=4 I,—} log (14+45—4x?)

dax
1,:.]’_
ﬁ =i
V2+2x—1 "
log(\/z_‘h_'_l) by standard form (vii).
V225~

- I'— log (vz..a+

) -tiog e ar—oen.
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L
—G—

P —

Notalhltlll,k'ﬁttzninmbmj

du
1=-| =
__._ ﬂ)
x/v:—u
o/2—142
=i (Vamiss) e
CAsE 3. Denominator of degrec higher than the second.
The denominator should be factorised and the function expressed
in terms of partial fractions. Inganml.!hemtegnlwdl'.hmhmk
up into integrals of the types already considered.

Example 17

6x—25'—8 2 1 2 3
= —l)"' j {ﬁ‘(s— )";Tl‘Fﬁ}
" I=3log (s—1)+1/(x—1)—2log (++1)—3tar x.

Exercises 10 (5)
Integrate with respect to 5 :
L g =3 2-3¢
C 23 3125 s:'—u+1
PR 5, Hortls o, Bit3s418
Foeryes e B—AB+
7 2L g Htdr=2 oL .
" sy " A4
1 dx—2 2541
0. 1465426 I g 12 #4-2v+28
4r41 - 6541 6r—1
3 Giriei 4 w2 5 Trer—as
10.9. Irrational functions
(a) Any algebraic expression containing only a single irvational expression
of the form +/(ax+b).

Such a function may be reduced to one of the forms considered in
§10.8 by means of the substitution u=/(az+8).
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Example 18
-2
1=)-222 g
J #/(e+1)

Let  u=1/(s+1) 50 that du=}dx/y/(¥+1).

-3 2
Then 1=2L’—_~ldu= "‘(l_u‘—l)du

u—1
=2(u-—-]og s

VE+D-1
=2 {V(ﬂ—}-l)—logm}‘

Px+Q

(6) Trational fracions of the form 2t

dx
Y ‘_+a>=*.[vu-—x+v

dx
-if. VG-
=} sinh~ (v—3) by standard form (x)
=410 {(r— )+ (1= D).

Example 20

—1
=i
The derivative of #— 443 is 2(+—2), s0 we write

x—2 dx
1-f | =]
=+4/(¥*—4x+3)+cosh~? (¥—2) by (10.2) and standard form (xi).
=/(x"— 45+ 3)+log {(x—2) ++/(**—45+3)}.
. . 1
(€) Trrtional functions of the form -y
These may be integrated by means of the substitution x—p=1-
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Example 21

ax
I=J‘(l—x)\/(ld—2&7+9x‘)' (1=x>0).

Put I—x=1/u; then log (1—x)=—1log w and so dx/(1—z) =du/u.

.1 J‘ du
=) uEm =1+

J‘ du N
- m since u>0
J‘ du
“lvEs-w-a
=sin~! }(u—4) by standard form (ix)
4r—3

=sin~! ————

-

Exercises 10 (c)
Integrate with respect to

1 1
L y/(9—21). = S JeTETE

4. 1 . s 1 6. #+3
R rr Ty v/ v S G 7 S TN

7 \/(x(:~x))' 8 \/(nf;:“a)‘ o q/(«-lx._m- =>0)
10. W\l/(l_") (264+1>0). 1L #y/(x—2).

12, 7#1') 13 m

. \/(42’—?“:*-#-_25‘)' 15. 1/(&—:-:&2;?0)'
10.10. T integrals evaluated by

(a) Functions of sin'z andlor costx may sometimes b convenienily
integrated by means of the substitution t=lan z.
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Example 22
dx
r=|—= .
I Sintx costx

If t=tan %, sin ¥ =/y/(1+1), cos x=1/y/(1+1) ©
and dr=df/(1+£).

.o fa+ap
O N

-:I(l‘+3+3/l'+l/l')dl Fig. 28
=34 313/t —1/36
=}(tan’x+9 tan x—9 cot ¥—cot? x).
(b) When the integrand is the reciprocal. of a linear function of sinx
andjor cos x the swbstitution t=lan }x is recommended.
If t=tan }x, sin x=24/(1+£) and cos x=(1—#)/(1+7#); hence any
rational function of sinx and cosx can be expressed as a rational

function of . In particular, [sec xdx, [cosec zdz, and integrals of
the form

dx [ dx ax
atbsinz  Jatbcosx ja+b cos x+csin ¥
may all be evaluated in this way.
Example 23
I=fcosec xax.
If t=tan §x, dt=} sec? jxdx so that dx=2d1/(144),

dt
1o

=log!

og tan .

Since sec x=cosec (jn+3),
J'sec xdr=log tan (+33).

The above results should be compared with those given in Example 8.

. acosx+bsinxtc

(c) An integral of the form Jmsm
writing the numerator in the form

dx can be evaluated by

d
plAcosz+B s{nx+€)+qa (4 cos x+B sin x+C) +7,
where p, g and 7 are constanis.
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Example 24
cos x+8 sinx—2
Ssinst+2oosx—1

To find I, we suppose that
08 #-+8 sin ¥—2=p(3 8in x-+2 08 #—1)+(3 cos ¥—2 sin #) 7.
Then
2p+3g=1, 3p—2=8 and r—p=—2; hence p=2, g=—1and r=0.
3cosx—2sinx
1'=I(i-3nnt+lmlx—l)d’
=2¢—log (3sin 542 cos 3—1).
To find T,, we supposo that sin ¥=p(sin #--cos x)+g(cos #—sin x).
Then p—g=1and p+¢=0s0 that p=—g=}.
s, Ty=}s—} log (sin #-+cos 2).

Find I=

. _(_sinx
and I Liu+mx

10.11. Products of sines and cosines of multiple angles
The product of two sines, two cosines, or a sine and a cosine may be

integrated by expressing the product as a sum by means of the formulae
sin ax cos bx=}{sin (a+b)x+sin (a—b)z},
sin ax sin bx= — }{cos (a-+b)x—cos (a—b)x},
cos ax cos bx=}{cos (a-+b)x+cos (a—b)a}.

‘When a=b we obtain, using the preceding formulae, the important

results :

Iﬁnl ulz-ij-(l—mzax)dx-{(x—ﬂ sin m)
jcos’ udx-ﬁj(li-wshz)dz-i(zd-z—l; sin 2«.:) .

10.12. Powers of sin x and cos x
A reduction formula for [sin® z cos® # dz, where m and n are positive
integers, is given in § 10.21, but if m and  are small it is possible to
evaluate an integral of this type in another way.
(i) When one or other of m and # is odd.
Example 25
I=[sint 5 cont xdx
-—J'(l—ow' ) cos® xd(cos x)
=} cos® x—} cos” 5.
(ii) When m and n are both even.
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Example 26
l=jun- # cost xdx.

We express the integrand in terms of multiple angles by the method of
§ 7.7 or as follows :

sin? x cost x=(1—cos 2¢)(1-+cos 24}

=4 sin® 24(1-+cos 23)

= g(1—cos 4x)(14cos 2x)

= Jg{14+cos 2v—cos 4x—(cos B--cos 2¢)}. See § 10.11.

. Imylofx-+3 sin 2¢—} sin 4—py sin 62).
10.13. Powers of tan x and cot x
A reduction formula for f tan® xdx, where # is a positive integer, is
given in § 10.23 but is not required when # is small.
Example 27
J.un':dxmj‘tzn x(sect x—1)d.
=J'un xdtan %) —_[un xdx

=} tan? x4 log cos x.
Powers of cot x may be integrated by similar methods.

10.14. Hyperbolic functions
By using methods similar to those employed for the corresponding
circular functions we may integrate hyperbolic functions, but some-
times it is advantageous to express these functions in their exponential
form.
Example 28
I Icosed:xb I— ;J’ W
= =)z5in pr com H) mn 3
Put f=tanh }5. Then I—I—‘-—log 1=log tanh }x.
Example 29
sech :a-j——- j ek .
Cosh® ftsinh® g+ ) T4-tank? §=

Put f=tash . mz;zj

I

=2t =2 tan™? (tanh ).
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But, if we write sech x=

2
e’

A COURSE IN PURE MATHEMATICS

o

265 2
1-_[‘-;*_—‘ “'J-A—“ du, where u=e*

and so I=2tan1 e,

This answer differs by a constant (fm) from the answer given above.

Example 30

tog 2
j., 5 cosh #—3 sinh
log.

o =

 du
[ v

=ifta ju

=} (tan? 1—tan? §)

=}tant §.

10.15. Miscellaneous substitutions.
We list here suitable substitutions suggested by the presence of

certain functions in the integrand.
Type of integrand Suggested substitution
+/(a*—Y) #=asin § or a tanh 0.
V{+a?) x=a tan 6 or @ sinh 6.
Viz*—a?) x=a sec 0 or a cosh 6.
1
m am=1/t.
1
G R
Function of » and 4/(as+b) axrdb=ut,

Function of x and /{(¥—a)(s—b)
Function of » and v/{ (:—a)(b—x);

Function of x and 4/(¥4br-+c)
Then o'+ b 414 not expressible

F—b=(r—aul.
bz =(s—a)ul,
or x=a cos* §+b sint 0.
1+‘\/(t‘+bt+6)—u
(See Example 31.)

#=u”, where » is the L.C.M. of the
denominators of the fractional
indices.
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Example 31

=
v e T
Put #+4/(#?+2¢—1)=u so that ¥=}(1+u?)/(1+u).

14 #+1 -

Thul{ ‘1/(:‘-9—71—1)}“ -du and so
4(144)

".[u+u')"“

@ _du
T

J‘ L2 d(14w)
)
=41,—2/(1+w),

d
where 1,=I0+_':")'
= j cos?fdf, (u=tan6)
=}(6+4 sin 26) by § 10.11
=it w2

I'“”("”'_l “+1+u'>
=2 tam e /(22— D))+ e

=144/ +25-1)
ARV}

10.16. Three important integrals
L=[Vi@-max
=atfcost 040 (x=asin 0)
=}4%(0+sin 6 cos 6)
il -5

=}{xv/(a*~#") +a* sin"? (x/a)}.

Similarly, L=[y+aax
=}{x/(#*+a%) +a? sinb? (v/a)}
and I= [y -at)iz

=Hzxv/(x*—a?) —a? cosh~? (x/a)}.
See also § 10.17, Example 36.
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Exercises 10 (d)
Integrate the following functions with respect to 7 :
1. sint x, 2. cos® 7. 3, sinh? x.
4. tanh®x, 5. cosec 2x. 6. sec 3.
7. tan® . 8. sint x cos* 5. 9. sin® ¥ sect x.
10. sect . 11, cos® ¥ cosect x. 12, sect x cosect x.
1 1 .
8 [ vy 15. sin 2+ cos 4x.
e s 1
16. sin 4x sin 6x. 17. cos 3 cos 6x. 18 st
10 1 20, 1 sin s+cos ¥
" 146lsinz" " 18cos’s+9sin*s" ~ sinz—coss’
2sinstOcoss oo licoss—3sing . dsins
sin#+2cos 7 2+2cosx—sins" 4+5cosx”
25, /(4+5). 26 4/(3*—9).

10.17. Integration by parts

If u and v are functions of x, the product rule for differentiation
gives
d dv, _du
P (wv)=u z-}-ll &

Integrating, we have
un-j' dx+jv & gy
or wom [ dot [0 du.
2 Judv=suo—[odu. (10.3)

This formula is particularly useful when the integrand contains
(i) @ product of two factors, (i) an inverse trigonometrical or hyperbolic
fanction, (i) a logarithmic function.

Example 32
I= f " log xds.

The integrand consists of two factors, one of which, log #, is differentiable

but not immediately integrable. We therefore take u=log , v-'x:
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Then I-:I(log % .1( 0 1)

=5 - 1og x_LH d(log ),

*m e« [0
=(,+—1), {(n+1) log x—1}.
Example 33

I=[ sint xdx. Lot umsiort 5, v

Then T=x sint x— [2d(sin-1 )

inta— | ———
S -
= sint xhy/(1-5).
Example 34
I [ cos 2xdx.

Here both factors of the integrand are readily differentiable and in-
tegrable. We chioose u=3? 0 that when we integrate by parts the index
of # is reduced by one. A second integration by parts enables us to
evaluate the given integral.

Let u=s1, y=} sin 2.

Then I=(x d(g sin 20)

—§s* sin ax-_[x sin 2xdz.
Now J'uinardx- % d(—} cos 2%)
=—}xcos ﬂx—j—i cos 2xdx
=—jxcos 2r+} sin 2x
. T=}(25" sin 2¢-+2x cos 2¢—sin 22).
Example 35

The integrals C = [¢3% cos bx dx and S—I‘“‘sin bx da may be evaluated

by integration by parts.

Taking we=ee?, v=%

—Iﬂ d(b smbx

_.bﬂsmbx—.[ 6% sin brdx

in bx, we have

S bC+aS=estsinks . . . . . . ()
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Similarly s__l.-scnsax.q.j 8% cos brdx
. aC—bS=eTcosbx . )
Solving (i) and (ii), we may find C and S.

Alternatively, the values of C and S may be found simultancously by
using complex quantities, on the assumption that these may be integrated
according to the rules established for real quantitics.

C+is-Iﬂ(oos bati sin bx)dx

= |elatd)zdy

)z
4+-b o
a—ib 1 ot
=S = (cos b sin b,

Separating real and imaginary parts on each side of this equation we have
c

=‘:' s (@ cos ba-+b sin b3),

e
S= i (@ sin bs—b cos ba).

The method of integration by parts may be applied to the three
integrals evaluated in § 10.16.

Example 36
I-:I\/(a’—x‘) dx. Let umy/(a'—3") and vz,

Then T=xy/(@*—5Y)— [xa{y/(a*—xY)

-:‘/(a'—x‘)—J‘\T;x_‘b“)ds. )

/@t~ ) —

-ﬂ/(o'—a‘)—l+j @

2 Im{sy/(at =) +a* sin-? (x/a)}.
From (i) we deduce that
2
I-(a‘——T) dr=T—xy/(a*—29)
=}{a* sin~? (v/a) —x4/(a—2%)}.
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In the same way we may evaluate J' V/(@*+a%)dx and I\/(x'—al]d:
x* £
and deduce the values of L/(TM’) dx and Jﬂ"—ﬂ dx.

Exercises 10 (e)
Integrate the following functions with respect to x :

1. 5 log x. 2 15;.3 . 3. % sin 2%, 4. xee,
5. 2 cos 3x. 6 xtani4r.  T.e®sindn 8 log (x+2).
9. xsectx. 10. xcoshx 1L sinhlx 12 cosh-l2x.
"
. L .
13, /(04 Wy 15 g (10

10.18. Infinite or improper integrals
d
In defining j S(x)dx as F(8)—F(a) where F'(x)=/(x), we assumed

that a and b are finite and that f(x) is continuous in the interval a < <b.
Tf, however, a or b is infinite, or if /(x) becomes infinite within or at an
extremity of the range of integration, the above integral is said to be
infinite or improper and its meaning must be defined.

CaSE L. Infinite limits of integration
‘
If f{#) is continuous when x>a, and if _[ f(x)dx tends to a finite

limit L as (o0, we write
J”/(x)dz= lim f fix)dz=L.
B o Ja
¢
For example, _rrzdu[_rx] =l-ct>lastro0
o o

o rr’:b:: L
o

This is an example of an infinite integral which exists.
Il-r J(x)dx does not tend to a finite limit as £~ co, the infinite integral

r/(:)h does not exist.

dax - &
For example, _r F=logt-ro0as t>co. Henccj <7 does not exist.
Y N
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In the same way, we define r fim)dz as lim r/(x)dx‘ If this
- Pl A
limit does not exist, the infinite integral does not exist.
Finally, if r f(x)dx tends to a limit as é-»-+ o and ¢;—— o independ-
“

ently, this limit is denoted by r S%)d=.

For example, L lf‘,mmﬂ t—tan-1 4.

As >0, tan=t > ¢ as f—>—co, tan-lfy=—}m.

+o ds
I__H—,,-n.
Case 1L, Discontinuous integrand

It f(s) is continuous in the interval a<<b, and if | f(s)| > as
b, wo defne[ ta)ds as h._xgj fix)dx provided that such a
limit exists.

1f no such limit exists, r (<) does not exist.

In the same way, if (#) is continuous in the interval < <b and it
| (#)| >0 as 5->a +, we define f i)z as an‘ fix)ds, provided
that such a limit exists. ¢ ok

It /(x) becomes infinite at x=c where a<c<b, we define j’ Sy
by therelation . °

J' /(z).zzaj'_ /’(z)dz+£ Jydz
and consider each of the latter integrals separately, If either of these
integrals fails to exist, r Jix)d does not exist.
Example 37

T ax 1-
[, i v =2

= tim [sin~t 26— 1)) =
0+
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Exercises 10 ()
Find, when they exist, the values of the integrals in Nos, 1-12:

®dx ® dx ® dx
1 j =. =T Tt
. o
4 Lm. 5. Er‘dt (A L &= cos xdx.
’ j“ dx SJ’ dx qJ‘ sinx g
BTN R "o Vieosm
- °
I _d | T =P mj g,
« ¥+27+26 0P+l 1 (L2

10.19. Miscellaneous examples
Example 39
(i) Evaluate J' log xdx and deducs that

J' sin 6 log (1—e cos 0)d=(e'—cos 0) log (e —cos 6).
(i) Given that #1-+y*=2ay, use the substitution y=tx o show that

2 4 " U
5 2 tan- LU
) J' log xdz=xlog x— [¥d(log 5) by (103)
B )

—é cos 6, this result gives
in 0 log (1—s cos 6)df=(1—e cos f){log (1—e cos 6)—loge},

2. [ sin 8 1og (1—¢ cos )a8=(e=— cos 6) log (¢~*—cos 0).
() 1t #*-+y*=2ay, and y=tr, #*(1+#)=2atx
2t 2an
ST S Ee

Then 1:_[';—" , where dx=2a(1—)/(1+£)? dt
1-n
1=

“I (-‘--m

=—1/t—2 tan
=—sy—2 tant (y/2).
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Example 40

. a8

(i) Evaluate js“in iy
(i) Prove that constants A, p, v can be found so that

Maxt+ 1)+ (ur-+v) ai, (@4 )=241, (a#0).

Hence show that
41
j @
can be expressed as a yational function of x only if a=—1 0 0. Ly
" a8 do ap
O 1~ e i i
where I,=log tan 3§
a6
b [ oo 108
_[ 2dtan 39y
[E=yry
~2
ST+t s’
=log tan §0+

2
I+tan 36

1, 1—sin 5

. d(cos )
o I,=J.sec' 3M+IW
=tan f—sec f.
‘This result differs by a constant (1) from the value of 7, already found

(i) Let Maw*+1)+ (ux+5) di, (' +1)=5'+1.
Then #¥(ha-+2pa)+2avr+A=21+1
A=l
Also ay=0, 50 that y=0 since a0,
and a(d+2p)=1.

Sop=(1—a)/2a.
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225
Hence prl= ) e @y ®
= ot .
Using this result we have
41
| e
l—a
Iu‘+l+ P @

x . .
=—rit) sy integratiog by parts.

- ar  l1—af —x s
n“"""‘"""_[uiﬂ"’ 20 (u‘+l+ u'+1)

1+af_dr _(1-a)_=
o s Pantere s S
When a=—1,

=#/(1—x%, which is a rational function of ».

When a=0, (i) is not valid, but I-J‘(m.n dr=}(s*+32).

dx
For all other values of a, I,EI i1 18 mot & rational function of 5.

When a>0, a=p* (say), I;=(1/f) tan—t fx. When a<0, a=—f'%~1,

"'_,s log (1 5:)

Hence I is expressible as a rational function of # only when a=0 or

a=—1.

Example 41
I

sin Gn—Dz int nx
e[ e[
prove that (apart from conslants of integration) winyy=nitn-tsin nx and
Ut —Un=tintse
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If wis a positive integer, prove that

I' sin (2n—1)1
o sinw

7 it
and r k. R
o

sintx

i) B2 D —sin ()

=2ncos 2nxdy (see § 10.11)
=sin 2n
o feos 2u—we 2(u+1)x
"‘“"'""_*I T
Inn @+l
==

=y

o

@

@)

Ilﬂmhtzgnhlnhkmbetwmﬂlahmnxomlmmdl(nhl

positive integer, then from (i)
Hrtty=0
St =t
J""-ln(m-l)x demim

(i)

Again, integrating between the limits 0 and u, we have from (i)

Un4y—Un=}m, using (iii)
o Un—Upg =

Vy—vy=m
<. adding) —symiln= D, s0d v,

1 gint
&), Sy dr=in
Example 42
x
Evaluate I—J: et

Put y=m—0; then
i P
1= ‘f rvs = s
a
e o2
=n[tan §—sec 6];, see Example 40 (i).
T=m

d9—I. (See §10.3, 1 and 2)



10) INTEGRATION 227

10.20. Reduction formulze for [sin® x dx and [cos® x dx

It is sometimes possible by an integration by parts to find an
expression for one integral in terms of another of similar but simpler
form. Such an expression is called a reduction formula. For example, if

Sn= _[ 'sin® x dx, where n is a positive integer,
s,xf sin"* xd(—cos %)
=sin®~t z cos x+ (n—1) [sin"? x cost xdx
= —sin™1 % cos 2+ (#—1){Ssa=Sa}
omS,=—sin"ix cos x4 (i=1)S,, . . G}
By successive applications of this reduction formula which expresses

S, in terms of S,,_, We can express S,, in terms of S, when  is odd and
Sy when 1 is even.

Similarly, if Cp= |cos" xdx,

nCo=cos™ zsin x+(mn=NCay . . (i)

10.21. Reduction formula for [sin x cos® x dx, where m and n
are positive integers.
The integral I 'sin™ x cos® xdx can be readily evaluated by a change

of variable when cither m or # is odd (see Example 25, page 214). When
m and » are both even, the method given in Example 26 may be
adopted, but the use of a reduction formula may be preferable when m
and  are large.

If I, n= f 'sin™ x cos” xdz, where m and # are positive integers,
In,n=[sin™ z cos™* xd(sin )

1
=1 [cosn- mit
i oS wdlsinm )

sin™*1 £ cosn1 2+ (n—1) | cos™? x sin™2 zdx
m+l

ol {sin""zcos""zi-(n—I)J‘cos"—’zsin"x(l-—cos’x)dz}
L {sin™ x cos™* -+ (5 —1)(Im, n_s—Im, n)}

(m+n)l,.., .—sm'“‘ % cos™ x4+ (n—1)m, nse
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‘This reduction formula which expresses Im,  in terms of Im, u_y can
be used with advantage to find Z, » When both m and  are even.
In this case by successive applications of the formula I, » may be
evaluated in terms of I, o which by the use of formula (i) of § 10.20
mybemxnmdinmmsnu”wmxsfuz.

Again, writing I, a= —"—:_IJ' sin-t z d{cos™ z) we obtain

(m+n)Im, n=—sin"™? z cos™ x+(m—1)Im g, n.
This is a reduction formula which when used in conjunction with
formula (ii) of § 10.20 enables I, 5 to be evaluated in terms of Z, o
when m and # are both even.

10.22. Wallis’s formulae
If the integrals considered in § 10.20 and § 10.21 are taken between
the limits 0 and m, m and # being positive integers, we have

s,=j'"sin-,a= Seaifn>l. . . @)
o

c.uj"‘mn zdz=""1C, it n>1,
o

»
o _
and  Ima=|" siomzcost xde=""k Iy wifm>1, . ()
o min
ne1 .
v In, naif n>1

By repeated application of formula (i) we have
n—1
s=21se,
=1 n—
n n=2
2
It niseven, S, depends ultimately on S, i.c-on [ 1dz, whichis j.
o
If » is 0dd, and greater than 1, S, depends ultimately on S,, i.e. on
" sin s, which is 1.

*In the same way, C, may be evaluated. The results may be written
in the form

Sose=

. )
Su=Cp=y Fwhenniseven  (104)
=3, 842 s odd, n>1 (10.5)

"
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By repeated application of formula (ii) we obtain for values of m
and # greater than 1

where each product is continued until 2 or 1 is reached and p={n
when m and # are both even, and p=1 in all other cases.
Formulae (10.4), (10.5) and (10.6) are known as Wallis's formulae.

Example 43
-n
[
o
Example 44
ul2
[
o T
Example 45 .
! 7.6.3.1 7_35
int xdr=" o T
In S g 542" 2 266"
Example 46

- it .
I",[ sin®  cos* xd::j sin® x cos* :ds+j sin® x cost xdz.
o o w2

In the second integral, put s=m—y 5o that sin x=sin y, cos ¥=—cos y
dz=—dy. Then

" /2
j m’n':w:‘:dx-r sin® y cos* ydy
/2

8.6.4.2.3

Bare.g.es (109

e
o I=2|  sin® ¥ cost xdx=2.
o0

256
15015 °

10.23. Reduction formulae for [tans xdx and [secs xdx
1 1_-jcan-xdx, where 532,
I,= f tan" x (sec? x—1)dz.

tan™! x
=Sy e
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It I.-fscc'xdx, where #>2,
= J'uc-—-xd(un %)
-m-—-zunz—ftmzd(sec»-lz)
-w.o-x;m;—(u—z)jmn—-zm-m
=sectt z tan £~ (#—2)(In—Inry)
S (8=1)g=sech2 ztan 24+ (n—2)p 5.
Exercises 10 (g)

Evaluate the integrals in Nos. 1.8
/2 /2 /2
1.I' cos? xd, aJ" sinbrds. 3, J sin? ¥ cos? xd,
o 0 o
. n
. ﬂnﬁn‘xm' 2de. 5. L (1—cos s)4ds. 6. L sint 2¢ds,
7. [ tant zan. 8. fsect xan.
10.24. Miscellaneous examples
Example 47
I 1.-] ‘ﬁm show hat mly =1/ (a4 2% — (5—1)aTy_y where
n>2.
¥
Evaluate J:m s, Ly
Tn= |3~ dfy/(a*+27)}
=yt at) — (1) [ty (@t ) d

i (at+aY)
V@t
=amia/(0 5 = (1= 1) (0 g+ In)
S nly=aly/ (@t 4at) — (n—1)at

_s—-,/(u-+:-)_(-—1)j as
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‘When a*=5 and the integration is taken between the limits 0 and 2,

I,s,—ll {3.2%1—5(n—1) Ino}

48
and so Ti=g =40

-‘_”—4{4—57 1,}.

J‘ Vo EeVE =3y
PPy
5 3
Example 48
1/1,,,,.-=J'ws~xu‘n nx dx, prove that
(M) Iy, p=—c05™ 2 05 mx-+ ey, mye

it
Hence, or otherwise, prove AhatI cost # sin "‘"‘"x‘sz' LA ]
o

Inn=—y Ioosﬂ‘ d(cos mx)

nl,,'.=—{uos”‘stnx+mj.m‘“ #cos ualnxdx} .

But sin nx cos 5—cos #x sin #=sin (n—1)x

. cos n¥ sin x=sin nx cos ¥—sin (n—1)x.
Hence

..1,,,_-—m-smu—m_[(wmnu—mﬂnin(n—l)‘)ds
=—cos™ % c08 ¥ —m{Im, n—Im-1, 5os)
o (m4-n)In, g =—COS™ % €08 N¥+mIm s, nye

w4
I S, ,,E,L cos™ x sin nxds,

Sm, n={1~Cos™ (ir/4) cO8 (n7:/4)+m Smes, nos}/(m+),
S S =R 2L b= AR o)

it
But S, ,=L sin 2rdr=.

S e=or
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Example 49

I Ip. ) -r (¥—a)P(b—x)0dx (b>a), prove that when n>1,

.

@) I(n, n—1)=I(n—1, u),

() 22n-+1)I(m, n)=2n(—a)I(n, n—1)=n(b—a)*I(n—1, n—1).

Hence obtain the value of I(n, n) when n is a positive integer. Ly

@ I(m, n—1) -_r (¥—a)"(b—x)""'dz, where b>a and n>1.

N
Put  s=a-tb—u; then

I(n, n=1)=| (b—w)r(u—a)-du=I(n—1, ), sec § 10.3, 2.
@ I m)=] (r—ap-srar

["‘"’" (b—s» ]. : “f (¥—a)* (b—x)r-1ax,
on integrating by parts,
(DI )= (=84 O oo —s)r-ide

=n{(b—a)I(m, n—1)—1I(n, n)}
& 2241 (m, m)=2n(5—a)I(w, n—1)
=n(b—a){I(n, n—1)+I(n—1, m} by (i)

=n(b—a)| (¥—a)= b2 {(x—a)+(b—x }ds

=n(b—a)I(n—1, n—1)
(b—a) n
3 gy [=1 =)
_b=at n
2 24l ll—l
@
T (2n+1)(£x-—1)
But 1(0, 0)=b—a
(b—a)™Hin 1 nt
@n 1 "
Note : I(n, ) may be evaluated directly by substituting
#=a cos* 0-+b sin® 6,

ie. I, =2l

710, 0.

& I(m, m) =
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Exercises 10 ()
L I fula) =$ I: tme-t i, prove that
Sa(#) —famr(®)=—(z"eE) 1

Hence, o otherwise, evaluate the integral j pe-tdr. [LU]
1

2. () I /(n)=j #m=1~=dx, where % is positive, prove that
o
St 1)=nf(n).
Hence evaluate f(n) where n is a positive integer.
oIz
1 ,s(,.)_j sin® x d, where 53> 0, prove that $(n-+2) =’£; $im).
o
Evaluate $(8). [L.U]

o

LI I, ,...I sinm § cos® § df, where m and » are integers greater than
unity, prove that
(m+n) Iy, =sin™*  cos®=1 0+ (n—1) Im, ng
= —sin® § cos™ O+ (m—1) s, e

w2

Hence, or otherwise, evaluate the definite inlegnlj sin'? § cose 0 df,
o

where , g are positive integers. L)

.

By means of the substitution 1+ ¥=2 cos* §, or otherwise, evaluate the
1
integral I (14#)m(1— )" dz, where m and n are positive integers.
-1
LU

iz
5. 1t I, a=| sio™ @ cos® 66, where m and » are positive integers,
prove that (m-+7)Im, n=(m—1Ims, n-

1

Evaluate| #(1—s)¥2dx, L)
o

It sy J' #7(2ax—sYV1dx, where % is a positive integer, prove that
{11+ 2)tun— (21 + 1)ty + 201 (2ax —21)V1=0.
2
Show that j #%(2ax—x*)V1dx =bma'/8. L.u)
o
7. Find a reduction formula for [ (a?+#%™2 dx, where » is an odd positive
integer, and explain its usefulness.

Prove that I (6-+#%)¥* dx=(306+76 log 65)/16. v
o
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8. Prove that the integral Jy= | (1—s)i/t+™#¥ ds satisfes the recurrence
relation 2(n-+2) Ty =(2n+ 1) I, — 2(1—5)¥3 xm4/3,
1
Find I #hs/(s— %) dv, where  is aay positive integer. Uy
0
9. Prove that
(ﬂ—l)J.ain 0 sec §df=—2 cos (--1)5-(;-1)‘[’“ (n—2)0 sec 6.
"
Hence, or otherwise, evaluate L cos 66 sin § sec 04, LUy
10 1 u,,-J’m-(ar—;-)u- d, show that
(-4 2ty = — (08~ )V a3 D,

"2
Evunmj sin™ § cos? §df when m is a positive integer. [L.U,]
o

n I u.-=J. % sinn xd, show that for > 1, (Rt Duigmn(n—1)stny.
o
w2
Evaluate oo, Lu]
12. @) I 1,-J'nr-=i.«. find a linear relation connecting I, and I .

"
(i) m.-J #msinzds and #>1, prove that
o
Intn(n—1)In_y=n(jm)™

Evaluate J: % sin xdx, Lu]

Miscellaneous Exercises 10
1. Obtain the indefinite integrals of -
() Vis*+1) and wcosh x5 (i) L o sin vd.
(iii) Show that, if a is an acute angle,
I T dr o
0¥ +2¢cos at+1 2sina’
‘What is the value of the integral when a=0? [Durham.]
2. Obtain the indefinite integrals of x(s*+4r-+8)F, (+'+1)(x+1)=,
% sin x, and evaluate I: (sin #+-cos 5)*dz. [Durham.)
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3. (i) Evaluate the imegnll
.“ V xax
1/('1‘ w) ) Tret JomFnn—a
(ii) By putting tan jx=, or otherwise, evaluate
B gy
(e
e dx
4. (i) Evaluate the indefinite mtggnlj
(i) Evaluate I % cos xds.
o

(rtDar
ey

6. Evaluate [6) I 5%; (i) L “_m“

(x+1)dx

5. Find Fse

i |

7. Evaluate (i) J 1+:

sin 2v++/3 cos 2x "

{Durham.]

[Durham.]

(Lesds]

[L.U. Anc)

ax, (i) L %,% df, by the substitution

sin 6=1, or otherwise. [L.U. Anc))
(e df . gy [sin (g ®)
8. Evaluate (i) L Temtram @ J e an LU)
o [ A L 7
9. Evaluate (i) L *tan xds; (i) Lm. [Sheffield]
"3 sin® 0+cost §
10. Show that L Toost G e p=(8V3—0)86.  [Shefeld]
o (7 (2s—1)ax
11. Evaluate (i) I sin 2+ cos 3rds; (i) I onhry
(i) I % sin nxdz. L.uj
12. Find the indefinte integrals of 2o x,_ 7 Gog 5.
" 5—4cosx
Evaluate L i dn {Sheffield.]

13. Find the indefinite integrals of (i)

2743 -
ViEFE=m) ¢ 0 toe 2"

[Shefeld)
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(i) By the substitution ¥=3 sin® 6-+cos® 6, or otherwise, prove that

NG

(ii) Prove that J ( S ) de=ti—imer
(ili) Find J' sin # log (sin %) dx. Lu)
Evaluate the integrals (i) L Asim xdy; (i) J‘\/(ﬂ‘—l‘)dx;

ax

(i) L e rryel [Sheffield.]

. (i) Integrate the lollowing functions with respect to ¥ 1

2
1/(!+:) oo sin b (a0): g,

(ii) By means of the substitution ¥=a cos* §+b sin? , or otherwise,
* xdx
—e————, (b N [Sheffield.
[y 0> [Sheffeld]
" sinxax
o l+cosxtsinz’
(ii) By the substitution #=1/(x+1), or otherwise, evaluate

evaluate

(i) Evaluate

dx
FEYET T Shemela]

. Evaluate the integrals

e
0 o @ [ s wna: o [t

(Sheffield.]
. Evaluate the integrals
dx U g s as
s’ o VE—Gre’ L(,__,,(,—_‘,- [Durbam,)
Evaluate the integrals
o (PeedentTibl j-/l 2
o St o | .
4 "
Prove that I o A — o D2, [Sheffeld]
" " dx - o 2443
. Find (i) J‘dn*_‘x(lnu—;?)‘ () J-md" [Leeds)
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22. Evaluate to two places of decimals the definite integn.ll

@ X () dx;

TR "J’ Jy e 101

o l+x'
23. Evaluate the integrals

@ I xeostxde; (i) J‘n e

o [ () o wo)

(@>8); J‘ 6703 cos bx dx (a>0).
o
Lu]
25. Evaluate J‘m and J‘ tant #dx. By means of the substitu-
tion #=a cos? §-+b sin* , or otherwise, evaluate

s
dx
f. Vie—ag—=) < e

R )
26. Find J’Nnu If‘ﬂ"w’*dxandl —_—.
o cosa+cosf

27. Evaluate (i) L J (T:;) ax; () Ln sin xdx;

a9
(@) I.in Gl—2sinf) " L]

by substituting 1+#3=s*;

24. Evaluate

31 . ax
.[u—s)-aw)”" L-H:m:

U]

" N ” _ sing
28. Evaluate (i) I:- log (1+#9ds; \ m ot
i x
(i) s VG—5=) ds. u]
o ax
9. () Evaluate the mtegﬂl.sj,,_’_ dx; LW)'

(i) 1.-r tan® xds, prove that for 5> 2, (#—1)(In+In-) =1, a0d
o
hence evaluate 1.

30. Evaluate the integrals

Z+sin x

(‘)Jm' (ll)J.chm dx; (i d*v(b>al

Lu)
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an Evam-mﬁ)jﬂn‘:em'xdx. (i) ’(‘_m,“)

Prove that I =(1/4/2) log (y/2+1). Lu)

o (J+1)‘1/(#’+l)

42)
Frrorr)

=4 log (5/3);

32. Evaluate the integral I

dx
Provetat O |, a=aveTD

1
e dx
(i) _f 123/ (B =& +1) =log (14++/2). LU

. dx = \}
38, Bvauat the et [ 55—, ) e
Prove that
log 2 dx
L S 775 cosh 7~ (BT (VE)—tar (3y/0)}/v/6. [LU]

34. Evaluate the integrals
cos §—sin

" 5—7x
@ J‘ix‘—x‘—b+lu; @ Ieo._a+.m"'
"
Prove that sin| dx=(7w—1)/4. U]
ve J‘ll' (v/7)dz=(z—1)/¢ Lo

36. (i) Evaluate J’ 5 cos dy

2 cos x+sin x+2°
(i) By considering the graph of sin , show that

sin ¥> 2%/ for 0K xS for.
Use this to show that, as R increases without limit through positive
values, the value of Rr 4~Ruins g never excoeds m/2. [1 R3]

36. (i) Evaluate (a) | » sin # sect xdx; (b) L/(""’l
(i) By means of the substitution s%-+1=0, or otherwise, show that

L gy =4 o8 (2087180). LUl

37. Evaluate the integrals
a8
I HL—sVrds; L/(l % Im- (]
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. Evaluate: (i) .[:in xcosxetzdx; (i) J V=1,
Prove that L P =y )

o) Inmgr:ur’dn?—vand: ::’ with respect to #.
(i) Evaluate | 2 (@ =2 3., means of the substitution #*=a? cos 20,
o (it Y g
or by any otber method. Luj

) . ax .
). Find the integrals Jm and Is" tan~! xdx, and evaluate
*®  asing
L ﬁ——mﬁa‘ where 0<a<l. LUl
. Evaluate the indefinite integrals

o [Hen ® | ree’

ax
. Find (i) Inn‘xm-,ds; (i) jm.

Prove that T ge1-glog 2 L]

j Apx
#2+1
Evaluate (i)]v(u‘—z')d:; (i) I ‘;‘:‘—__::)dx

/2
Prove that J: (2ax— %)/t dx=(8w—04/3)a/64. LUl

w2
Evaluate (i) IV(’—_L—MM () I cosec xd.
a'—bt
Show that dt(

a+b cos r) -+b cosx (atbcosx)’

and hence, or

otherwise, evaluate I m

. Evaluate the integrals

0 [sostes @ | gy

(3 I e
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46, Evaluate
[0} j"" sin drds;

- ax 42
@ I = E I Vera—g®
47. (i) Find the integrals E" tan? (v+1)dx; J.(T':_l)"’"
w2
(i) Find thavlluo{L Wﬁ:‘%ﬁ)h

48. Evaluate the integrals

- 1—2x
@ Iﬂ+4ﬂ+x+1‘"

o

Lu)

L8]

® J' (=1 Vi r—2)Vade; (i) f(1+x-y-wx; (i) f sec® xdx.

49. Evaluate (i) I(,_l)(»-ﬂ) (")I 1+-xnx+wu
el
Use the substitution #=tan 6 to wdunuj (SE:_ 1)3""
50. Evaluate
(P—br40) j dx ;
ETE g Veta—vi—a)®
a
o #3803 ITF (a>b).
2047 s
51. Evaluate I [ersyrd J.,\/(H.x:—s-)‘
wl% dae
Show that o S¥beoegtlo8d
° ax
52. (i) Evaluats Iﬂrfb and L e

. d
) smuuzj‘: [Ty
Hence, or otherwise, w‘luﬂe“‘ feos
53. Integrate with respect to &
) A==/ B+25—2%; (i) (1/#%) log (143).
N
Show that L £0%) a-ro f(a—=)dx and prove that

(cos -+ 2 sin 6)

o 546

Ty,

w.ug

L)

L.u]
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Resolve into partial fractions the functions
0 s and (i)
[Ezrie=) =N

Hence evaluate the integrals of the two functions with respect to .
[L.U]

. Evaluate the definite integrals

? (s41)
1Vt

@ J‘;”w,-,.u; (i) j:xp’dx; (iii)j @ LU

. Evaluate the integrals

o (7 ) dx - dr
) L costxdx; (i) I(———, e ) J’ SEen
X o]
1 I, ,-j (1—#m)» d, where m> 0 and >0, prove that
o
(-1, =T, uese
1, in addition, » is an integer, evaluate Iy, n. rL.u)
"2
I u,nL ¥ cos xdx, where n> 1, show that ntuy=n(n—1)ug—g—1L.
Evaluate %, and u,. LUl

. Prove that

(1=1) [ cos nf sec 0d8=2 sin (n—1)0 — (n—1) cos (n—2) sec 820,
”
Hence, or otherwise, evamaur sin 60 sin 0 sec 8d0. LUl
0

I I,,,njt"ﬂdt, where a0, find a reduction formula giving I, in
terms of .
Show that if m is a positive integer

' (=1)mm 1 eot ot (@) (a)* (=1ym(a)
Lx-wu-—T_ﬂ—- x—ﬂ+7—~3—r+”.+—ml——}

21
(_;_):,"' ! rLu)
i
W o= v

where m,  are positive integers, obtain the reduction formulae
1 s -l
Van=gom Tyt T
1 am-1 m—1
=) e ) P
Evaluate Wy, o [e3A]
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62, 1f I, .-I':in'x sin mx dv and Jy, .=I'm- % cos mx d, where
m and » are positive integers, prove that (m-+)In, m—%/n-1, m-a=0,
and (m+n) Ja, m+5In-1, mor=0.

Evaluate I, ;. L.U]
1 am 2

83. I’"LW_-I')" and Jp= ama (=0,1,23,...)
provethat () Jo=iv/2loi (i) 2np=(2n—1p s
By considering Ja+Ju-y show how the reduction formula for Ip
allows J, to be evaluated for any particular value of n.

Prove that J,=m(7—44/2)/16. L.U)
»
4. It I(p, “)'J.(lw')'d' show that
2(g—1)I(p, )-—r'-‘/(l+*‘)"‘+(y DI(p—2, g—1).

Hence, or otherwise, mmmj et [1 R3]

6. It 1.-]’ #" cos xdx, prove that Inm(mP—n(n—1In, if 5>1,

and hence evl.hutej' %4 cos xdx. [L.U. Anc)
66. Prove that, if # is a positive integer,
I AM/(1—3)de=2%t2n] (n+1)/(2n+3)l.  [L.U. Anc]

o 1t I“'Em”‘ prove that
(84Dt (04 Dt nlpymaty/ (L4 5+27).
Hence, or otherwise, prove that
T -
f JireTa =Bl g 142y -2@va- 1}/ [LU]

o

-
6s. n-,.-_[ [y & how that

Wity = — 21 (285 — 30)}-4 (21— D)asip,.
Find the value of uy when the limits of integration are 0 and 2
and » is a positive integer. U]

1
69, If Ty, .=J‘ | (—am(1-+2)7ds, (m>0, #30), show that

@) (#+1)Tm, w=mTiy, mts for m>1;
(H) (m+n+1)Tm, n=2mTpny, o form> 1.
Evaluate T, 5. LUl
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70, Obtain a reduction formula expressing j(x'+u=)l-ax in terms of
j (¥t -at)in-i dz,

Prove that J: (s +at)¥rdx=1a*{1y/2+3 log (1+v/2). U]

7. unly.-_[ (#—a)® sin ¥, where 1 is a positive integer, prove that,

when n> 1, yp-+Yaa= :: ;) 1‘ sin x—(’ ‘)' cos .
Prove that
y 27 -1 a_at
—aymsingdr=(— 1 Z_e
L(: aynsinzds=(—1) (Zn)l{eoea gt eI, “}
o]
72 1 1.=_[ secn df, show that, when n3> 1,
(n—1)Ip=sech 6 tan O+ (1—2) -y
rié
Show that 8) sect §d0=T4/2+3 log (1++/2)
.
and evaluate L (2“"’ 5 LUl

1
3. () Muln m)=j #4(1—x)mds, and m, n are positive, prove that
o
(54 1)u(n, m)=mu(n+1, m—1).
Using this result, or otherwise, evaluate the integral .rs"‘(n-—x)‘dx.
0
(ii) Find a recurrence formula for the integral
- =I Ay
o
and hence show that u,=48. [L.U. Anc]
/2
T4 U, n j cos™ § sin® C df, where m, # are positive integers with m
o
greater than unity, find I, 5 in terms of Iy, n-

a
Evaluate L e [1 R3]



CHAPTER 11
EXPANSIONS IN SERIES

11.1. Power series
From the ideatity 142+ ... +5'=(1—29)/(1-2), 21, we
have

ll:-l+x+z'+...+z'—‘+r. . . )

ie. we can represent the function 1‘:!:)' the polynomial

1+ztad4 ... pamt
together with ra=2%/(1—2).
If |2]|<]1, 7o may be made as small as we please by making »
sufficiently large. Hence in the limit when #—co, 740 and we have

.li—’=l+z+z’+x‘+... (~1<x<1).

The convergent power series 1+x+2%+2%+... is known as the
upmsionolﬁ. 1t is valid only when | % |<1.
Again, by differentiation of (i)

1
=

=1425+33% ... +(n—1)5"24pu,,

Where pay=-2 () and may be shown to tend to %0 when n->0
provided that | % |<1.

.1
e

=1+20+330+... (=1<z<1).

LI S P o
Finally,  po=l=t+A=ft. o+ (-0,

and so I’-"i

(=R,
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=t

H_:.z: and may be shown to tend to zeo When n->c0
o

provided that —1<#<1.

where Ry

. log (14+2)=2— (—1<z<1).

The above examples will suffice to suggest that a function of # may
be expanded as an infinite power series in x which in general is valid
only for a certain range of values of x. For functions encountered at
this stage this range may be assumed to be identical with the interval
of convergence of the series.
11.2. Maclaurin’s series

Among the properties of power series given in § 4.20 we stated that
a power series which converges to f(z) in the interval —I<x<l may
be differentiated term by term and the resultant series will converge
to f'(x) in the interval ~i<x<l.

Thus if

S =0t az+amd+amd+ .. FapEh+an 2L @

when —l<x<l, we obtain by successive differentiation the following
results all valid when —l<x <l
(@) =0+ 2855 +3a 20+ .. +nan 1 (14 Danga ™+
(%) =28,+3.285%+ . . . 4+ 1(1—1)apat+ (n+ Dnany 2+ L
S7(®)=3.21ay+. .. +n(n—1)(n— 2w+ (1+ Dn(n—Dan, 2+ .
SR =nlant((n+1)m)n—1)...3.Yanx+ ...
Substituting x=0 in turn in the above results, we get

8,=/(0), a,=/"(0), ay=/"(0)/2!, ay=/"(0)/3L,..., an=F"(0)/nl.

Hence if a given function /(x) has a power series expansion of
the type (i) in an interval —/ <</, the expansion must be of the form

[0 S0
R T e IR

1=+ Qs L0

This expansion is known as Maclaurin’s series for f(z). It exists only
if f(x) and all its derivatives are finite when =0,
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11.3. Taylor's series
Taylor's series gives the expansion of /(x) in powers of #—a,  being
a constant. Suppose that
SE) =bg+by(x—a) + by(£—a) + byfx—a)*+ .. . +ba(x—a) ... (i)
whm a-l<x<a+l
en by successive differentiation as in § 11.2 we obtain series for
/ (z), / (z)... all valid when a—I<x<a-+l. By substituting =a in
each series in turn, we obtain
bo=fla), by=["(a), by=["(a)[2!, by=/"(@)}3L, ..., ba=["(a)/n!.
Hence, if f(z) has a power series expansion of the type (ii) in an
interval a—l<x<a-1], the expansion must be of the form

/(z)=f(a)+/#(:_a)+l;il)(x_n)'+...+/:#(x_a)-+... (1.2)

(11.9) is known as Taylor's series or the expansion of /(z) in the
neighbourhood of =a.

Maclaurin’s series, which may be obtained as a special case of Taylor’s
Series by putting a=0 in (11.2), is sometimes called the expansion of
f(x) in the neighbourhood of z=0.

11.4. Another form of Taylor’s series
A very convenient form of Taylor's series is obtained by writing
z+hforz and z for ain (11.2) The series then becomes

. .
S+ B)=f(x) +h'(x) +;_l f*(%) +% @)+ (11.3)

It is beyond the scope of this book to discuss the conditions under
which a function f(x) may be validly expanded in an infinite power

series. We assume that the functions under discussion may be so
expanded and use the foregoing results to find their formal expansions.

11.5. Series for sin x and cos x
1f f{x)=sin x, by § 9.16 (iii), /™x=sin (¥+ jnn) and fM(0) =sin fn.
Hence, by (11.1),

. x x3 x% x7
I TR A TRl T
d, similar) 1 x? x4 x*
and, similarly, cosx= _ﬂ"'“ N+ .

‘The above series are convergent for all values of #, and the expansions
are in fact valid for all values of x.
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11.6. Series for (1+x)
T f(x) =(1+%)", where  is any rational number,
SR =nir—1)...(s—r+ 1) (1+2)*T
andso  fO0)=n(n—1)...(n—r+1).
Hence, by (1L1),

(l+x)‘—l+nz+"("_l) ’+w:¢‘+ .

H=Dn=2). rmrt Dr
2
‘When » is a positive integer, the expansion is finite and contains (n-+1)
terms. When # is not a positive integer, the series is infinite and
converges when | z|<1 (see § 4.19, Example 12). For values of x
thin this range the expansion is valid (cf. § 5.3).

11.7. The serles for log (1+x)
It has been shown in § 11.1 that
2 2zt
]og(]+5)=z—2—+3—-4—+... when —1<x<1. (11.4)
‘This result may also be obtained from (11.1). See also § 5.15.

11.8. Other an of a given function
‘The main difficulty in using Maclaurin's series to expand a function

/i) lies in the calculation of /®(z), which cn be found by a simple
‘formula in comparatively few cases (see §

Alternative methods of expansion are illustnted below.
Example 1

By integrating the appropriate binomial expansions show that, when x is
small,

-
m-lx=x—"—'+f‘. e

1.3s% 1.3.5x"
"’*n 2astaasr T

2sin~ #-4tan~! 5— (14240
- .

sint

Evaluate tim [Sheffield.)
]

o ———
(hr 1) l+"

=1—f4H =4 ... when | £]<1
by the binomial theorem.
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Integrating both sides of this equation between the limits 0 and ,
where # is small, we have by § 4.20 (vi)
B o
¥y =t . . . i)
tantr=r—T oot )

‘This series, known as Gregory's series for tan™! #, can be shown by using
the ratio test and tests for the convergence of an alternating series (see
§4.16 and § 4.16) to converge when —1<#< 1.

milasly

=|+}l‘+l :-+m;z'+

g(n'n-‘l)= when | £] <L

1
V-
Integrating between the limits 0 and #, where x is small, we have

B L )
245 2467
Substitution from (i) and (ii) in 2 sin" x4 tan—t x—3x(1 42V gives

1 3 L x
Lot 22 )= =
2(:+61+‘01+...)+(x 5 ) Jx(l+5+...)
= —}s%+terms involving higher powers of 7.
Hence by § 4.20 (iv)
i 2T A A 3x(1 8
=0 Ed

Example 2
Find the first four terms of tho series for log (1+sin z) in powers of .
By (114) og (l+sm #)=sin ¥—} sin® 54§ sin® ¥—} sin® x+..., when
—l<sin x

for all values of x.

)'a

X8
llnx—x-—,‘+—l— -

Hence, for small x,

log (1+sin = =x(l——+m )_.,-(;-§+,
+§;-(1_%+ ) =
=(:—’§+...)—Gx-—ix'i-“.)q.G ..

=G )

_,_~+__

+

1z
‘The result may also be found by using Maclaurin’s series.
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Example 3
Using the series for sin x and cos x, deduce the first three terms of the series
for tan x.
Since tan # is an odd function of #*, we assume that
_sinx_ S pagt
tanx=_—" a7 +a a4 ...
Then, by § 11.5

— ..)(n.x+a,¥‘+a.x‘+. )

O e

Hence, equating coefficients (cf. § 4.20 (i)},

a=1, ay=3, &=

1,.,2
S tans=rbgatpatt
Example 4
Find by Maclaurin's theorem the expansion of sec x in ascending powers
of  as fa as the term in 5*.
Hence, or otherwiss, show that, if % is so small that terms of higher order
than x4 can be neglected,
(3+sec® )2 =a+tbat-tcxt,
where a, b, ¢ ars constants and find their values. [L.U. Anc]
Let f(x)=sec
then S/(#)=sec x tan x,
£7(5)=2 sect x—sec 7,
(%) =(6 sec? x—sec #) tan 7,
and 1%(x) =(B sec® x—sect #)-+tan® (18 sec? ¥—sec 7).
Hence f(0)=1, /*(0)=1, /1%(0)=5: f'(0)=f"'(0)=0.
. bt
o~ Hx=l+i+a+~~-
and so 3sect s=dtat it . . . ()
1f(3+sec? #)'/2=a--ba*+-cx*, putting ¥=0 we have a-
Also 345607 ¥ mat -+ 2abxt 4 x4(b1+ 2ac) + )
Comparing (i) and (ii), we have by § 4.20 (m) 2ab=1and b-+w—].

‘whence b =2 and ¢ =m

The function f (x) is odd if f (~)= (2 it The
Machudn“unﬂ ,) Zonhll{!( oﬂ oa/a(?wfu[n)é’:i'ﬂ“/ (;‘; &‘ odd, lé: ly =vq:
powers
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Example 5
Find the first six terms of tha expansion of ¢* sin x in terms of x.
f(3)=6% sin x, f'(s) =e%(sin x+-cos x)=1/2* sin (x-+}n),
and, in general f("x =232 sin (x-+nm), 50 that f7(0) =2V1 sin nm.
Hence by (11.1)

¢ sin s—x+ +

Exercises 11 (a)

1. Write down the power series for ¢* and for sin x and use them to show
that o0 o] fa fat—fat4.. ..

2. From the series for cos x deduce that
1,6, 6
SRR
seox=lpatboost ot
3. Express 1+4.cos ¥ in terms of cos j+ and show that, if ¥ is small,
log (14cos ) =log. 2—5»——:' approximately,

4. Find the power series expansion of {(1—cos#)/#*}/* as far as and
including the term in 4, [Sheffeld.]

5. Use the series tan x=x+§x'+l%x'+. -« to prove that

1
and logsecx-ix'+l—zx‘+‘—5x‘+“ .

6. Use Maclaurin's theorem to prove that

24 20
e mlx-l+s—ﬁ_.‘_‘._ﬁ =
2048 204
#sin gt ath o~
and 6°sin ¥ =x+ 3! + 5T 61 +

7. If f(s)=ao+a¥+ay+...+aps®+..., show how the Maclaurin
lormula a,./(-)(o)/n 1is obtained.
g from an expansion of the function 1/(1+s%), find the
expansmn in powers of x of the function tan- .
Prove that the tenth derivative of tao-? (+%) with respect to ¥ has
the value 2(9 I) when x=0. U]
8. Obtain Gregnrfl series for tan—i#, stating for what values of x it is
convergen
Hence, p otherwise, find the expansion of cosh (tan! ) as a series
of ascending powers of #, as far as the term in %, [Leeds.)
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9. By assuming that the binomial expansion of (1+2)a is valid when
| | <1, deduce formally that

g (s (L+#7) =5+ Z‘ (_1)~ {Durham.]

1
T i U
10. Prove that  x/(e*—1)=1 2x+uz o5+
d that VR O )

an k1) =g et

11. Prove by Maclaurin's theorem that
lm(:+a)-!mn+stu—z—llmu—ﬁwln-)-
and that mGﬁ—x =l+2.r+22'+§x'+iz‘+““

By integrating the binomial series for l/\/(l+x') prove that

3.

Expand ¢* cos x formally in a series of powers of x and hence, or
otherwise, show that cos x cosh #= 5 {(—4)%s*%/(4n) }.  [Durham.)
Pty
14. Use Maclaurin's expansion to prove that
log (14¢%) =log a+5:+5x!—ix<+. .
Write down the expansions of log (1+-¢4%) and log (1-+¢-4%) and deduce
an expansion for log (1-+cos s) in ascending powers of .
16. By Maclaurin's theorem, or otherwise, find the expansion of
y=log {1—log (1—2)}
as far as the term in #%. By the substitution #=#/(1+) deduce the
expansion of log {1+10g (1-+/)} in powers of #as far as the term in £,
(Sheffield.]

Find the nth differential coefficient, with respect to x, of the functions
9% cos b and 62 sin by.
Expand the function %™« cos (¥ sin a) in a series of ascending

powers of x and find the sum of the series & {(" sin ra)/rl)  [L.U.]
=
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17. 1 fls) posseses a Maclaurin series and f{(s)=f(~) prove that the
series contains only even powers of .

Expand # cosec ¥ as far as the fourth power of » inclusive. [L.U.]

18, 1 y=;1/3 tam? {sy/3/(2+#)}, prove that %-l/(l+x+x'). u
—1<x<1, by assuming that y can be expanded in a series of ascending
powers of x, and using the equation (1—:-):—':-1—:, or otherwise,
prove that

B S el i

G S i ~ru e L Lol

19. (i) Obtain the first two terms of the expansion of log (1+¢~*) as a
‘power series in #.
(d)mthemeﬁ:hntofx'mmwwuxeﬂuaxpm.ﬂondm
function 5 LU
20. If » is a real, positive integer, prove that one of the values of
(c0s -4 sin B)* is (cos nf-+4 sin n6).

1f y=e® cos? 3, where  is real, expand y in a series of
‘powers of %, and prove that the meﬁmt of x" is }(1+ 5/ cos nf)/n |,
where f=tan-! 2. LU

21, Show that the differential coefficient of

ssina
wri(255)

with respect to # is

l{ z s

2%|1—z (1—#/3)

where s=cos a-4 sin a. .
Hence, or otherwise, show that when | # | <1, the expansion of

zsina
W'(l—xma)
a3 a series in ascending powers of # is 371 (#* sin na)/m. LU
ps

11.9. Use of Leibniz’s theorem in the expansion of functlons

By means of Leibniz’s theorem a relation may be established between
successive derivatives of a function and used to determine the expan-
sion of the function.
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Example 6
1f y=cos log (1+3), prove that

(42 nta+ @n+ DA +H2ynn+ (04 1),

whers yy denotes :—?;.
Show that, if cos log (1+3) can be represented by the power series
GptaEragtd . et
then (n+l)(n+2)u,,+,+(2n+l)(»+l)a,ﬂ+(n'+l)a,,=0 and determins u.;

expansion up to and including the term in L.U.
1 y=coslog (142) . . . . ()
W Pmmsnogbn) .. L@
and (l+x)—+7——(cm log (1+2)}/(1+3),
ie. WS4 149 Ly,

The result of differentiating this relation » times, using Leibniz's
theorem, is

(143 ynsat (20-+1) (1+2)ynss+ (12 1)ya =0, where yy. =i{ and n20.
When =0, this relation gives
bt 28+ DbpsyH (2 + 1oa=0 .
where by denotes the value of y, when #=0.

Now if y can be represented by the series Jara?, ap=bs/r| by Mac-
laurin's theorem, and so from (il °
(142 + Dansat+ @+ D+ Danprt (P4 Dan=0 . (@¥)
From (i) and (ii), substituting =0, we get g,=1 and a,=0.
From (iv), when n=0, 2a,+a,+8,=0, ., a;=—%;
and when n=1, 6a,+6a,+24,=0, .\, a;=}.

Similarly, a.:._ﬁ, a,_. and a,

1 5 1 19
I DT YL . NV . R
Hence  cos log (1-+5) =1— a4 — ot b3 s =gt
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Example 7
If x=cos 8, y=cos nb, and n is an integer > 1, prove that
(1—s-)~—:b+,ﬂy =o.
Assuming that y=a,+a,5+a,5 4 ... +ays®, where t}u  ax are constants,
prove that ("+”(A+S)nm+(n‘ h‘)agso k=0, 1,...,
Show that if n is sven and greater than 2, then a,= (— l)ﬂ/‘n‘(n‘ 4)/24.
.
Since x=cosf, y=cosmd . . . . (i)
dy_nsinnd
sin

0 sin 6—sin nf cos 6
and g=—;i,’,‘7 wm&}mgmm

. dy_ dy
S A=) —w D bty =0,
Differentiating this result 4 times, we get (using the notation of
Example 6)
(L=#)yp4a— (26 + Dayesa+ (n'—AY)yp =0,
whence by putting ¥=0,
be=W—Mb. . . . L (i)
But if y=2a,s7, ap=by/r |, and so from (ii)
o
k2Bt Dapy=E—nar . . . (i)
Since y is a polynomial of degree », this relation is true for
£=0,1,2,...(n—2).
From (i), when #=0, 6= +}r and y=cos jnm=(—1)"1 when n is even,

i ag=(—~1)m1,
From (iii) ay= —ntay2
and ay=(4—nay/12

= (= 1)™ans(nt— 4)/26.

Exercises 11 (b)
For brevity, y, is written for d’y/d=" unless otherwise stated.
1. If y=sinh , show that (1+#")y,+2y,=0, and that, for n> 2,
(145 + (28— 8)8Ypmy+ (5= 2)yp_y =0,

Using this result when =0, or otherwise, obtain the expansion of
sinh=1 % in powers of #. [Durham).
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2. Show that ish™' satisfies the differential equation
(+2%ys+2y,—y=0.
By differentiating # times obtain a second order differential equation

which is satisfied by "—1(

Expand etk 2 in a series of ascending powers of #, and write down
\‘.\mgemn.l term of the series. [Sheffield.]

3. If y=eo~'5, where tan-1x lies between — g}, and -+m, show that
(1+2%y,=y, and, by successive differentiation of this equation,
obtain, using Maclaurin's theorem, the expansion of y in ascending
powers of ¥ as far as the term in #°,

Deduce that

s LR L. A

=0
4. If y=(siz? #)*+a sin™! %, where a is a constant, prove that
(132, —2y,—~2=0.
Find the expansion of y in positive integral powers of x and give the
coefficients of the terms in 4% and [L.U)

6. If y=log {14+/(1—#)} prove that Ix(l—x)y.+2(2~—3¥)}‘x+l-0

and 2¢(1—#)ynsa+-{(20-+ 2)— (48 4+-3)x)ymss— {20+ 1)y

Show that if | # | <1,

(2n—1) 27
1og {1++/(1—#)} =log 2— ?}—mﬁ.

LUy

6. 1f y=e""'2, prove that (l—s')y.-—xy,=y.
Show that, if y, denotes the value o( ? when x=0,
Inra=(n"+1)yn, n> l.

Hence, or otherwise, assuming that e’ can be expanded as a
series in ascending powers nfxwh=n|z|<l prove that the series is

l+x+ﬂ+—s’+—lﬁ +.. T.u]
7. I y=(1—#%)14 sin-! , prove that

@ (1=#)y,—sy=1,
(i) (1=2)yn41—(2n+ 1)xyp—nlypy=0if n>0.

Deduce that, as far as the term in #5, y-:+¥+%.

1 41—
Hence find hm{’“"L
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8. If y={x+4/(1+2%)}m, prove that
@ (L+27)ys 2y, —miy =0,
@) (1+#)ymtat (284 13841+ (8 =)y =0.
1f m is a positive integer (even or odd), prove that the value of
Yméz When x is zero is (2m) lj2m(m—1)1. LUl
9. If y=cos {m/(1+3)}, prove that l(x+:)y.+2y|+’7‘}' 0, and hence,
by differentiating # times, using Leibniz's theorem, obtain a relation
between any three successive derivatives of y. Assuming that
y=Sagen, prove that
o
A1)+ 2)ansa+ 220+ 1) 5+ 1)anss+nan=0,
and write down the expansion as far as the term in »¢, LU
10, If y=sinh (m sinh~ ), prove that
(l+")}'m+(3ﬁ+1)*’-+|+(”‘—’“')}'--°~
When m=>5, obtain y as a polyn LUl
11, If y=(14sinh~? 5)2, show that (1+)y,+5y,=2. Prove that forn>0,
(L mtat (204 Dy +#typ =0,
U ymay+ay5+ag+..., find formulac fOr ay; and a,y where
>1 (L.U.
12. If y=sin (m simr? ), where s is a real constant greater than unity,
that (1—3%)ys—3y,+m?y=0.
If 1> #> —1, prove that
o {, oy _...-) (v—u')(s' L ) }
and find the term in x4, LUl
. I y=[log {x-+(a*+#)})]?, show that
(@*+5Yyy+ a5, =2.
Differentiate this equation » times, and deduce, or find by any other
‘means, the expansion of y in terms of positive integral powers of »,
giving the general term, U]
14. If x=tanh u, y=sech u, show that

(1-:!)‘1—;“'”:-0

Hence show that
=m0 2 =0,
and deduce the expansion of y in ascending powers of .
Ven!yufuuuwwmmx‘ehnmhmhm:-mu

that obtained from the relation y*=1—2* using the binomial theorem,
wu)
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15.

®

If x=sinh #, y=sinh p, prove that
a
YR Aoy
PRIV W

@) (& +1)dy,+y o p,x 0.

By differentiating (i) » times, show that yiy=(p'—n%)ys, where y,
r

is the value of d—;': when #=0. Hence obtain the expansion of ¥ in
ascending powers of # when p=1. Lu]

If y=(sin-! 2, show that (1—#!)y,—2y,=2. Apply Leibniz's theorem
to this equation and find a relation between yp, Yuts and Jaser

Hence show that if (sin'x)? is expanded in a series of ascending
powers of #, the coefficient of 3, 5> 1, is 28%-{(n—1)1 }*/(2n) | [L.U.]

I flx)= ‘(l—ﬂ)“/*dr, prove that 2(1—#')f*(x)=3+%"(x). Deduce

that afmE(0) =(2n— Dafn— 1)/'»—1(0) Obtain the Maclaurin expansion
for f(x) as far as the term in ' [L.U. Anc.)
1f y=cosh(sin™" ) prove
() (1=#)y,—29,-y=0,
(i) (1—=2")ynta— (28 +1)#ypss=(n"+1)yn.
If cosh (sin x) =ao+a;5+aye 4. .., obtain an expression for an
and show that aypy, is zero. L.U]

11.10. Taylor’s theorem applied to the evaluation of limits

_f®

Suppose we require to find lim F(s) where F(s)=203,

and f(z)

and g(x) are continuous. Let us assume first that a is finite. Then
since” the functions are continuous Lm /ir)=/la). Lim g(x)=g(e)

and so if g(a) £0, 1 S0 1@

a 8% £l2)
Tf g(a) =0, two cases arise : cither (a)#0 or f(a)=0.

—>+00as x->a, ie llm—— does not exist.

f=)
&) 6=

If f(a)=g(a)=0, /& assumes the indeterminate form 0/0 when

" &%)

In the former case,

#=a, and to find the required limit we write

i )y, flath)
e A glar )
i @)+
@) )
1
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assuming that, for small values of &, fla+h) and g(a-+) may be
expanded in convergent power series by Taylor’s theorem. ~Then by

§4.20 (iv)
10_f@)
e g s
It f(0)=g'(a)=0, ie. if &; takes the indeterminate form 0/0,
then by (i), if g°(4) £0, we have
1 [)_L@)
Lo
and so on.

Hence, if the fraction IT) assumes the indeterminate form 0/0
whmz-a,thgnlnn'—fg—:uequaltotheﬁnto!theexplmm
f@  f@ /@
£@'  £e)’ @
which is not indeterminate.
Example 8
Find lim 2=
-0
Here f@#)=x—sinz [(0)=0; &#)=2",  g(0)=0;
S(#)=1—cos z, f'(0)=0; £(x)=3s, g(0)=0;
f(#)=sinx,  f7(0)=0; &(x)=65, g°(0)=0;
frE)=cosx  f(O)=1; g"(x)=6, g"(0)=6.
Hence the required limit is }.

sin x

Example 9

Find lim 2205
200 ¥—5Sin ¥

Hero
Sf(#)=s—tanz, SO)=0;  g(s)=x—sinz, £(0)=0;
SflR)=1—sects, F10)=0;  g(s)=1—cosx,g'(0)=0;
fls) =—2sec’ s tan 5, S0)=0;  g'(x)=sinx, g°(0)=0;
""(#) = —2(sect 5+ 2sect ¥ tan' ), f/(0)=—2; g"(¥)=cosz, g"(0)=1
Hence the required limit is —2.
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11.11. De I'Hospital’s rule
It may also be shown that when /(a) =g(a) =0

i L8 i [
=1is
T )
provided that the second limit exists.
If the value of the right-hand side is not immediately obvious, and if
1@)=g'@)=0 -
2 5
lim == =1
a8 o)
if the right-hand limit exists, and so on.
The proof of this result is beyond the scope of this book. It is
known as de 1'Hospital’s rule, and if we use it to evaluate the limits
given in Examples 8 and 9 we have

(11.6)

 z—sinz _ l—cosz
fim = ~him, -img(55)~gbvses

33

- I—sec’x
lim 2220 fim
R x—sinx a0l —cosx aup

~lim {(—sec? 2)(1+cos F}=—2.

For the valid application of the above rules the functions f(x) and
g(x) are subject to certain restrictions which we shall not discuss here.
We shall assume that the rules may be applied to all functions en-
countered at this stage.

11.12. Other indeterminate forms
It may be shown that if /((—; assumes the indeterminate form
2 when #=a, the above rules may be applied to find lim U ((’)) .
Example 10
By (1.8) lim (0852, 2oot2r . 2tanx Lform ?]
i Togsim

m
Togsinz suo GotF  oe0

Example 11

By (11.8) lim 8% _jm My (‘—"L‘>(—m =0
2 Goses * o —cosec ¥ ot x ap \ #
by §0.3(2).
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(

Again, it28) (’; assumes cither of the indeterminate forms 0/0 or cofco

when x becomes infinite, rules similar to (11.5) and (11.6) may be used to
find lim /E—;  Alternatively, we may put %= and consider hm%

Example 12

tn>0, "’”

1x

=lim 25

by (10.8)
-
From this result we deduce that log ¥ tends to infinity more slowly than
any positive power of #. Also, by writing x=1/¢ we have
im 8% _ §;
lim 22— fim (=1 log )=0.
Jim = i (= log )
2 lim % log {=0.
04
Some cases of limits may be reduced to one of the types already

considered by rearranging the function. For example :
() To find lim o where w0 and v->e0 a5 5->a, we consider

lim m or lim m and apply (116) or (11.6).

Example 13
= _. —2 1
B (=) tan e o o cose

i) 1 sovco a0 v-rc0 2 8, Kim (u~v) may olten be rearranged

in the form /(—) where /(¥) and g(z) both tend to zero (or to infinity)

as z-a.
Example 14
lim (2 cosec? x—} cosec? §x)
P=r)

" 1 1
=lim (n S jrcos §x 2sin® p)
—costix o
=lim ( m) [lnm 6]
=Hm (§ sec? }x)
o

=t
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tim (L_;)
v \y=1 logy,

Example 15

o (ylogy—y+1 [}
=lim (282070 form
= ( (=1 logy [ 0
; logy [3
=lim 22 by (11.6) form &
ST yegy Y MO [ 0

. Uy
=lis by (11.6)
iy Y
=t
(i) 1f y=1 where % and v are functions of %, w being positive, then
in order to evaluate limy it is convenient to write y=cvis¥,
v log u~1 (a finite limit) as x->a, then y—»¢ since the exponential
function is continuous (cf. § 5.8).
Hence lim (vlog )=/ and log (lim y)=.
b %
But vlogu=logy
* lim (log 3)=log (lim y)=l.
i P
‘We consider the following cases :
(1) when 4->0-+ and y—0 as z->a (Example 16),
(2) when %>+ and v—0 as x> (Example 17),
(3) when %->1 and v-»co as x—>a (Example 18).
Example 16
To find lim #%, let y=1°,
o %

Then log y=xlog »
and Jm (lug #)=0 (see Example 12)=log (im ).
+

. limy=1.
Example 17

1y s
To find lim () _(-> R
;
Thea log. yzlhx.bg(;)
=—sinx.logx
'sin #°
-=»-(T)(xlog:).
o lim logy=0=log (lim 5)
Pt vt
and so lim y=1.
P
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Example 18
To find lim {(tan x)!n 3}, let y=tan sten £,
et
Then log y=tan 2« (log tan %)
_log tan #
cot 2v ©

and this has the {non ‘when ¥=n/4.

. Jm g )= lim, %ﬁﬂ) by (116)
=1
o lim y=lfe
Example 19 e
Show that i (1-+afr)s=st.
Hy=Gtame, o= g L+
Hence Jim log y= lim = log (1-+e/n)
lim M [lpm 9]
20 [
",.'.';T-f-_ by (11.8)
-
i yses.
Hence Jim (1 afnye e,

When the functions iavolved can be expanded in convergent power
series it may be easier to evaluate a limit by substituting these series
than by using de 'Hospital’s rule.

Example 20
Show that for all valuss of n, :'Tma as x—>c0.

If #<0, x>0 as 5—»c0 and #¥%0. Hence :—»oo as x—>00,

It =0, ;_-aﬁ—»w as %<0 (see § 5.8).
If >0, let & be the least integer which is greater than .
Then when #>0,

P

1 *
FER Ty T u s TRl
o _sn

AT
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As x—>00, — —>w

[l
-
. S50 35 #->00 for all values of .
It follows that 6% tends to infinity more xayxdly any positive
power of #; also, by inversion of the above limit, lim (e%x")=0.
o
Example 21
Evaluate s 5 {Iag (l+z)—:r|-‘—z—‘ sin? t} [L.U. Anc)
Let E L 1og (14 ) —xe—iz. isin‘x .
i it

Then when | #| <1,

1 1 1 1 1 1 1 xt
E-;{ (:——x‘+7x‘— Teg.. ) —x(l—§x+§z'—ﬁz‘+is—‘— .

i)

__{ —ﬁx‘-}-urm.l involving higher powers of ,}

o
n i olvi -
=— g+ torms involving positive powers of

. u
s REE_E'

Exercises 11 (c)

1. Evaluate the following limits :

oy 1og (145) 2

@ m B0, o im0,

o . Sin @ iy pi COt 4%
Gy Lim e () lim e

L1 ¢ -
) im AL, i) lim s(ee—1),
(vi) lim (1—-2)%, (vili) lim y¥y,
=

. 1—x " a
) lim = ’n:% (14cot )z

(xi) lim (cosec x—cot ), (xif) imTT,
=0 =0
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2, Expand e in ascending powers of x as far as x4,
o pins

Find the value of lim o=t | [Durham]
e yrrerd

3. Evaluate lim 2%, LUl

4. Evaluate lim

I (s s coshz—1) [Sheffield )

5. Expand cos? » sin® x as far as the term involving »* and evaluate
Lim {cos? ¥ sin? x—x(1—4*)V3}/x8, [Sheffield.]
>0

6. Evaluate

2642 50 116 s
lim 222 5in d2—105in [Sheffeld]
sin

7. Find the limit o(’:—ll as x tends to unity, and of {(s*+ax+b)t—2}

as » tends to infinity. L.U)

8. Find the limit as x—00 of log (1-+ax)—2 log x-+log (a+#).  [L.U)
9. (i) Determine
ir—tat s
@ mam
(ii) Prove that » log ¥->0 as 30 mough positive values,
Hence determine lim 7. [Durham.]
=

sinh1 (.

®) lim

ar—be

. where a, b, ¢, d are different positive numbers ;

(i) limZ

1y g
hgm’ (i) lim» (r—tant 2).
State the rules you use as precisely as you can. [Durham.)

11. Find lim

sin (s+4)+sin (s—h)—2 sin =
L

ad “m{lng (¥+R)+1og (s—h)—2 log ;} .
Ao L

LU

12. (i) Slww that the function 2¢—tam x—1og {++/(s*+1)} s positive
‘positive values of .

(if) Find the limit as  tends to zero of the function
(x25—)/(1—cos z). L]
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13. Write down the series for exp # (i.c. %) and sin x, stating in each case
for what range of values of the real variable x the series is convergent.
Obtain the expansion of exp (sin #) as far as the term in #*,

Evaluate the limit

2 i =1 P
) P
W@ Provetmat  im oy,
(i) Find lim %M [iRA]

11.13. Newton’s approximation to a root of an equation
Suppose that we wish to solve the equation f{x) =0 which we know
to have a root near z,. The root will be z,+4 where 4 is small and
S +h)=0,

ie. Slx) +hf' (%) +hf (”) +...=0 by Taylor’s theorem.

We approximate by neglectmg powers of k above the first :

Siw) +hf"(z)20 e
.
ek
Thus if % is a first imation and #, a second imation to
the root,
"=""//('(Lx,l))' (1.7)

This is Newton’s formula for an approximation to the root.

The next approximation % is given by z,-z,—//,((:‘,)). and so on.

Fig 20 (4) shows how successive approxima-

tions approach the actual value of the root.
‘The graph of y=/(x) cuts Oz at B'so that OB

is a root of the equation /(x)=0. Od=z, is

the first approximation. If the ordinate at o

A meets the curve at P and the tangent at P s

meets Ox at C, OC=%, as given by (1L7), for s
0Can—— AP _ ) °—="pc A x

@nZPCA ™~ " [i(z) "
To obtain a third approximation %; we draw
the ordinate at C to meet the curve at P,. Then the tangent at

P, meets Oz at D where 0D =z;=1x,— //E:j

Fig. 20 (a)
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It will be seen from fig. 20 (b) that if we take O4 as a first approxima-
tion to the root we may obtain a second approximation OC which is
on the other side of the root, but this does not matter if subsequent

Fig. 29 (B)

values given by (11.6) approach closer and closer to the actual root.
If a sufficiently close first approximation is taken, a small number of
operations will in general give sufficient accuracy.
Example 22

Show that the equation 3'—2~5—1-4=0 has a voot near 14 and find an
approximation fo this oot corvect to thres significant figures.

Let f(#)mat—20c—1-4,
Then £(1:4)=1-96—0-4932—1.4=0.0668
and F(1:3)=1-69—0-545— 1.4 =—0-265.

Since f(1-4) is very small and positive while f(1-3) is negative, there is a

root of the equation f(x)=0 near 14
S =2s+e9)
S/(14)=3203,
By (11.7), a possibly better approximation to the root is given by
0.0868
7=l oo =14—00203=13797=1.380
to four significant figures.
£(1:38) =1.904—0.5032— 1.4,

=0.0008.
£7(1-38) =2.76+-0-6032 = 3.263.
The next approximation will be

xy=14 ”—m-‘ 380

to four significant figures. ¥, agrees with s, to three significant figures
Hence the root is 1.38 to three significant figures.
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Example 23
Find 1o three places of decimals the root of the equation x=tan which
Ties between m and .
To facilitate the use of tables, we put x=-£ in the equation
s—tanz=0. . . )
and obtain ms—tan 5=0,
‘The root of this equation which we require lies between £=0 and s=ju,
From tables or a graph, we see that there is a 100t near r=1-35.
1 f (s) =m-+2—tan s, f*(s) = —tan* 1, and 50 if 7,=1-35 is a first approxi-
‘mation to the root, a possibly better approximation is 5, where by (11.7)
:,-.,—;‘—E 3-1 135+ i%" 3518,
‘The next approximation is ,, where
Ja2) 0-0003
I .) 1
To four places of deci = £=13518
Hence the angle between r and |, wm satisfies (i) is 4-493 radians correct
to three places of decimals.

135184 ———

ry=1,

11.14. Modification of Newton's formula
In the notation of § 1L13, f'(z)), f'(xy), f'(y)... are successi

approximations to the gradient of the curve y=f(x) at B in figs. 20 (n)

and (5. In the preceding examples the values of these functions do

not differ to any great extent and, in general, we may take f*(z,) or any

convenient approximation to it and use it in place of f*(zy), /(). . ..
1f in Example 22 we take f*(1-4) =/(1 38)=3, we obtain x,= 13777
and x4=1-3797, which give 1:380 to three significant figures.

Exercises 11 (d)

1. Show that the equation #*4-3s--65—3=0 has only one real root.
Prove that this lies between 0 and 1, and find it correct to one place
of decimals. Lu)

2. #=12 is an approximate solution of the equation

10 log 5—3¥+1.75=0.
Apply Newton's approximation formula to find this solution correct
to four significant figures,

3. Prove that the equation 563 =3(1+x) has a oot lying between
x=1and x=15, and find this root correct to three significant figures.

4. Prove that the equation 1-4v=sinhs has a root near #=1.5. Find
this root correct to four significant figures.
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5. Show that the equation sinh z=1-26¢ has a root lying between s=1.1
and s=1.2. Find this root correct to three significant figures,

6. Show that the equation #-5(log #)*=128 is satisfied by a value of x
lying between 3.5 and 4, and determine this value correct to three
significant figures.

7. Show that the equation #*—2=1.5 has a root near r=1-4 and
ﬁndthumotwmmdnwugmﬁun figures,

8. Find, corrct to four signifiant figures, the root of tha equation
s-logz-nug.mm:mumotuamm y 2.

9. A root of the equation 5x%+8¢~%8=2.05 lies near x=0.6. Find this
root correct to three significant figures.

10. Show by means of a rough graph that the least positive root of the
equation tan x=j» lies between w and §m. Find this least root correct

to four significant figures. LU
11. Prove that the aqnaﬂonx-_u+1=o has a root lying between 1 and 2
and find it correct to two decimal pl L.U)

12. Show that the equation #*—5x+2=0 has two real roots, both of
which are positive.
Find, by Newton's method, or otherwise, the larger root correct to

four significant figures. U]
13. Show that the equatian log (++ 1) =" has & root between 05 and 1,
and find its value correct to three decimal places.

F

Show that the function y=x(x—4)/(s*+3)t has one real turning point
and find the corresponding value of  correct to two decimal places.
Lo



CHAPTER 12

COORDINATE GEOMETRY OF THE STRAIGHT
LINE AND CIRCLE

12.1. Useful formulae (revision)
(i) Distance, gradient and section formulac
‘The distance between 4 (x,, 3, B(xy, 3,) is given by
AB=+/{(—x)"+(-y)%
and the gradient of AB (denoted by ) is given by
SN
M=
The point P which divides 4B in the ratio A: p is
Ayt pn 4\y,+uy.)
Atp " dp /0
P divides AB internally or externally according as the ratio A: p is
positive or negative.
The coordinates of the mid-point of 4B are
Hm+m), $01+2).
(i) The angle between two given lines
1f 0 is the angle between two straight lines of gradients m,, m,
My — My
L+mymy "
This formula gives the tangent of the acute or obtuse angle between
the lines according as the sign chosen makes the right-hand side positive
or negative.
The lines are parallel if my=m,; the lines are perpendicular if
mamy=—1.
(iii) Area and centroid of a triangle
The area, 4, of the triangle whose vertices (arranged in counter-
clockwise order) are (%, 31), (2. ¥2), (%, 3) is given by
1 1 1

tan 6=+

d=t|n xm x|

N N N
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The coordinates of the centroid of the same triangle are

Ha+x+mn), Hutya+y).

This result may be obtained by regarding the centroid as a point of
trisection of a median of the triangle and using the section formula,
(iv) The equation of the straight line

In Cartesian coordinates any equation of the first degree in z and y
Tepresents a straight line, but the reader should be familiar with the
following forms of the equation of a line which correspond to its
geometrical properties :

Equation Geometrical Properly
z=constant . . . . line parallel to the y-axis
y=constant . . . . line parallel to the z-axis
yemz. . . . .

line of gradient m through the
origin

y=mz+c . . .

line of gradient m making an
intercept ¢ on Oy
Y-y =mlx—z) .. line of gradient m passing through
the point (%, ;)

LANH | line joining the points (5, ),
*=H ATH (=0 32)

§+%-1 + « . . line making intercepts a and & on
a 0z, Oy respectively

xcos atysina=p . « line such that the perpendicular to
it from the origin is of length p
and makes an angle a with Ox
ax+by+c+MAx+By+C)=0 line through the point of inter-
section of the lines ax+&y+¢c=0,
Az+By+C=0.
(v) Distance of a point from a straight line and the equations of the
bisectors of the angles between two siraight lines
The perpendicular distance of the point P(x, 3,) from the line
ax+by+c=0is
a5ty te
V(a+8Y) *
If the positive sign is chosen when ¢ is positive and the negative
sign when ¢ is negative, this formula gives a positive result when P

+
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lies on the same side of the line as the origin, a negative result when
P lies on the opposite side from the origin.

From the above formula we deduce that the equations of the
bisectors of the angles between the lines ax+by+c=0, Az+By+C=0
are

axtby+c_ Ax+By+C
V@ +¥) " £ /(4'+BY)

12.2. Parametric equations of a straight line
Let a straight line AB (fig. 30) drawn through the fixed point
A(%,, ,) make an angle  with Ox ; let P(x, y) be any point on 4B, or
on AB produced, and let AP=r,
Then x=2x,+7 cos §,
y=y,+7sin 6.

Fig. 30

These equations, which give the coordinates of any point on the line
in terms of the single variable (parameter) 7, are the parametric
equations of the line. They may also be written in the form
el Y
cos6 ~ sinf
Note that points on BA produced correspond to negative values of 7

=7,

Example 1

Find the equation of the straight line dvaun through the point P(h, k) such
that, if it meets ths axes of coordinates in the poins A and B, P is the middle
point of AB.

If any straight line drawn through P mests the axis of # at the point X,
the axis of y af the point ¥ and the pavallel through the origin (o the siraight
line AB ai the point Q, show that 2/PQ=1/PX+1/PY, the lengths being
measured algebraically. [L.U]
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1f, in fig. 81, P(h, &) is the mid-point of AB, A=(2%, 0), B=(0, 24),
the equation of 4B is

L4

wrHE=l
and the equation of the line drawn parallel to AB through the origin is
9 "
33 )

The equation of any line through P may be taken as

P )
Y
B
P
X o] A x
Fig. 31
This line meets Ox at X where y=0 and r=PX
SOPX=—Mn® . . L L (@)
Similarly, PY=—hfos0 . . . . ()
Lines (i) and (i) mest at @ whero
bty os £+A+v:in 80 and rpp.

c0sf sinf 2
Hencs R TR

. 1 1 2
and so by (jii) and (iv) F-X-(-P—YHP—Q.
12.3. Change of axes
It is often possible to simplify the equation of a given locus by
referring it to new axes. Any desired change of axes may be effected
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by using either (or both) of the following metbods. The axes are
assumed in all cases to be rectangular.
(a) Change of origin (translation of axes)

Tn this case the new axes 0,X, 0, (fig. 32) are drawn through Oy,
parallel to the original axes Ox, Oy and in the same sense, Then if

Y1 Y
3
Olp Q X
q
o M N x
Fig. 32

P=(x, 3) and 0,=(4, b) referred to the original axes 0z, O, and if
P=(X, Y) referred to the new axes, we have

x=X+a, y=Y+b.
Thus if the equation of a locus referred to Oz, Oy is f(x, 3)=0, the
equation referred to parallel axes through (a, d) is

X +a, Y+b)=0. az.1)
Example 2
Show that by a suitable translation of axes the equation
axt-t 2hay+ by + 25+ 2fy+o=0

may be expressed in the form aX'+2hXY+bY'+4[(ab—h)=0, where
A= abo-+ 2gh—af*—bgh—ch and ab—K#0.

Transfer the origin to the point (7, 7). Then by (12.1) the given equation
becomes

(X + 2+ 2K+ D) (Y +7)+ DY 9+ 28X+ 5+ 2f (Y +9)+¢=0,
ie. aX'4#2hXY+bY'+2X(aF+hi+g)+2Y(RE+EHN)+R=0 . ()
where k=4 2059+ b9+ 285+ 2fF +o

=#(ai+h§+g)+Ihi+ I+ + (R +SF+e).
(i) will be reduced to the required form if we can choose (2, §) o that
u&+hy+g=o}

and RE+bg+f=0 N : G
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If ab—h*#0 theso equations are satisfied by

M=ty _gh-af
=Yk, g

With these values h=g#+f7-+c by (i)
4
oy
Hence the given equation becomes
aXV XY 4BV

4
T

substituting from (ii).

it}

(iii)

It should be noted that the coefficients of the terms of the highest degree

are unchanged by a translation of axes.
(b) Rotation of axes (without change of origin)

In this case the origin is unchanged but the direction of the axes is

altered.

In fig. 33 the new axes OX, OY are inclined at an angle 8 to the

Fig. 33

original axes Ox, Oy, P=(x, y) referred to Oz, Oy and P=(X, ¥)

referred to OX, OY. Then if OP=r and LXOP=g,
x==r cos (0+4)
=(r cos $) cos 6—(r sin ¢) sin &
=X cos —Y sin 6.
Similarly, ~ y=Xsin 0+Y cosf.

Thus, if the equation of a locus referred to Oz, Oy is f(z, 3)=0,

referred to OX, OY it is
fX cos 8—¥ sin 0, X sin 6+ ¥ cos 6)=0.
Example 3

(12.9)

Show that, by a switable rotation of axes, the equation az"+ 2hzy+by'm 1,

b0, may be transformed into an equation of the form ¢’ X0+ b'Y=1.
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On rotating the axes as above, the given equation becomes

(X cos §— Y sin 6)4+2K(X cos 0— ¥ sin 6)(X sin 0+ ¥ cos 6)
+b(X sin 8+ Y cos =1
ie. AX XY HEYI=1
where @’=a cos? -+2 cos 0 sin 0+ sin? 6,
W= h{cos? §—sint 6)— (a—b) sin 0 cos 6,
b'=a sin® 0—2h sin 8 cos 8-+ cos* 6.
I & is to be zero
h{cos* 0—sin® 6)= (a—b) sin § cos 6,
I cos 20=}(a—b) sin 20
. tan 20=2k/(a~t).

Tt is possible to find a value of § satisfying this equation whatever be the
values of a, b and h. (When b=a we take 29=}4m) Hence it is always
possible by rotation of axes to reduce the equation

ax*+ 2hay+byt=1 to the form a’X*+5'Y*=1.

PAIRS OF STRAIGHT LINES
12.4. The homogeneous equation of the second degree in x and y
The standard form of this equation is
a4 2hry+by=0 . . . . ()
which may be written
by +2h(ylx) +a=0 . . . (i)
When 570, solving this quadratic for y/x we obtain
Yr={=hty/(F—ablYo . . . (i)
i.e. the equations of two straight lines passing through the origin.

If 5=0 and a0, (i) may be written x(ax+2hy)=0 and represents
the lines z=0 and ax+2hy=0,

1f a=b=0 and h#0, (i) may be written 2hzy=0, which gives the
lines x=0 and y=0.

‘Thus (i) always represents a pair of straight lines through the origin,
but throughout this chapter we shall assume that 5#0.

‘The nature of the pair of lines depends on the nature of the roots
of (ii). The lines are real and distinct if k*> ab, real and coincident if
h*=ab, and imaginary if A*<ab.

(i) is called the combined equation of the pair of lines whose separate
equations are given by (iii). These separate equations may be written
y=mz, y=myx
where -+ my=—2h(b and mymy=afb. (12.3)
Hence if the equation ax*+2hxy+by*=0 represents the lines y=m,x,

y=myz, then m, and m, are connected by the relations (12.3).
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12.5. The angle between the lines ax*+2hxy+by*=0
Let the given equation represent the lines y=mz, y=mz and
let 0 be an angle between these lines. Then
tan 0=+ m| My _ V() —doomy)
”‘1 L+mm,
= 12‘/(" —ab) by (123).
The lines are coincident if h'sab and perpendicular if
a+=0. (12.4)
Example 4

Prove that the cquation of a pair of siraight lines drawn through the point

(a, B) parallel to the lines ax*+ 2hxy+by*=0 is
alr—a)*+2h(x—a)(y—B) +bly— P

In the notation of § 12.5 the equations of the parallels through (a, f) are

y=B=my(x—a), y=P=my(v—a).

Their combined equation is

{—B—m(z—a){ly~f—my(x—al}=0

e =BP—(mtm)r—a)y— P+ mym(s—a)=0
(y—B)*+ (2h/b)(x— a)(y— B) + (a/b) (x—a)*=0, by (12.3)
a(x—a)*+2h(x—a)(y—B)+bly—f)*=0.

Example 5

(a) Find the :quamm n/ the lines through the origin perpendicular to ths

lines axt Zhay+byt=
(b) Show that the numerical valus of the product of the knglhs of the
perpendiculars from the point (a, B) 4o the lines az*-+2hzy-+by
(aat+ 2haf+bRY)[{(a—b)*+ 4A)E.

The circla on the line joining the origin O fo the point P(2, 3) as diameter
cuts the lines 5x'—12xy+3y’=0 at Q and R. Find the combined equa-
tion of the lines PQ, PR. LU}

(a) If the given equation represents the lines y=m,%, y=m,, then the
equations of the perpendiculars through the origin are m,y+¥=0,
myy+x=0, and their combined equation is

(my+2)(my+2)=0
ie bx*—2hay+ay'=0 by (123).
(b) The perpendicular distances of (s, §) from the two given lines aro
_B—ma _B-ma
v/ (l+-D EVA+m)
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Numerically their product is
B—(my+my)af+mma?

Vlom iy = 1)+ (myma) )
_aa’+2kaB+bp!
VA

Srag by 029
.In fig. 34, P is the point (2, 3) and O is the origin. The circle on OP
as diameter cuts at Q and R the lines whose combined equation is
537121y + 3y*=0, hence PQ, PR are perpendicular to 0Q, OR respectively.

ol

Fig. 34

By (a), the combined equation of the perpendiculars through O to 0Q,
OR is 3534 12ty + 6y*=0 and, from Example 4, the equation of the parallels
to these lines through P is

3(x—2)t+12(r— 2)(y—3) + 5(y—3)*=0
ie. 3524 124y+ by 48— 54y+ 120=0.

12.6. The bisectors of the angles between the lines
ax*+2hxy+by*=0

If the given equation represents the lines y=myx, y=myx, the

equations of the required bisectors are, by § 12.1(v),
(y—mz)|/(1+om) = & (y—mez)[v/(1+m3).

Squaring, we have
(+m)=me)= L+ i)y =)t
(1) —13) (3% — %) = 2y { (s — ) — s (my — )}
() (22— = 2y (1= mym;)

h(z*—y%) =(a—b)xy, by (12.3).

11 neither / nor a—b is zero, this result may be written

(12.5)
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Example 6

Find the tpml'lum for the lines a's34-2Kxy+5y*=0 to have the sams
bisectors as the lines ax’+2hsy+by'=0, and show that every such pair
of lines can be represented by an equation of the form

ax?+ 2hxy+by*+ Ax+ %) =0.
Find the equation of the pair of lines, o a] which passes lhm‘h the
point (a, B), and whose bisectors are A'—yi= €U
The equation of the bisectors of the :ng]s between the lines
AWy EY=0 . . . . ()
. e

This equation is identical with (12.5) if

‘This is the required condition, If it is fulfilled,
a—b_K
ab
(i) may be written in the form
(@' =003+ 2W 3y +b' (3" +5") =0
hla—b)#1+ 2hhsy+ b/ (43437 =0
k(ax?+ 2hay+by")+ (b — kb)(3*+5%) =0
ie. at Dy by EAFH)=0 . . . (i)
where A=(6'—kb)R.
Hence cvery line pair which has (12.5) as the equation of its bisectors
can be represented by an equation of the form (ii).
The lines 5*—3=0 are the bisectors of the angles between the axes
whose combined equation is y=0. Hence any line pair whose bisectors
are 51—y*=0 has an equation of the form

Y+ A +5Y)=0.
(e, B) lies on one of these lines, hence A= —aff/(a®+£%), and so the equation
of the required line pair is
(a*+ )2y —afla™+57)=0.
12.7. The condition that the general equation of the second degree
in x and y should represent two straight lines
The standard form of the general equation of the second degree is
axt+2hxy+by' + 265+ 2fy +¢=0 PR ]
If this equation represents two straight lines, the left-hand side must
break up into two linear factors.

ieif =k (say),
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Writing (i) as a quadratic equation in y, and solving, we obtain
by + 2y(ha-+f) + (axt 4+ 2gx+0) =0
and 50 if b0, y=[ = (hx-+f) £ v/{(hr-+/)'— blaz"+ 2z +))]/b.
Now y is expressible in the form Ax+B if, and only if,
(h+f)*=blax+2gx+0)
is a perfect square,
ie.if (f—bg)*= (W —ab)(f*~be)
blabe+gh—af* —bg*—ch) =0
Since b30, the required condition is
b+ fgh—af'—bgr~cht=0 . . . (i)
or, in determinant form,

« b g
Bob f| =0 (12.6)
& f ¢

‘When =0 and a3#0, the above condition is obtained by solving
() for x. 1f a=b=0and h#0, (i) becomes

2hxy+2gx+2fy+ec=0
or hx(2y+2g/h) +/(2y +clf) =0
‘The left side has linear factors only if
2lh=clf
if c=2fglh.

‘This is condition (ii) when a=b=0, so that in all cases (12.6) is the
condition for (i) to represent two straight lines,

Example 7
Find by change of origin the condition that the equation
ax'+ 2hey+by'+ 2+ 2y +o=0
should vepresent two straight lines and show that, if K+ ab, the lines meet af a
point whoss coordinatss satisfy the equations ax+ ky-+ g =0, hx-+by+f=0.

Suppose that the given equation represents a pair of straight lines
which intersect at P(#, ), and transfer the origin to P. The equation of
the line pair referred to the new axes is given in § 12.3 Example 2, and
since it represents a pair of lines through the new origin it must reduce to
X1 42X Y +LY1=0.

SoaEbRpg=0 . . . . (i)
Babgtf=0. . . . . (v
and k=0, ie, gfje=0. . . . . (

by virtue of (iii) and (iv).
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By (3.11) (page 42) we obtain (12.6) by eliminating # and  between

. (iv) and (v).
From (iii) and (iv), the coordinates of P are

(h/—b; gh—af’
ab—h’ ab—ht

1f ab=H, the lines (i) are coincident or parallel.
From Example 4 it follows that when (i) sepresents & pair of straight
iines they are parallel to the lines ax*+ 2ksy+by*=

Note: I (i) is written in the form S= o. P satisfies the equations

3s
72=° and 5 o,
see Chapter 19, § 3.
Example 8
Show that

A dry— 291465 — 12y—16=0
represents & pair of siraight lines, and. that thess lines logether with the paw
of lines 3+ 43y—2'=0 form a v LU
The equation x!+4xy—2y-+a,—1zy—15=o P (i)

represents a pair of lines since

1 2 3

2 -2 —6 | =0

3 -6 —15

These lines together with the lines
Sbay-2r=0 . . G}
form a pasallelogram. They will form a rhombus if the dmgomn of the

parallelogram are perpen
The point of ntersaction of line-pair (i) satisfies the equations
x+2y+3=0 and s—y—3=0.
Itis (1, —2); lines (u) intersect at the origin. Hence the equation of the
diagonal through the
y+2=0 . . . )
The second diagonal joins the two points which slmulmeouxly satisfy
(i) and (ii). Hence its equation is
6r—12y—16=0 . N )
L -nd (iv) are perpendicular lines, hence line-pairs (:) and (i) form a
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12.8. The equation of the pair of straight lines joining the origin
to the two points at which a given straight line meets the
curve (or line-pair) represented by the general equation
of the second degree in x and y

Suppose that the line whose equation is
tmytn=0 . . . . @
meets the curve
Ay b2 Yy ke=0 . . (i)
at A and B, and consider the equation obtained by making (i) homo-
geneous by means of (i) :
Lr+m Ik myyt
u'+2hzy+by‘+2(gz+fy)(—:n—'v) +c(_‘”") =0,

fer ilax+ 2hny-+by’)—2n(ge-+fy) z-Hmy) +ellzbmyp=0 . (i)

Since equation (i) is homogeneous and of the second degree in x
and y it represents a pair of straight lines through the origin ; it is
also satisfied by points which simultaneously satisty (i) and (i), Le. by

4 and B.

Hence (ii) represents the pair of lines which join the origin to the
points of intersection of (i) and (ii) when these are real.

Example 9
 Find the qmum of the straight lines joining the onpn to the poinis of
and Ix+my+1=0, and find

A condition that hese fnas should be ‘perpendicular.

Ifthis condition is satisfied, show that the locus of the foot of the perpendicular
from the origin to the line lx+my~+1=0, as I and m vary, is 2gx+ 2fy+c=0.

LU
The equation of the required line-pair is
(#1+ 2hay— %)+ 2(gx + fy)(— Ix—my) +¢(—x—my)'=0
ik AcP—2gl4 1)y} (omd—2m— 1)+ 2xy(cim—gm—fi+H)=0.
By (12.4), these lines are perpendicular if
(eP—2g1+ 1)+ (omi—Zfm—1) =0

i if oP+mt)=2Agl+fm) . . .®
The equation of the perpendicular from the origin to the line

Bdmy+l=0 . . . . (@)

is me—ly=0 . . . . (@)

and, solving (ii) and (iii), we obtain the coordinates of the foot of this
‘perpendicular :

UY(P+m?), y=—m|(P+m?) . . i)

Eliminating / and m between (i) and (iv), we obtain 2g#+2fy+c=0,
which is the equation of the required locus.
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Example 10
Find the equation of the pair of siraight lines joining the origin of co-
ordinates to the intersection of the civcle %'+y'+25+2fy+c=0 and the
straight line
Is4my=1.

Hence, or aMmm, find the coordinates of the circumaentre of the triangle

formed by the
ax'4 2hry+by*=0, ls+my=1.

If the lines ax'+2hay+by'=0 vary in such a way that they are equally
mdludlalluuubutunnolaln{htanglu show that the circumcentre
moves on a lins through the origi Ul

The equation of the pair of :mughc lines joining the origin to the points
of intersection of the line

Irbmy=1 P )
and the circle SEyogrdpe=0 . . . . ()
is Ayt 2gr )+ my)+ ol myP=0,

i A1+ 204 cP)+ 2ey(flgmet clm) 4y (14 Lk om=0. . (i)
The circumcircle of the triangle formed by the line (i) and the line pair
athay+by'=0 . . . . @)
passes through the origin. Hence if (i) is its equation, c=0.
Also (i) must be identical with (iv)
ie Li2g fikem _1t+3fm
a ] 3
Solving these equations for —g and —f, we have
—g= §{i(6— a) — 2}/ (am* — 2him -+ bP)
and — f=d{mla—b) — 2h1}/(am* — 2him -+ BP).
But by § 12.0 (n) these are the coordinates of C the centre of (ii) and the

cpamcentre of the trinngle ormed by () and (v).
1f the lines (iv) are equally inclined axes, and are not at right
angles, a=b.
The coordinates of C are then
= )— 2him, "

nndthalocnlolGhy/z-l[n,whhhhlmﬂghthuthmughmm

Exercises 12 (a)
1. The fixed line /a+y/b=1 meets the axis of t at X and the axis of
yat Y. Any straight line perpendicular to this straight line meets

the axis of  at X’ and the axis of y at ¥’. Prove that the locus
of the intersection of the straight lines XY’ and X"Y is the circle
#tyr=astby. Lo
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Show that, the axes being rectangular, the area of the triangle whose
vertices are the points (0 0) (%1, 71y (2 73) I8 £ Hxyr—5272).

1 O is the origin, and if the line ix-+niy=1 meets the pair of lines
whose joint equation is

¥4 Zhay+byi=0
in P(x, ,) and Q(#,, 7,), prove that the area of the triangle OPQ is
£ (K0~ ab)}/(am? - 2him + bR). LUl

From a point P(p, g) perpendiculars PM, PN are drawn to the straight
lines given by the equation a4+ 2hzy+byt=0.
Show that if O is the origin of coordinates, the area of the triangle
OMN is
{(ag™—~ 24pq-+bpr) (4 ab) 8} {(a—b)*+ 4. wu]

Prove that

Pty 21— 10y + 854 13=0
represents a pair of straight lines ; find their point of intersection and
the angle between them, L.U)

Show that the pair of straight lines joining the origin O to the inter-
sections A and B of the line I¥+my=1 with the conic ax’+-by?*=1 has
the equation (a—P)x'— 2imzy-+ (b—m)y=0.

Deduce that if AOB is a right angle, then the line AB touches the
circle (a+b)(x*+5%)=1. Lu)

Form the equation of the straight lines joining the origin to the
points given by the equations ax*+ 2hzy+ by'+ 2%+ 2fy+¢=0 and
p¥+gy-+r=0, and write down the condition that these lines should
be at right angles.

1f this condition is satisfied, show that the locus of the foot
of the perpendicular from the origin to the line pr+gy+r=0 is
(a+8)(#*+5%)+ 25+ 2fy+¢=0. L.u)

One of the medians of the triangle formed by the straight lines
x4 2hey—ayt=0 and the line pr+gy= lies along the y-axis. 1f
a and r are both different from zero, prove that ap-+ig=0.  [L.U.]
Prove that the equation

axt+ 2y +-by*=0

Teprescnts a pair of straght ines through the origin, and that the sine
of the angle between them

20— ab)i/((u—b)w- k.

Prove that the length intercepted by these lines on the line
I mytn=0is

2n{(-4- %) (b — ab)}f{am® — 2him + biT). Luy
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9. If the lines ax’+ Zhay+by*=0 meet the line grpy=pq in points
which are equidistant from the origin, prove that
h(p*—g*)=pg(b—a). Lyl
10. Lines through a point 4 icular to the lines axi-+ Zhxy-byl=0
cut the z-axis at L and M, and the y-axis at P and 0. The mid-point
of LM is N'; the mid-point of PQ is R. The mid-point of NR is B,
and O is the origin. IO, 4, B are collinear, show that 4 lies on the lines
=ay’,
11. Prove that if the points
(%1 71), (32 32)s (73, 73 (%0 70)
are the vertices of a parallelogram taken in order,
#it#y=apt s and yi+ye=yetye
Two sides of a parallelogram lie along the straight lines
axt4-2hxy+by=0,
and the diagonal which does not pass through the origin lies along the
straight line Lx-+my+n=0.
Find the coordinates of the vertex opposite to the origin and prove
that the figure is a thombus if h(F—m?) = (a—b)im. LU)

12. Show that the equation 3+—4xy—4y*+ 14x+12y—5=0 represents
two straight lines, and find the combined equation of the bisectors
of the angles between them. L.u]
13. Prove that

2+ 2zy sinh 6+ 2ax cosh 0+a*=0
represents a pair of straight lines for all values of §, and show that the
locus of their point of intersection is the circle x*+. [L.U]

=

. Find the condition that the equation
'+ 2hey-+by'+ 2+ 3fy+0=0
represents two straight lines.

Assuming this condition is satisfied, 4 is the point of intersection
of the straight lines. Parallel straight lines are drawn through the
origin O, and they intersect the other lines in B and C. Find the
equations of the diagonals OA and BC of the parallelogram formed,
and show that the parallelogram is a square if

a+b=0and h(g'—f%)=fgla—b). LU
. Find the equation of the pair of lines joining the origin to the points
in which the pair of lin

&

my 4914305+ 65y—169=0
are met by the lme :+2y~5 0.

Show that the quadrilateral having the first pair, and also the
second pair, as adjacent sides is cyclic, and find the equation of its
circumcircle, LU
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16. Prove that, if ;1< 169/56, there are two finite real values of  for which
the equation
9514 Axy+ pyt— 465+ 13+ 14=0
represents a pair of straight lines. If y=—1, find the separate
equations of the lines constituting one of these pairs. LU

5

. Prove that the equation my'—mx'—(m41)y—m(m?—1)x+m=0
represents two straight lines.

Find the point of intersection of these straight lines, and show that,
for different values of m, the locus of the point of intersection is
(2s+yr=(x+1)% L.u]

. Find the cquation of the pair of lines obtained by rotating the lines
represented by ax?4 Zhxy-+by'=0 about the origin through a positive
angle of 60°. Write down the equation which corresponds to the case
a=0,b=1, 2k=1/3, and sketch the two pairs of lines in this case. [L.U.)

3

3

Find the area enclosed by the pentagon ABCDE whose vertices are
respectively (1, 3), (4, 1), (5, 3), (3, 2) and (2, 4). (L.u)
. Show that the equation
(¥7=37) cos a+ 21y sin a=A(x'+yY),
where 0<A< 1, represents a pair of straight lines and find the acute
angle between them.
Show that, for every value of A, the lines given by this equation are

equally inclined to a fixed line. (L.U.

. The locus I represented by the equation
Bay—4y'—6r—2y+c=0
mects the line represented by the equation
8x+y—5=0

in the two points 4 and B. Tind a value of ¢ for which the lines

joining the origin O to 4 and B are at right angles, and show that in

this case I is a pair of lines which meet in a point P, and that the

diagonals of the quadrilateral OAPB are perpendicular.

8
8

=

THE CIRCLE
12.9. Useful formulae (revision)
(i) The equation of the circle with centre (a, f) and radius a is
(r—a)*+ (=B =a"
(ii) The equation x'+y’+2gz+2fy+c—0 represents a circle with
centre (—g, —) and radius /(g% +/*—c). This circle is real if g*-+/2> c.
(iii) The equation of the circle whose diameter is the line joining
the points (x;, 1) and (%, 3a) is (x—x)(¥— %) + (¥ =) (¥ —32) =0.
(iv) The circles x*4+y+2gx+3fy+c=0, 1 +y*+ 28"+ 2y +¢
cut orthogonally if 2gg” +2ff =c-+c".
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12.10. The equation of the tangent to a circle at a given point
Let (21, y1) be a point on the circle

24y 285+ 2fy+o=0 . . . (0]
Differentiating (i) with respect to x, we have
dy dy
242y 7 +2g+35 =0

so that the gradient of the circle at the point (x, ) is given by

Hence the equation of the tangent at (x,, ,) is
__ate,
y=n==3 y-n)
ARy =HtyHen
SoEn N HEE ) H Y Hy) He= i+ 2gn + Y +e
ie. 22+ 3y, +E(E+ ) +f(y+yy) +e=0 (12.7)

since (%, ) lies on (i).

12.11. Tangents to the circle x*+y*

y=mx

which are parallel to
The line y=mzte . . . . ()
‘meets the circle ¥+y*=a? in points whose abscissae are the roots of
the equation
Bt (mxto)i=a
BL+m)+2oma+ (P —a) =0, . . . (i)
Since (i) is a tangent to the circle, the roots of (ii) must be equal
o detmi=4(1+mY) (P —aY),
‘which leads to c*=a*(l+m?)
or o= tavy/(l+m).
Thus the two tangents to the circle x*+*:=a* with gradient m are
y=mxtay/(1+m?).
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12.12. The chord of contact of tangents drawn to a circle from
e point (x,, y;)
In fig. 35 tangents from T(z;, 3,) touch the circle
24yt + 282+ 2fy+c=0
at P(zy, y;) and Q(z3, ya).

Qx5 Tew
Fig. 36

Then by (12.7) the equation of PT is
#xy+yys+E(E+x) +/y+y) +0=0
and T lies on this line
& B ZE Y+t %) H(yHye) +e=0.
Similarly, by considering the tangent QT, we have
Zyty+51YatelE+ ) +f(or+ys) +e=0.
Thus the points P(zy, y), Q% ¥s) both satisfy the equation

2+ Yy +8(k+5) +/y +y) +e=0 (12.8)
and this is the equation of a straight line ; hence it is the equation of
the line joining P and Q.

PQ is known as the Mw of T with respect to the circle, and 7 is
called the pole of PQ.

12.13. The power of a point

If any line drawn through a fixed point P meets a circle at 4 and B,
the product PA.PB is constant and is called the power of P with
respect to the circle.

Let the equation of the circle be x*+3'+2gx+2fy+c=0, let
P=(x,5) and take the equation of PAB in the form
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Then by substituting for x and y from (i) in the equation of the circle
we obtain the quadratic equation in 7

(%47 cos 0)*+ (y,+7 sin 6)*+2g(x, +7 cos 0) +2/(y,+7 sin ) +c=0
iie. 7+2r((xy+g) cos O+(y,+f) sin O} ++y}+28% + Yy +c=0.
The roots 7,, ry of this equation are the measures of PA, PB.

Hence  PA.PB=ry,=x+yi+2%+2fy,+c. (12.9)
The power of P is positive or negative according as PA and PB are
drawn in the same sense or in opposite senses, i.e. according as P is
outside or inside the circle; the power of P is zero when P lies on
the circle.

In fig. 36, PA.PB=PT*, and so when P lies outside the circle

T P (.0

B
Fig. 36

(12.9) gives the square of the length of the tangent drawn from
(%1, y1)—a result which can also be obtained from the relation
PI*=CP*—CT?, where C is the centre of the circle.

12.14. The radical axis of two circles
The locus of points whose powers with respect to two circles are
equal is a straight line called the radical axis of the circles.
1f P(x, y,) is any point on the radical axis of the circles
24y + 25+ 2fy+c=0
and 24y + 282+ 2 'y +¢' =0,
then, by definition, using (12.9), we have
AN+ 2n+ Y o=+ + 2 H+ Y i+,
i.e. P lies on the line
2(g—g")x+2(/=f"Jy+ec—c'=0. (12.10)
1f we write S=x*+y*+2gx+2fy+c and S’ =21 +y14- 2"z + 2f y + ¢/,
this result may be written
S—5'=0.
The radical axis is perpendicular to the line of centres of the circles.
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f the circles intersect in real points 4 and B, these points are on the
radical axis since 4 and B have zero powers with respect to both
circles. In this case the radical axis is 4B, the common chord of the
circles. If the circles touch, the radical axis is the common tangent
at their point of contact.

Example 11
Prove that, in geneval, the vadical axes of three circles taken in pairs are
concurrent and that the point of concurvence is the centre of a circle which
cuts all thres civcles orthogonally.
Find the equation of the circle which is orthogonal to all thee civcles
byt 2eh dy+3=0, 24y Brt by=0 and 3ty dx+ By —1

Let the equations of the circles be S

0, §,=0, 53=0, where
+yi+ 2gr~+2/y+:y~

The radical axis of S,=0 and S,=0is S,
The radical axis of Sy=0and Sy=0 is S,—
Where (i) and (i) meet, S,—S,=0, and this is the equation of the radical
axis of §,=0and Sy=0. Thus, in general, the three radical axes meet at a
point C (known as the radical centre of the three circles).

The radical centre C’ of the three given circles is the meet of the lines
#+y—3=0and 25+y—4=0; ie. C'is the point (1, 2). The power of C’
with respect to each circle is 18 and so C’ lies outside the circles, and
from C’ a tangent of length 3y/2 can be drawn to cach circle. Thecircle
with centre C' and radius 3y/2 cuts all three circles orthogonally. Its
equation is (= 1) (y—2)1=18
or Ayi-2e—dy—13=0.

Sp=

)

12.15. Coaxal circles

If a system of circles is such that the radical axis of one pair is the
same as that of any other pair, the circles are said to form a coaxal
system. TFor example, all circles which pass through two fixed points
4 and B form a coaxal system with 4B as radical axis.

Since the radical axis of two circles is perpendicular to their line of
centres, it follows that the centres of circles of a coaxal system are
collinear.

Take as x-axis the line of centres and as y-axis the common radical axis.
Then the equations of any two circles of the system may be taken as

Ay 20,240, =0, 1+ 428,040, =0.
Their radical axis is 2(g,—g)%+¢,—¢,=0 and this will be the y-axis
if =

Thus "the equation #*+y*+2\r+c=0 represents for varying A
and constant ¢ a coaxal system of circles with centres on Ox, and with
Oy as radical axis.
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12.16. and tems of coaxal circles

The radical axis #=0 meets every circle of the system

Ayl de=0 )
in the points {0, + v/(—0)}.

‘These points are real if c< 0 and imaginary if ¢ 0. Hence equation (i)
represents a coaxal system intersecting in real points if ¢<0, and a
non-intersecting system if ¢>0.

Tf ¢=0, every circle of the system touches the y-axis at the origin
and the system is said to be tangential.

12.17. Limiting points of a non-intersecting system of coaxal
circles

‘The radius of the circle #%+y*+2Az+¢=0 is y/(M—0).
1£6>0 (i.e. if the system is non-intersecting),
A'—c=0 when A= ++/c.
Thus there are two circles of the system which have zero radius
These point circles of the system occur at (+ /¢, 0) and are called the
Uimiting poinis of the system. They are equidistant from the radical
axis.

Example 12
Show that any circle which passes through the limiting points of a coaxal
system culs every circle of the sysiem orthogonally.
‘The limiting points of the non-intersecting coaxal system
A4yt 2\rtat=0 . . . . (i)
are L (a, 0) and L'(—a, 0).
Let the circle #%+y'+2gx+2fy+c=0 pass through L and L’. Then
a'+2ga+c=0 and a'—2ga+c=0 50 that g=0 and c=—a?, Hence the
equation of any circle through L and L’ is
Byt ouy—at=0 . . . . ()
where ies.
By § 120 (iv), circles (i) and (i) aro on.hogona.l for all values of A and .
le of the intersect al system formed by the circles
whmh pass Lhmugh L and L’ cuts every circle of the given system
orthogonally.
12.18. Equations of the form S+AS’=0, S+A/=0
Let $=0, S’ =0 be the equations of two circles as in § 12.14, and let

I=pa+gy+7=0 be the equation of a straight line.
For all values of A (except A= —1) the equation

SHAS'=0 . . . . @
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represents a circle ; for the coefficients of #* and y* are equal and the
coefficient of xy is zero. Hence for varying A, (i) Tepresents a system
of circles. We may show that the system is coaxal by finding the
equation of the radical axis of any two circles of the system. Let the
equations of the circles be

SEAS'=0 . . . . ()
and S+A,S'=0 . . . . (i)
To find their radical axis we eliminate the terms of the second degree
between these equations by multiplying (i) by (1+,), (iii) by (1+A)
and subtracting. This gives

S-5'=0.

Hence the radical axis of any two circles of system (i) is the radical
axis of the circles S=0, S'=0. It follows that when A#—1, (i)
represents a circle of the coaxal system defined by the circles S=0,
$'=0. When these circles intersect in real points, (i) represents a
circle which passes through these points.

In the same way we may show that the equation

S+N=0 (1211

represents for all values of A a circle of a coaxal system of which the
line /=0 is the radical axis and the circle S=0 is a member. If the
line =0 intersects the circle S=0 in real points, (12.11) represents a.
circle through these points.

It is useful to note that the equation of any circle which passes
through the points of intersection of the circles S=0 and S'=0 is of
the form (i) for we can choose A to make (i) pass through any given
point which does not lie on either S=0 or 5'=0.

In the same way it can be shown that the equation of any circle
which passes through the points of intersection of the circle S=0 and
the line =0 is of the form (12.11).

Example 13
The circle x3+y'+2x—4y—11=0 and the line x~y+1=0 intersect at
A and B. Find the equation of the circle on AB as diameter and the equation

of the cicle through A, B orthogonal 1o the given circle. L.U)
By (12.11) the equation
Ay 2—dy—114AF—y+)=0 . . ()

represents a circle through 4 and B. If its centre (—1—§A, 2+ §) lies on
the line —y+1=0, A=—2. Hence the equation of the circle on AB as
diameter is

Fry-2y—18=0 . . . . (i)
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Circle (i) is orthogonal to the circle #1434 2r—4y—11=0 if, by

§12.9 (iv)
(242 +2(4+2)=2—22

or A=—16.

Hence the equation of the orthogonal circle is #*+ 57— 14x- 12y— 27==0.

Example 14
Find the limiting points of the system of coaxal circles
(F=1)"4 (Y= 2024 Nat+ 334 204 5) =0, Lu)
‘The equation of the system can be written
(F4+y9)(A+ 1)+ 2x(A— 1)~ 4y 4 5(A+1)=0.
The values of A corresponding to the limiting points of the system
(ie. to the circles of the system which have zero radius) are given by
A= 4
A=, 4
[EESTE
which reduces to M+ 33=0, 50 that A=0, —
Hence ions of the circles wi i (r—1)+ (y~2?=0
and (++2)+ (y+1)*=0 i.e. the limiting points are (1, 2) and (-2, —1).

5=0,

Example 15

Show that when k is any constant, the equation .

FhY 25+ Yyt ok Bpnkyy kg3 2) H 0+ =0
represents a circle which louches the circle '+y*+2gx+2fy+c=0 at the
point (x,, ).

Find the equation of the circle which fouches the circle 3*+y*+ 8x+ 14=0
at the point (—5, 1) and passes through the point (1, 3).

Find also the equation of the circle which touches these two circles, one
internally and the other externally, and has its centre collinear with their
centres.

The equation of the tangent to the circle ¥4-y*4 %gx-+ fy+c=0 (i)
at the point (z,, y,) is, by (12.7),

x5k yyitel+7) +f(y+yi) =0 CEE . )
Also, by (12.11), the equation
Fby 2gxd 2yt et hEntyy g+ 2 )+ fly+ya)+ =0 . (i)
Tepresents a circle passing through the points of intersection of (i) and (i).
These points coincide at the point (¥, ¥,). Hence (iii) represents for all
values of 4 a circle touching (i) at (x,, 7).
‘The tangent at P(—35, 1) to the circle
ALy Sr =0 . . . . (iv)
is, by (12.7), x—y+6=0, and so the equation of the required circle is of
the form 74 y24 85+ 14+ k(x—y+6) =0,
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But this circle goes through (1, 3) so that k=—8 and the equation of
the circle is

Apyiely—34=0 . . LW

C, the centre of circle (iv), is (—4, 0). Hence 4 (fig. 37) the extremity of

the diameter through P(—5, 1), is (—3, —1) since C is the mid-point of

(1,3)
5,1) B

Fig. 37

AP. Similarly, D the centre of circle (v) is (0, —4) ud B, the extremity
of the diameter of this circle drawn through P is (5,
The required circle which touches (iv) externally and (v) internally is
the circle on AB as diameter. Its equation
(#+3)(r—5)+ (y+ 1)(y+9)=0, by §12.9 (iij
i, A yt— 254+ 10y—6=0.

12.19. Miscellaneous examples
Example 16

Write down the equation of the polar of the point P(h, k) with respect to the
circle x*+y*+ 2Xx+c=0, and show that for cvery vnluc of A the polar passes
through a fixed point P’ Find the coordinates of P’

Show that the circle on PP as diameter is orthogonal to every circle a/ the
given coaxal system. u)

‘The polar of P(h, k) with respect to the circle

Ayt 2 e=0 . . . - @)

is, by (12.8), ha+hy+c+A(x+R)=0.

But for all values of A this equation is satisfied by the point which
simultaneously satisfies the equations hv+Ay+¢=0 and x+h=0, i.e. by
the fixed point P{—h, (K—c)/k}.
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The equation of the circle on PP’ as diameter is
(4= B)(x+B)+ (y—B){y— (B—c)/A}=0,
ie. Abyr— (BB —cylh—c=0 . . (i)
By §12.0 (iv), circles (i) and (i) cut orthogonally for all values of A
Hence the circle on PP’ as diameter is orthogonal to every circle of the
given coaxal system.
Example 17
Prove that, for all values of the constanis X and p, the circle whoss equation is
(#—a)(r—a+ N+ (-f—p+u=r*
bisects the circumference of the circle
(r—a)+ly—Br=r
Find the equation of the circle which bisects the circumfevence of the circle
14914 2y—3=0 and louches the line x—y=0 at the origin. LUl
The equation (y—a)(x—a+N)+—Bly—B+m)=r . o
may be written in the form S-+7=0, where S=(x—a)'+(y— p)'—y- and
st(~—¢)+pu B). Hence, by (12.11), (i) represents a circle passing
through the points of intersection of the circlo S=0 and the line /=
But (a, ), the centre of the circle, satisfies /=0 and so /=0 is a diameter
of S=0.  Hence (i) represents a circle which bisects the circumference of
S=0.
1f we apply this result, the equation of a circle which bisects the circum-
ference of the circle #*+ (y+1)*=4 is of the form
AN +O+DO+I+p)=4 . . . (@)
1t passes through the origin, hence =3 and (ii) becomes
Aty det by=0.
‘The tangent to this circle at the origin is, by (12.7),
Artby=0,
which reduces to ¥—y=0 if A= —5.
Hence the equation of the required circle is
#y'—Ext by=0.

Exercises 12 (b)
1. Find the equations of the two circles of radius /2 with their centres
on the #-axis which touch the line x+y+1=0. [Durham.}

2. A circle passes through the points of intersection of the circles
351431~ 65— 1=0 and 4345+ 26— dy+ 1=0
and also passes through the centre of the first circle. Find its equation
and verify that it cuts the second circle orthogonally,  [Durbam.]
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3. Find the equation of the circle on the join of (1, 3), (2, 4) as diameter,
and obtain the equation of another circle with centre (—1, 2) which
meets the first circle orthogonally. [Durham.]

4. The positive #-axis cuts the circle x*4-y3=4 at 4, and B is a point on
the circle such that the angle AOB is 60°, where O is the origin. A
point P on OB is such that the circle centre P which touches the given
circle internally also touches externally the circle on 04 as diameter.
Show that OP=8/5 and find the equation of this circle centre P.

[Durham.)

5. Find the value of & if the equation
— 65y + 2y —Ta+ 1y +A=0
represents two straight lines.
For this value of 4 show that the two lines intersect at a point on
the circle
Py 1254+ 6y420=0,
and find the equation of the tangent to the circle at this point. [L.U.J

6. If the length of the tangent from a point P to the circle #'+y*=rtis n
times the length of the tangent from P to the circle (v—2r)4yt=4r%,
prove that the locus of P is a circle. If the radius of this circle is 2r,
show that n=+/(¢). Lu]

7. Find the radical centre of the three circles

Ayt 204 dy—1=0,

43"+ 10548y~ 13=0,

#y'—Br+ By+5=0,
and show that there is a circle with this point as centre which cuts
all three circles orthogonally. [Durham.)

8. Show that the equation

#1454 2(1—R)x+2(1— 2k)y—1=0,
where % is variable, represents a system of coaxal circles, and find the
equation of the circle of the system which cuts orthogonally the circle
A4yt 10y—9=0.
Find the radical centre of the circles
yyr=16,
Hhy' v 8y+16=0,
Apyrtdrt 14y +52=0.
Find also the equation of the circle which cuts all three circles
orthogonally.

9. Three circles of a coaxal system have centres 4, B, C and the lengths
of the tangents to these circles from any given point are g, b, ¢
respectively. Prove that

@IBC+H1CA+c*4B
the sign of the line segments being taken into account.  [Sheffield.]
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10. Prove that the origin is outside the circle
Ay 2gxt 2y+e=0
if ¢>0, and interpret the value of ¢ geometrically when this happens.
The

uation of a circle s, is #’+y'—4x+3=0; find the equation
of the crele s; which cuts s, orthogonally and has its centre at the

origin.
1 £, is any clcle auch ehat |, tho chord common to s5and 5, goes
through the origin, prove that s, cuts s, orthogonal [L.U]

. By using the fact that a limiting point of a sysccm of coaxal circles
may be regarded as a point-circle belonging to the system, or otherwise,
prove that, if (k, &) is a limiting point of a coaxal system of which the
circle #*+y*+2gx+2fy+c=0 is a member, then the equation of the
radical axis of the system is

2Ag+h)x+2(f+R)y+(c—B—kY)=0.

The circle s+ x—5y+9=0 is a member of a coaxal system of
which (1, 2) is a limiting point. Find the coordinates of the other
limiting point, [Leeds.]

12. A coaxal system of circles contains the circle

Ayt gt z/y+:_ o,

and one of its limiting points is (—g, ind the equation of the

radical axis and the coordinates of the othcr limiting point. Show that

the system of circles orthogonal to this system is represented by the
equation

S+ +2gx— (g =y +fg*+ plr+8)=0,
where y is a parameter. (LU)

®

‘The limiting points of a family of coaxal circles are the points (+2, 0)
and 1 is the line whose equation is 2++3y=2. Find the equaion of
that circle of the family which cuts from / a chord subtending a right

angle at the origin.
Tind the equation of that circle of the orthogonal coaxal system
which also cuts from  a chord subtending a right angle at the origin.
L.U]

4. The circles
Ahyhy—4=0, Fy1-3r—Gy+2=0
are two members of a coaxal system ; the circle
ty-y+2=0
is a member of another coaxal system, of which the radical axis is the
line x+y+1=0. Show that the two systems have a common circle,
and find its equation. [Lecds.
5. Find the limiting points of the system given by
byt 2N (v y—4)—6=0.
Determine the equations of the circles which pass through these points
[Luj

and have radius 2 units.
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. Find the polar of a point P with respect to any member of the family

of circles x*4y*+2ur—c*=0, and show that for all values of u, these
polars are concurrent at a point P,. Show that PP, is a diameter of a
circle of the system #*+y?-+2\v+ct=0.

. Given two circles ; a tangent to one of the given circles at any point P

on it meets the polar of P with respect to the other in Py, Prove that
the circles on PP, as diameter form a coaxal system, and find the
limiting points of this system. LU

0Ox and Oy are two perpendicular lines, P is a variable point on Ox,
and the polar of P with respect to a given fixed circle in the plane Oxy
intersects Oy at Q. Prove that for different positions of P on O, the
circles on PQ) as diameter form a coaxal system whose radical axis
passes through the centre of the given fixed circle. [L.U.

The polar of a, point P with respect to a fixed circle whose equation
is %4 y24 2gx+ 2fy+ f*=0 cuts the axes at the points 4 and B. If P
is on the y-axis, find the equation of the circle on 4B as diameter, and
show that as P varies along the y-axis, these circles form a coaxal
system. Find the common points of the system. [L.U]

Show that, in general, two circles of the coaxal system
Ay 2 —at=0,
where X is an arbitrary parameter, touch an arbitrary straight line
and that, if these circles cut orthogonally the rectangle contained
by the perpendiculars drawn to the straight line from the common
points of the system is equal to a®. [L.U]
Show that the circles
PP 28,5+ 27+ 0,=0 and 21y 4 28,5+ 2y + 6y =0

are orthogonal if 2¢,8,+2f,fy=¢1+Cp.

Assuming that these circles are orthogonal, intersecting at C and D,
and that their centres are 4 and B respectively, show that the cquation
of the circle through 4, B, C, D is

A +y)+ 2081+ ¥+ 21+ Ly +ea ey
Assuming that the equation of the circle on CD as diameter is written
the form

A4y 4280+ 2ot M=)+ AN~ fly+e e} =0,
show that A= —r}/AB? where 7, is the radius of the first circle.

2

U]

. If three circles with centres 4, B, and C cut each other orthogonally

in pairs, prove that the polar of 4 with respect to the circle centre
R passes through C. Ly
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23. Show that the equation
3%+ 2h5y+5%)+ v+ py) (s +y+1)=0
represents a conic passing through the vertices of the triangle formed
by the lines 5+ 2hzy+3*=0 and x+y+1=0.

Deduce the equation of the circumcircle of this triangle, and show
that this circle is orthogonal to the circumcircle of the triangle formed
by the lines as*+ 2key+ay'=0 and s—y+1=0. L.U)

24. Show that the coordinates of any point on the circle
Ay 2t 2y om0
can be expressed in the form
(—g+7cos b, —f+rsin @),
where r=+/(g*+f'=c) and § is a varying panmm Find the
equation of the tangent to the circle at this point.

Tln;lnumdnwn!mmthcﬁudpolnt(a,ﬂ)wmmumd

circles given by the equation
AP —2p(s+3)=0,

where  is a varying parameter. Prove that the equation of the locus
of the points of contact is

(45 (5+y+a)—2ax(3-+5)=0. Ly

26. Find the condition that the circle whose equation is
9420+ +ey=0
should cut the circle
by gr Yy Ho=0

at the ends of a diameter of the latter circle,

Find the locus of the centre of a circle which cuts the circles
#14y'=25 and 574y'—25—4y—11=0 at the ends of diameters of
the latter circles. L)

26. The tangents drawn from a point P on the s-axis to the circle
Pby'=2ay+2—1=0 (a>1)
touch the circle at @ and R. Prove that the point P can be found
such that QR subtends a right angle at the origin only if .>:+vg
and show that when a=4 this point is at a distance /2 from the
origin. wu)
27. Prove that the equation of the circle having the points (,, ,) and
(%3, 1) as extremities of a diameter is
(r—5)x—2)+ =) y—y2)=0.
The line x sin a-+y cos a=1 intersects the conic ax'-+hxy+byt=1
m ind

circle passes through the origin and has its centre on the ¥-axis, then
a-+b=1and h=a cot a. (1 R32]



12] THE CIRCLE 299

28, Find the equations of the two circles which pass through the points of
intersection of the circle 4(x*-+y%)=5p and the line x cos a+ysin a=p
and touch the line x cos (a+80°)+ sin (a+60°)=p. Show that the
larger of the two circles also passes through the points of intersection
of the circle 4(x+y")=p* and the line # cos a+y sin a+}p=0. [L.U.]

20. (i) A variable circle passes through & fixed point and cuts a fixed
circle at the ends of a variable diameter. Show that the locus of
the centre of the variable circle is a straight line.

(i) The polar of the origin with respect to the circle
byt 2gxt 2fy+e=0
intersects the circle at P and Q. Show that the equation of the circle
on PQ as diameter is
(48" (3*+3") + 2%+ 2ofy+ 2 —c(f*+ g% = 0. vy
30. Find the values of the constants A and p for the equation

V(Bx—y)+py(35+y—6)+ (3x—)(3x+y—6)=0
represent a circle. Hence find the centre and radius of the circum-
circle 04 B whose sides 04, OB, 4B have the equations
y=0, y=3x, 3xr+y=6
xespecnvdy.
btain also the coordinates of the centre of the circle which cuts
nus uxcle orthogonally at O and 4. [L.u]




CHAPTER 13
THE PARABOLA

13.1. Conic sections

A conic section, or, more briefly, a conic, may be defined as follows :
If S is a fixed point and /s a fixed line which does not pass through S,
the locus of a point which moves in the plane of S and / so that its
distance from S is in a constant ratio to its distance from J, is called a
conic. The fixed point is called a focus of the conic, the fixed line a
direciriz, and the constant ratio (dénoted by ¢) the cccentricily of the
conic. The conic is called a parabola, ellipse or hyperbola according
as ¢ is equal to, less than or greater than unity.

13.2. The parabola (revision)

The standard equation of the parabola is y*=4av. When the
equation of the curve is in this form,

(i) the focus S is the point (g, 0),
y (ii) the directrix ZM is the line x= —a,
P (iii) the vertex O is the origin of co-
ordinates,

MET
7 (iv) the x-axis is the axis of symmetry

of the curve and is called the axis
2ot s 5 of the parabola,
(v) the y-axis is the tangent at the
h\ vertex,
(vi) the latus rectum LL, (the double
ordinate through the focus) is of
length 4a.

Fig. 38 The parabola y*=4ax is shown in

fig. 38.

The point whose coordinates are given in terms of the single variable
£by th ti

¥ the equations x=ab, y=2at . . [0)
lies on the parabola y*=4ax for all values of £, and cqunnons (l) may
be taken as the parametric equations of the parabola y'=dax. Ast
varies from — o to +co, the point given by (i) describeés the parabola
completely. The point (af*, 2af) is referred to as the point of parameter
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4, or the point [{]; the chord joining the points [4] and [4,] on the
parabola is called the chord [t, f).
The equation of the tangent at (x,, y,) on the parabola may be
found by the method of § 12.10 to be
=2a(x+x).
The equation of the normal at the same point is

yop= ).

13.3. Chord of contact
By the method of § 12,12 we may show that the equation of PQ,
the chord of contact of tangents drawn to the parabola y*=dax from
the point T(x,, 3,), is
yn=2a(x+x).
PQ is called the polar of T with respect to the parabola, and T is
called pole of PQ.

13.4. The chord [#,, t,]; focal chords
The gradient 7 of the line joining (af}, 2at;) and (af3, 2at,) is given by
2al=t) _ 2
=" —_— (ty#1y).
P

Hence by joining pairs of points [#,] and [t;] on the parabola such that
1 41,=3/m=constant, we obtain a set of parallel chords of gradient .
The equation of the chord [4, £] is

y—2at,

ie. 25— (t,+ 1)y +2atyt, =0. (13.)
This chord passes through the focus (a, 0) of the parabola if
Lly=—1. 13.2)

Thus if the point (aff, 2a4) is one extremity of a focal chord,
(a/8}, ~2ajt,) is the other.

13.5. The tangent and normal at []
1f, in (13.1), we write £, = f,=¢, we obtain the equation of the tangent
to the parabola at [£] :
x—ty+att=0.
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This equation may be found directly by substituting % =af?, y,=

in 39, =2a(x+1,), the equation of the tangent at (%, ) ; ulternahvely
from the parametric equations z=af*, y=2at we have

dy dy\ //dm\ 1
=@/@-
Hence the equation of the tmgmt at[gis
y-%l=—(z—nl’),

y-7+u. (13.3)

The equation of the normal at [4] is
y—2at=—t{z—a),
y+ix=2at+a, (13.4)

13.6. The point of intersection of the tangents at [,] and [¢,]
From (13.3) the equations of the tangents at [4] and [4] are
hy=z+af,
ty=x+af.
‘These tangents meet at the point
{ahty, alty+4)} (13.6)
The tangents are perpendicular if 4jf,= —1, which is the same con-
dition as (13.2). It follows that tangents at the extremities of a focal
chord are perpendzclllar and intersect on the line z=—a, i.e. on the
of the parabol

13.7. The tangent of gradient m
Suppose that the line y=mx-+¢ touches the parabola at [f). Then
this line is the same as (13.3) and so corresponding coefficients in the
two equations are proportional, i.c. m=1/¢ and
c=at=afm.
Hence the line y=mx+afm touches the parabola for all values of .
The point of contact is (afm?, 2afm).

13.8. Locus of mid-points of parallel chords of the parabola
The coordinates of M, the mid-point of the chord [t,, ), are
z={a(l+4), y=alts+4).

If t,+14y=constant, y,=constant and M lies on a straight line
parallel to the axis of the parabola. But (see § 13.4) by joining points
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[4) and [4,] on the curve such that #, +#, =constant we obtain a set of
parallel chords. Hence the mid-points of parallel chords of a parabola
lie on a line parallel to its axis. Such a line is known as a diameter of
uu curve. The diameter bisecting chords of gradient s is y=2afm.

By regarding a tangent as the limiting case of a chord, it follows
that the tangent at the extremity of a diameter of a parabola is
parallel to the chords which the diameter bisects.

13.9. Conormal points on the parabola y*=4ax
By (13.4) the normal at [¢] will pass through (X, Y), if
Y +iX =2at +a*,
ie. if aP+1(2a—X)—-Y =0 . . @)
The roots fy, f, & of this cubic equation are the values of the panmetus
of the points on the curve the normals at which pass through (X, ¥).

Three points on a parabola the normals at which meet in a point
are called conormal points.

There is no term in # in (i) and so (see § 2.2)

bttty =0.

Thus the algebraic sum of the ordinates of three conormal points
on a parabola is zero.

From (i) we also have tts=Yla . . . . (i)
Now suppose that the normals at [4], [f,] meet at a point on the
parabola. In such a case (X, ¥) must coincide with [f,] and so
Y=2at,, Substitution of this value in (ii) gives

Hly=2.
This result shows that for normals at [f,), [f,] to intersect on the
parabola a necessary condition is that 4f,=2. That this condition
is also sufficient can be deduced using the method of Example 5 of
§13.11.

13.10. Concyclic points on the parabola y*=4ax
The circle #*+y*+2gx+2fy+c=0 meets the parabola y*=4ax at
the point [f] if
) @4 4030+ 2gal + dfat +c =0,
re. if a''+4-20%(2a* +-ga) + 4fat+¢c=0 . . . U]
The roots 4, 4y, 4, £, of this quartic equation in £ are the values of the
parameters of the four points, not necessarily all real, in which the

circle meets the parabola.
Since in (i) the coefficient of  is zero, f+f+1+1,=0 (see §2.2).
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Hence the algebraic sum of the ordinates of the four points of inter-
section of a circle and a parabola is zero.

1f, in addition, [4], [4], [4;] are conormal points, £,=0. Hence the
circle through three conormal points passes through the vertex of the
parabola.

13.11. Miscellaneous examples
Example 1
Show that the equation
Y+85—2y~23=0
vepresents a pavabola with latus vectum of length 8 and focus (1, 1). Find
the coordinales of its vertex and the equation of its directrix.
‘The given equation may be written
(y—1)=—8(x—3)
and simplified by the substitutions
X=r-3, Y=y-1,
i.e. by transferring the origin to (3, 1) as in § 12.3 (a).

The equation then reduces to ¥?= —8X. This is the standard equation
of the parabola with a=—2 (see § 13.2). The length of the latus rectum
(4a numerically) is s. the coordinates of the focus are X=a, Y=0, i.e.
0 is the point (3, 1), and the equation

o{ the directrix X—-nux

Example 2

Find the equations of the tangent and normal 1o the pavabola y'=dax at
the point (aft, 2at).

PQ, a variable chord of the parabola y'=dax, sublends a right angle at the
vertex ; TP, TQ are tangents ; NP, NQ ave normals. Show tha the locus of
the mid-point of TN is a parabola. (L.U]

For the squations of the tangent and normal at [, see § 195,

Let P= (af, 2at,) and Q= (afs,

Then, by (13.5), the tangents at P an Q meet at T [a:.x,, alty+ )

The equations of the normals at P and Q are respecti

Y4 tiw=2at+af}
and y+typ=2at+at.
The normals intersect at N where
#(ty—ty)=2a(t,— ) +a(t]~1)
ie. x=a(@+ Bty £) since £,20,
S y=—ahiy(ht ).
The coordinates of M, the mid-point of TN, are
=it a) =lal2+ (G +4))
y=irtyx=talti+6)1-t) PR O]
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Now the gradients of OP and 0Q are 2ft,, 2/t,, and PQ subtends a right
angle at the vertex O,

noth=—4.

Substituting this value for £,f, in (i), we have
y=$a(ty+14)
and r—a=1a(t+1)%

. 2yt=25a(x—a).
‘Thus the locus of M is a parabola with vertex at (q, 0) and latus rectum of
length 25a/2.

Example 3

The chord PQ joining the poinis Plafl, 2at,) and Q(afi, 2at) on the
parabola y'=dax passes through the focus. Find the velation between !,
and t,.

Prove that the circle on PQ as diameler louches the divectrix of the parabola,
and that its point of contact is the point of intersection of the tangents fo the
parabola at P and . U]

By (13.2), #4f,= — 1, and 50 (see § 13.6) the tangents at P and Q meet at
right angles on the directrix at T{—a, a(t,+4)}, i.e. the circle on PQ as
diameter passes through T, and C its centre is the mid-point of PQ. It
follows that the ordinate of C is a(f,+#;) and this is also the ordinate of T.
Hence the directrix is perpendicular to TC and so touches the circle at T.

Example 4

If the normal at Plat?, 2at) on the parabola y*=dax meels the curve again
at Qaf}, 2at,), show that £+ 1, +2=0.

If the tangents at P and Q intersect at R, show that the line through R
parallel to the axis of the parabola meets the parabola in P, where PP’ is a
Jfocal chord. L.u)

The equation of the normal at P is y-+tx=2at+af’. It meets the curve
at Q]

*. 2at,+atfi=2at+af?,
(=) (P #,+2)=0,
LAEmE2=0 . . . . . @)
since £5£4,.

By (13.5) the tangents at P and Q meet at R{att,, a(t+4)} and so the
equation of the line through R parallel to the axis of the curve is y=a(t-+#,).

1t meets the curve at P'(aT?, 2aT) where

20T=a(t+1),
or AT=Pttty.
S AT=—1by ().

Thus, by (13.2), PP is a focal chord.
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Example 5
The normals at P (afl, 2at,) and Q(afl, 2at,) intersect on the pavabola at
R(aT*, 2aT). Show that t, and t, ave the voois of the equation £1+4T+2=0.
Show that for all values of T the locus of the mid-point of the chord PQ is &
parabola. L.u]
The normal at P(t,] meets the parabola again at R[T],
2 B+4T+2=0 (see Example 4).

Similarly, B+4,T+2=0.
Hence ¢, and #, are the roots of the equation
P4iT4+2=0
and so, cf. § 13.9, Wh=2 . . . g

This is the condition that the normals at [¢;] and [¢,] should intersect on the

The coordinates of M, the mid-point of PQ, are
F=fa(+). y=alty+h).
To find the locus of M we eliminate £, and 4, between these equations
using ().
Pt oty
=a'(+4+4)
=2a(++2a).
T is the equation of & parabola with vertex at (s, 0) and latus
rectum of length 2.
Example 6
Show that the equation of the chord of the parabola yh=s dax which is bisected
at
(@B is S fymtua .
Find the locus of the middle points of chords of the parabola y'=4ax
which touch the parabola y*-+ 4ax=0. L.U)
Any chord through the point (a, f) is of the form

y—B=m(x—a) P ]
This chord meets the parabola at the point (aft, 2af),
where 2ai—P=m(ad—a),
ie mast—2at+ (B—ma)=0.
If ¢, and #, are the roots of this equation,
hth=2m .. . @)

But £, and 4, are the parameters of the points where the chord meets the
curve, and 50 if (a, f) is the mid-point of the chord,
B=a(t;+4)=2a/m by (ii)

oL m=2a)
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Substituting this value in (i), we obtain the equation of the chord bisected

at (e, f):
2ax—By=2aa—p* . . (i)

Mdentitying (i) with the line y=ns—aju which tosches the parabola
—4ax for all values of n, we have

2fB=n and (B'—2aa)/f=—afn.
‘Elimination of n between these equations gives
3pr=daa.
Hence the locus of (q, ) is 3y*=4az.

Exercises 13
1. Find the slope of the tangent to the curve y*=dax at the point
2, 2at).

‘The line PA, where 4 is (a, 2a), meets Ox at B. The line through 4
parallel to Ox meets OP at C. Show that BC is bisected by Oy and is
parallel to the tangent to the curve at P. [Liverpool.)

2. The tangent at a poiat P on the parabola yta=dax mests the directrix
a parallel to the axis of the parabola through Z meets the normal
at Pin R. Prove that the locus of R is another parabola with the same
axis as before and vertex at the point (3, 0). LUl

3. A point P moves on the parabola y*=daz, and B is the point (24, 0).
Show that the locus of the middle point of BP is a parabola whose
focus is the point (3a/2, 0). [Sheffeld.]

4. Find the equation of the normal to the parabola s=4ay at the point
P(2a, a) on it. If the normal cuts the parabola again in @ find the

coordinates of Q and the angle subtended at the origin by PQ.
[Shefield]

5. The normal at the point P(af’, 2af) on the parabola y'=dax meets
the parabola again in Q and the line through @ parallel to the axis of
the parabola meets the tangent at Pin T. Prove that PT is divided
by the directrix in the ratio 1: 3. [Durham ]

6. Show that the line y=mx+c touches the parabola y*=dax if c=ajm.
Hence find the gradients of the two common tangents of the above
parabola and the circle #'+y'=at. [Leeds)

7. Prove that the line y=mi-+a/m is a tangent to the parabola yi=4az,
and that the point of contact, P, is the point (a/..x 2afm). “Another
tangent to the parabola is drawn parallel to OP, where O is the origin.
Prove that the two tangents meet in the point Q whose coordinates
are (a/2m*, 3a/2m). Deduce the equation of the locus of Q asm varies.

[Sheficld.)
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8. A line through Q (—2a, 0) cuts the parabola y*=dax at R,, R, and
the tangents at these points meet at P. 1f A is the vertex, prove that
AP s inclined to the y-axis at the same angle that QR,R, is inclined to
the x-axis.

Prove also that the normals at Ry, R, meet on the curve.  [L.U.]

9. The tangents to the parabola y*=4ax at the points R(af, 2af),
S{ast, 2au) intersect at P. Find the coordinates of P and prove that,
if the angle between the tangents to the parabola at R and S is a, P
lies on the curve y— dax=(s+a)? tan® a. [Durham,)

10. Prove that two perpendicular tangents of a parabola intersect upon

the directrix, and touch the curve at the ends of a focal chord.
Prove that the mid-point of a variable focal chord describes a
parabola having a latus rectum equal to half that of the given parabola.
[Leeds]

11. Prove that the chord joining the points of contact of perpendicular
tangents to a parabola passes through the focus.

Prove also that the orthocentre of the triangle formed by any three

tangents to the parabola lies on the directrix. L)

12. Find the coordinates of the point of intersection of the tangents at
the points (af}, 2ah,), (af}, 2aty) to the parabola y*=dax,

Tangents are drawn from a point on the parabola y*=4bx to the
parabola y*=dax. Prove that the locus of the intersection of corre-
sponding normals to y*=4ax is the curve

45— a)’=dab(x—2a)’. LUl

13. Prove that the line #—fy-+af*=0 touches the parabola y*=4ax for
any value of £,
Find the equation of the circumcircle of the triangle formed by the
y-axis and two other tangents to the parabola, and show that this
circle passes through the focus. Lu)

14. 4, B are the extremities of one of a family of parallel chords of a
parabola, and the normals to the curve at 4, B meet in P. Show that
the locus of P is a straight line which is normal to the curve. [Lecds.]

15. Prove that the locus of mid-points of normal chords of the parabola
= da is the curve y4—2a(x— 2a)y*+8a'=0. [Sheffield.}

16. Find the condition that the line Lr+my+n=0 should touch the
bola y3=4az.

A tangent to the parabola y'=4ax meets the parabola y=dbr at
the points P, @, and the tangents at P, Q meet at R. Show that the
locus of R is the parabola ayl= u-x, and find the locus of the pomt of
intersection of the normals at P, U]

17. A point P moves on the line x=4 and the three normals from P mest
the parabola at 0y, O, Qs Show that the centroid of the triangle
0,040, remains at a fixed point on the s-axis. [Durham.]
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If two variable points P, 0, on the parabola y*=4ax subtend a right
angle at the vertex, show that PQ meets the #-axis at a fixed point.

Show also that the locus of the mid-point of PQ is a parabola whose
vertex is at the point (1a, 0). [LU)

. Two of the normals to the parabola y*=4ax from the point P}, p)

are perpendicular. Show that P lies on the parabola y*=a(s—3a)
and that the length of the chord joining the feet of the perpendicular
normals is A+a. L.U]

. If P is the point (af, 2af) and the normal at P meets the parabola

4= dax again at the point Q whose coordinates are (aff, 2at,), show
thal £41,42=0.
16 M is the mid-point of PQ and N is the mid-point of PM, show
that, as P varies on the parabola, the locus of N is the parabola
= a(v—30) L.U]

. The normals to the parabola y*=4ax at P(af}, 2at,) and Q(af}, 2at,)

intersect on the parabola at R(aT? 2T). Show that 4 and 4 are
the roots of the equation (24T

Show that for all values of T the locus of the mid-point of the chord
PQ is a parabola. [L.U]

. Q is the variable point (aT% 2aT) on the parabola y'=4ar. The

normals at points Pand P on the curve pass through . The tangents
at Pand Q intersect at R, and the tangents at P’ and Q intersect at R'.
Show that the locus of the mid-point of RR’ is a parabola.  [L.U.)

. P is the point (aT%, 2aT) on the parabola y*=4ar. Show that if

T*>38, there are two real normals to the curve which pass through P
in addition to the normal at P.

Q and R are the points at which the normals will pass through P.
M is the mid-point of QR and N is the mid-point of PM. Show that,
as P moves along the parabola, N describes a parabola and QR passes
through a fixed point. wu)

. If the normal at the point P(af?, 2af) on the parabola y*= 4ax, meets

the parabola again in (), show that the longth of PQ is 4a(1+#1)¥4/8.
Prove also that, if a normal chord PQ subtends a right angle at
the focus S, then PQ=5ay/5. LU

. P is any point of a parabola whose vertex is A, and the normals

at points Q, R of the curve meet at P. Show that, as P varies,
AP and QR intersect on a fixed straight line perpendicular to the
-axis. [L.U)
P and Q are the points of contact of the tangents drawn from a poiat T
to a parabola whose focus is S. If R is the middle point of PQ, prove
that TP.TQ=2TS.TR. LU

. A is the point (4a, 4a) and P is a variable point on the parabola

y=4ax; the chord AQ is drawn parallel to the normal at P. If the
‘tangents at P and Q intersect at R, prove that the locus of R is the
hyperbola 14 2ry+8as + day -+ 4a?=0. LUl
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28. A variable straight line, whose direction is fixed, cuts a parabola in
points P and Q. Prove that the locus of the point of intersection of
the normals at P and Q to the parabola is a straight line which is
itself a normal to the parabola. L.U]

29. P, 0, R are the vertices of a triangle inscribed in a parabola. The
sides OR, RP, PQ mest the axis of the parabola at the points L, M, N

Show that the drawn from L, M, N to
the tangents at P, 0, R respectively meet at a point on the tangent
at the vertex of the parabola. Lu]

30. The normal at P to the parabola y*=da cuts the z-axis at G, and Q is
the point on the tangent at P, on the same side of the ordinate at

P as G, such that PQ=PG. Prove that the locus of  is a parabola.
Luj

31 If the normals at two points of the parabola y'=4ax make com-
plementary angles with the axis, show that their point of intersection
lies on the parabola y*=a(s—a). [L.U)

32, If the tangents at two points on the parabola y'=da intersect at
and the normals at the same points intersect at P, express the co-
ordinates of P in terms of X and Y, the coordinates of 0. Hence show

that (i) if the locus of P is a line to the s-axis, the locus of Q
isa hyperbola; (ii) if thu locus of P is a line parallel to the y-axis, the
Iocus of Q is a parabol L.U)

8

. Tangents at the points (af, 2at,), (af}, 2af,) of the parabola yi=dax
meet the s-axis at 4 and B, and the y-axis at C and D, Find the
equation of the circles on AB as diameter and on CD as diameter.

1f the two tangents are perpendicular, prove that, as they vary in
‘position, the circles on AB as diameter form a coaxal
limiting points and that the circles on CD as diameter lorm d:a
orthogonal coaxal system. [L.U]

34. Normals to the parabola y*=4ax at the points P and Q meet on the
fixed straight line
Is4-my+n=0.
Prove that the tangents to the parabola at the points P and Q meet
on the hyperbola
mey—ly*+aly—2at—an=0. L.u)
35. The curves p and g are arcs of parabolas. The equation of p is
y=-+2¢/(as) and that of g is y=+2y/(—as), & being a positive
constant. The tangent to p at the point (af*, 2af) intersects g at Q,
and the tangent to ¢ at Q intersects p at the point (af}, 2a¢,). Prove
that f,=(y/2—1)¥. L.U.
36. A tangent to the parabola y*+nta¥=0, where  is positive, intersects
the parabola yi=4as at P and Q. Prove that the locus of the mid-
point of PQ is another parabola and that, if the latus rectum of this
parabola is 16a/17, then n=3. U]
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46. Find the angle between the two lines whose combined equation is
axt+ 2hzy+by'=0, and show that the lines
(m+ 1)y = (m 4+ 2m — )xy+ (mt—m)s?=0
intersect cach other at an angle of r radians for all values of m.
Find the equations of the chords of the parabola y*=dax, which
pass through the point (—6a, 0) and which subtend an angle of h
radians at the vertex. (L.

The circle 4?4 y?=a? intersects the z-axis at the points A(a, 0) and
B(—a, 0)and Pis the point (a cos §, a sin ). Prove that the equations
of the lines AP and BP are

(¥—a) cos (0/2)+y sin (6/2)=0
and (x+4a) sin (6/2)—y cos (6/2)=0.

The lines AB and CD are two perpendicular diameters of a circle,
and P is a variable point on its circumference. The straight line AP
meets CD in Q and the straight line through Q parallel to AB meets
BP in R. Prove that the locus of the point R is a parabola passing
through the points B, C and D. What position of the point P corre-
sponds to the point at infinity on the parabola ? [L.U]
48. Prove that the equation

yt=x+(P—1)a, . m
where a and £ are parameters, represents a family of pamllcl nmgm
lines when £ is fixed and a is variable, and write down the equation
of that straight line which passes through the origin.

When a is fixed and # is variable, prove that equation (1) represents
a family of tangents to the parabola y*=a(x—a).
‘When a and ¢ both vary, find the relation which must hold between
aand tin order that eqnanon (1) shall represent the family of tangents
to the circle a7+ yt= L]
49. Prove that for all values of £ and ¢
(1)t —dax)+ (r—ty+ att)(x+ty+) =0
is the equation of a circle which touches y*—dax=0,

PFQ is a focal chord of a parabola. Circles are drawn through the
focus F to touch the parabola at P and Q respectively. Prove that
these circles cut orthogonally. Luj

50. P and Q are points on the parabola y*=4ax. The perpendicular
bisector of PQ meets the axis of the parabola at R, and the per-
pendiclar o the axis drawn through the mid-point V of PQ meots
the axis at M. Prove that MR is of constant length for all positions
of Pand 0.

1f a parabola, its focus and its axis are given, show how to construct
the chord of the parabola which is bisected at a given point V. [L.U.]



CHAPTER 14
THE ELLIPSE AND HYPERBOLA
14.1. The eltipse (revision)

An cllipse is a conic whose eccentricity ¢ is less than unity. The
standard equation of the ellipse is

By
e (14)
where b*=a*(1—¢3).
When the equation of the curve is in this form,
(i) the foci S, S; are the points (+ae, 0),
(ii) the directrices ZM, Z,M, are the lines x= +a/e,
(iii) the eccentricity e, less than unity, is given by ¢t=1—bt/at,
(iv) the centre O is the origin of coordinates,
(v) the major axis 44, is of length 2 and lies along the x-axis,
(vi) the minor axis BB is of length 2b and lies along the y-axis,
(vii) each latus rectum is of length 26%/a.

s
The ellipse ’i‘+’bi,~1 is shown in fig. 30. Since the major and minor
a

axes (i.c. the principal axes) of the curve lic along the axes of co-
ordinates (14.1) is sometimes called the equation of the ellipse referred
to its principal axes.

The sum of the focal distances SP, S,P of any point P on the ellipse
is constant and equal to the length of the major axis. Hence the cllipse
may also be defined as the locus of a point which moves in a plane so
that the sum of its distances from two fixed points is constanl

The equation of the tangent at (x,, ) to the cllipse 7+
may be found by the method of § 12.10 to be

"
”“l +3'1‘" =1

‘The equation of the normal at the same point is
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By the method of § 1212 we may show that the cquaton of PO,
the chord of contact of tangents drawn to the ellpse X1+31=1
from the point T'(%y, ), is
=,
a—.’+b—l‘=l (14.2)

PQ is called the polar of T with respect to the ellipse and T is called
the pole of PQ.
14.2. The auxiliary circle and eccentric angle

The circle described on the major axis of an ellipse as diameter is
called the auxiliary circle of the ellipse.

Y
(&R
z[aNs, © NSJa[zx
Fig. 39

Ii NP (fig. 39), any ordinate of the ellipse, is pro duced to meet the
auxiliary circle at Q, @ is said to be the point on the auxiliary circle
corresponding to P on the ellipse. If £20Q=0, Q is the point
(a cos 6, a sin 6) and from (14.1) Pis (a cos, b sin 0). 8 is called the
eccentric angle of P, and P is referred to as the point [4). The chord
joining [6] and [¢] on the ellipse is called the chord [0, ¢].

The equations

%=a cos 6, y=b sin
may be taken as parametric equations of the ellipse.

Since NP : NQ=>b/a, NP can be obtained as the orthogonal
jection of NQ on a plane inclined at an angle cos™'(b/a) to NQ. Thus
an ellipse is the orthogonal projection of its auxiliary circle on a plane
drawn through 4,4 (or through any line parallel to 4,4) which makes
an angle cos-*(b/a) with the plane of the auxiliary circle.
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14.3. The chord [, ¢]
The gradient m of the line joining (a cos 8, b sin 6) to (a cos 4, bsin ¢)
is given by 3sin O sin ¢)
~2(cosf— cosg)
=—(ba) cot }B+4).
Tt follows that, by joining pairs of polms [6] and [$] on the ellipse such
that 0+¢=2a=constant, a system of parallel chords of gradient
— (b/a) cot a is obtained.
The equation of the chord [0, ¢] is
y=bsing_ _boos(0+4)
cospasin }(0+9)

x
ie.  brcos §{8+9)+aysin §(6+9)
=abfcos }(0+9) cos ¢+ sin }(0+9) sin ¢}.
This reduces to
Zeos 4(0+4) +-‘§ sin §(8+4) =cos §(0—¢) (14.3)
By making $-»0 in (14.3) we obtain the equation of the tangent at []:
2 cos 0+ sin 6=1.
a 3
14.4. Tangent and normal at [6]
From the parametric equations x=a cos 6, y=>b sin 8 of the ellipse

we have
z _J;) / (%‘ = (b/a) cot 6.

Hence the equation of the tangem zt [0)is

(y=bsin aj_—“m 0(; —acos ),
Z o5 642 sin 0=1 (14.4)
a %
(as in §14.3).
The equation of the normal at [6] is
(y—bsin =251 Z(x-aonsﬂ)
; ax by .
re FoT R

The equations of the tangent and normal may also be found from
those given in § 14.1 by substituting %,=a cos 8, y, =b sin 0.
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and the point of intersection of these tangents satisfies the equation
(y—m2)* 4 (my +2)*= (1 +-m?) (a*+b*)
ie 2yt =at b
Hence perpendicular tangents to an ellipse intersect on a circle
concentric with the ellipse and with radius 4/(a%+2%). This circle is
known as the director circle of the ellipse.

14.8. The locus of the mid-points of parallel chords of an ellipse

‘The coordinates of M, the mid-point of the chord [6, $] are
1a(cos 8-+cos $)=a cos §(0-+4) cos }(0—4),
1b(sin O-+sin ¢)=b sin §(0+4) cos 4(O—4).

If 0+ $=2a=constant, the coordinates of M become
cos a cos §(0—¢), y=bsin a cos }0—¢).

Eliminating the variable cos §(6—¢) between these equations, we
see that the locus of  is the straight line

yz=(ja)tana . . @
which, since it passes through the centre of the curve, s called a
diameter of the ellipse.

But_ (sce § 14.3) by joining points [6] and [#] on the cllipse such
that 0-+4=2a we obtain a St of chords paralll to the diameter
yJx=— (bfa)cot a. Hence the mid-points of these ).

It follows that the mid-points of chords parallel to lhe dlameter
y=mx lie on the diameter y=m'x where
—bifar. (14.5)

14.9. Conjugate diameters

From the symmetry of (14.5), if a diameter of gradient m’ bisects
all chords of the ellipse of gradicnt m, the diameter of gradient m will
bisect all chords of gradient m’.

The diameters y=mx, y=m'x which are such that each bisccts all
chords parallel to the other are called conjugate diameters and their
gradients are connected by the relation (14.5).

If A(6] and B[g] are the extremities of conjugate diameters of an
ellipse, centre o the gradients of 0A and OB are (b/a) tan 0, (5/a) tan g,
where by (14,

(ba*) tan 6 tan $= —b¥/a?
cos B cos ¢-+sin 0 sin =0,
cos (0—4)=0,
O—¢=tim
Hence the cccentric angles of extremities of conjugate diameters
differ by g
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Thus if AOA’, BOB' are conjugate diameters, we may take
0, 0+, 0+}m, O} as the eccentric angles of 4, 4", B, B respec-
tively.

11, in addition, 04 =OB, the diameters are said to be equiconjugate
and

a* cos® 0+ b* sin® f=a" sin® 6+ 1% cost 9,
2 (a*—8)(cos* f—sin? §)=0,
tan 6= +1.

Hence the equations of the equiconjugate diameters are y= + (b/a)z.

The axes of the ellipse are perpendicular conjugate diameters.

14.10 The chord of the ellipse which is bisected at (ay B)
The line
e y-B_,

s smo . v o - @
meets the ellipse 4%%+a%=a%* in points 4 and B whose distances
7, and 1, from P (a, B) are the roots of the equation

B(a-+7 o5 0)2+a¥(B-+r sin 6)t=a¥s,
73(5* cos® 0+a* sin® 6) +2(8a cos §+a¥B sin 6) + ('a? + a?? — at) =0,
1 P is mid-point of 4B, these roots will be equal in magnitude and
opposite in sign
S Wacosf+aBsin6=0 . . . ()
Eliminating 0 between (i) and (i), we obtain the equation of the
chord bisected at P :

14.11. Miscellaneous examples
Example 1
Show that the equation
2054 36y"+ 40¥— 108y~ 79=0
represents an ellipss, and find its sccentricity and the coordinales of ils centre
and foci.

‘The given equation may be written
20(x+1)*+36(y—§)*=180,
and reduced to X9+ Y 5=1 P )
by the substitutions
X=x+l, Y=y-i,
i.e. by transferriog the origin to (—1, §) as in § 12.3 (a).
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By (12.4), page 276, these lines are perpendicular if

if T lies on the Jocus

Example 4
An ellipse with principal axes 2a, 2b slides between hwo fixed straight lines
which are at right angles to one another. Show that the locus of ils centre is a
circle. LU
The two perpendicular lines touch the cllipse and so P, their point of
intersection, lies on the director circle whose centre C is the centre of the
ellipse, and whose radius is v/(a*+*
*. CP=+/(a*+b%=constant.
But P is fixed, hence C lies on a circle, centre P and radius /(a?+5%).

Exercises 14 (a)

1. The foci of an ellipse of eccentricity 12/13 are the pmm.s 0 +12).
Show that the equation of the ellipse is /5?4 y%/13
Find the cquations of the tangent and normal to e ellipse at the
point (5 cos ¢, 13 sin ¢) on it. If the tangent and normal meet the
x-axis in the points T, N, show that ON.OT is constant, O being the
origin. [Shefield.]

2. The tangent and normal to an ellipse at a point T cut the minor axis
at points P, Q respectively. Show that the circle described on PQ as
diameter passes through the foci of the ellipse. {(Durbam ]

3. If the point P on the ellipso #¥a*+y%/b=1 has the eccentric angle 6,
find the equations of the lines PA, PA’, joining P to the ends 4, 4’ of
the major axis.

‘The lines through P perpendicular to Pd, PA’ meet the ma]or
axis in Ir, *; show that the length KK" is constant. L.U]

4. The tangent at the point P(a cos §, b sin 6) on the ellipse x%/a+y*/b*=1
meets the tangents at the ends of the major axis at M and M. Show
that the two foci of the ellipse lie on the circle with MM’ as diameter,
and that its area is  (a?+4? cot® 6). (Durham.]

, RP=b. The rod moves so that its ends P, Q slide on two
perpendicular straight lines OX, O respectively. Find with respect
1o axes OX, O, the equation of the curve traced by

Show that the rod is tangential to the curve only when it is inclined
0 OX at an angle tan-'+/(b/a). [Sheffield.)

5 A :uaighl rod PQ has length a+b, and R is the point on it such that
QR=
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16. TP and TQ are tangents drawn to the ellipse s¥/at+y¥bt=1. If M
is the mid-point of PQ, show that the centre of the ellipse lies on TM.
Show also that, if M moves on the ellipse 3%/a*+y%b*= 1/c%, the locus
of T is the ellipse s/al+ytbt=c.

<

- Find the equation of the chord joining two points on the cllipse
#}at4y}bi=1 with eccentric angles 6, and 0, respectively, and
deduce that, for a system of parallel chords, the sum of the cccentric
angles at the extremities of any chord is constant.

Two points P, P’ on the ellipse #%a’+y*bi=1 have eccentric
angles f and 22—, respectively. The tangents at Pand P’ meet at Q.
Show that the coordinates of { are

{a cos afcos (a—6), b sin afcos (a—B)}.
Deduce that, for a system of parallel chords of an ellipse, the tangents
at the extremities of the chords intersect on a straight line through
the centre of the ellipse. (Sheffield.)

The normal at a point Pon an ellipse meets the major axisat G. Prove

that SG=¢ SPand §'G=¢ S'P, where S and S’ are the foci. Deduce
that SP, S’P are equally inclined to the tangent (or normal) at P.

®

13

. The point P(, ) lies on the ellipse
#far+y(a—ct)=1 (0<c<a)
and S is the point (¢, 0). Show that SP=(a’~cx)/a and hence prove
that the sum of the focal distances of a point on the ellipse is equal to

2a.
Show that the product of the focal distances of P is
2P s1— g, [Durham.)
Find the equation of the normal to the ellipse x'[a'+y‘/b'-l at the
point P(a cos 8, b sin 6). This normal meets the ellipse again at Q
and the tangents at P and Q meet R(§, ). By comparing the two
forms of the equation of PQ, in terms of § and in terms of £, 7.
respectively, or otherwise, prove that the locus of R, when P varies
on the ellipse, is the curve
Ay @ b=ty b (Sheffield.]
. The foci of an ellipse are S, S, and P is any point on the curve. If
the normal at P intersects the line S5 at G, prove that
PG=SP.S'P(1—¢Y)
where ¢ is the eccentricity of the ellipse, LUy

®
S

14

22, The perpendicular from the centre of the ellipse to the tangent at a
variable point P meets the line joining P to the focus S(ae, 0) in G,
Show that the locus of G is a circle of radius a whose centre is at S.

[L.U. Anc))

23. A point P moves so that the chord of contact of the tangents from P
to the ellipse bix*+aly'=a%? touches the ellipse 4(b%s!+aly?)=a%t.
Find the locus of P, L]
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. 1f CP, CQ are conjugate semi-diameters of the ellipse b7+ a%y=.
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If the normal at a variable point P on the central conic at-+by’=1

mests Or, Oy in G, g respoctively, and if 8 poiat 0 is tan on the
normal so that GQ : 0g prove that the locus of  is the conic

Kb Pay® = P (a4 11 [IRVA]

. The normal at P to the ollipse 3/a*+y*/b*=1 meets the #-axis at G.

If Q is the point of intersection of the line through G parallel to the
y-axis and the line joining P to the centre of the ellipse, show that
‘the equation of the locus of Q is

#[ad+y b

—byat, L)

. The normal at the point P(a cos 6, b sin 6) on the ellipse #%a%-+y*/b*=1

‘meets the z-axis at G and the tangent meets the y-axis at 7. Find the
coordinates of G and T and show that the locus of the circumcentre

of the triangle OGT is
16ataty* — 4(ad—b%)y 4B (a0 —

Find the equations of the tangents to the ellipse

Aatsyibi=1
which are paralle] to the line y=ms.

Prove that any point from which the tangents drawn to the above
ellipse are equally inclined to the line y= tan q lies on the hyperbola
—2xy cot 2a—yl=al—bh LUl

L]

. Show that the line y=mz+¢ touches the ellipse

attyifpi=1
if G*=atmi+ 0%, Hence, or otherwise, show that the equation of the
pair of tangents from the point P(a, ) may be expressed in the form
(Br—ay)=a’(y—B)*+bHx—a)t.
‘These tangents cut the x-axis at the points 4 and B.
(i) If P4 and PB are perpendicular, find the locus of P,

(i) If the mid-point of AB is the fixed point (, 0) show that the
locus of P is the parabola Ay*=b*(k—3). L.U]

%,
show that

(i) CP+-CQ'=at+8%;
(i) the smallest possible value of the acute angle between CP and
CQ is tan-}{2ab/(a’—b). [Durham.]

. Prove that the line Lr-+-my-+n=0 touches the ellipse ¥/atyt/bt=1

if ¥4 bimi=

Lines are dnwn through the origin perpendicular to the tangents
from a point P to the abx llipse. 1fth
of the ellipse, prove that P has on the curve

At byttt LUy
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The difference of the focal distances of a point on a hyperbola is
constant and equal to the length of the transverse axis. Hence the

Tﬂ_g—/

AAp
SRR
E)

Fig. 40

hyperbola may also be defined as the locus of a point which moves in

a plane so that the difference of its distances from two fixed points
is constant.

14.13. Parametric representation
The point whose coordinates are
s=asech, y=btanf. . . . G
lies on the hyperbola :‘: -%: =1 for all values of 6, and so equations

(i) may be taken as the parametric equations of the hyperbola

. We
shall use [6] to denote the point (a sec 0, b tan 8) and the chord [0, ¢]
to denote the chord joining (6] and [

Other parametric equations of the hyperbola are
#mtacoshu, y=bsinhu
x=da(+1f),  y=ib(t-1/).

14.14. Standard results

and

The reader should establish the following results, using the methods
indicated.
‘The equation of the chord (6, ¢ is

Zcos §(0—¢)—% sin §0+¢)=cos §0+9). (CL.§143)
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‘The equations of the tangent and normal at [6] are respectively

2 sec8-2 tan 6=1
a b

L.
and =i (CL§144)
‘The equation of the tangent at (x,, 3,) is
2% _ Yy
BB (i)

The lines (@)

touch the hyperbola for all values of m. (Cf. § 14.6.)
The lines are real only if m*> b%/a%.
The equation of the director circle of the hyperbola is
yyr=at—bt (CF§147)
The circle is real only if b<a.
The equation of PQ, the chord of contact of tangents drawn to the
hyperbola from T{z, 3,), is
= _yn
T-B-1 cngizaz)
PQ is called the polar of T with respect to the hyperbola, and T is
called the pole of PQ.

14.15. Conjugate diameters of a hyperbola
The equation of the chord of the hyperbola which is bisected at
(@ B)is

ox_fy_ot B
SR e e (Cf. §14.10.)

The gradient  of this chord is given by
m=blafa'p.
, B), the mid-point of the chord, lies on the line

»
Y=o

which, since it passes through the centre of the curve, is called a
diameter of the hyperbola.

Hence the mid-points of all chords of gradient m lie on the diameter
y=m'x where

mm’ =bdja%. (14.7)

From the symmetry of this relation it follows that the mid-points of
chords of gradient m' lie on the diameter y=mx.



4] THE HYPERBOLA 320

The diameters y=mz, y=m'z are said to be conjugate and their
gradients are connected by the relation (14.7).

14.16. The conjugate hyperbola
Two hyperbolas are said to be conjugafe if the transverse and
conjugate axes of the one coincide respectively with the conjugate
and transverse axes of the other.
The hyperbola conjugate to

is S-r=—L

Conjugate hyperbolas have the same centre and asymptotes, and
diameters conjugate for one are conjugate for the other.
Two conjugate hyperbolas are shown in fig. 41.

Fig. 41

14.17. The rectangular hyperbola

A hyperbola is said to be rectangular if its asymptotes are perpen-
dicular.

s g
The asymptotes y= + (b/a)x of the hyperbola 1,_{.‘-1 are per-
@

pendicular if 5*=a*. In this case, the eccentricity of the hyperbola is
V2, its equation is x*—y*=a? and its asymptotes y= +x bisect the
angles between the axes.
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14.18. The rectangular hyperbola referred to its asymptotes as
axes

If we rotate the coordinate axes through —45° keeping the origin
unchanged, the equation x*—y?*=a* becomes by (12.2), page 274,

{# cos (—45%)—y sin (—45°))~ {x sin(—45°) +y cos (—45°)}*=a?,

ie. 22y=at
or zy=c (writing c*=}a?).
y
[¢) x
Fig. 42

This curve, which is shown in fig. 42, has the coordinate axes as

iptotes. .
The equation of the conjugate hyperbola is
zy=—0ct.

14.19. Parametric representation
Since the point whose coordinates are
x=cl, y=cft . .. R}

lies on the rectangular hyperbola xy=c* for all values of ¢ except
£=0, and since the point given by (i) describes the complete hyperbola
as ¢ varies, equations (i) are suitable parametric equations of this
curve.

It is left as an exercise to the reader to show that the equation of
the chord [f, A1 is
F+hhy=clt+4).
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1420, The tangent and normal at (x,, y,) on the hyperbola

xy=
Using the product rule to differentiate the equation
=t . . . .0
with respect to %, we have
dy+yn0

50 that the gradient of the curve at the point (z, ) is given by
dy Y

Hence the equation of the tangent at P(x, 3) is

y-n= Z‘ (z=x),

ie. 2y, +y%, =204, since P lies on (i).
‘The equation of the normal at P is
Ih—Fi=am =,

Substituting #,=¢, ,=c/f, we obtain the equations of the tangent
and normal respectively at [f]:

x+by=2d,
tx—ylt=c(e*—1/p).
These may also be obtained by the method shown in § 14.4.

14.21. Conormal points on the rectangular hyperbola xy=c?
The normal at [¢] passes through (X, ¥) if
1X =Y ft=c( =1/,
iie. if o= X4 Yt—c=0.
The roots 4, &, s, ¢, of this quartic equation are connected by the
relation flylyf, (see §2.2); hence the product of the abscissae
or of the ordinates of four conormal points on a rectangular

hyperbola is equal to —ct. Also, the point of concurrence of the
normals is

X=cl+htta+t),
Y= —ctitglyt (1t + 1t + Uty + 1) =c(Ufty + Lty + 15+ 1/8).
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Let the equation of PQ (fig. 43) be
Lbmytn=0 . . . . ()
Then the equation of the line pair OP, OQ joining the origin to the points
of intersection of (i) with the circle

#4y'—2ay+=0 . .. )
is, by § 12.8, ¥4 y142ay(lr + my)/n+ﬁ(l~+my)-/n--o,
Qe AuHB) YAt 2amnekBrt) + 2sylant ) =0 . (iv)
‘These lines will be asymptotes of the hyperbola if (iv) is identical with
bat—atyt=0,

e, if (n+ fF)/b1= — (414 Zamn-+ Bm?)/at and if an-+Bm=0, since /%0,

Fig. 43

‘These relations give
aX(n B1) 4+ b {nt— frnt) = 0,
ni{at+b%) + B(a*P—btm?) =0
ie. natehy frt=0
by (i), since PQ much«s the hyperbola. But n#0, since PQ does not pass
through the orig
*. att+ B=0.
‘This is the condition that circle (iii) should pass through the foci (+a, 0)
of the given hyperbola, and so if PQ is a tangent to the hyperbola, circle
(iii) passes through its foci.

Example 7
Pyli=1, 2, 3) are the points (kts, h[K) on the rectangular hyperbola zy=A'.
Show that the circumcircle of the iriangle PyPyPy cuts the hyperbola at a
Jourth point P with parameter
ty=1{t\tt,.
Quli=1, 2, 3, 4) are the other poinis at which the circles of curvature at ths
points Py cut the hyperbola. Show that 0,0:04Q¢ is @ cyclic quadrilateral.
Loy



CHAPTER 15

THE STRAIGHT LINE, CIRCLE AND CONIC
IN POLAR COORDINATES

15.1. Polar coordinates

Let O be a fixed point and Oz a fixed straight line in a plane. Then
the position of any other point P in the plane is uniquely determined
by the coordinates r=0P and 8= £x0P which are called the polar
coordinales of P. Ox is termed the initial line and O the pole; OP is
called the radius vector and @ the vectorial angle of P.

The angle 6 is positive or negative according as it is measured
counter—clockwise or clockwise from Oz. 1f OM makes an angle
with Oz, the point P(r, ) lies on OM at a distance r from O
when 7>0; P lies on MO produced at
a distance |7| from O when r<0. The  R(2:60)
convention is sometimes made, notably 60)
in connection with the study of complex
numbers in the Argand diagram, that m
only positive values of 7 chatl be used,
but this is not convenient in geometry. “‘ x

In fig. 44, the points P(1,60%), 0(~2,60°)
and R(—2,—60°)areshown. Notethateach
of these points may be expressed in terms
of other polar coordinates. For example, Q(2,60)

R s the point (2, 120°) and also (-2, 300°). Fig. 44

15.2. Relations between cartesian and polar coordinates

If the cartesian origin and x-axis (fig. 45) are chosen as the pole and
initial line respectively of polar coordinates, the cartesian and polar
coordinates of a point are connected by the relations

z=rcosf, y=rsing  (15.)

A=xity), tanf=yjx (152)
Equations (15.2) do not determinc 7,
6 uniquely. To obtain unique values
of rand @ for a given z and y we
may take r=-+1/(x*+%) and 0 as
the angle which satisfies the re-
lations cosf=x/r, sin8=y/r such that
—m<f<m
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153, The straight line in polar coordinates
Equation Geometric properties
@) 0=a . . line through the pole in-
clined at an angle a to
the initial line
(i) r=acosecd . line drawn parallel to the
initial line at a distance
a from the pole, i, y=a
(i) r=bsec® . line drawn dicular
P (re) to the initial line at &
distance b from the pole,
ie. 4=b
M ®D (iv) 7 cos (9-a)=p line shown in fig.
here P, 0 the
L] perpendicular  OM=p
and £20M=a so that
Fig. 48 OP cos (9—a)=OM.
The corresponding car-
tesian equation is
% cos a-+y sin amp,

15.4. Perpendicular lines
1f we use (16.1) to change to polar coordinates the the equations of the

2y =d, we obf
acos0+b sin O=cfr and b cos f—a sin 9-4/,.
‘The latter equation may be written in the form
@ 05 (B+4m)+b sin (8+m)=dJr.
It follows that the equations of a pair of perpendicular lines may be
en as

A cos 04 B sin O=1jr s
and A cos (6+§m)+B sin (0+}m)=kjr (15.3)
where  and & are any constants.
15.5. The circle
Equation Geometric properties
(i) r=a=constant . . Circle with centre at the pole and
radius a, i.e. circle #'-+y1=at
(i) r=2acos@ . . . Circle of radius  with centre on the

initial line and passing through
the pole, i.e. circle 2'+y=2az
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Equation Geometric properties

@ii) r=2asinf . . . Circle of radius a touching the
initial line at the pole, i.e. circle
xtyt=2ay

(iv) 7=2pr cos (9—a)+p*=a*  Circle shown in fig. 47 with centre
Clp, o) andradiusa. If P(r, 6) is
any point on the circle, then PC?
=0P1+0C*—20P.0C cos (0~a).

P (0

Fig. 47

15.6. The conic

The simplest equation of a conic in polar coordinates is obtained by
taking the pole at a focus S and taking as initial line the perpendicular
SZ from S to the corresponding directrix DD’ of the conic. In
fig. 48, P(r, 6) is any point on a conic which has eccentricity ¢ and
semi-latus rectum LS=1. LK, PM are drawn perpendicular to DD’
and PN is perpendicular to SZ.

‘Then, by the focus-directrix property of
the conic

LS=l=e.LK PR}
and  PS=e.PM . . (i)
ie. r=e(LK~SN),

rel—ercos§ by ()

I3
o ;=l+ecosé.

When e=1, the conic is a parabola and
its equation is Fig. 48
7 cos* §0=a, where 2a=1.
When ¢> 1, the conic is a hyperbola one branch of which is given by
the values of 8 for which cos 8> —1/e, the other by values of § for
which cos §< —1/e.
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Since SZ=LK=le, it follows from §15.3 (iii) that the equation
of the directrix DD" is = (}e) sec

ie -: =¢cos 6. (164)
It, in fig. 48, ZS produced is taken as initial line,
SN=r cos (m—8)=—7 cos 8

and by (i) the equation of the conic is -=1—¢ cos 8.

15.7. "l‘he chord joining the points with vectorial angles (a+f),
(a—P) on the conic fr=1+¢ cos §
Let the equation of the chord be
Ladcos04Bsing. (See§164)
Then if the point (ry, a-+) lies on this chord and on the conic,
=4 cos (a+p)+B sin (a+B)=1+¢ cos (a+f)

o (A=e)cos (a+B)+Bsin @+f)=1 . . ()
Similarly,  (d—¢) cos @a—f)+Bsin @—f)=1 . . (i)
Solving (i) and (i) for (4 -.) and B, by (3.5) page 40, we have

1
s (@—F) s @—P)

1 sin @—p) oos(u—ﬁ) T~ '
Il sm(u.-i-ﬂ)' ]m(nfo 1l cos (a+f)  sin (a+f)
A—e 1

Tcosasmp —25muamﬁ S @3
o A-e=cosasecB, Besinasech.

Thus the equation of the required chord is

;=(=+cmaxecﬂ’)cosﬂ+sinnsccﬂain0

ie Lt cos 04500 B s (9—a). (55
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Example 2

P and Q) ars two poinis with veclorial angles a, (a—im) where jm<a<mw
on the conic I=r(1+¢ cos 6), with focus S. The langent at P and the chord
PQ meet the corvesponding directrix at T and D respactively. SQ meets the
tangent at P in R. Show that

1/SD+1/SR—+/3/ST=1/2} LU
The equation of the directrix (6g. 50) corresponding to S is, by (15.4),
fr=ecos® . . . )

The equation of the tangent at P is, by (15.6),
Ifr=ecosf+cos (B—a) . . . . (i)

Fig. 60

The equation of chord PQ is, by (15.5),
Ifr=e cos +sec (in) cos (B—at+m) . . (i)
(i) and (ii) meet at T, where cos (§—a)=0

O=atim
From the figure, f=a—jr at T and
lST=¢sina P ]
(i) and (iii) meet at D, where cos (0—a+ §m)=0
f=a—jutim.

Again from the figure, f=a— and
l/SD=e¢ cos (a—m)=}e(y/3 sin a—cos a) . )
SQ, the line whose equation is f=a—}m, meets (ii) at R, where
I/SR=¢ cos (a—im)+cos dm=}e(cos a+4/3sina)+} . (vi)
From (iv), (v) and (vi)
1/SD+1/SR—+/3/ST=1/2l.
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Exercises 15

LF is a focus and PFP' is a focal chord of the ellipso
7(1+¢ cos 6)=1 Prove that 1/r+1/r'=2/l, where » and ' are the
distances of P and P’ from F respectively. What is the harmonic
‘mean of 7 and ' ? [Durham.]

2. 1f PSP’ and 0SQ’ are two mutually perpendicular focal chords of a
conic, prove that 1/(PS.SP')+1/(QS.SQ’) is constant.

3. Prove that mutually perpendicular focal chords of a rectangular
hyperbola are equal in length.

4. If P is an extremity of the latus rectum of the conic

Ifr=1—e¢ cos 6,
show that the tangent at P makes with the initial line an angle whose
tangent is e.

6. P, 0 are points on a conic with focus S. TP, TQ are tangents. Show

that TS bisects angle PSQ and that, if the conic is a parabola,
SP.SQ=ST™.

6. Show that, if the tangent at P, any point on a conic, meets the directrix
at K, the angle KSP is a right angle.

7. Show that the line

ljr=a cos 6+ sin §
touches the conic  Jfr=1— cos 6, if (a+e)+b=1,

8. 1f the tangents at P(r,, a) and Q(ry, f) on the parabola /fr=1+cos §
intersect at T(ry, y), prove that a-+f=2y. If the point T is on
the latus rectum =y, prove that 1/r,+ 1fry=2fl. L.U]

9. Show that the equation of the tangent to the conic fr=1-+s cos § at
the point 6=a is given by Jjr= cos (§—a)+¢ cos §. Show that the two
conics

I/8=rly/3+cos )

and 14/3=2¢{3/3+cos (0+ §m)}
touch where 6= . L)
0. Show that the equation #/l= sin f—cos f is that of a circle which
‘passes through the origin and which touches the conic /fr=1+cos 0 at
=4 LU
1. f a chord PQ of the conic Jjr=1+¢ cos § subtends a constant angle 2y
at the focus, show that the locus of the point of intersection of the
tangents at P and Q is a conic with the same focus and directrix as
the given conic but with eccenticity ¢ sec y. LU




CHAPTER 16

COORDINATE GEOMETRY OF THREE DIMENSIONS:
THE PLANE AND STRAIGHT LINE

16.1. Coordinates of a point in space

In the rectangular cartesian system of coordinates, the position of a
point is fixed by its perpendicular distances from three mutually
perpendicular planes. Three such planes intersecting in three mutually
perpendicular lines #°0z, 50y, #'0z are shown in fig. 52. Their point
of intersection O is the origin, the lines %0z, y'Oy, 'Oz are the co-

2z
¥ [Py
.', z
¥ o, Y
x
/Y
o 2
Fig. 52

ordinate axes and the planes 0z, 20%, 20y (known respectively as the
y2-, 13-, zy-planes) are the coordinate planes. The point P(z, y, 2) lies
at perpendicular distances z, y, z from the yx- 2x-, xy-planes respec-
tively, = being positive when measured in the direction Oz, negative if

measured in the direction O«'. Similar sign conventions hold for
yand 2. The coordinate planes divide space into eight regions known
as oclants. The octant Oxyz, in which #, y, z are all positive, is called
the positive oclant. In the octant Ozyz', z and y are positive and z is
negative, and so on.

16.2. Section formula
Let P(x, y, 7) divide the join of 4 (%, ¥, #) and B(zy, y, 2) in the
ratio A: p (fig. 53).
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Let 4', P, B' be the projections of A, P and B respectively on the
xy-plane and draw AC, PD parallel to A'B".

Fig. 63

Then CP=2—1,, DB=2,~2 and, by similar triangles,
cP_ap_2
DB™PB

Similarly,

_Natuy
Atp "
Hence P is the point
Mytpn Nty M+;ﬂn)
Atp * T Ap  Atp )

P divides AB intemnally or externally according as the ratio A: u is
positive or negative. In particular, the coordinates of the mid-point
are

of AB
Hxm+x), don+r) Ha+a). (18.2)

16.3. Direction cosines of a straight line

If lengths measured along a line are reckoned positive in one direction
and negative in the opposite direction, the line is called a directed line
and the direction in which the lengths are measured positive is called
the direction of the directed line.

(16.1)
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‘The direction of a directed straight line in space is fixed by means
of the angles which it makes with the positive dircctions of the
coordinate axes.

In fig. 54, P=(x, y, z) and planes drawn through P parallel to the

z

R, Q
S 0 5

, r
ol
MY
L
f N
x
Fig. 54

coordinate planes form the rectangular prism PQRS, NMOL.
If OP is of length 7 and makes angles a, B, y with Ox, Oy, Oz
respectively,
OL=x=r cos a,
OM=y=rcosf, t . . . . ()
OR=z=rcos y
cos a, cos f, cos y are called the direction cosines (D.C.5) of the line OP
and are usually denoted for brevity by [/, m, ], square brackets being
used to distinguish D.C.s from coordinates.
With this notation, OL=lr, OM =mr and OR=nr.
But from fig. 54,  OP*=ON2+NP?=0L?+0M?+O0R?

by,
ie. A=t n?)
- Pamiim=l, (16.3)
Again, from (i) we have
x=lr, y=mr, 1=nr (16.4)
and so 2fl=ym=z/n=r. (16.5)

Equations (16.4) give the coordinates of the point P distant 7 from 0
in the direction [/, m, ), and since as 7 varies from — oo to +co they
give the coordinates of every point on the line, these equations may
be regarded as the parametric equations of the straight line drawn
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through the origin with D.C.s [1, m, ],  being the parameter. The
equations of the line are given in symmetrical (or standard) form by

Any directed line in space drawn in the direction of OP (i.e. parallel
to OP and in the same sense as OP) has the same D.C.s as OP. The
D.Css of PO are [—1, —m, —n].

The angle between two dirccted straight lines AB, CD is defined as
the angle between lines OP, OP' drawn in the directions of AB and CD
respectively.

16.4. Length, direction and equations of the line joining the
points (xy, y, 2)) and (X, ¥ 22)

Through P(x;, y,, ) and Q(%g, ¥,. ) planes are drawn parallel
to the coordinate planes to form the rectangular prism PADB,
CRQS (fig. 55). Let PQ be of length d and make angles a, B, ¥
with the directions of Ox, Oy, Oz respectively.

z c S
R Q
d
7 )
o) A D
{ y
.
x
. 55
Then PA=x—x, PB=y,—y,, PC=z~%
and PQ=PA*+PB2+ PC2
Hence d=V{(x—x) +(n=0)+m-2)} (16.6)
Also, LAPQ=a, LBPQ=B, LCPQ=y

P4

P s, PP cesp, £
S ppTs e ppTcos B po=cosy.
Hence, if the D.C.s of PQ are {1, m, n],

(16.7)
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These equations which give the D.C:s of PQ in terms of the co-
ordinates of P and @ show that the coordinates of Q, the point distant
dfrom Pz, 3y, ) in the direction [1, m, n) are (s, +14, y,+md, ,+nd).
The coordinates of the point distant 7 from P along P(Q are given by
the equations
z=mtlr, y=ybmr, 1=ztnr (16.8)
which may be regarded as the parametric equations of the ||ne rlxawn
through the point (%, ¥, %) in the direction [/, m, #], » being
parameter. Alternatively, we may write equations (16.8) in t.he
symmeh'lcal (or standard) form
AYHh A, (16.9)
m "
Substituting from (16.7) for J, m and # we obtain
Emm_y-y_i-n
Lom y-n m-n
‘These are the equations of the line joining P(x,, 31, 2;) to Q(za, ¥, 2)-

=p (say). (16.10)

16.5. Direction ratios of a straight line

The direction of a line may be specified by means of three numbers
proportional to the actual D.C.s of the line. Such numbers are called
direction-ratios (D.R.s) of the line. We shall use [/, m, #] to denote
D.Cs, [A: p: 4] to denote D.R.s.

If [A: 1 v) are the D.R.s of allne, its D.C.s [I, m, #] are given by

il S S
4\' u“v‘vwwm '
Hence the D.C.s of the line are

from (16.3).

A ® v ]
[vortemn Vot v

and we denote them briefly by (16.11)

Ay
[\/{A‘+F'+V'l:| :
1t follows from (16.7) that the D.R.s of the line joining (%, 9y, #,) and
(%2, ¥, 2) are

[f—% =51 2—2). (16.12)
Also, from (16.9) the equations of the line through the point %y, 3, 2,)
with D.Rs (A p 23] are

it S e 4 W '1

=p (say). (16.13)
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Example 1

Find the equations of the line joining A(1, 2, 4) and B(2, 4, 2). Show

that AB meels the xy-plane in a point of irisection of the line joining C(6,7,1),

D(—3, 4, —2).

By (16.10) the equations of AB are

=1

T2z -2

AB meets the zy-plane at P, where £=0 and

=1_y-2

T
hence P is the point (3, 6, 0).
By (16.1) the point which divides CD in the ratio 1: 2 is
{#(12-3), 3(14+4), H2-2),
ise. the point (3, 8, 0).
Hence P is a point of trisection of CD.
Example 2
The line joining A(L, 8, —1) and B(4, —4, 2) meels the 2 and yr-planes

at P ond 0 respectiudy. Find the coordinates of P and Q and the vatios in
which they divide

Thcooordmama“hepvintwhichdividuABinthendoh:lm
4h+1 8—4k  2%—1 "
=

If this point lies on the plane y=0, its y<oordinate is zero and so k=2.

Hem:eP‘(S 0, 1), and since 4 is positive P divides 4B internally in the
ratic

I m point given by (i) lies on the plane #=0, k=—3. Hence
2=(0,12, -2),
and since & is negative Q divides 4B externally in the ratio 1: 4.

16.6. Note on projection

Let a segment PQ of a directed line be considered positive or negative
according as PQ points in the dircction of the line or in the opposite
direction.

‘The projection of a segment AB of a directed line & upon a directed
line k' is the segment A’B’, where 4’ and B’ are the feet of the
perpendiculars drawn to &' from 4 and B respectively. Then

A'B'=AB cos 6,
where 6 is the angle between the directions of k and ',
The projection of a segment 4B on a directed line &' is the algebraic
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sum of the projections on &' of any series of segments which form a

continuous path from A to B. Two particular cases should be noted :

(@) If Pis (z, y, 7) and O is the origin (fig. 54), the projection of OP

on any liné s equal to the sum of the projections of the segments

OL, LN, NP on k. But OL is of length # and lies along 0% so

that if  has D.Cs [1, m, n), the projection of OL on 4 is lz.

Similarly, the projections of LN, NP on k are my and nz
respectively, and so the projection of OP on k is L+ my+nz.

(%) In fig. 65 the projection of PQ on any line & is the sum of the
projections of PA, AD and DQ on k. These segments are of
lengths (r,—), (4—:) and (s,—#) respectively, and are
parallel to Oz, Oy, Oz Tespectively, so that, as in (a), if & has
D.Cs [/, m, #] the projection of PQ on & is

Yty =) +m(ye—y) + (2~ 7).

16.7. The angle between two straight lines
Let OP, OP' (fig. 56) be two lines drawn through the origin in the
direction of two given lines whose D.C.s are [, m, ], [I', m’, ']
respectively. Then the angle POP’ is
equal to the angle 6 between the given
lines. Let OP=r, draw PN perpen-
dicular to the xy-plane and NL perpen-
dicular to O Then the projection of
OP on OP is equal to the sum of the pro-
jections of OL, LN and NP on OP’. Now
OL=lr, LN=mr, NP=nr and OP’ has
D.Cs [, m',n'). Hence, asin §16.6 (a),
OP cos 0= (ri)l'+ (rm)m’ + (rm)n’
. cos Q=1+ mm’ +nn'.  (16.14)
The condition for perpendicular lines is

cos 0=0
or Wmm' +un' =0, (16.15)
¥ig. 58 If the given lines have D.R:s (A: o],

”
[V:u':v], we deduce from (16.14),
using (16.11), that the angle 8 between them is given by
cos B (AN + g’ + ) [/((N+pt - X3+ +v). (16.16)
The condition for perpendicular lines is
Mg’ ' =0, (16.17)
Example 3
Show that the points A(2, 4, 3), B(4, 1, 9), C(10, —1, 8) are the vertices of
an isosceles right-angled triangle.
By (16.12), the D.R:s of 4B, BC, ACare[2 —3:6], [6:
8 :~ 5 : 3) respectively.

: —3) and
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By (16.17), the lines AB and BC are perpendicular; by (16.16)
cos £CAB=1[y/2.
Hence £CAB=45° and so ABC is a right-angled isosceles triangle.

Enmplu 4

A, B, G, D are four poinis in space such that AB is perpendicular
DD and AC is perpendicular to BD, prove that AD is perpendicular o B,

L.U)
Let 4, B, C, D be the points (x5, ¥1, ), (¥ Y2 #), (¥3, ¥s, £5) and
(%, Ya #,) respectively.
Thc.n by (16.12) the D.R.s of AB and CD are [xy—#; : =31 fg—5]
— %31y, 2,—15] Tespectively, and since 4B is perpendicular
tocD, by (16.17),
(Fa=x)(x—=52) + (=7 e —y) + (Ba—2) e —2)=0. . (i)
Similarly, since AC is perpendicular to BD,
(Fa=m)(F =2+ (=Y ) 0=y + =2 (e —2)=0. . (i)
Subtracting corresponding sides of (i) and (ii), we have
(F—5)(Fa=2) + (4= (a—y2) + (2= 1) (25— )
‘This is the condition that the lines whose D.R.s are [x,—, : ¥4—¥; : fy—,]
and [ry— 2y 9u=ys: 52, should be perpendicular, Le. that AD should
be perpendicular

Exercises 16 (a)

1. Find the distance between the points P(—2, 4, 3) and (0, 1, —3).
1f PQ is produced to R so that PQ=QR find the coordinates of R.
Find also the equations of the line PQ.

2. The point P(z, , z) moves so that its distance from A(l, 2, 3) is equal
to its distance from B(—2, 3, 4). Find the equation of the locus of P.

What is represented by this equation ?

Tf P moves so that its distance from 4 is twice its distance from B,

what is the equation of the locus of P?

Find the coordinates of the centrmd of the triangle whose vertices

are (1,3, —4), (—4, 2, —6), (=3, 1, 1).

Show that the points (4, 2, 3), (1, 4, 9), (~1, 10, 6) are the vertices of a

right-angled isosceles triangle and find the equations of its longest side.

6. Find the coordinates of the point P in which the line joining the points
AQ, -2 s) and B(2, —4, 3) meets the sy-plave. In what ratio does
P divi

6. The projections of a straight line on the coordinate axes are 3, 6 and 2
respectively. Find the length of the line.

A straight line drawn through the point P(—2, 1, 4) has D.Rs

[6:—2:3). Find the D.Cs of the linc and also the coordinates of

the points which lie on the line at a distance of 7 units from .

I a straight line makes an angle of 60° with each of the #- and y-axes,

what angle does it make with the z-axis ?

i

»

=

®
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9. Calculate the lengths of the sides and the sizes of the angles of the
triangle whose vertices are (1, 2, 3), (3, 3, 5), (3, 0, 6).

0. 1f A is the point (3, 7, 5) and B is the point (—3, 2, 6), find the length
of the projection of AB on the straight line which joins the points
(7,9, 4) and (4, 5, —8).

. The straight line (+—6)/2=(y—4)/4=(s+6)/3 meets the yz-, zx-,
sy-planes at P, Q and R respectively. Find the coordinates of the

centroid of triangle PQR.

16.8. The equation of a plane
We establish two standard forms of the equation of a plane :

(2) The perpendicular form
In fig, 67, P(z, y, 2) is any point on the plane ABC, and 0Q, the

wn from the origin to the plane is of length $ and

ar
has D.Cs[L, m, ].
By (16.4), Q is the point (pl, pm, pn) and by (16.12), PQ has D.Rs
[x—pl:y—pm:z—pn). But OQ is perpendicular to QP so that
by (16.17) Ux—pl)+m(y—pm) +n(z=pn)=0.
Hence by (16.3), Ix+my+nz=p. (16.18)
‘This is the equation of the plane which lies at a perpendicular distance 5,
£>0, from the origin and whose normals drawn in the direction of 0Q
(i.e. from the origin fo the plane) have D.C.s [J, m, ).
(b) The intercept form
The volume of the tetrahedron OABC (fig. 57) is equal to the
sum of the volumes of the tetrahedra OPBC, OPCA, OPAB. Thus
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if A, B, C are the points (g, 0, 0), (0, b, 0) and (0, 0, ¢) re-
spectively,

jabo=}(vbo+yca+zab)

(16.19)

This is the equation of the plane which makes intercepts of lengths
4, band ¢ on Oz, O, Os respectively.

16.9. The general equation of a plane

From (16.18) it can be seen that the general equation of a plane is
of the form
Ax+By+Cs+D=0. (16.20)

Comparing coefficients in this equation with those in (16.18), we have
YA=m[B=n/C=—p/D

ie. A:B:C=lim:n.
Hence the D.R.s of the normal to the plane Ax+By+Cz+D=0 are
[4:B:C). (18.21)

(16.20) may be written in the perpendicular form by dividing through-
out by # v/{A*+B*+CY) to give
Ax By 2
VA B0} 1@+ B C) T T/ [A B0
__=b___
+V{A*+B*+CY

(16.22)
—D,
IV@ATBTCy’
tionally chosen so that $ is positive. With this choice of sign, the
coefficients of %, y and z on the left-hand side of (16.22) are the D.Css

of the normal drawn from the origin to the plane. For example, the
perpendicular form of the plane

Then p= the sign of the radical being conven-

2%—y+2:+6=0
is —fx+iy—fz=2.

The D.Cs of the perpendicular drawn from the ongm to the plane are
(=% § —3); the length of the perpendicular is 2.
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16.10. The line of intersection of two planes

Suppose that the planes Ax+By+Cz+D=0 . . . (i
and A'x+B'y+C'2+D'=0 . (i)
intersect in a line L whose D.R.s are [A: p:v]. Then the normal to
plane (i) is perpendicular to Z, and by ua 17)

AN+ Bu+Cy=0.

Similarly, AN+ B 4Cly=0.

Solving for Afv and pfv, we have by (3.5), page 40,

Aip:iv=(BC'=B'C):(CA'~C'A): (AB'—A'B).  (16.23)

Example 5

Find in symmetrical form the equations of the line of intersection of the
planes x+y+2=5, 4x+y+2=15.

1st Method. The D.Rs of the required line satisfy the equations

Atpt+v=0, A+p+2=0 [ A:ipip=1:2:-3

Before we can use (16.13) we must find a point on the line of intersection
of the given planes. The - and y-coordinates of the point in which this
line meets the plane =0 are given by the equations r+y=5, 4x+y=15.
Hence the point is (%2, §, 0) and by (16.13) the equations of the required
line are (¥—12)/1=(y—§)/2=2/(—3).

2nd Method. Ellmmntmg yand z in tum between the equations of the
given planes we

Ax+1=10, x=§(10-1);

2x—y=5, x=}(6+y).
Hence the equations of the line of intersection of the planes may be taken
as #=(y+6)/2=(s—10)/(—3).

Example 6

Through the point A(~1, 1, 2) a line is dvawn parallel to the line of inter-
section o he planes :—2y+1-3 and x-+-6y—56=0. This line culs the plam

the line AB and

The planes z—2y+:=3 and +6y—>5:=0 intersect in a line L whose
D.Ras [A: u: v] are found from the equations A—2u-+v=0, A+ Gu—5v=0
to be (2:

The equations of the line AB drawn through A(—1, 1, 2) parallel to L
are by (16.13)

F+D2=(-DB=E=2M4=p . . . G
since parallel lines have the same D.R.s.
The coordinates of B, the point in which this line meets the plane
x—3y+2:=2are (2p—1, 3p+1, 4p+2) where
(29— 1)—3(3p+1)+2(4p+2)=2.
Hence p=2 and B=(3, 7, 10).
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It is worthy of note that if a line is drawn in the plane z=c parallel
to the line y=mx, =0 in the plane 20y, its equations are

y=mz, z=c . . )
Bt this lne passes throvgh the poiat (0,0, ) and is perpendlcular to

“Hence by (16.13) its equations are

x y z=c
i S
Equations (iii) are taken as the symmetrical form of equations (ii).
In the same way, the symmetrical form of the equations of the line
drawn through (a, b, ¢) parallel to Oz is

ie x=a,y=b.
16.11. The equation of the plane which is parallel to a given
plane and passes through a given point
Let the given point be (%, 3, ) and the equation of the given plane
be

Az+By+Cz+D=0 P )

Since the required lane s parallel o () the D.Rs of it norml are the
same as the D.R.s of the normal to (i).
Hence the equahon of the plane is of the form

Ax+By+Catk=0 . . . (i)
where k is a constant to be found. Plane (ii) passes through (z1, ¥, 21)
S An+By+Co+k=0 . . . (i)

Eliminating % between (if) and (iii), we obtain the equation of the
required plane
A(x—2)+B(y—3,)+Clz—1)=0. (16.24)
Comparing (i) and (ii), we note that the equations of parallel planes
differ only by a constant.
(16.24) is also the equztlon of the plane through (x,, 3, 7,) whose
normal has D.R.s [4: B:

Example 7

The equation of the plane which passes through the point (1, 2, 3) and
is parallel to the plane 2¢—3y+4s=12 is by (16.24)

25— 3y ds=8.
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16.12. The equation of a plane through three given points

The plane Ax+By+Cz2+D=0 . . (0]
will pass through the three points (xr, ¥r, z7), r=1, 2, 3
if Aty +By,+Czr+D=0, r=1,2,3.

Solving for 4, B, C in terms of D we obtain the equation of the
required plane.
Example 8

ind the equation of the plans which passes through the points (3, 4, 1),
1,1, =7) and (2, 2, —4).

‘The plane A4 By+Cs+D=0
passes through the given points if
34+4B+C+D=0 . . . . ()
A+B-1C+D=0 . . . . (i)
24+2B—4C+D=0 . . . . (i)
From (if) and (iil) C=14D.
and from (i) and (i) B=—pD, A=—}D.
Hence the equation of the required plane is
*42y—2=10.

16.13. The equation of a plane through the line of intersection
of two given planes

Let the planes

Az+By+Cz+D=0 "
AxiBysCeaD=0f - O
intersect in a line . Then the equation
Az+By+Ca+D+h(d'z+By+Cs+D)=0  (16.20)
whete & is any constant, is of the first degree in %, y, 2 and so represents
a plane, But (16.25) is satisfied by points which simultancously
satisfy equations (i), i.e. by points on /.

Hence for all values of #, (16.25) represents a plane which passes
through the line of intersection of planes (i). Also, the equation of
any plane through ! (other than A'z+B’y+C'z+D'=0) is of the
form (16.25) for we can choose & to make plane (16.25) pass through
any given point not on I

Example 9
Find the equation of the plane which contains the lins
(3—4)/2=(y—3)/6=(s+1)/(~2)
and passes through the point (2, —4, 2).
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The line (r—4)/2=(y—3)/5=(+1)/(~2) CEE ]
may be regarded as the line of intersection of the planes
(v—4)/2=(y=3)/5, ie. Bx—2y=14

and G-As=(+ /(=2 y+se=1.
But by (16.25) the plane
5x—2y—14+R(2y+62—1)=0 . (i)

passes through line (i) and will contain the point (2, —4, 2) hela,

Hence the equation of the required plane is

A—2y—ds=2.

Example 10

The two planes 2¢—y—rs=3 and 24-+y—2r=1 meet in a lins I, Find
() the equation of the plane through the line }3=y~+1=1—1x parallel to 1;
and. (b) the equation of the plane through | which passes through the origin.

(a) Asin § 16.10, the D.R.s [A: s : v] of J are given by

D—p—v=0, 2A+p—2v=0.
Hence Aip X
‘The line §x=y-+1=1—z is the line of intersection of the planes
#—2y—2=0and y+2=0,
and by (16.26) the equation of any plane through this line is of the form
#=2y—=24+R(y+1)=0,

ie. 24 (k=2)y+hz= . 0]
‘This plane s parallel to / if its normal is perpendicular to /, fe.if the line
with D.R.s [1: k—2: &] is perpendicular to /. This condition is fulfilled if,
by (16.17),

342(h—2)+ k=0,
Hence k=4 and the equation of the required plae is
65— ly+s=12.
(%) By (16.25), the plane
25 —y—s—3+k(2e+y—2—1)=0
passes through /. It will pass through the ifh=—3.
Hence the equation of the required plane is
dx4dy—Br=0.

16.14. Other forms of the equation of a plane
It should be noted that an equation of the form
By+Cz+D=0
represents a plane parallel to Ox since normals to this plane have
D.R:s [0: B: ] and hence are perpendicular to Ox.
An equation of the form Cz+D=0, i.e. z=constant, represents a
plane parallel to the zy-plane,
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16.15. The angle between two planes
The angle 6 between two planes is the angle between their respective
normals.
By (16.16) and (16.21) the angle 8 between the planes
Ax+By+Cz+D=0and A'z+B'y+C'z+D'=0
is given by
cos 0=(A4’+ BB +CC')[y/{(A1+ B+ C)(A"+B*+C}  (16.26)

16.16. The perpendicular distance of a point from a plane

Let the equation of the plane be lz+my+nz=p, p>0, and let P
be the point (2, ¥, #,). To find the distance of P from the plane,
change the origin to (2, ., »). Then by an extension of (12.1),
page 273, the equation of the plane becomes

Ux+z) +m(y+y) +nlz+n)=p

or Ixtmy+nz=p',
where p'=p— (Ix,+my, +nz,) is the distance of the plane from P, the
new ori

1f P s on the same side of the plane as the original origin O, [/, m, n]
are still the D.C. of the normal from the new origin P to the plane ;
hence '>0. If P and O are on opposite sides of the plane, [/, m, 1)
are the D.C.s of the normal from the plane to P; hence 4’ <0.
1t follows from § 16.9 that the distance of (,, ,, z,) from the plane
Ax+By+Cz+D=01is CouD
Ax+ By + Cat
VA BCY (16.27)
1f the positive sign is chosen when D is positive, and the negative
sign when D is negative, this formula gives a positive result when
(%2 %1, %) and the origin lie on the same side of the plane, a negative
result if they are on opposite sides.

Exercises 16 (b)
1. Find the point of intersection of the straight line
(x=1)/2=(y+I(-1)=(—1)/3
and the plane 3x+dy—s+11=0.
2. Find the distance of the point (L, 3, 5) from the plane
264y—35+30=0
measured parallel to the straight line x/3=y/2=1/6.
3. Find the equation of the plane which passes through the points
(1,2, 0), (3, 4, 2) and (6, =3, 1).
4. Find the cquations of the three planes which pass through the points
(2,3, —4) and (4, —1, 8) and aro parallel to Ox, Oy and Os respectively.
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18. Show that the planes 2v+y—3145=0, Sr—Ty+2+3=0 and

#+10y—11s+12=0 have a common line $ which is equally inclined
to the axes.

Find the equations of the line g through the origin, parallel to the
first of the given planes and perpendicular to the line 4. Find also the
shortest distance between the lines $ and g. (R3]

. Show that, for all values of A, the point (3+A, 65+2), 2+3)) is on
the line through 4(3, 5, 2) perpendicular to the plane x-+2y 4 3:—5=0.
“Perpendiculars AP and BQ are drawn through the points 4(3, 5, 2)
and B(—1, —1, 0) to the given plane. Find the coordinates of Pand Q.
1f M is the mid-point of PQ, find the equations of the line in the plane,
passing through M and perpendicular to PQ.
Find also the equations of the reflection of AB in the plane. [L.U.]
A plane is drawn through the line of intersection of the planes
F42y+2=1, x4y—. 1
(4, =2, 1). Prove that there are two such planes and find their
equations.
Prove also that the planes intersect at an angle cos~(17/35). [L.U.]

B

»
S

16.17. The condition for coplanar lines
In general, two lines in space do not intersect ; if they do, the lines

are 3
Suppose that the lines are

=b_z=¢

and Co @
and that they are not parallel. To find the condition that these lines
are coplanar we first find the equation of the plane through the
point (a, B, ) parallel to each of the lines (i) and (i)). The equation
of this plane s of the form

A(x—a)+B(y—p)+Cla—y)=0 . . (i)
where AA+Bp+Cv=0, P )
and AN +By' +Cv'=0. ]

(iv) and (v) determine A:B:C (since A:p:v#d :p':v). Sub-
stitution in (iii) then gives the required equation. The result of this
elimination of 4, B, C from (iii), (iv) and (v) is, by § 3.5,

i—a y-B
A »
¥ w

and this is the equation of the plane.
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In particular the plane through line (i) parallel to (i) is

—a y-¥  1=¢
) » v | =0 (16.28)
X " v

The condition for lines (i) and (ii) to be coplanar is that (a, b, ¢)
should lie in plane (16.28), namely

a—d' b=t =c
A u v | =o0. (16.29)
¥ v v

When this condition is satisfied, (16.28) is the equation of the plane
containing lines (i) and (ii).

When condition (16.29) is satisfied we find the common point of
lines () and (i) as follows : The points of parameters p, o respectively
o lms () and (i) are (a+2p, b+pp, c+»,) (@ +X7, b'+u'p’

/p). At the common point a+Ap=a'+

ie Mo=Np'+a—a'=0
and, similarly, pp—p'p +b=b'=0
and vp—v'p'+c—c'=0

By (16.20) these equations for p and p’ are consistent (see § 3.6), and
50 p, ¢’ (and hence the coordinates of the common point) may be
found by solving two of these equations.

Example 11
Find the equations of the line through the point (1, 2, 3) which intersects at
right angles the line
(r=21=(y—1)/2=13.

Determine the coordinates of their point of intersection and the equation of
the plans containing them. LUl
‘The coordinates of P, any point on the line

(x=2)1=(y—1)/2=2/3=p . . . [0}
are (p+2 20+L 3. . . . . @)
1f Q is the point (1, 2, 3), the D.R.s of PQ are by (16.12)

[p+1:2—1:3p-3). . . (i)
PQ is perpendicular to (i) if, by (16.17),
(p+ 1)+ 2(2p - 1)+ 3(3p—3)=0,
p=6/1.
Substituting this value in (ii), we obtain the coordinates (19/7, 17,
of the foot of the perpendicular drawn from @ to line (). From
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D.Rs of this perpendicular are [4: 1: —2] and so by (16.13) its equations
are
G=DA=(-DN=E=3/(=2. . . . (v
By (16.28) the equation of the plane containing (i) and (iv) is

=2 -1 2
1 2 3| =0,
4 1 -2

which reduces to ¥—2y-+2=0.
Example 12

Prove that the straight line

(#=4)/3=(y—1)/2=(z—3)1

intersects the lins of intersection of the planes x-+y-+ 25=4 and 32y — =3,
and find the equation of the plane which contains these two lines,  [L.U.]

‘The straight line

(—9B=(=Df2=(=1=p . . . @

meets the plane S
where (Bp+4)+ (2p+ 1) +2(p+3) =4,
p==1,

i.e. at the point (1, —1, 2).
This point satisfies the equation
Sr—y—s=3 . . . . @)
Hence (i) meets (ii) and (iil) in a point common to these planes, i.e. at
a point on their line of intersection.
Any plane through the line of intersection of (if) and (iii is of the form
Y E2u— B2y —2—9)=0.. . . (v}
It will contain (i) if the point (4, 1, 3) satisfies (iv), i.e. if
A==
Hence the equation of the required plane is
175—18y— 15:=5.

16.18. Length of the perpendicular from a given point to a given
line

In fig. 58, PM is the perpendicular from the point P(x,, y,, z,) to the
line AB drawn through A(a, B, y) with D.C.s [Z, m, x].

The equations of 4B are 7%

m T a
1t AM=7, hy (16.8) M is the point (a+lr, f+mr, y+nr) and by
(16.12) the D.R.s of PM are [a+lr—z, : B+mr—y, : y+nr—z,].
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But PM is perpendicular to 4B so that by (16.17)

Ya+lr—z)+m(B+mr—y,) +nly+nr—z)=

giving  7=U(x,—a)+m(y,— ) +n(z—7), since Bt ur=1.

z P &xy.2)

Fig. 58

Now
PMi=AP'~AM*=AP—1
=(m—a)+ (=B +@E—y)—{(n—a)+miy, B +nlz -y
= () 5y = @)+ (1) 0= B+ () 1y =)
—20m(x,—a) (3~ ) — 2mn(y,— ) (1 —y) = 2nllz — ) (¥, — @)
=Z{(n—Br—(a—y)mp® (16.30)

16.19. Miscellaneous examples
Example 13

Find the equation of the vight civcular cylinder of vadius v which has the
line y/m=z|n, x=0 as its axis. Find also the equation of the curve in which
this cylinder cuts the plane z=0.

Any point P(s, y, ) on the cylinder lies at a perpendicular distance r
from its axis which passes through the origin and has D.Cs

Hence by (16.30) the equation of the cylinder is
(ny—mz) 2 %) = Pt ).
‘The cylinder mects the plane £=0 in the curve
= g

+ g =1 =0

v
which is an ellipse.
Any plane perpendicular to the axis of the cylinder cuts it in a circle.
The fact that the plane =0 cuts the cylinder in an ellipse shows that an
ellipse can be orthogonally projected into a circle.



366 A COURSE IN PURE MATHEMATICS e
Example 14
Find the equations in standard form of the projection of the straight line
F+1)3=(-2)/2=(s—3)/(-1)
on the plane x-+y+25=4.

Find the projection of the point (—1, 2, 3) on this plane. U]
We must first find the equation of the plane  which contains the line
(+DB=(-22=c=3(-1) . . . @
and is perpendicular to the plane

rbyt2e=4 . . . . ()

The equation of plane w is of the form
A+ 1) +By—29+Ce—-3=0 . . . (i)
where 3442B-C=0 . . )

since  passes through the point (—1, 2, 3) on (i) and the line [4: B: C)
is perpendicular to (i).
Also, the angle between planes (ii) and (iii) is 90° and so by (16.26)
A4B+20=0. . . . 5]
Eliminating 4, B and C between (iii), (iv) and (v), we obtain the eqnnmn

ofw:
1 y-2 -3
3 2 -1
1 1 2
giving by—Ty+s+16=0. . . . . (vi)

Planes (ii) and (vi) define J, the projection of (i) on (ii).
The D.R.s of /, [A: s 1 ], are found as in § 16.10 from the equations
A+p+2v=0and 6A—Tu+v=0.
Hence A:p:v=5:3:—4
Eliminating s between (ii) and (vi), we have 9x—16y+36=0, and this
equation is satisfied when = —4 and y=0. Substituting these values in
(ii) or (vi), we see that (—4, 0, 4) lies on J, and so the equations of J, the
projection of (i) on (ii), are
(x+4)[5=y[3=(:—4)/(—4).
The projection of P(—1, 2, 3) on plane (ii) is the point P’ in which the
normal to (ii) through (—1, 2, 3) meets (ii).
“The equations of this normal are
(F+1)/1=(y—2)/1=(s—3)/2=p
and it meets plane (ii) at the point (p—1, p+2, 2p+3) where
— 1)+ (p+2)+ 2(2p+ =4
Hence p=— and P'=(~4, §, 2).
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12. The feet of the perpendiculars from P(z,. 752 to the line x=a, y=s
and to the plane x+y+z=3a are R respectively ; find the
coordinates of Q and R.

1f QR is parallel to the plane 3x—y-+:=0, prove that P must lie
on the plane 7y
Also find the locus of P when PQ=PR. U]

. Obtain the equation of the plane m(d, B) which bisects at right angles
the straight segment 4B, where 4 and B are the points (, 3, o), (4, ¢, /).
Show that, for any three points A, B, C, the planes «(d, B), n(B, C),
(C, 4) have, in general, a straight line, A, in common. Show that, if
A4, B, C are the points (L 0, 1), (0, 1, 1), (2, 2, 0), the distance of the

s

origin from X is 3V/22/11. [1833)
1 Fmd the equations of the planes bisecting the angles between the
da's+b'y+cs+d'=0.

o that s Joous of the S of spheres which touch the three
planes whose equations are -+ 2y-+2:—3=0, 7+ 2y-+2:+3=0 and
67+ 3y-+ 27— 7=0 consists of two parallel lines, and that the equation
of one of them is £/2=y/(—10)=1/0. [L.U.

. A straight line is drawn through P(l, 3, 4) to meet the line x=—1,
y=1in Q and the line =3, r=3 in R. Prove that the equations of
the line PQR are (s+1)[2=(y—1)/2= (= 8)/(1).

Show that P is the mid-point of QR.

. A line PQR is drawn parallel to the line ¥=}y=}s and cuts the
coordinate planes ¥=0, y=0, +=0in P, 0, R respectively, and is such
that Q is the mid-point of PR. Prove that the locus of Q is the line
3x+2=0, y=0 and that the locus of the line PQR is the plane
3x—3y+2=0.

. Find the equation of the plane which passes through the origin and
contains the line (y—4)/2= (y—;)/n-(.— 17)/( o)

Find the point at which this pl

5

5

(‘—5)12=(}' 42)/( 2)-('-19)11.
and prove that the line which is drawn through the origin to meet each
of the two given lines is their common perpendicular. (Sheffield.]
18. The plane x/a+y[b+x/p—l meets the axes Ox, Oy, Orin 4, B, C
id-points of BC, CA, AB
Frove hat ¢ m t.hm planes OAL, OBM, OCN, mest in the line

*la=ylb=1/c. L.U)
1. 104, B, C, D are four points sich that A5+ CD'=A4C-3D%, prove
that BC is perpendicular to 4. L.U]

20. B and C are the points (2, 1, o) and (1, 0, 2) respectively. If disa
point in the plane =0 such that the triangle ABC is equilateral,
prove that there are two possible positions of 4 and that the line
]ommg them passes through the origin O. If the two positions of

A are A, and 4, show that the acute angle between the planes
2,4,B and 4,4,C is cos}. L)
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20, Find the equation of the plane which passes through the origin and
contains the straight line (¥—1)/2=(y—2)/1= (s—3)/(—2).

Find the equations of the straight line meeting the axis of  at
right angles, whose orthogonal projection on this plane coincides with
the above straight line. Ly
Find the point of intersection of the plane 7 whose equation is
2¢—y—s+3=0 with the line L whose equations are 2++y—4=0 and
y+%:—8=0. Find the equations defining L', the projection of the
Tine L in , and the angle between Land L. If L’is the line of greatest
slope in the plane m, and the angle between L’ and the vertical is 60°
find the direction cosines of either possible vertical. Lu)
31, Show that the line (—1)/2=(y—2)/3=(z—3)/4 lies in the plane

2+ 2y— 21+ 1=0 and that the line (v—3)/3= (y—2)/2=(z—1)/4 lies in
the plane 2¢+y—21—8=0.

14, in addition, these lines are lines of greatest slope to the horizontal
for the planes in which they lie, find the direction cosines of the

vertical. LUl

32. Prove that any plane through the line L common to the two non-

parallel planes as+by+or+d=0, a'r+by+cr+d’=0 has the
equation .\(u+by+a+d)+p(u+oy+c‘:+¢')=o where A, p are
finite constants anc zero.

Find the equation of the plans through the line L which is parallel
to the line x/i=y/m=1/n and, hence or otherwise, show that the two
Tines are coplanar if, and only if, d(/a’+mb'+nc’) = d(la-+mb-+nc).

g

16.20. The shortest distance between two skew lines .
Two straight lines are said to be skew if they are not coplanar, i.e. if
L they neither intersect nor are parallel.
Fig. 59 shows two skew lines AP, BQ
which pass through the points P(zy, ¥y, 1),
H Q#s, 9,, 7). The shortest distance be-
A tween them is the intercept HK which
they make on their common perpendicular
M.
Since LM s prpenicalar to AP and
] BQ, HK is the projection of PQ on
K~ hence if [1, m, n]mLheDC.sofLMby
§16.6 (%),
M HE = |l{xy—x) +m(y =) +n(z—2)| ()
Fig, 69 Bue if the DRs of 4P and B0 are
and [),: i ¢ %] respectively, the
DR [+ 4] of their common perpandiculas (fzand from the relations
Mytpm+rm =0, My +pupa+vr,=0)
are given by A:ptvepv— vy sde—ved iy =gy
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and so the D.C.s of HK are
[t e 1
Vilsra—pan )+ b=+ (=D}
Substituting these values for I, m, » in (i) we have
A e )
Vil b F b=+ Gt = D))

(16.31)

The above method may be used when the length of the shortest

distance is required. A different method is adopted when the equations

as well as the length of the line of shortest distance must be found
(see Example 16 below).

Example 15

Show that the length of the common m porpendiculer o the lines whose
equations referved to vectangular ax

(1—5)l1=yl2= (e+1/(=1),

and (x=2/1=(y— /(= D)=2/1,
is /14, l5h=ﬁ¢1d 3]

The line (s—5)/1=y/2=(s+1)/(~1) passes through P(5, 0, —1);
the line (v—2)/1=(y—4)/(—1)=3/1 passes through 9(2 4, 0) "1t the
common perpendicular to the given lines has D.R.s [A: s : 3]

A2p—v=0and A—p+v=0 " A:piv=1:-2:
Hence the D.Css of the common perpendicular are
V14, —2//14, —3y/14].
The projection of PQ on this line is, by § 16.6 (5),
S(UV14)+(— (= 2V 14)+ (=D (- 3}V 14)=v/14,
and this is the shortest distance between the given lines.
Example 16

Find the length and the equations of the shovtest distance betuween the lines
#=y—l=4—zand x—2y+0=0, 5+s—10=0. LUl

‘Writing the lines in standard form we have
AN=@-DA=E=N(-D=p . . . @
M=@—PA=E-10(-2=r . . @@

‘The coordinates of any point P on (i) may be taken as (p, 1+p, 4—p) and
similarly Q, any point on (i) is (2r, 7+, 10—2r).
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By (16.12) the D.R.s of PQ are [p—2r : p—7~] : 27— p—6], and so, by
(16.17), PQ will be the common perpendicular to (i) and (i) if
(p—27)+(p—7—})— (27 —p—6)=0

and 2p—20)+ (p—7— ) —2(2r—p—6)=0
ie.if 3p—b7+§=0 and 5p— 07+ 1L=0
giving p=10, T=X2

With theso values P is the point (10, 11, —6) and @ is (13, 11, —3).

By (16.0) PQ*=18, PQ=3y/2.
(This result may be verified by the method of Example 15,

By (16.10) the equations of PQ are (¥—10)/3=(y— u)/on (=+6)/3,
ie. #—r=16, y=11

Exercises 16 (c)
1. Find t.be length and equations of the line of shortest distance between

e
(*—6)ll O=(=2=@E—4/1 FE=)/T=[+2/(-6=(+4)/1
[Sheffield.]
2. Find the shortest distance between the straight lines
(x+1)3=(y—9/(~=(=—3)/(-1)
and 1= (y—4)/(—3)= (s 1)/2.
‘Find also the coordinates of the points in which it meets them. [L.U.]
3. Show that the shortest distance between the lines
#/2=y/(—3)=2/1

and (+=2)/3=(y—1)/(~5)=(s+1)/2 is /3.
Show also that the shortest distance lies along the line
35— 23=3y+402=3r. Lu)
4. Find the length and equations of the shortest distance between the
es (x—6)/2=(y+4)/6=(s=2)/1, (x+1/(— 9=y )1

L.U]
5. Find the equations and the magnitude of the shortest distance
between the two lines

(r—1)/A=(y—1)/3= (= 2)/(—2)
and /4= (y—5)/0= (= 18)/(~1). Lu]

6. Find the magnitude and direction of the shortest distance between
ines

(#+D)/(=8)=(y—0)/3=(s—4)/1
and (4 )/d=y/3=(:—19)/(—2). LU

7. Find the length and the equations of the line of shortest distance
Det the lin

es
(s=2)0m (y—B)/2= (=11, (+=8)/2=(y—4)2=(e+ D/(=1).
[Sheffield.]
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8. Show that b the lines x/2=y/(—3)=2/1and
(x=2)/3=(y—1)/(=5)=(c+2)/2 is }v/3.
Show also that the shortest distance lies along the intersection of the
planes 4x+y—5r=0 and Tx+y—8e=3L L.U]
9. Two lines are given by the equations
#=2, y—z=1and 6x=3(y—1)=2(s—2).
Find the length of their common perpendicular and the coordinates
of its feet. [L.U]
10. Find the length and the equations of the shortest distance between
the lines x+y=0, s=4; and (s— 1)/4=(y—2)/3= (s—36)/(— ).

11. Find the coordinates of the point P on the intersection of the two
planes 2¢-+2y—s=0, z-+y—3z=0, which has minimum distance from
the straight line L passing through the points (—2, 3, —2), (~5,5, _3)

ind the coordinates of the point Q on L which is nearest
[LU-]

12. Show that the shortest distance between the axis of z and the straight
line joining the point P(ry, ry, ¢) on the line x—y=0, z=c to the point
Qlrs» —13, —0) on the line +y=0, 2= —c divides PQ in the ratio i : r&

Show also that the straight line along which this distance lies makes
an angle tar? (r,/r,) with the first line and an angle tam? (ry/r,) with
the second line. L.U]

13. P and Q are the points (¥ cos a, 7 sin a, 0) and (r cos B, r sin f, 0)
respectively, a and f being acute angles, Find the equations of the
line PK, drawn from P perpendicular to OP at an acute angle y with
the z-axis and at an acute angle with the s-axis. If also the line QL
is perpendicular to OQ, makes an acute angle y with the z-axis and an
acute angle with the s-axis, show that the direction ratios of the
common normal of PK and QL are

[—cos y sin §(a+p) : cos y cos §(a+p) :sin y cos a—B))-
Hence find the shortest distance between PK and QL. LU

14. Two skew lines have the equations (—,)/ly=(y=3,)/my=(s—2,)/n;
and (s— e y—yme= (s and [A 2 ) are direction ratios

of their line of shortest dis

Prove that
F—%y =N =z
1 "y "y
y » v

is the equation of the plane containing the first line and the line of
shortest distance between the two given lines.
Find the coordinates of the point in which the line of shortest
distance between
(x+)/1=(y—1)/2=(:~2)/(—1) and (x—1)/2=y[1=(z+1)/(-3)
cuts the plane y=0. Lu)
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Exercises 16 (d)

1. Show that coordinate axes can be chosen in relation to a pair of skew
lines so that these lines have equations of the form
#{1=y/+k=(:Fc)/0
for some constants & and ¢ satisfying 0<k<1, ¢>0.
Points P, Q are taken one on each of these lines so that PQ has
constant length ¢1/8. Prove that the locus of the mid-point of PQ
is an ellipse with eccentricity 1/(1—4%). (Sheffield.)

2. The shortest distance between two skew lines is AB. P is a variable
point on the line on which 4 lies, and Q is a variable point on the line
on which B lies, 50 that AQ and BP are at right angles. Prove that
the locus of the mid-point of PQ is a hyperbola whose asymptotes are
parallel to the given skew lines, provided that the latter are not
perpendicular. L)

3. Show that by a suitable choice of axes the equations of any two non-
intersecting straight lines can be written in the form

y=xtana, r=c; y=—xtan a, = —c.

Variable points P and Q are taken one on each of the above lines
such that the line PQ makes with the z-axis an acute angle § which
is constant. Show that PQ meets the plane z=0 in points which lie
on an ellipse whose semi-axes are ¢ tan ftana and c tan fcota.  [L.U.]

4. Show that the equations of two non-intersecting lines p, p’ may
simultaneously be expressed in the forms

y=ms, s=c and y=

mz, 1=

3

The common perpendicular to , #* meets them at 4, A’ respectively.
Points P, P are taken on , p’ respectively so that AP. A’P* is constant.
Prove that the locus of the mid-point of the segment PP” is a pair of
conjugate hyperbolas whose common asymptotes are parallel to
P9 Lu]

5. Two lines, L and L', whose equations are respectively y=# tan a,
r=cand y=—. a, 2= —c, are met by their shortest distance in 4
onLand BonL’. Points Pand Q are taken on L and L’ respectively
such that PQ=AP+BQ. Show that PQ makes an angle (n—a)
with the y-axis, and that the locus of the point of intersection of pg
and the plane y=0 is a circle on AB as diameter, [L.U.

8. Two straight lines are met by their line of shortest distance in A and 4
and points P and P’ are taken on the lines respectively so that
AP.A’P'=c, where ¢ is a constant. If Q divides PP in the fixed
Tatio m : m, show that Q lies in a plane perpendicular to 44 and find
its locus. [L.U]



CHAPTER 17
THE SPHERE

17.1. The equation of a sphere
1f P(z, y, 7) is any point on a sphere, centre C(a, B, y) and radius a,
CPi=ga*
o (E—a)t (=B a—y)t=an (17.1)
The equation of a sphere with centre the origin and radius a is
BDtyrtai=at,
The general equation of a sphere may be taken as
ByP 42+ 2ux+ vy + 2wz +d =0, (17.2)
Le. (x40 (Y +0) + () =+t —d,
Comparing this equation with (17.1), we see that (17.2) represents
a sphere with centre (—#,—v,—1) and radius v/{u*+v*+w*~d}.

17.2. The diametral form of the equation of a sphere
1f P(z, y, 7) is any point on a sphere and A(z,, y, 2,), B(%y, 31, %)
are the extremities of a diameter, P4 is perpendicular to PB and so
by (16.12), page 350, and (16.17), page 352
(2=x)(x—2) +(y=2)(y—3) +(E=2)(3—2) =0.
This is the equation of the sphere on 4B as diameter.

17.3. Tangent plane to a sphere

1f P is any point on a sphere with centre C, all lines drawn through
P perpendicular to CP touch the sphere and all such tangent lines
lie in the plane through P perpendicular to CP. This plane is called

e tangent plane at P.

1f (17.2) is the equation of the sphere and P is the point (%,, %, #,),
the D.R.s of CP are [+,+%:,+v:%-+w] and the equation of the
tangent plane at P is by (16.24), page 357,

(r+u)(x—5)+(r+0)(=2)+ (@ +u)—5)=0,
230 yyy - Hux vy Fwr =)yl R4 un vy, o

e sntyntamtulrin)tuy+n)teiEn)+d=0  (17.3)
since P lies on sphere (17.2).
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17.4. Condition that a plane should touch a sphere
The perpendicular distance of the centre of a sphere from a tangent
plane is equal to the radius of the sphere.
Hence the plane lx+my+nz=p will touch sphere (17.2) if, by
(16.27), page 360,
(utmy+nw+p) [/ (P +m*+07) = £ /(02 + 03+ wi—d),
or (et mutnw+ p) =12+ m? 4 n) (ud +v* + 2wt —d). (17.4)

17.5. The intersection of a plane and a sphere
In subsequent articles we shall use the notation
S=x0+yt+20+ 2ux+ 20y + 2wz +d,
S'=x'+y +20+ 22+ 20y + 2w’z +d’, P=lxtmy+nz—p.

The section of a sphere by a plane is a circle whose centre is the foot
of the perpendicular from C, the centre of the sphere, to the plane, and
whose radius 7 is given by

r=R-}, (17.5)
where R is the radius of the sphere and 4 the distance of the plane
fros

The equation
S+kP=0, (17.6)

where & is any constant is secn to represent a sphere. It is satisfied by
the simultancous equations S=0 and P=0 and so represcnts for all
values of £ a sphere passing through the circle of intersection of S=0
and P=0 when this is real.

17.6. The power of a point
1f any straight line drawn through a fixed point P cuts a sphere in
4 and B, the product PA .PB is constant and is called the power of P
with respect to the sphere.
Let P=(x,, y, ), let the equation of the sphere be S=0, and
suppose that the D.C.5 of PAB are (1, m, ). Then the equations of
B are

SR
By substituting for #, y, z from (i) in S=0 we obtain the quadratic
equation
724 2r{(x + )l + (9, Hv)m A (2, + )}
+ 2+ Y1+ 2+ 2u%, + 2uy, + 2wz, +d=0
whose roots 7;, 7, are the measures of PA, PB.
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Hence  PA.PB=xi+yl+1l+2ux,+2vy, + 2wz, +d. (1.7
Since the right-hand side is independent of /, m, , PA.PB is constant.
When P lies outside the sphere, (17.7) gives the square of the length
of the tangent drawn from P to the sphere.

17.7. The radical plane

‘The radical plane of two spheres is defined as the locus of points
whose powers with respect to the spheres are equal.

If S=0 and §'=0, are the equations of the spheres, from (17.7) the
equation of the radical plane is

2x{u—1)+2y(v—v') +22(w—w') + d—d'=0 (17.8)

ie. S§~-5§'=0

The radical plane is perpendicular to the line of centres of the
spheres and if the spheres intersect in real points it contains their
circle of intersection.

17.8. Orthogonal spheres

Two spheres are orthogonal if the tangent planes at any point of
their circle of intersection are perpendicular. This condition implies
that the square of the distance between the centres of the spheres is
equal to the sum of the squares of their radii; hence the spheres
S§=0, §'=0 are orthogonal if

(=) + (1=0) 4 (=)= (0 08 00 —d) + (40 0 =),

2uw’ + 200" + 20w’ =d +d'.

17.9. Pencils of spheres

=0, S"=0 are the equations of two spheres, for all values of the
constant k (except k=—1), the equation
SHES'=0 . . . . . @)

represents a sphere, and for varying (i) represents a pencil (or system)
of coazal spheres, that is a system of spheres any two of which have the
same radical plane (cf. § 12,15 and § 12.18). When 1, (i) gives
S$—5'=0, the equation of the radical plane of the pencil, which is also
the radical plane of the spheres S=0, §'=0.

If the spheres S=0, S'=0 intersect, (i) is the equation of the pencil
of spheres through their circle of intersection.

It is useful to note that the equation of any sphere which passes
through the circle of intersection of the spheres §=0, 5'=0 is of the
form (3).
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17.10. Polar plane

The polar plane of an external point P with respect to a sphere is
the plane which contains the points of contact of all the tangent lines
drawn from P to the sphere.

Suppose that PA, any tangent line drawn from P(x,, y,, z,), touches
the sphere S=0at 4(%, ¥y, z). Then by (17.3) the tangent plane at 4
is

22y +yyy+ 25+ U+ %) +v(y+y2) +w(z+2,) +d=0,
and P lies on this plane
S B Y Ya+ 22+ (% %) + (3, + ) Fw(z 4 20) +d=0.
This shows that A lies on the fixed plane
2y ezt ulrd ) Hu(y+y) wla+n) +d=0.  (17.9)

But 4 is the point of contact of any tangent line drawn from P to
the sphere and so (17.9) contains the points of contact of all such
tangent lines, i.e. (17.9) is the polar plane of P with respect to the
sphere.

17.11. Polar lines
Suppose that a line L (which docs not pass through the origin) has

equations
2

N
m "

Then the polar plane of P(x,+X, y,+Am, z,+n), any point on L
with respect to the sphere 3+y* + 22=a is by (17.9)

(% +N)x+ (3 + Am)y + (2, + Mn)z=a?,
ie. (xx, +yy, +22, =0 + Alx + my+nz) =0,

By (16.25), page 358, this equation represents for all values of A a
plane passing through L', the line of intersection of the planes

%y +yy,+25,—at=0
and It my+nz=0.
L and L’ are called polar lines with respect to the spherc; they
ossess the property that the polar plane of any point on onc of them
passes through the other.

Tf L passes through the origin, the polar planes of all points on L
are parallel.
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17.12. Miscellaneous examples
Example 1
Find the centre and the vadius of the sphere whose equation is
Ay 25— dy— Gs— 20,
Show that the intersection of this sphers and the plane 5+ 2y+2:—20=0isa
circle whose centre is the point (2, 4, B), and find the radius of this circle. (L.U.]
The sphere has centre C(l, 2, 3) and radius 4.
The normal through C to the given plane has equations
(=1)1=(y-2)[2=(-3)2=p
and meets the plane at 4 where
(P I+20p 42 +20p+9~20=0,
p=1.

Hence 4, the centre of the circle of section, is the point (2, 4, 5).
By (16.6), page 349, AC=3, and by (17.5) the radius of the circle is /7.
Example 2
Show that the Hine 1: (x— T)[2=(y—4)/T=(c— 13)/10 touches the sphere S :
Ayt st dy—ds
Find the coordinates o/P its point of contact with S. Find also the equation
of the sphere T which touches S at P and passes through the centre of S. [L.U.]
The line (=)/2=(y—8)/1=(s—13)/10=p
meets the sphere S whose equation s
Py brd 2y—de+5=0

w
(2p-+ T4+ (Tp-+ 411+ (10p-+ 13— 6(2p+ 7)+ A{Tp+ 4) — 4(10p-+ 13) 4 5=0.
‘This equation reduces to (p+1)*=0, and so the line } meets the sphere S
in two coincident points at P(5, —3, 3), i.e. / touches S at P.
Sphere T, which touches S at P and passes through C(3, —1, 2), the
centr o is the sphere on PC ss diameter. 1ts equation (see §113) is

(5= 3)+ (y+ )+ 1)

ie. X Sy Bt by Bit 2= 0.
Example 3
Find the equation of the family of spheves through the points (a, 0, 0),
(0,8, o) (o. 0, a).
one of these spheves passes through the point (2a, 0, 0) and find
m:anm:pla-uum;m Prove thal anothey sphere of the family
touches the same plans at a different point. [Sheffeld.)
‘The three given points lie on the plane ¥+y-+s=a and also on the sphere
Ayt si=al,
Hence by (17.6) the equation of the required family of spheres is of the form
Ay tmat b k(s br—a)=0 . @
The sphere of family (1) which passes through (2, 0, 0) i given by A = —3a,
Its equation is
A4yt 2= Balx -ty +2)+2a7=0, )
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By (17.3), the tangent plane to this sphere at (24, 0, 0) is
x—8y—8r=2a. . . . . (i)
By (17.4), (iii) will touch (i) if
(34— 20)*=19(1h* + ahk-+a%),
8k1+-20ak+16a*=0,
h=—3a, —Gafs.
— 3a gives sphere (ii); A= —ba/8 gives

84 814 83— bar—Say—Bar—~3a?=0. . . (V)
The point (2a, 0, 0) does not lie on this sphere and so (iv) touches (i)
at another point.

Exercises 17

1. Determine the radius and the centre of the cizcle of intersection of
the two spheres
Fhyg et dy—164=0,
byt 10— dy+ 14— 82=0. [1833)

2. Show that the plane (a) 3y+4s—37=0 touches the sphere (b)
#4934 21— 6x—8y=0, and find the point of contact.

Find also the equations of the planes which are parallel to (n) and

cut (b) in a circle of radius 4 units. u)

3. Prove that the sphere x'+yi4:'—2r—2y—2:4-1=0 touches the
coordinate axes and find the coordinates of the points of contact,
Find also the centre and radius of the circle formed by the intersection
of the sphere and the plane through these points of contact. [L.U)

4. A plane equally inclined to the coordinate axes cuts a sphere which
passes through the origin in a circle of radius 2 and centre (1, 2, —1).
Find the distance between the centres of the circle and the sphere.
Find also the equation of the tangent plane through the origin.
5. Find the centre and radius of the circle of intersection of the sphere
#4214 12¢— 12y~ 162+ 111=0, and the plane 2r+4 2y+r—17=0.
Show that there exist two planes through the origin which meet
the above plane at right angles and touch the sphere. LU
6. Find the condition that x-+my-ns+p=0 should be a tangent planc
to the sphere 41+ y14 224 2ux + 2uy-+ Swr+d=0.
Find the equations of the tangent planes to the sphere
Ay = 25— 4yt 22— 210=0
which intersect in the line 3(x—10)= —d(y—14)=—6(z—2). [L.U]
7. Prove that the plane 7+ 2y-+2:=8 touches the sphere
Apytg s 2 dy 4 G460,
Find the equation of the other tangent plane through the line of
intersection of the plane x+ 2y+2s=8 and the plane x=0. Find also
the coordinates of its point of contact. L)
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8. Find the equations of the two spheres which pass through the circle
Ay 62y —d1=0, dx42y+2—5=0
aml touch the plane z=0.

1 P and Q are the points of contact of the spheres and the plane
—u, show that the plane of the circle bisects PQ. LU}

®

Find the equations of the two spheres which touch the plane z=da
and which intersect the plane #+y-+2=3a in a circle of radius a and
centre (s, a, a). L.y

3

. Find the condition that the planc y+my-+nz+p=0 should touch the
sphere (v—a)*+ (y—b)*+ (z— )™
Three spheres Sy, Sy, Sy have centres (0, ©, 0), (3, 0, 0, (0, 30, 0) and
radii 1, 1, 19 respectively. Find the equations of all common tangent
planes 1 of the threc spheres such that S, and S, lic on opposite sides,
S, and S, on the same side of . Show that there are two such planes
and that the acute angle between them is ¢, where cos $=7/9. [L.U.)

. A variable sphere touches the xy-plane at P and passes through the
points (0, 0, 2), (2, 0, 1). Prove that the locus of P is a circle, and find
its centre and radius. (Sheffield.]

9

. Find the equations of the tangent planes to the sphere
Hbyid o dr g Gy —2:=0
which pass through the line given by
2e—y+2=0and 4x-+y+5:+18=0.

Find also the coordinates of the point of contact of one of the
tangent plancs. LU}

B

. Three spheres have centres (0, 0, 0), (3a, 0, 0), (0, 4a, 0) and radii a,
2a, 3a respectively, and two plancs, making an acute angle ¢ with
each other, are such that every one of the spheres touches the two
planes. Show that cos ¢=5/18. L.U]

=

Find the equation of the sphere which has its centre at the point

(2,3, —1) and touches the line (r—13)/10= (y—8)/3=(z+ 7)/(—8).
TFind also the equation of the e tangent plane to the sphere which

contains the above tangent line. L.U]

=

Find the equnhon of the sphere with centre (a, 2a 4a) which touches
the line 2=

Tind also e sadius and centre of the circle in which the polar plane
of the origin with respect to the above sphere cuts the sphere [L.U.]

3

. A sphere is drawn through the points (2, 0, 0) and (4, 0, 0) to touch the
straight line y=1, ¥=0,

Prove that its centre must lic on one or other of two parallel straight

lines, and find the equations of those lines. {Leeds.)
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If in (i) we write a=1/43, b-l/B' ¢=—1/C*, we obtain the equation

P

tETo

which is the standard form of the equation of a hyperboloid of one

sheet (fig. 61 (b)).
Sections of the

=1,

surface parallel to the Eo and zx-planes are hyper-
bolas| those parallel to the xy-plane are ellipses. For example, the
sechnnbyth:phnel-kusgwenby

2
I+—_1+C,.x k

and for all values of &, this is an ellipse.

Fig. 61 () Fig. 61(¢)

Tb:secﬁonby!hephney-kisgivenby
»
pa c-" B 9=k
which is a hyperbola except in the case where A=+ B, when it is a
pair of straight lines.
Similarly, sections parallel to the yz-plane are hyperbolas.
When a=—1/4%, b=—1/B%, c=1]C’, we obtain the equation

A oy
“amteh
which is the standard form of the equation of a hyperboloid of two
sheets (fig. 61 (c)).
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The D.C:s of the normal at P are often taken as [paz;, pby,, pex].

Then pHa'si+b52+ci)=1, and by (16.27), page 360, p is the

perpendicular distance of the origin from the tangent plane at P.

18.7. The condition for a plane to touch a quadric

If the plane lrtmy+ni=p . .0
touches the quadric (18.2) at P(x,, y,, %), equations (.) and (18.4)
represent the same plane

& axfl=bym=cafr=1lp

ie. x=liap, yy=mibp, n=nlcp.
But ax}+by}+czi=1, since P lies on the quadric.
o pr=ltatmifbrnifc, (18)
p= £ V/atmlbtnc).

Hence there are two tangent planes to the quadric which are parallel
to the plane lx-+my+nz=0.
Example 1
The normal at the point P of the ellipsoid
Adyi =1
meets the ellipsoid again at Q. The fook of the perpendicular from O to the
tangent plane at Pis M. If PQ.OM3=—2, show that P lies on the ellipsoid
A Bl =1, [L.u)
If the equations of the normal at P(x,, y,, #,) are taken in the form
horoh oA,
PAy A pn
where PUAHIG Jp)=1 . . . [0}
by (16.8), page 350, 7 is the distance between the point (x, y, z) and P.
‘The normal meets the ellipsoid

Atdppis=1 . B
where A1+ I+ 4p) H 0+ ) =1,
ie. DU B4y s+ 2pr(a1+ 18y Pya) =0,

since P lies on (ii).
The non-zero root of this equation measures the distance between P
and the point Q at which the normal meets (ii) again
o PQ=—2/(p(x1+ 64y} +])}by (i) ; and p=OM. (See §18.6.
Hence, if PQ.OM*=—2, xl+64yi+si=1
i.e. P lies on the ellipsoid 5*+ 64y+ gya*=1.
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Exercises 18 (a)

1. Find the equations of the tangent plane and normal to the ellipsoid
axt+by+cat=1 at the point (zy, Yo, fo)-
1f the normal to this surface at P meets the coordinate planes in
B, F a0d G, show that PE: PF s PG= Va1 1 L
1 further, PE*+ PFi+ PG*=P, where | is constant, show that P
also lies on the ellipsoid
4 Byt ot IR (B + -+ a%B). L)

2. Determine the equations of the tangent planes to the ellipsoid
£ 2y%As=25 st the points 4(1,2.2), B(3, 0,2) snd show that the
angle 8 between the lint intersection of these
hngsntphnubﬁmbymﬂ:-(j\/l‘l. [L.U. Anc.]

3. Prove that the normals to the ellipsoid #/3+3%/2+2?=1 at its points
of intersection with the cylinder 1631+ 9y%= 54, meet the plane =0 in
points lying on 2 circle. L]

4. Normals are drawn to the ellipsoid #¥/3+3%2+s*=1 at its intersec-
tions with dw ellipsoid #*+yY/2+sY3=1.

Show that the locus of the points at which they meet the plane
£=0is the ellipse 354+ %=1, 2=0. [1 R3]

5. At the points where the plane #-+y-+r=0 intersects the ellipsoid
#142y*4 35°=6, normals to the ellipsoid are drawn. Show that these
normals meet the plane z=0 on the ellipse 3+*-+92y+ 15y*=2. (L.U.]

6. The point P on the ellipsoid 3%+ 2%+ ds*=a* is
at P intersects the plane z=0 at a point lying on the parabola
y*=4hs. Show that the tangent plane at P intersects the plane £<0
1272 ino which touches the pacabela 4474 Sate 0 [ 3]

7. The normal at P to the ellipsoid 3s+2y7+-s=1 intersects the plane
£=0 at the point N. If the tangent plane at P touches the sphere
whose centre is (0, 1, 0) and whose radius is 2y/2, show that as P
varies, the locus of N is the circle 1254 1y*— dy+7=0, z=0. [L.U]

8. Prove that the normals to the ellipsoid 2+*+3y*+8:2=8 at its points
of intersection with the plane ¥-+-+#=0 meet the plane =0 in points
Iying on an ellipse, U]

9. Prove that if the normal at a point on the conicoid axi-+byes?=1
touches the sphere x3-+y-+s%=7* the point must also lie on the surface
(3132 22 (U0 By oY) = L [1 %3]

10. A family of ellipsoids is determined by varying the parameter A in the
sqmunn s'[u'+y‘/b'+t'/::'=/\ and the line through the fixed point

(o £, 0) paralll to the r-axis meets ane of these surfaces at the point

Prove that the normal at P passes through a fixed point on the
phne:=0quvcsnnLhuhn U]
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18. Find the equations of the two tangent planes to the ellipsoid
::’/-'+y'/b’+:‘/d=-l which pass through the line ay=bs, #=3c and
show that their points of contact lie on the line ay + bx=0, 3r=c. [L.U.]

. Find the equations of the tangent planes to the _ellipsoid
#1429%4 3:'=6 which intersect in the line ¥=3—y=3z. Find also
the coordinates of their points of contact. LU)

. The point P(p, g, 7) lies on the ellipsoid E whose equation is

axt4by'+cat=1. Find the condition that the straight line through P
with direction ratios [/ : m : #) should touch E.

It P also lies on fwo other ellipsoids with the equations
a4 by =1 and a¥%'+bY+c%=1, and the normal to E
at Pmeets E again at Q, prove that PQ haslength 2. If PQ is also
normal to E at 0, prove that E is a sphere, provided that P does not
lie in any coordinate plane. U]

. Write down the equation of a plane which makes intercepts 4, a and ¢
on the %, y and £ axes respectively. If this plane touches the ellipsoid
#144y'4 4s3=16, show that c= + 2a(a’—20)+ and prove that the
coordinates (s, ¥y, #) of the point of contact P, are given by
axy=4ay,=4czr, = 16.
Show that as a varies the locus of the foot of the perpendicalar from
P upon the plane Oy is the ellipse 5y'+ =4 [L.U. Anc,)
The normal at P(1, 1, 1) to the ellipsoid #*+2y*+3:*=6 mests the
plane =0 at 4. Find the pole of the plane which bisects AP at
right angles and show that it is on the line joining P to the origin.
wu]

B

9
8

&
8

23. 1f P is any point on the ellipse in which the ellipsoid
AYar+ybiaifet=1 (a>d)
is cut by the plane s=4, and { is the point in which the normal to the
ellipsoid at P cuts the plane »=0, prove that as P describes the elli
Q oscillates in a straight line parallel to the y-axis, the amplitude of the
oscillation being {(a®—b%)4/(c*—A%)}fbc. [L.U)
24. A tangent plane to the ellipsoid x4+ 2y*+3:*=4/0 at a point in the
positive octant where this surface is cut by the plane y=s touches the
sphere x%+y'+:°=4/17. Find the equation of the plane and the
equations of the normals at the points of contact on the ellipsoid and
the sphere. [eX32]
25. Find the equations of the two the line 0=3.
which touch the ellipsoid w+4¢+w= 12,

Show that the equations of the line joining the points at which these
planes touch the ellipsoid may be expressed in the form 3¥—dy=0,
2=2/3. U]

26. Show that the plane 3x+2y+s=p touches the ellipsoid
3584 4y34+2'=20 if p=+10, and find the length of the chord of
contact between the two tangent plancs. What is the angle between

this chord and the common normal to the planes ? LU
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27, Show that the distance between the points of contact of the two
tangent planes to the conicoid #+y'—2r'=1 passing through the
line (x+l)[A=-(y+ 1)/12=(s-+1)/9 is B4/2 units. LU

18.8. The plane containing all chords bisected at a given point
14, in the notation of § 18.6, P is the mid-point of 4B, the roots of
(18.3) are equal in magnitude but opposite in sign.

S aAxy by tovyy =0, . . . 0]
Eliminating A, 2, » between (i) and (18.1), we have
ax(x—x) +byly—3) +en(z—2) =0, 8.7

which is the equation of the plane containing all chords of the quadric
which are bisected at (z, 3, 2,).

From (i) it follows that the mid-points of all chords of the quadric
drawn parallel to the diameter [A: 1 : ] lie in the plane

aXz+bpy+ovz=0. (18.8)

Tangent lines parallel o the di [A: . v] may be regarded as the
limiting case of these chords and so the plane (18.8) passes through
points of contact of all such tangent lines. This plane is known as the
diametral plane conjugate to the diameter [A: s : v].

18.9. Polar planes and polar lines

The locus of points of contact of tangents drawn from the point
P (2, 3, ) to the quadric ax’+by*+cz*=1 can be shown by the
method of § 17.10 to be the plane

axzy+byy, +ozn=1.

This is known as the polar plane of P with respect to the quadric.
‘The equations of polar lines with respect to the quadric may be found
asin §17.11.

18.10. Note on ruled surfaces
The equation of the hyperboloid of one sheet

may be written in the form

e EED-CDeD.
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‘With this value of p* we have from (ii)
%% + 2B+ c*yC= (aa+bp*+ zy’)'(l'/A +m3[B+n[C)[p"
=(aat+5B'+cy’
.. (a, B, 7). the centre of the section made hy (i) on the conicoid
ax ort=
lies on the surface a%x*d +by/B-+ c12/Co= (ax*+by*+-ca?)h.
Example 5
Show that the locus of all points on the conicoid ax®-+ byt cst=1 through
which a tangent line to the conicoid can b drawn with given direction vatios
[8:m :n) is the conic oblained as intersection of the conicoid and the plane
alx-+bmy-+onz=0,
Tangents ave drawn to the spheve x*+4y3+13=1 which have direction ratios
{1:1:2). Show that the locus of the mid-points of the segments intevcepled on
these tangents by the ellipsoid 2x3+y*+2=2 is an ellipse whose semi-axes

are of lengths 1, 4/8 respectively. [1R5]
Tho first partof the question s answered n § 184, Applying this el
:2)lie

on thecircle C in which the plane ¥+ y-+ 2:=0cuts the sphere. .v‘+y’+:'= 1
The ellipsoid 2s%4-y'4-s'=2 intercepts on these tangents segments
whose mid-points by (18.8) lie on some curve E in the plane 2s+y+2:=0.
But C is the orthogonal projection of E on the plane of C, since all
tangent lines to the sphere with points of contact on C are perpendicular
to the plane of C. Hence E is an ellipse (see § 16.19 Example 13).
1£ 0 is the angle between the planes of C and E, by (16.26), page 360,
7
con 0=375.-
‘The semi-minor axis of E=radius of C=1.
The semi-major axis of E= (radius of C)/cos f=(34/6)/7.
Example 6
Find th of the. the id sYad+ b — 3P =1
which pass xlmmgh the point (a cos , b sin 8, 0).
Suppose that the equations of a generator through the given point are
s—acos§ y—bsind s
i o
Then since every point on (i) must lie on the hyperboloid
at+y = stfet=1,
PP+ m*—n)+ 2p(! cos O+ m sin 6)=0
for all values of p.
2 P mt—nt=0 and I cos 8+ sin §=0,
These relations are satisfied if J=sin 0, m=—cos §, #= 1, and so the
equations of the required generators are
x—acosf
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Exercises 18 (b)
. Prove that all chords of the ellipsoid
a4 ypr Y er=1
which are bisected at the point (g, §, 7) lie in the plane
a(x—a)fa’+Bly—B)6*+ y(z—7)fc=0.
Prove also that the centre of the conic in which the above ellipsoid
is cut by any plane through the point (g, b, ¢) lies on the surface
#fad+y b+ e =x[a+y[b-+ 3e. U]
2. Prove thatall chords of the surface ax*+by?+¢s'=1 which are bisected
hymwmt (a, B, ) liein the plano M(x--)+bﬁ(y M+Dy('—y)-°
Prove also that the centre of the surface
is cut by any tangent plane to the lphen H+y'+:'—v‘ Tiea on the
surface (ax'+by'+ e =} (a%+ by + el LUl
3. Show that the plane sections of the ellipsoid x*+2y34 3s%=1, whose
centres lie on the line (¥—1)/1=(y—1)/(—1)=2/1, are parallel to the
line —2v=4y=13z. LU)
4. Find the locus of the centres of the ellipses in which the ellipsoid
#%42y3+3:%=16 is cut by the tangent planes to the sphere
A=l U]
5. Planes passing through the line x—2=y=z cut the conicoid
42143y +s8=1; prove that the locus of the centres of the plane
sections so formed is a conic,
By transferring the origin of coordinates to the point (1, 0, 0), or
otherwise, find the position of the centre of this conic. LU
. Show that all chords of the eliipsoid
a4y o+ 2Yer=1
which are bisected at A(a, B, y) lie in the plane
axfal+ By[br+ yale'= a*[a’+ %+ e
Find the pole B of this plane with respect to the ellipsoid.
If O is the origin show that O, 4, B are collinear and that, if the
ratio O4 : OB is constant, B must lie on a concentric ellipsoid. [L.U.]

7. Prove that the middle points of a set of parallel chords of an ellipsoid
are coplanar.

If the equation of the ellipsoid is 734 3y*+ 4+*=1and the direction
ratios of the chords are (25 ¢], find the inclination of the chords
to the plane that bisects U]

8. Show that the polar planes of points on the line
3(x—1)=0(y+1)=2(z—2)
with respect to the ellipsoid 47+ 3y?+2s*=1 all pass through the line
whose equations can be put in the form
3(x-+3)= — 46y= —10(s—1). Lu)
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9. If the polar plane of a point P with respect to the ellipsoid
ax'+byl+cz=1 touches the sphere with unit radius and centre the
origin, prove that P lies on the ellipsoid a%® by 14+ci8=1. [L.U.]
0. Prove that the points of contact of the tangent planes to the quadric
ax'4by*+cs?=1 which contain the point P (xy, yy, #) lie in the plane
axx,+byy +ceny=1.
Find the locus of P if this plane contains the fixed line
(E=i=y—g)lm=(z—N)n. Lu]
1 Prove that the locus of the pole with respect to the ellipsoid
#Ya+y*o+14e=1, of a tangent plane to the ellipsoid
#at+ybratfet=1,
is a sphere. [Lu]

. Show that the polar planes of all points on the line
(+=2)/1=(y=1)/2=(z+1)/3

with respect to the ellipsoid % 2y*+ 33" through a fixed line

and find the equations of the fixed line in standard form.  [Leeds.]

13. Prove that there are two and only two points on the ellipsoid
a4yt 3ot
at which the normals are equally inclined to the positive directions of
the coordinate axes and find their coordinates.

‘The normal, equally inclined to the positive directions of the coordin-
ate axes, is drawn from a point in the positive octant on the ellipsoid
35%44y"412:2=24. Prove that the polar planes of all points on this
normal pass through the line (x— 16)/8=(y+12)/(=8)=z. L.U)

14. Show that the line sfatzfo=A(1+y/b), Mxfa—zfc)=1—yfb is a
generator of the quadric %a*4y}/b'—2Yc*=1 for any value of A,
and write down equations for the second family of generators.

Prove that the generators of the quadric 55~ 5y'+ 3= 27 through
the point (2, 1, 2) are perpendicular. [Leeds.)

5. Find the equations of the two generators of the hyperboloid
(/= er=1
that pass through the point (a cos 6, & sin 6, 0).
Prove that they cut at an angle independent of 6, and find the
condition that this angle should be a right angle. [Leeds.)
6. Show that for all values of the constants A and y the lines
(s+a)z+9)=(—Ix—a)=A (s+a)/(z=y)=(e+y)/(x—a)=p,
lic on the surface '+y3—s1=a,
Prove that, if thess lines intersect at right angles, A= —p and the
locus of their point of intersection, for different values of A, is a circle
in the plane s=0. [L.U.)
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17. I P is a variable point on the line y whose equations are
(x=a)fi=(y~b)fm=(s—c)/n
prove that the polar plane of P with respect to the ellipsoid
A+24a0=1
turns about a fixed line ¢ when 7 does not pass through the origin.

that #’ also touches the ellipsoid at t.hen.mapom [L.u]



CHAPTER 19
PARTIAL DIFFERENTIATION

19.1. Continuous functions of several variables

In this chapter we are concerned with the rates of change of functions
of several variables. For simplicity we shall deal in general with
functions of two variables, but the arguments used are quite general
and the results obtained may be extended to functions of more than
two variables. We shall assume that the functions under consideration
are continuous. A function f(z, ) of two independent variables is said
to be continuous for x=a, y=b if it s defined for these values and if

lim {f(x, 5)~/(a, B} =0
when z—>a and y->b in any manner whatsoever ; or, more precisely,
if for every positive number ¢ we can find a number 7 such that
1/(%,9)=fla,b) | <€ when | x—a | <7 and | y=b|<n.

19.2. Partial derivatives

Let z be a function of two independent variables given by the
equation z=/(, y), and let 8 be the increase in z due to an increment
8% in #, while y remains constant. Then Sz={(x+8%, 3)—f(x, 5) and
8r_fletdn )=fi5,3) oo flzdbe,3)—flx,)
& 3 - U= 3

exists, it is called
Lhe first mm‘al derivative of % with respect to x and denoted by
5 on fui Gy on s defined s Jim Jrrsbpolny).

19.3. Calculation of partial derivatives
To find ”—' when 1=f(x,y) we differentiate z with respect to

treating y as a constant. No new principle is involved and, in general,
the rules of differentiation gwe'n in § 9.2 remain valid. An exception
is Rule VI, for, in general, E and a_ are not reciprocals of each other.

A slight modification is reqmmd in Rule V: if zis a function of ,
where u is a function of  and y, %

is the ordinary derivative of z mm respect to u.
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Example 1
I s=yletaly, Lmmylsttlly, Lmlis—siyt.
o - 5
Example 2
If s=estt, ~_g;.aw, LLEPWEY
Example 3

1 smysin 2o+, mtycon 2o+ 3),

%;-ay cos (24-+39) +sin (25-+3y).
Example ¢
If 2=y+x log (X/J')- =los (/) +1, 7y=1—x/y-
Example 5

If se=tan! (y/:). ‘we write s=tan~! », where u=y/s. Then
F-=—y/(x*+y") and 5,-:/(ar-+.v')

0=
Example 6
I t42yt430=1, 2r+d::—;-0. Hence %:-_p/, and similarly
Eei
Example 7
If s=x"f(y/) wheve f denotes an arbitrary function, prove that
Bt
b3 s=x"f(y/x),
log s=n log #-+log /(7/+).
1o m 10f 105 10F
et e M in Ty
Put Yix=u;
then Y d sy, s LL 2,
1or_n iy g 10 f001
Hace i e M im @
9z ds
s s

This result is known as Euler's first theorem for a homogeneous function
of the nth degres in two independent variables (see § 19.12).
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19.4. Geometric interpretation

1f 2=/(x, 3) is a function of two independent variables # and y, the
partial derivatives may be interpreted in terms of the geomery of
the surface 2={(z, y) in the neighbourhood of the point P(z, , ).

The plane through P parallel to the plane 20x cuts the surface in a
curve along which y is constant. Hence the gradient of this curve at P
w2

Similarly, the plane through P parallel to the plane 20y cuts the
surface in a curve along which x is constant. The gradient of this
curve at Pis 2.

%
19.5. Partial derivatives of higher orders
In general, if 7=f(z, ), Z—: and gm themselves functions of x and
y and the partial derivatives of the second order are defined as follows :

) @z 0 for »
(s -0 5z - @
2 0s X
%‘E(_ L. ) B E) .

provided that the limits implied in these definitions exist. The
Second order derivatives (i), (i), (i) and (v) are also denoted by
Jzs, fows foy a0d fyz respectively.
Subject to certain conditions involving the continuity of z and its
derivatives it may be shown that
o
R
This result, known as the commutative property of partial derivatives,
may be assumed to be true for all functions encountered at this stage.

Example 8
I r=(a+y") tan (y/x)

(19.1)

a— % —2x tant (y/x)—y and g—y=2y tan~ (y/#)+# (see Example 6).

a_"= 0 7a) =2yl () and = et (51 247

o 2 (25) =ostier =1 ana —(ay)-—ey'/(sw'm

a" 2
Ay =Y.



406 A COURSE IN PURE MATHEMATICS e

Example 9

I]x-a{(:+u;')+¢(x—ty). where f and $ are arbitrary functions, show that
s O

'

Put x-+oy=u and x—cy=v,

‘Then

Example 10

2=f()+4(0),

dz_df du dp dv__,
R o,

s

»
SR O e

Lo ca-p0).

Sl rud-soZl-arwrson.

If U=y log (y-+7)=7, whers y*=x2-+3%, prove that

*U U 1
Wt ol
rr=stpyt E N ]

or ar
G day L
Usylog (y+0)—r
" Wy vos a2
{L a_'}_a_'
“Nriras) "o
y or
'(m“‘)a—.

e by



408 A COURSE IN PURE MATHEMATICS ne

Then the change 3z in 2 ing to s
8xin x and 8y in y is given by

8a=fx+8%, y+&)—f(x )
={f(z+8%, y+8) =[x y+ )+ (/% y+ &) /(= )}
S48,y +8) [y +8) o @I +8)=[(5)
= 2 4 % ™

-0
1f we regard f(x, y+8) as a function of , y and 8y being fixed, then
by the mean value theorem (see § 9.21) there is a number £ between
x and %+ 8% such that

[lxt8%,y+8) = x5y +8)
5

=f(6.5+¥),
where fx(x,5) denotes a£ /@)

Also, fz(€, y+8y)—fs(x, y) as 8% and 8y—>0, since fz is a continuous

function ; and so we may write
Jolb, y+8)=fe(%,9) +m,

where 7,0 as & and 8y->0, Hence

Lot byt W) SEI Ty gy,

where 7,0 as 85 and 8y->0.
f5y+8)—f(x23)
&

Similarly, =fol®.9)+ns

Where 7,50 23920 and 4(5.) denotes 2 /15.).
Hence by (i) we have
3, 9,
= (a—f +n,)set (;fﬂ: . (192)
where 7, and 7,0 when 8z and 3y—0,
82 as defined by (19.2) is called the fotal variation (or sncrement)

of z.
When 8z and 3y are small and _/,m a‘{’“’-

hca 8x+3-y-8y



19} PARTIAL DIFFERENTIATION 409

since each term omitted is the product of two small quantities. This
result is useful in calculating approximately the etror 8z in z resulting
from small errors 8% and 8y in the measurements of z and y respectively.
The fraction 82fz is called the proportional (or relative) error in z.

Example 11

The diameter of a civcle from which a segmens has been cut is determined
from the length of the chord @ and the maximum height b of the segment. If
the measurements of a and b ars slightly inaccurate each to an extent of p
per cent., find the approximate percentage ervor in the calculated value of the
diameter.” Prove that this ervor is also p per cent., provided (i} that a and b
are measured both in excess or both in defect of theiv actual values, o (i) that,
if a and b are measured one in excess and the other in defect of their actual
values, the segment is a semicivele. U,

Let C (fig. 62) be the mid-point of the arc AB of a circle and let CD, the
diameter through C, meet AB at 0. Then OC is the maximum height of
the segment ABC and

0C.0D=04.0B.
If AB=a, OC=b and CD=x we have
blr—b)=ta",
F=btia¥b . . . @) -

If 8x is the error in  caused by small errors 82 A B
and 8b in a and b respectively, we have N1 %
ox x [+
v 5t gy
3% Fig, 62
ie. S jafb)a-+ (1—Ja¥/bsh.
I the percentage error in a and b is p per cent,, then lOO(Su/A)-: s
100(8b/6) = - p, and e, the percentage error in x, is given

- £ p(2at (40— )} o

1f a and b are measured both in excess or both in defect of their actual
values, 3a and 8b have the same signs

1 €2 1p(24 (461 —a)br = £ p{b-+ Fa¥/b) /¥
ie. e== £, by (i)

1f a and b are measured one in excess and the other in defect of their
actual values, 52 and 8b have opposite signs and

=it dp(sat—abi)fos.
1f, in addition, the segment ACB is a semicircle ¥=a=2b and so
e=tp.
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Example 12
The points A and B, at a distance a apart on a horizontal plans, ars in line
with the base C of a vertical tower and on the same side of C. The elevations
a/l)u'lopujlhlowﬂ/mmd and B are observed to be a and f(a<f). Show
that the distance BC is a sin a cos B cosec(f—a).

If the observations of the angles of elevation are uncertain by & minutes,
show that the mazimum possible percentags

error in the calculated value of BC is approx-

imately
wsin(a+B){27 sinacos ftan(B—a)). [L.U]
A Tty 03, 322620 _o ﬂm’:;_a)
A 8 < .’ BC=a cos § sin a cosec (f—a),
Fig. 63 and denoting BC by » we have
log ¥=log a-+log cos f-+logsin a-+logcosec (B—a) . (i)

1f 8+ is the error in # caused by small errors 8a and 88 in a and §
respectively, the proportional error in # is (8x/%) where, by (i),

83/3:2 —tan B8P+ cot aSa— (88— a) cot (B—a)
ie. 8x/x== {cot a-+cot (B—a)} a—{tan f+cot (B—a)} 3B.
Now Sa= /2700 radians and 8f= /2700 radians,
Hence if ¢ is the percentage error in 7,
€=100(8%/5)== + %[(cotu+oot(ﬂ—¢))¥(un B+cot (B—a))].

Sm&eamdﬁmumlndﬂ>u.themxxunumnuma-lwvllnaolch
obtained by taking the positive sign inside the square bracket

w |cosa  sin 2
"’""E{ .nT.‘fmTp*mT-..)}'
=m{sin (8—a)+2sin a cos §}/27 sin a cos § tan (B—a),
=msin (a+p)/{27 sina cos § tan (8—a)} approximately.

Exercises 19 ()

1. In a triangle ABC, the angle 4 is accurately known, but the measure-
ment of the side b is in error to the extent 8b, and that of the side ¢ to
an extent 8. Find the error in calculating the value of 4 from b,
cand 4.

What is the best shape for triangle ABC in order to minimise as
‘much as possible the effect of the error 36 ? [e3i3]
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2. The side BC of a triangle ABC is to be determined from measurements
of the sides AB and AC and of the angle BAC. The measured values
of the sides are liable to a small proportional error 6 and the angle
BAC to a small absolute error 34. Show that the calculated value of
BC is liable to a proportional error §-+{(bc/a) sin A}34.

e measured values of b, ¢ and A are 4, 5 and 120° respectively
and are liable to errors of $%, 1% and 1° respectively. Show that
the calculated value of a is liable to an error of approximately 1%.

U]

3. Two triangles have equal bases, each of length a, and their base angles
are B, C and B+8B, C+3C respectively, where 8B and 5C are small.
Prove that their areas differ approximately by

1a%(sin® C8B+sin® BSC) cosec? A.

The angles of a triangle whose sides are proportional to 3:4:5 ar®
36° 62, 53° 8’ and 00°. Given that a radian is 57° 18', show that th®
area of a triangle, whose base is 60 yards and whose base angles are
54° and 89° 8/, is approximately 2,427 square yards. LU

4. Find the diameter D of the circumcircle of the triangle with sides
a, a, 2. Calculate, to the first order of small quantities, the change
in D due to small changes 8a and 8b in the values of a and brespectively.
Deduce that, if a=+/3b, there is no change in the value of D when a
slightly increases and b slightly decreases in the same ratio,  (L.U.]

5. Show that the volume of a segment of a sphere is k(4 3R?), where

his the height of the segment and R is the radius of its base.

1f the measurement of 4 is too large by a small amount a, and

that of R is too small by an equal amount, show that the calculated
volume is too large by an amount jma(k—K)* approximately.

1f the segment is a hemisphere, show that the error in the calculated

volume is fa? exactly. LU

(i) 1 u(z, $)=x—y", 6ind a function v(s, ) such that g.:=_g_; and

a_y'é‘ for all z and y.
(i) 1t [(x, )=z, and the values of # and y are slightly changed
from 1'and 0 to 14-3x and 8y respectively so that 3f, the change
in , is very nearly 33, show that 8y must be very nearly 25x.

[L.U]

(a) If 2= (x+9)/4/(x*+5"), find = g—:-}—yg—;
(b) 1f z=sin @ sin g/sin ¢ and « is calculated for the values 0=30°,
§=60°, $=45°, find approximately the change in the value of z if each
of the angles 8 and 4 is increased by the same small angle o° and ¢ is
lecreased by §a’. r.u)

=
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8. (i) If f(x, y)=log (¥*+%), prove that

(H) The area 4 of a triangle ABC is calculated from measurements of
the sides b, ¢, with a possible error of §% in each, and of the angle
A, correct to the nearest half degree. Find an approximate
expression for the proportional error in 4 in terms of the errors

8b, 8, 84 in the measured values.
1f the measured valu of 4 is 60°, determine approximately the
‘maximum proportional error in 4. L.U]

19.7. Differentials
16 y=f(x), and f'(x) exists, then in the usual notation we have
%-‘ﬂ&aﬁ—/—@»f'(ﬂ, as 810,
s0 that g /(%) +
=@t . . . . . @)
where -0 as 82->0.
‘The first term on the right of (i), /'(x) 8z, is called the differential of
yand denoted by dy. Hence
=@ . . . . ()
This equation holds for any differentiable function f(z), and 50 in par-
ticular for the case when f(x)=. For this particular function (i) gives

dy=5x.
But in this case y=zandso
de=8x . . . . . ()
From (i) and (iii) we have, in general,
dy-/'(x)dx. (19.3)

The is shown in fig. 64,
where Bz, y) and Q(x+ax y+6y) are points on the curve y=f(z)
and R, T are the points at which the ordinate at Q meets the parallel
to Ox through P and the tangent at P respectively.

Then if LRPT=y, (—af2<y<nf2),
fx)=tan

Also PR=8z=dz, by (iii), RQ=38y

and RT=PR tan y=/"(x)dz=dy, by (19.3).

Hence T is the point (s-+dx, y+dy).
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It follows that 8y is the increment in ordinate as we move along the
curve from P and dy is the increment as we move along the tangent
at P.

In Chapter 9 we defined 2 as lim Y and its value when y=f(x)
ax .5

was denoted by f'(x). (19.3) gives us a meaning for dy standing alone,

Bx=dx

Fig. 64
and from it we see that the ratio of the differentials dy and dx is
).
o dy . &y
Thus the relation 32=/"(s) is true whether we regard 7 as the

&
limiting value of ;2 or as the quotient of the differentials dy and dx.

The advantage of the latter interprctation lies in the fact that :—i
is an ordinary algebraic fraction with a numerator and denominator
which can be treated as separate entitics. On the basis of (19.3) any
formula for the derivative of a function of x becomes a formula for
its differential by multiplying throughout by dz. For example :

d(sin %) =cos xdx
d(log x)ué’.‘
v
d(ur)= (ud—z+v£)dz

=udvtvdu,
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19.8. Total differential of a fanction of two variables
1f 2=/{x, y), where % and y are independent variables, we define
the differential dz by the equation

d:=f81+-378y P )

Here z can be any function with continuous partial derivatives.
Taking 2 to be the function x, we have

dv=155408y=5x.
Similarly dy=5y.
Hence we may write (i) in the form
a-;a+z—;ay. (19.9)
1 varies while  remains constant, ds= 22ds and so S2ds s the
differential of 7 corresponding to a variation in # alone. Similarly
g—;dy s the differential of z corresponding to a variation in y alone.

These terms are called the partial differentials of z and their sum ds is
called the total differential of .

19.9. Total derivative

I, in § 19.6, = and y are both differentiable functions of an in-
dependent variable ¢ and 8z, 3y are the respective increments in # and y
corresponding to an increment 3 in f, then z is also a function of %,

&=
and by (19.2) its derivative 3; (known as the fofal derivative of £ with
respect to 4 is easily seen to be given by
de_ b ords Ordy
a= Mg matya (19.5)
Written in differential form, this result gives
dz=~ L
Y
and comparison of this equation with (19.4) shows that the expression
for the differential dz of  function of two variables x and y is the

same when x and y are functions of a single independent variable ¢
as when z and y are independent.
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When # and y are both functions of two independent variables
wand v, z may be expressed in terms of  and v and %:, %: found by

the ordinary rules of partial differentiation. ~Alternatively, in the
same way as we proved (19.5) we may show that
or_osdx 0:dy

3" 5x0u" By ou
0z o:0x d1%y[’

gz Y

2x9v" 9y ov.

(19.6)

- oz, oz
We now prove that in this case also, dz= " dx-+ 5 dy.
By definition, since 4 and v are independent variables,
9z, az
b=a"“+5§'i"

210x 020y az0x 012y
(Ea‘«*‘@a_u)d" vt By ou) % BV (198)
org0x o oy,

-3 ﬁdu+ﬁdv)+ay Daur2 dv)

By an obvious extension of (19.5) to a function ¥ of three variables
%, %, 4, all functions of the independent variable f, we have

av _oVdx 9de avdz

FTwaty ataa (1.7)

Example 13
If 2=f(x, y) and x=}(u*—v?), y=uv, show that
LI .
[0) ual—v 9 7—131)
& :

O %}(wv-)(;

1 x=ji—v) and y=uo . .

LI S

v Ou
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8z 91 d: £ 9z, s

By(on.  Zeuglieland Fe—ofiiul
.‘u%—v—=(u‘ u-)g-y 2uvg—’=2 x——yﬁ—) by (i)
#5_0( 05 ox
W a\"%=t"y,
o 95\, 9 (0s o
=3:+ua_“ 7 -4.'13—“(3—‘v . . . (i)
Now if V is any function of » and y, by (19.6)
v _aves vay_av. av.
R L ]
o o\ _ e, o
Put V=3l then a—u )=t
o
Put V=a—y, then au(ay)"‘a;ay*”'"
Substituting these values in (ii), we have
@ _ar, ou
x-—+u'~+2wa‘ay+u*$~
Similarly,
o o %
e mt ax, 2u1/3,—3y+n‘$'~

&
o B S (B 2
19.10. Applications of differentials
(a) If u and v are given in terms of x andy, to find
2 o o
B ”""

If u=4(x, y), v=4(x, y), it may be difficult to find expressions for x
and y in terms of % and v from which the required derivatives would
be directly obtainable. However by the use of differentials these
derivatives may be found in terms of ¥ and y.

We have .z..=—¢z+ dy

and dv=8_zdz+5dy.
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If we interpret F(z,y,7)=0 as giving z implicitly in terms of the
independent variables % and y, by keeping ¥ constant, so that dy=0,
we obtain, from (i),

2;
2= —FlFs
and, by keeping # constant,
2

vIFs.

%
Example 16
If 54y* -8~ 3xyr=a?, find dylox. [L.U. Anc]
Here Flz 3, )=2+y*+8—3xyr—a®.
o Fp=3(*—ys), Fy=3(y'—z1), Fy=3('—3y).
But dF=0:

o (P—yn)det (v —s2)dy+ (s —y) ds=0.
Keeping s constaat, so that dz=0, we have
% =— (P —yn) (A — ).
(d) To find j—‘: from the relations f(z, ¥, 2) =0 and F(z, 3, 2)=0.

&

We may find . by eliminating # between the two given equations
and establishing a relation between x and y. Alternatively, we may
proceed as follows :

Jedztfydy+fidz=0
and Frdx+ Fydy+Fydi=0.

Hence, as in § 16,10, we obtain

ax —dy @
Nk AR v
F, F F, Fy F, Fy
dy

EOEL|E £
F; Fy Fy, F

F

Example 17

If the variables , y and x ave connected by the equations [(x, 3, 1)=0
1x+1/y+1/z=constant, find dy/dx.

We have Jadx+fydy+frdr=0
and (1) dx+(1/y%) dy-+(1/2%) dz =0,

22 (Bn-tr) / (an-2r)-



19) PARTIAL DIFFERENTIATION 419

19.11. Miscellaneous examples

Example 18
If zis a function of x and y and y=uz, prove that
B (2
9%, v constant. 0%/ uconstant ¥ \ O, :m-hnl- ol
Since z is a function of ¥ and 3,
d._( )"”"(ay @y . . L@
where
det(‘) d() respectively.
5 (5) 20 (5 e % (5. 8
But ye=ux
. dy=udstxdu
and so from (i) de= (%) et (%;) (udx-txdu)
9 2: a:
‘(E“%)”*’if"
When u is constant, du=0
as A s
(8B
When # is constant, dx=0
R ?1) ﬁ,<af
o zoomtant \OY.
as a,) a1
T I (N
Example 19
1f $(e) =y, prove that 3—‘+¢(:)3 ,
O o0aye Br 00 Br O
and that ( = (E)" 2 Luj]
Since $)=y/z, qi'(z)— ~—y/a* and ¢'(=)Z—;=x/x.
Hence ¢'(x){a'+’ g;]so

ie. 5+¢m3~,-n. A 0]
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Purha.lly differentiating (i) first with respect to x and then with respect to
3. we
95 o
a,,+¢(:) F ﬂy” (-)5,-;;-0 R )
and 3y61+¢(‘) By'+¢ m( oo ... )
Eliminating ¢'(s) between (ii) and (ii), we obtain

3y g",+;5,{6(t— ——} *(’)EFM

" s /9
But by (i) s=-3/%
N 9\ N1 0r 2r O
Whence ( %) B e oy wy
Example 20

If z=f(u, v), y=¢ (4, v), xlww Ihal the curves given by taking w=consiant
and ively inters if

s Bx+2y 91-0

If x4y =eU+v, show th

.U
‘We may regard the equations x=f(u, v), y=g(, v) as determining the
curve C traced out by the point P(z, ) in the (zy) plane corresponding to
a point P(w, v) which traces out a curve C’in the (w, v) plane. The gradient
:{ at any point of C may be calculated in terms of the gradient j—: at any
point of C” for
0% 11 9% 3 s ¥
d’-audu+—a—"dv and dy=zd dut 2 do.

-/ (aydu+xdu)/( du+;dv

If u=constant, du=0; hence %}2’ %,

%/ %
ay_dy Jox
If v=constant, dv=0; hence Frar

‘The curves in the xy plane ing to
will intersect orthogonally if

&/%) G/%)-
ie.if g:;:+3u3vo ]
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Hence, from (iv).

L = +2m"‘x-—r b {(n—2)5t 1),

Bx’

Similarly, 3y' :;‘:4-2,"» ‘y:“+nﬂ"u((n—2)y'+r')
"

a’, g—yi‘—hﬁ"(x—a;+yﬁ)+n‘ﬂ-‘u, using (ii).

But ’E +ya—y =3(y*—3s1y)=3u

»{;+%‘,} =(8n-+ )P u=(n-+ 6n)z.
In examples of this type lengthy working may sometimes be
avoided by using operators, as in the following examples.
Example 22
If V=f(x, ) and x==e® cos v, y=e¥ sin v, prove that
av o av o

st (gt Leeds)
a_”_ﬂ'k.ﬁ"ay
x out oy ou
_t'mua—-}»n'unvaa—;'
v, av
CERTETE - 0
Similarly %:' =_,%;" +,%' .

The symbol a—a“ may be regarded as an operator which obtains from ¥
1ts derivative g"‘f. 1 we write (i) in the form
? 9, 2
7= (‘Ev‘”’?y) v,
2 . F]
we see that the operator . is equivalent to the operator (x§;+y%)

o a . " 2 2
and, in the same way, the operator o is equivalent to (—ya +,§).
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From (i), (i) and (i)

av axv=r1,( i {,u(av i }
(a‘V laV iV aV ial/ (B‘V itV
swtam) (e bt
v v 19

= e Thw

19.12. Euler’s theorems on homogeneous functions
A function F(x, ¥, ,...) is said to be a homogencous function of
degree # if, for all positive values of £,
Fix, ty, tz,..) =t Flz, 3, 7,
By putting ¢=1/x, we get
FQ, 3z, 2. .)=xl, F(x,y,3,...),

ie. Fz, 3, 2,...)=2"f(ylx, z]x...)
where we write  F(L, y/%, 2/%,...)=f(y/z, 7/z,...).
Hence a homogeneous function of the nth degree is of the form
z"/(y/s, 2fs,...) if £>0.
's first theorem on homogeneous functions stats that if
F(zJ) is a homogeneous function of the #th degree in
oF

o

ay="1"(*. - (10.8)

“This result has been proved in § 19.3 Example 7.
2. 2
From (19.8) we see that the operator ("E, +y 6—},) applied to F(z, ),
a homogeneous function of the nth degree in x and y has thc eﬁect of
oF
multiplying F(s,) by n.  Also, from (19.8) it follows that 20 +5%0 -

is a homogencous function of the sth degree in x and y since # is a

constant.
o (o) (s +r5y ) =nioFls, .

On performing the operations indicated on the left-hand side, we
obtain

z'a—x,+2xyalay+y‘ay,+( +yay)=n’F(x )
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and so by (19.8)
#F #F &F
B Y2 g Y == (). (19.9)

This is Euler's second theorem.
Example 24

Iff(, 3)=4" tan=t (y/x) —3* tan= (x/y), evaluate ¥frz+25y foy+9* .

n this case, f(x, y) is 2 homogeneous function of the third degree.
Hence, by (19.9)
# fezt22y foy+* fy=¥/ (% 3)-

19.13. Note on envelopes

Suppose that a family of curves C is defined by the equation
(%, 7, ) =0 where is a parameter fixed for each member of the family
but varying from curve to curve, for example, the family y =045,
which is a family of straight lines touching the parabola y?=4ax
(see § 13.7). Ifa curve E exists which touches every member of the
family C, E is called the envelope of family C. Let us assume that E
exists, that its equation is F(z, 5)=0 and that the curve f(z, y, @) =0,
i.e. the curve of family C with parameter a touches E at (£, 7). Then
F(€, n)=0 and /(€, 7, a) =0 5o that £ and 7 are functions of a.

1f we denote the values of —’ and —/ at (6, m) by 5 —/ J and the

value of 3‘{ when 6=a by 5/ we have by (19.6) and (19.7), page 415,
oFd¢ oFdy .

Fatma® - - W

ofde ofdn 3f "

and Bdtamatat - - - @

Now the gradients of the curves /(x, y, @) =0 and F(x, ) =0 at (£, )
are equal since lhe curves touch at that point ; hence by § 19.10 (b)

k) aF d; d|
Lk o
R a/dg afdn
"a‘fﬁ*ﬁ,d‘f' J N 1)
Comparing (i) and (i), we sce that
*B-a=0

and this equation is satisfied by (£, 7).
o*
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Example 27

The envelope of the normals to the parabola y*=dax is given by the
equations

y+tx=2at4ar
and r=2a+3a . . . . @)
whence y=—2af . . . . . @)

Eliminating ¢ between (i) and (ii) we have
2Tay*=d(x—2a)".
The envelope of the normals to a curve is called the evolue of the curve.
Exercises 19 (c)
1. Show that u=log(s*+") satisfies the differential equation

o o
o
Hence, or otherwise, prove that y/(x'-+y%)? also satisfies the
equation. [Sheffield.]

2. If u=2"{f(y+x)+gly—=)), where / and g arc arbitrary functions,
prove that

Pu_du_2ndu i),

Frar et A U]
3. 1f w=f(z) and v= ¢(x) where z=pxt+2gxy-+ryt and p, g, r are con-
stants, show that
udv_audv
52y LU

4 (i) 1 x(1/y+1/z)=constant, prove that

().,
the suffix indicating the quantity which is kept constant.

(i) I V=(Ar+B/r)f(6), where 4 and B are constants, satisfies the
equation

G ?7':"'%': =

find the form of the function f(6). [L.U. Anc])
5. () He=f(x, y)+g(u), where o=y, and fand g aeeacbitrary functions,
show that w=x— Y% ay is independent of the choice of g. Find

w when f(z, 7) —xye”’i
(ii) Show that at the point (s, a) on the curve s*-+y’—ary=a’, the
value of gs ~a. Lu]
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6. If ¢=f(p), where f is an arbitrary function and p=(x*4y%"*, prove
that

. %, %_
@ x£+y a—fﬂp/ ®:
. m
@ e (EeZ) mef (42). o
7. I 2=(xr+)$(y/#), where § is an ubm—uy function, prove that
a’y :_,
and that
i T ay"‘" 5.=-v U]
8. If V=f(s*-+?), where f is any function, show that
Y o
3 3
av av__av, v
and Yo 2"?’a::a,-ﬂ“" o atly Lu]

. If (2 —3)f(t), where f=m3y, prove that
T+,
. N P u
Fidf)it g =o. L)
10, If Umf(s*-+y*+1%), prove that

B b LA A LY AR, LU

1.1 ue, Ly +'5 F(ct-+7), where f and F denote arbitrary functions,
show that

Tf s also of the form {(cos 7)/r}$(¢), ind the form of $(9). LUl
12. (i) If £=/(s+)g(s—y), where f and g are arbitrary functions, prove
that

F5-(3)-G)
o .
(if) If the variables #, y, z are connected by the equations

S(%, 3, £)=0, 24314 =constant,
prove that dy/dx=—(zfy—xfe)z Ly~ f2)- Ly
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13. Prove that the pmia.l differential equation
204 3: 2z
S

az-”"'axay R
is satisfied by r=x¢(y/z)+y "p(y/#), where ¢ md 4 denote arbitrary
unctions. L.U]

3

. If u=3"F(s/y), where F denotes an arbitrary function, show that

a—“+y 4=M.
and hence um

Fu
ey 2 ay+y el U]

=

. () T r=y/(s+") and u=f(r), show that
R e Y

andﬁndumwmsoivxla‘“

+35
(i) 1f #=rcos 6, y=rsin 6, u=recosf, and a:**ay-‘o' find the
possible values of the constant a. [184R)

s

@) If zis a function of x and y and if x=04¥, y=e0~#, prove that
o O 0%
ey a0 og
(i) lf u. v are functions of X and Y, and X, Y are functions of xandy,
e that

Buav udv_ u v du v ai:ay X 3Y’
e 3y o \ax 3 ~svax/\% om0 &

s

. 1f s=f(%, 3) and u=x-+y, v=y(s-+y), prove that
d9s_vor

"“(“’f T udy

s

(5,21 ) wher =) =y(x1y). prove that
@ +y§§-u°’+v1-
a0 a
) #* a,-“"’ axay ‘“"‘=“'E{+’“" Bugl/+"' aT{‘
{Durham.]
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19. 1t ¥=(u, v) and y=g(w, v), express :—: in terms of the partial deriva-
tives of fand g,
1f f=ut+vt and g=u? 4%, prove that
Uztvg Yz, s,

where u,=%:, ete. [Leeds)

20. If u(z, y)—hg r t.nd v(%, )=6, where r and @ are polar coordinates
and r#£0,
* v M_ v
i T
Deduce that both 4u=0 and 4v=0, where 4 is the operator
L
3:’+ay‘

[You may assume that - ay’ﬁﬁs and, similazly, for v.] [Durham]
1. The pairs of variables x, y and w, v are connected by the relations

,Hd by bll—ﬂ'll.
e YT uge

o0
W m

Prove that

and, by expressing u, v in terms of #, y, or otherwise, show that
Pu Pu
=t [Durham,)
22. (i) 1f s=x log (s*+?) -2y tam (y/2), show that
5 s
Gt o
(ii) If %, y, w, v are variables connected by the equations
#*=aut+bvh, y*=aut—buh, where a, b are constants, show that

(.65,

where the suffix indicates the variable which remains constant in
each partial differentiation. [L.U. Anc}



19) PARTIAL DIFFERENTIATION 431
23. (1) 16 /(s, )=F(u, v), where u=s?—y" and =2z, show that

af OF oF"
@)+ (§) = [0 +()]
el 3’,{=4("'+v'>'[a,-+au-]
(@) 1f % y and # satisfy the relations f(x, y, #)=constant, and
xys=constant, show that

PR T B

and

24. (i) If f=s+y, 11—\/(1]), and z is a function of ¥ and y, show that
I3
+y 37-2 ag*'" A
(i) If z=f(x+7) +g(~y). prove that
& o
-9 [T gty 2t (Z-3)- wo

95. If (r, 6) are the polar coordinates of a point in a plane, show that
V=1 cos § and V= (cos 0)/r both satisfy the equation

1 V= Vombr cos 0+ (cos 6)/r when r>a, and V=V, =dr cos 6 when
r<a, where a and b are known constants, find the values of ¢ and d,
being given that when r—a

0 Vo=Vi: Gi) 43_"-_3 LV‘ for all values of 0. U]

26, 1f V =e!r-2/1, where y=3*+y* and  is constant, prove

.
® ( ) (” Fri41e0)
o 3'1/ 3'1' 20V _V
() ey T Lu]
21, Express sy/(s7+5? in polar coordinates, and show that in the
jan form the function satisfies the equation
>V *V
FEATa
and in the polar form it satisfies the equation
av 13V 13V
Tt e than ol
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28,

2
8

M
8

=

@
8

@
g

. Transform the partial differential eqnaﬁon

A COURSE IN PURE MATHEMATICS 19

v
31’+Byl=0 to the form
eV 1 av
Tty ot g
where =7 cos 0, y=r sin 0.
() If V is a function of » only, find the most general form of V
satisfying the equation.
i) n V-w/m, where  is a constant, find the most general form of V'
ying the equation. L)

. It V=snf(y/s), where [ is any (uncﬁon prove that

+y 5 -nV.
1 a%=°' and u denotes y/, show that (n—1) —=ud ’, and hence
verify that ¥ is of the form ax®-+bym, where & md b are constants,
LU

. If u=f(y/x)+25y, whm /dmeu an -rbitn.ry function, prove that

Tt 2 3y+y' a,- Lu)

. If V=a"{(Y, Z), where Y'=y/x and Z=1x, prove that

1y+y %V'Ha—v—nl' L.u]

. 1f y=2¢2+29, where « is a homogeneous function of degree m in ¥ and 3,

prove that
#2ky Rmtar iy, wu)

. 1f ¥ is a homogeneous function of , y and s of degree , show that

w, ., v
"Er""a_y*"?""v'
I ¥ also satisfies
av_av v

a0t oyt

BT
and s8= 151+ 2%, show that  =r-(+1) ¥ satisfies the latter equation.
{L.U. Anc.]

3 "/ (= ) =¢(x. y)+¢(x, y), where ¢(x, y) is a homogeneous polynomial

nndyo(d and (s, y) is one of degres g, show that
PP Z}{m L a"—(q—n(xa )
wu)

pw—n
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Then by (16.12) the D.R.s of 4B may be taken as

oras

As 80, 3z, 8y and 5z all tend to zero, B approaches 4 along the
curve and the chord 4B approaches the tangent at 4 as a limiting
position. Hence the D.R.s of the tangent at 4 are the limiting values
of & %" B s 5150, i

(19.11)

19.15. Tangent lines to a surface

If a chord 4B joining two neighbouring points on a surface tends to
a limiting position AT as B is made to approach 4 along a curve on
Lhesurfm,ATissaidtobulongmk‘nctolhnur/matA. ‘We shall
show that all tangent lines to the surface at 4 li¢ in a plane known as
the fangent plane to the surface at A ; the line drawn through A
perpendicular to this tangent plane is called the normal to the surface

atd.

19.16. The equations of the tangent plane and normal to a surface
Let the curve

#=f.y=g@ x=h) . . . @)

lie on the surface whose equation is
F(z,y, =0 ce e (i)
Then (i) is satisfied for all values of ¢ by equations (i); also Lm0

]
50 that, by (19.7),

oF dx oF dy oF ds
watmataa® - - - @
Now by (19.1) [ E’.%] are the D.R.s of the tangent line

to curve (i) at A(x, 3, 5) ; hence by virtue of (16.17) page 352, we con-
clude from (iii) that the line whose D.R.s are

P )

is perpendicular to this tangent line at A and, since its D.R.s are
independent of f, g, h, to all tangent lines to surface (i) at 4.
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represents a plane which touches the given surfacs at (), —A, 0), a point
on line (ii).

Similarly, all planes drawn through the line y—=0, z=0 touch the
surface at some point on the line.
Example 29

Find the equations of the tangent plane and normal fo the surface

Yz+Yy+1z=V/a

a the point whose coordinates are (sy, 3y, 5,).
1/ P s s pond o tha i of inesacion of this susfacs and lhe plans s=a,

show that the locus of the point of intersection of the mormal at P and ths
plans =0 is (5+3)(¥—y) +8a*=0, £=0. LUy
By (19.13) the equation of the tangent plane at (x,, %, #,) on the surface
1,111 "
PSR
# 1 1 1 o,
is ;:(r—f,)+y, (y—}',)+‘,(l—'.) =0,
ie. ‘_,+ "+ Fa RS
‘The equations of the normal at the same point are, by (19.12),
RE—r)=A—p) =) . . . ()

‘The plane s=a meets (i) in the straight line #-+y=0, s=a any point P on
which may be taken as (A, —A, a). By (iii) the equations of the normal at P
are
A(x—2) =2y +2) =a(s—a).
‘This normal meets the plane s=0 at a point @ whose coordinates are
F=A—a%M, y=—A—at]M, 20,
‘The locus of Q is found by eliminating A between these equations, and
since x+y=—2a%* and ¥—y=2] the locus is
(#+5)(x—y)*+8a%=0, r=0.
le.mph 30
Prove that the point P(P-+3M0%, 63+2)0, 6+4-)) liss on the surf
(yx x)'-l{y—r‘)(n—}"), and show that the equation of the tangent plm
*—3y0-+ 30— =0,
Deduce that, if 8 vemains constant but X varies, the locus of P is a line at
U,

every point of which the surface has the same tangent plane. L.U]
‘The coordinates of P identically satisfy the equation
=P dly—P =) =0 . . . @

and 80 P lies on the surface (i).
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We may use (i) to find the equation of the tangent plane at P,
Alternatively, denote surface (i) by f(#, 3, 2)=0. Then since %, y, and s
are functions of A and § given by the equations x =362, y=@-+29,
z=0+A, then
afox afdy 3
x 92" 9y OA" 0z 0,

ie 1’- ?-f+a—f=o P )
a/a: B/By a/a:
Also 365 5058 360
Ly,
-, 300+20 Y +2(ﬂ+A)ay =0 . .
Solving (i) and (i) by determinants, we have
a/ o, a/

gy g
and the equation of the mgm plane to (i) at P is, by (10.13),
= (430 — 30y — (63-+ 226)) -+ 36*(z— (6+ 1)) =0,
—3y+30u—0=0 . . (iv)
11 6 remains constant, §=#, say, while A varies, all three coordinates of P
are linear functions of A given by
2=kR+3X), y=h(k+2)), r=h+A
and 50 as A varies P moves on the straight line
=B
W
But (iv) is independent of A and so the tangent plane to surface (i) at
every point of line (v) is the plane
*—3ky+ 3R =A%

B )

Exercises 19 (d)
1. Show that
(a) any tangent plane to the surface zyr=a® and the coordinate
planes bound a tetrahedron of constant volume ;
(8) if the normal at any point P of the ellipsoid

Aatpyb g siet=1
meets the coordinate planes in G, G, G, then the ratios
PGy : PGy: PG, are constant. [L.U. Anc)

2. Find the equation of the tangent plane at any point of the surface
#iyitt=3at

Show that the points on this surface at which the normals pass

through O lie on the sphere +*+yi-+s1=3a%, [A]
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11 Find the equations of the two tangent planes to the surface
4y 42 =108
which pass through the z-axis, and determine the point of contact.
Find the y and z coordinates of all points P on the surface, not in
any coordinate plane, such that the normal to the surface at P passes
through the origin. L.U)
12. Find the equation of the tangent plane at any point (a, f, y) on the
surface s%y—atz=0, and prove that the tangent planes at all points
on the surface which lie in the plane ¥=a intersect the plane x=0 in
parallel lines. LU
. Show that for the surface zyz=a?, one and only one, real normal can
be drawn parallel to the line 8#=y=z; find its equations and the
points where it meets the surface again. L)
. Prove that all points on the line =y, =0 lic on the surface
—1)s—e)*~(x—1)(s+¢)*=0,
and that the normals to the surface at these points lie on the surface
(F—y)(x+y—2)—cz=0. ru]
. Find the equation of the tangent plane to the surface
A1) =y 42 at (6, b, o).
1f P is any point common to the surface »+s'=1 and the plane
=0, show that P also lies on the surface #*(s*+s~1) ,-(x-+,-)
‘and that the surfaces have a common tangent plane at P.
16. Show that the tangent planes to the surface xy+yz4zxr=1® at t.ha
points on the intersection of the surface with the plane x-+y+2=ry/3
are also tangent planes to the sphere x?4y*+ 21 =r2 [L.U])
Write down the equations of the tangent plane and normal at any
point P(,, y,, 5,) of the surface z(x?—y?)—
Prove that

o

®

|

(i) If the tangent plane at P meets the z-axis in Q, then PQ is
perpendicular to the z-axis.
(i) The normals at points on the #-axis lic on the surface
sy+ar=0, L.u)

8. Show that the tangent plane at the point P (sin 0, cos 0, ¢) to the
surface £2(x%-+-3%) =c* meets the plane z=0in a line which touches the
circle 534yt =4, 1=0.

Show that one of the points where the normal at P meets the surface
again lies on the sphere c*(3*+y*+42) =1+¢%, vl

9. Show that the normal at the point P(a, 2, a) to the surface ytz=dc's

lies in the surface £*— *=4o(y—

1£ 0 is the origin, show that the acute angle 8 between this normal
and OP satisfies the inequality {w <0< .

The tangent plane at P to the first surface meets the axes of co-
ordinates 4, B, C and 7 is the radius of the sphere OABC. Prove that
OPt =yt 438 Luy
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20. Write down the equations of the tangent plane and of the normal at
the point (x,, ¥y, 5,) to the surface 14 2yz=2.
Find the equations of the tangent planes to this surface which are
parallel to the plane 4x-+y—7z=0.
Find also the coordinates of the point in which the normal at
(2, 1, —1) meets the surface again. L.U)

®

. Obtain the equations of the tangent plane and normal at each of the
points (—a, —a, a) and (—a, a, —a) on the surface xyz+2}(y+2)=a’.
ve that the normals intersect and find the equation of the

plane in which they both . - Show that the tangent planes intersect
in the line #+3a=2y=2: L.U]



CHAPTER 20

APPLICATIONS OF INTEGRATION
—CARTESIAN COORDINATES

20.1. The definite integral as the limit of a sum

Fig. 67 shows part of the graph of the function y=(x) which, for
simplicity, we shall assume to be not only continuous, but also positive
and steadily increasing in the interval a <z <b.

We investigate the area AUV B enclosed between the curve y= (),
the z-axis, and the ordinates x=a, x=>b by dividing it into  strips

Y
Dza
s
[P |r
. h.
c
[v) v
ol x=a N M x=b X
Fig. 67

by means of equally spaced ordinates 3x apart and constructing a
set of inscribed and circumscribed rectangles as shown in fig. 67.

We consider a typical strip PNMQ, P and Q being the points (z, )
and (x+3x, y+3y) respectively. We assume that the area CONP,
bounded by ‘the axcs, the ordinate PN, and the curve y=g(z), is
some function 4 (x) of %, and that, when # increases to x+ 5z, the area
CONP increases to area COMQ which we take to be A (¥)+84(x)
where 84 (x)=area PNMQ. Then from the figure we see that

rect. PM <84 (x) <rect. QN
ie. yor<area PNMQ<(y+%)8x . . (i)
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Summing over the # strips, we have
b .
Tysicarea AUVB< Z(y+8) 8z . . (i)
b o
Now £y 8 is the sum of the inner rectangles, 2 (y+38y) 8 is the
et e

sum of the outer rectangles, and the difference between these sums is
the sum of the » rectangles such as SR. If we slide these  rectangles
parallel to the z-axis until they lie between BV and the preceding
ordinate, we see that they make up the rectangle DF whose height
BF is $(b) — $(a) and whose width is 8x=(b—a)/n. Now rectangle DF
may be made as small as we please by making # sufficiently large,
that is, by making 8x sufficiently small. Hence, as 5x—0, the sums
of both sets of rectangles (inner and outer) tend to the same limit ;
by virtue of (ii) we define the area AUVB as this common limit and

write

"
area AUVB=lim & y8x . . . (i)
a0 5me
N
This limit is denoted byj ydx, and is called the definite integral of
s

y with respect to x from x=a to x=>b. The letters a and  show the
range of values of x from U4 to VB over which the summation is

made.

The definite integral defined in this way is independent of the idea
of differentiation, but it is rarely evaluated as the limit of a sum
because of the dificulties involved. To find a practical method of
evaluating the integral we return to (i), which gives

y8r<BA(R) < (y+8) 3%,

84(%)
5

Yy,

and so d%(‘) =y
since, by continuity of $(x), 3y->0 with 8z.
Thus A(z) is the indefinite integral of y with respect to .
Now A(x)=area CONP.
Hence area COVB=A(b), arca COUA = A(a)
and so area AUVB=A(b)-4(a) . . - (i)
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Combining (iii) and (iv), we have
zub 3
area AUVB=lim zysx=j yar=A®)-A@@)  (20.1)

where A(x) is the indefinite integral of y with respect to x. This
definition of a definite integral is consistent with the one given in
Chapter 10 and gives us the geometrical significance of the process of
definite integration.

Note.—In subsequent sections we shall assume that if a number

b
can be shown to lie between two sums of the form £ /(z) 8% and
e

ab b

Z flx+8%) 8x its value is given by lim 2 /(x) 5 and that this limit
Pt P ol

N
may be evaluated as I S(x) dx.

If in the interval a< <, y=¢(x) is a decreasing function, the in-
equalities (i) and (ii) are reversed, but this does not alter the result.

=
If in the interval a<x<b, y=4(x) is negative, Z y 8z is negative,

»
and hence | $(x) dx gives a negative result which is numerically equal

.
to the area enclosed between the curve, the z-axis and the ordinates
x=aand x=b.

If in the interval 2 <x<b the curve y=4(x) crosses the x-axis, the
area enclosed between the curve, the x-axis and the ordinates x=a

)
and x=b lies partly above and partly below the x-axis and J' ydx
o

gives the algebraic sum of these arcas. To obtain the numerical value
of such an area the negative portions must be found separately and
their numerical values added to the positive areas.
By a similar argument we may show that the area enclosed by a
curve, the y-axis and the lines y=c, y=d where c<d is given by
‘

xdy.
.
1f the equation of the curve is given parametrically by the equations
x=2x(f), y=y(t), we write Iydx= Iy(t) %lf dt, and integrate with respect
to ¢ between appropriate limits, In the same way we may use jzdy

in the form j x % dt. (Seealso § 21.9.)
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20.2. Mean value
Let y,, 35,

to the values x

shown in fig. 68.

be the values of the function y=$(x) corresponding
£=a-+5%,..., x=a-+(n—1)3z, where ndz=b—a as

Fig. 68

Then the average (or mean) of these values of the function is given
Or+yat...+n)
3
_ i85 +y,8x+ .. yadx
= nox
20 .
=5z Z,yb since ndx=b—a.

If this expression tends to a limit as n—>co (ic. as 82->0), the limit
is

1
b_—aj: yiz (20.9)

and it is called the mean value of y With respect to % in the interval
from x=a to x=b.

20.3. Volumes

By arguments similar to those used in § 20.1 it can be shown that
if the arca of the section of a solid by a plane perpendicular to Ox at a
distance # from O is a function S(z) of , the volame ¥’ of the solid
enclosed between planes perpendicular to O at z=a, ¥=b is given by

.
V- j Stas ©0.3)

When the solid is generated by the revolution about the x-axis of the
part of the curve y=g(z) which lies between the ordinates =a and
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negligible compared with those of low degree. Hence if a curve passes
through the origin, a first approximation to its form may be obtained
by retaining only the terms of lowest degree in its equation. For
example, a first approximation to the curve y=2/(x*+ 1) at the origin
is the line y=2z.

To study the form of a curve at any point we may change the origin
to that point and apply the above considerations.

VI. Asymplotes

An asymptote to a curve is a straight line to which the shape of the
curve approximates at a great distance from the origin. Accordingly
if, as a point moves along a curve, its abscissa # approaches a value
and at the same time its ordinate y becomes either positively or
negatively infinite, the vertical line z=a is called an asymptote of the
curve. 11, s a point moves along a curve, its ordinate y approaches a
value b, and at the same time its abscissa  becomes either positively
or negatively infinite, the horizontal line y=b is called an asymptote
of the curve.

If y=f(x)/F(x), where f(x) and F(z) are polynomials and their
quotient has been reduced to its lowest terms, the vertical asymptotes
of the curve are given by F(x)=0. The limiting values of y as 2  co
depend on the degree of /{z) and F(z). There are three cases :

(8) If /(x) is of lower degree than F(s), i.e. if f(x)/F(s) is a proper

fraction, y—0 as #—> 00 and so the z-axis is an asymptote of
the curve.

(b) 1f f(2) and F(x) are of the same degree, there is an symptote
parallel to Ox. If we express y by division as the sum of a
constant & and a proper fraction P(x), then, as in (), P(x)-0
as x> 0 and so y=£ is the equation of the asymptote. For
example if y=x(x—2)[(x*~1)=1~(2x—1)/(x~1), y becomes
infinite as #->+ 1 and y—1 as 2>+ co. Hence the lines z= 1
are vertical asymptotes and y=1 is the horizontal asymptote.

(€) 1f f(x) is of higher degree than F(x), y becomes infinite as
%>+ 0. I we express y by division as the sum of a poly-
nomial $(x) and a proper fraction Q(z), then, as in (a), Q(x)—>0
as x>+ o0 and y—¢(x)>0. If p(x) is of the first degree,
=4(x) is the equation of the oblique asymptote of the curve.
For example, if y=(x—1)(x—3)/(x—2)=x—2—(1/(x—2)},
9 becomes infinite as £—2 and y— (x—2)»0as z— ¢ . Hence
x=2isa vertical asymptote and y=x— 2 is an oblique asymptote.
We note that y<z—2 when #>2 and y>x—2 when z<2.
Hence the curve lies below the asymptote as x>+ co and lies
above it as x——co.
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Example 2
Sketch the curve given by the equation.
yt=ats/(2a—7).
Provs that the area enclosed by the abovs curve and the line x=a s (n—2)at,
‘and that the volume traced out by votating this area
about the axis y=0 through two right angles is
(log 4—1)at. LU
This curve which is symmetrical about Ox
touches Oy at the origin, and has z=2a as
vertical asymptote. There are no real values

of y when <0 or when ¥>2a. Logarithmic
difierentiation gives

Y _ L
=507~ E G
from which we see that there is no point at

which :%=o. The form of the curve whena>0

is shown in fig. 70.
The area enclosed by the curve and the line
#=a is given by

¢ _ayx
e e

Put x=2a sin*f, dx=4a sin § cos §df.

i "
sin® 0d=4a"[f—} sin 2e|n’ —(r—2)at.

o

The volume traced out by rotating this area about Os is given by

* alx
0Za—x

oof (32) . s

=ma¥(2a log :—q:‘

dx

ILy=n

= mat (log 4—1).
Example 3

A parabola is drawn having for ils verlex the centre of an ellipse of major
axis 2a and ecceniricity § and having the minor axis as the tangent af its
vertex ; also, it passes through the ends of a latus rectum of the ellipse. Show
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that it divides the elliptic area into two paris, the ratio of whoss areas is
(4m++/3) : (Br—1/3).

If the smaller of these areas vevolves through four right angles about the
minor axis of the ellipse show tha the volume generated is 21ma*/20. [L.U.)

The equation of an ellipse of ma]or axis 2a and eccentricity =} is
#1/at+yYbt=1, where bt=a?(1—e?) =:
Thus the equation of the given empse is
W=t . . . . ()
The equation of a parabola with vertex at the centre of (i) and the minor
axis of (i) as tangent at its vertex is of tho form
yr=dpr.
Since it passes through the ends of the latus rectum of the ellipse, ie.
the points (}a, :1a). 9a%/16=2ap, i.c. p=0a/32.
Hence the equation of the parabola is 8y*=9ax.
The form of the curves is shown in fig. 71. The area enclosed by the

Fig. 71

ellipse and the parabola may be divided into elementary strips parallel to
04, the area of each strip being (¥,—,)8, Where x, and , are the abscissae
of the points P and @ respectively,

Hence the required area is

lEe}f ) 2 o
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16. Show that the curve whose equation s % -a-(x_.)/,, where a> 0, has
the lines y= +a, ¥=0 as asymptotes. Sketch the
Find the equations of the tangents which pass lhmllgh the origin,
and deduce, or prove otherwise, that the equation in #, As*=a(x—a)
has three real roots if 0<A<4/27, but only one real root if A does not
lie between those limits.

17. The smaller segment of the ellipse 35*-+4y*=1 cut off by one latus
rectum is rotated through four right angles about the other latus
rectum. Find the volume of the annular solid so formed. LUl

®

1f f(x) is 2 positive and continuous function which decreases as x
increases, prove geometrically that

mit
/‘(l)+l(2)<l---<+/(m)>jl S dx.

Deduce or otherwise prove that L‘ is divergent.

nlug o

B

Prove that, if a>0, the curve y=« sin ax has an inflexion where
ax=(2 tan} a)+kn for any integral value of k.

Find the arca bounded by the curve and the segment of the x-axis
between x=km/a and x=(k+1)n/a.

Hence, or otherwise, evaluate

r % sin ax d=. Ly
o

20.5. Length of arc and surface area ; definitions

Let us consider the n-sided open polygon HP,P,...PpK inscribed
in the arc HK of a continuous curve (fig. 72). Let the perimeter (the
sum of the # sides HP,, P\Py,..., PaiK)

K of the polygon be denotedby s
1t, as #>w (H and K remai
B, cach of the chords HP,, PP, )
tends to zero and s, tends to a definite
limit s, we say that the arc HK is of

length s.
(3 Hence arc HK
] =lim 5 (HP,+P,Py+ ... +PpK) =s.
d puih
Fig. 72 In the same way, the surface area of the

solid obtained by rotating the arc HK about
any axis is defined as the limit of the sum of the surface areas
obtained by rotating each of the chords HP;, PyPy,.. ., PasyK about
this axis.
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20.6. Length of arc

To obtain formulae for the length of an arc and for the surface area
of a solid of revolution, let us consider an arc of the curve y=g(z)
whose end points A and B have abscissae =4, x=} respectively
(fig. 73). We shall assume that the angle § between the positive
tangent at (r, y) and the z-axis is not only a continuous function
of # but is also acute and increases steadily as (, y) moves along the
curve from A to B. Suppose that arc AB is divided into  parts by

M Vv
Fig. 713 Fig. 74

equally spaced ordinates 8x apart and consider a typical chord joining
P(z, 7) to Q(x+38%, y+8y) on the arc and making an angle 8 with OX.

Then PQ=sec 6.5z

Now if the tangents at P and Q make angles ¢ and (y+8y) with
Ox (fig. 74),

P<f<y+8h,
- sec 8z <sec 0 8x <sec (+8)3%,

ie sec i Bx<PQ<sec (P+3¢)3x . . . (i)

s b zmp
o Zsecydr< I PQ< I sec (ot 3)dx
Pl - e
s 2 3
. arc AB=lim Z PQ=lim Z sec sx-j sec ¢ dx. (CE. note on
reozma © tmsdima .
p. 443,
2
But sec’¢=l+tan'¢=l+(‘:—i) .
Hence, denoting arc AB by s 5 we have

'""i_[:;\/{”(% ‘}dz. (20.6)

1f ¢ steadily decreases along the arc AB, the above inequalities are
reversed but the formula obtained for s is still valid.
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20.7. Sign convention for s
If an arc of a curve is measured from a point 4 (fig. 75), it is
customary to attach a plus or a minus sign to the arc AP according
as P lies on the portion AC or the portion 48 of

C  the curve.

When the cartesian equation of the curve is
o given in the form y=(x) it is usual to measure s
so that it increases with z. It follows from the

A definition given in § 9.19 that the positive tangent
is drawn in the direction of s increasing.
Fig. 75 With this convention, when b>a, (20.6) gives

T

By a change of variable this result may be written in the form

d dx\?
w1 @)}

where a, § are the ordinates of 4, B, it being assumed that  is a
single-valued function of 3.
20.8. Surface area

As in § 20.6, by considering the conical frustum formed by rotating
the chord P, it can be shown that the surface area S, of the solid
generated when the arc AB revolves about O is given by

5‘,=2nj:y J {1+ (;ﬁ )'} dx. (208)

By changing the variable we may write this result in the form

s,,=z,._[:y ,\/ {1+(j—;)'} , (208)

it being assumed that x is a single-valued function of y.
20.9. Differential relations
If s (fig. 73) denotes the length of the arc of the curve y=g(x)
from A to P (z, y) .
s= j “secydx

and (although the validity of the differentiation is beyond the scope
of this book) it follows that

-y

/d;"“’c ‘““‘\/1 1+ (:”;)'}

(20.10)
and
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Thus by (20.7) the length of arc of curve (i) between =1 and x=2 is

1 § 1
I {(2x+3)+‘(2‘+3)} [x-+=~+§ log (h+n)]‘-6+§ log 7/5.

Example 5

If s, the arc OP of a curve, measured from a fixed point O on it, is f (),
where s is the angle which the tangent ai P makes with the positive direction
of the x-axis, show how to find the carlesian coordinates (z, y) of P in terms

of . . .
The intrinsic equation of a curve is
Ss=da(5-+tan® }f)/(tan ).

If the axes are chosen so that %, , s, and y vanish simullancously find the

cartesian coordinates of any poini on the curve in terms of v, and verify that

519yt =bst. Ly

The equation which connects s and ¢ in any curve is known as the
intrinsic equation of the curve.

Let P(z, y) be any point on the curve whose intrinsic equation is s=f().

Then :;J:-: g $7W) by (20.12)

R L ZA L AR
and in the same way, y= J' sng @A . . . . (@)
the integration in each case being taken between appropriate limits.

ow if
s=/(f)=4a(5+tan’ ) v/(tan }) . (iii)
S°(f) = gaftant if sec* dip -+ gsec? M(5+ﬂﬂ’ M))I\/('-“‘ W)
=asec Y/v/(tan ).
Hence

g Lmtant b @ sect i _al1—tant ) sect 4y
S iy Vs T Vn i

and so, from (i)

x=2¢j i d =t g
_ﬂa{mv*—swwe} .

But when =0 (5o that #=0), =0 and s0 c=0,
R S )
e 1 iy
. » 2 tan } a sec
i 4 =t 1)

=2a(sec? })4/(tan }¢)
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and so, from (i)
ynuf\/: &, t=tan 4
=jatiitc’,
But when =0, =0 and 50 ¢’=0
Loy=gat L L L
From (iv) and (v)
52149y =3f1a%(5+tan® Jy)? tan 3
=5 by (iii).
Example 6

457

)

The vegion bounded by a quadrant of a circle of radius a, and the langents

at its extremities, revolves through 360° about one of these

yents.  Prove

that the volume of the solid thus gencrated is (§— m)ma®, and the area of its

curved surface is m(m—2)a*.

L.u]

Let AC (fig. 76) be the tangent aboutwhich the quadrant of the

circle rotates. From the points P(z, ) and
Qx+3x, y+38y) on the circle draw per- y
pendiculars PM, QN to AC. Then V, the

volume required, is the limit of the sum of
the volumes generated by rotating figures
such as QPMN about AC.

v=s
Hence V=lim X aPM*.MN
W0y=0

v=e
=lim X n(a—s)*8y
=0 y=0

Q

P
(xy)

-ﬂ-‘: (a—x)tay.

The parametric equations of the circle are
#=acosf, y=asinf;

2
and so V=nat|  (1—cos )" cos 8.d8
o

Fig. 76

w2
_,...-J'o (co8 8—2 cos* f-+cos® ) df

~—in)ze
The surface area. s=z,rJ" (a—x) % ao,
o El
s0d 55 s, s being measured to increase with 0
"2
S=z,m-j (1=cos 6) &8
o

—n{r—2)a%

AX
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Example 7

20

The avea in the first quadrant bounded by the axes and the curve x=a cos? 6,
y=a sin? 0is rotated through four right angles about Ox. Show that the area
of the surface gemerated is §ma’, and find the volume contained within this

surface.
‘The curve is shown in fig. 101 (8), page 494.
smacostd, e
& o tacost@sin, =3 sin 0 cosd.
d tde
By (20.14),

("") ( ) ( )_9“""“"‘7""‘5(W'B+-m'a)

and so, for § between 0 and f,
ds
By (20.16) the surface area required is

ez gy 2
Se2m|  y % df=6mat|  sint 6 cos @ df=ymat.
o dé

By (20.4) the volume required is
Ven| yrds
o

dx
- i
it
.=amx‘L sin? § cos* § df

=3ma § $.3.3 by (10.6), page 220,
=167a¥/105.

Exercises 20 (b)

=38 cos 0 sin 0, s being measured to increase with 0.

LU]

1. A function y=f(x) is defined in the interval a<x<b. Write down
formulae for the length, s, of its graph and for the area, 4, of the

surface obtained by rotating this graph about the z-axis.

In the case where f() =}#*, a=0 and b=sinh c(c>0), prove that
s=(sinh 2+2:)/4 and A =n(sinh 4c—4¢)/32.  [Durham.)

2. Trace roughly the curve 8aty’=sx!(a’—
length of arc is 7a.

and show that its whole

P
Show that the area enclosed by the curve is two-thirds of that of
the circumscribing rectangle whose sides are parallel to the axes of

coordinates

vy
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20.11. Centres of mass
In text-books on mechanics it is shown that if my, my,. .., mp are
the masses of a system of # particles situated at
Py(&n 31, 51), Pal%a, Ya 23)se o, PolEn, I, 20)
the resultant weight of the system acts at a fixed point G (%, , )
where

Mkttt o Myt gy
Mttty Myttt g
P e
Mttty
G is known as the centre of mass or cenire of gravity of the system, and
the coordinates of G may be written in the form
Z=Nys|M, §=NzM, £=Npy/M
where M=m+my+ ... +mg=2m,
Nys=m %, +Mo%y+ . . . +Mgzn =Dz,
Niez=Zmy and Ney=Zmz,
the sign Z denoting summation over all the masses of the system.
Nyz, Nz, Nzy are called the first moments of the system with respect
to the yz—, zz— and xy— planes respectively.
1f the particles all lie in the plane 2=0, the coordinates of G are
Z=Ny/M, 9=NzM (20.17)
where Ny=Zmz is the first moment of the system about the axis Oy,
and Ny=Zmy is the first moment of the system about the axis Ox.
In the case of a continuous body, we replace the above system of
particles by the elements of the body and use limiting sums (ie.
integrals) in place of summations.

20.12. Centroid of a uniform plane lamina, and solid of revolution

The centre of mass G of a plane lamina lies in the plane of the
tamina. If the lamina is uniform, G is called the ceniroid of the arca
enclosed by the lamina, If this area is symmetrical about any straight
line, the centroid lies on that line, e.g. a circle is symmetrical about
any diameter, hence its centroid is the point common to all diameters,
iie. the centre of the circle. The centroid of a uniform rectangular
lamina is the point of intersection of its iagonals.

In the case of the uniform lamina AUVB bounded by the curve
y=4(x), the z-axis and the ordinates x=a, z=b (fig. 77), we divide
the area into equal strips and consider  typical strip PNMQ, P and Q
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being the points (, %) and (x-+ 8, y+8y) respectively. We complete
rectangles PNMR and SNMQ ; then if ¢ is the surface-density of the
lamina, the masses of these rectangles are gy 8z and o(y+3) 8%

Fig. 77

respectively. We suppose that Ny(z), 8Ny(z) are the moments of the
area CONP and the strip PNMQ respectively about the axis Oy.

Then xay 82 <8Ny(x) < (x+8x)o(y+By) Bx.
‘This inequality leads in the usual way to
.zN,(z)

NV _ 1oy, and so to Ny(x) = ]' 2oy dx.
Hence the first moment Ny of the whole lamina about Oyis
W, j‘zqu=vrzyd:,
o being constant, ‘ ¢
The centres of mass of the rectangles PNMR, SNMQ are at dis-

tances 3y and §(y-+8y) respectively from Oz. Hence if 8Ne(z) is the
moment of the strip PNMQ about Oz,

1.0y 85< BNL(2) <Hy+ B)oly+ ).
‘This relation leads to

L,',(')=W" and 5o to Na(x)= pJ" yrdz.
Hence the moment N of the whole lamina about Oz is given by
s
Na= ;,J' sadx,



462 A COURSE IN PURE MATHEMATICS 20
The total mass M of the lamina (o times its area) is given by
M-aj‘ ydz.

Hence if (% ) are the coordinates of the centroid of the lamina, equa-
tions equivalent to (20.17) give

[ e M7
£=N,[M—F,_9-le EF (20.18)
o A£=I:zydx,Ay-}j:y'dx.

where 4 is the area of the lamina.

If the area AUVB is rotated through one complete revolution
about Oz, G’ the centre of mass of the solid formed lies on Ox by
symmetry and if the solid is of uniform volume density, G’ is called
the centroid of the volume generated.

‘The cross-sections of the solid by planes perpendicular to Ox drawn
through P and Q are circles of radii y and y+ 8y respectively. 1f SN (z)
is the moment about Oy of the element of volume bounded by these
planes and if p is the volume density of the solid

2. pmy*8x < BN () < (x+82). pr(y + By)bx.

This leads to ‘Nd_i")=zw
and so to N(z)n-prxy'dx.

It follows that the moment N of the whole solid of revolution about Oy
is given by

N=up| xyldx,
and the total mass M of the solid (; times its volume) is given by
M=mp| yd.
Hence the absciss of G, the centroid of the volume, s
[

S
Yz
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20.13. Theorems of Pappus
I. 1f a plane arc is revolved through an angle 8 radians about a
coplanar axis which does not cross the arc, the area of the surface
generated is equal to the product of the length of the arc and the
length of the circular path described by the centroid of the arc.
In fig. 78, Ox is the axis of rotation and G (%, #) is the centroid of

Fig. 18

the arc PQ of length . The element 8 may be taken as lying at a
distance y from Oz.
Then Zyss=5E8s

N Sq
i yds=gi
Sp
0[’" yds=65l.

But aJ' 3y ds is the area of the surface swept out by PQ in rotating

through an angle 6, see (20.11), page 455 ; and so the theorem s proved.
II. 1 a plane area is revolved through an angle 8 radians about a
coplanar axis which does not divide the area into two parts, the
volume of the solid generated is equal to the product of the area

and the length of the circular path described by its centroid.
In fig. 79, Ox is the axis of rotation, G(Z, ) is the centroid of the area
A bounded by the curve HPKQ, and x=h, x=F are tangents to the




20] CENTROIDS 7
The distance of the centroid G (‘T“ . u) from thetangent y=x s 4a/Ty/2.

Thus the path of G is of length 8ra/Ty/2 and the required volume is

8 ,(8m

8 a(Ea); 3 x

59 (7 \/2) i.e. 64ma¥/105y/2

Exercises 20 (c)
Find the centroids of the areas in Nos. 1-5:
1. The area bounded by the curve y=e%, the coordinate axes and the

line x=1.

2. The area under the curve y=sin # from =0 to =}

3. The area bounded by the parabola 4y=3?, the s-axis and the line ¥=2.

4. The area bounded by the parabolas y'=4z, s'=4y.

5. The area bounded by the hyperbola ¥y =4 and the line x-+y=5.

6. Find the area and the centroid of the portion of a plane bounded by
the parabola y'=az, the line x=b and the axis y=0. The area is

revolved about the axis of y so as to form a solid ring. Find the
volume of the ring. U]

=

Find the area of the loop of the curve whose equation is
ayt=(x—a)(x—Sa)’.
Find also the distance of the centroid of this area from the y-axis.
Each of the areas described in Nos. 8-10 is revolved about Ox. Find
the centroid of the solid of revolution generated.

8. The area bounded by O, the curve y=1/x and the ordinates x=1,
r=d

©

. The area of the ellipse 5%/a?+y*b*=1 which lies in the first quadrant.
10. The area in the first quadrant bounded by the parabola y'=dz, the
-axis and the line x=d.

11. A regular hexagon is inscribed in the circle #*4(y—2)*=1 and is
rotated about the x-axis. Find the volume and the surface area of the
solid so formed. [Durham.]

®

The altitude from a vertex 4 of an equilateral triangle of side s makes
an angle a with a line / through 4 in the plane of the triangle, the
triangle lying on one side of /. Find the volume V and the surface
area S of the body obtained by rotating the triangle about . For
‘what values of a are V and S largest ? [Durham.]
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13. Find the centroid of the semicircular arc (x—7)t-+y =%, y3 0.

1f this arc is rotated about the line mx+-y =0, where m > 0, determine
the generated surface area A and show that 4 is a maximum when
M= [Durham.]
Show that the mean centre of a semicircular area is distant 4a/3u from
the bounding diameter.

A Kite-shaped area consists of an isoscoles triangle OAB (where
04=0B) and a semicircle described on AB as diameter. 1f AB=2a,
and the angle 40B is 2a, prove that the volume generated by one
revolution of the area about O is equal to

%% 08 a+§ma? cosec a. (Sheffield.]

¥

16. The area bounded by y=0, x=0, y—mz(b(x(g) is rotated about

the line x=4r. Prove that the volume swept out in one revolution

is 2m. L.U)

16. Sketch the curve #=a(t—sin #), y==a(l1—cos ) in the range 0<!< 2.
Show that

(i) the gradient at any point is cot §¢;

(ii) the area enclosed by the arc and the -axis is 3ma? ;
(iii) the centroid of the area is at the point (va, §a). [L.U. Anc,)
17. The smaller segment of the ellipse 353-+4y'=1 cut off by one latus
rectum is rotated through four right angles about the other latus
rectum. Find the volume of the annular solid so formed. L.U)
. The radii of the upper and lower faces of the frustum of a right circular
cone are 3 in. and 6 in. respectively and the altitude is 8 in. Find the

position of the centroid.

20.14. Moments of inertia

The product of the mass of a particle and the square of its distance
from a line or from a plane is called the second moment or moment of
inertia (M.L.) of the particle with respect o the line or

If my, My, . .., My are the masses of a system of  particles situated
at distances 7, 7y,..., 7s respectively from a given straight line a,
then the sum

Ty=myr Pt mgrg+ . .+ mprpt=Zmr®
is defined to be the moment of inertia of the system about the axis a.
The sum Zm* is also called thé second moment of the system about
the axis. The total mass of the system is M where
M=mytmyt .. +mg=2m,

and if I,=Mp
then k is called the radius of gyration of the system about the axis a.
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20.15. Moments of inertia about perpendicular axes
Let Oz, Oy, Oz be three mutually perpendicular axes and let
My, My, .., my be the masses of a system of # particles situated at
Py (%1, Y1 21), Py (%2 Yo 21),- -0 P (%n, ¥n, 2a) distant 7, 75, .., 74
respectively from O. ~Then if To,, oy Tor denote the moments of
inertia of the system about Oz, Oy, Oz respectively
= Zm(y*+ 2, Ioy=Em(+23), Io,= Sm(x*+?)
5 Tor+ Toy+To,=2Zm(x* +y'+2%) =2Zmr*. (20.19)
When the system of particles lies, say, in the plane 20y, then
=Zmy*, Ioy=Zma*, Io,=Zm(x*+y*)
5 Io,=Io,+ oy (20.20)
Example 11
Find the M.L. of a thin wniform spherical sholl of mass M and vadius a
about a diameter.
Let O be the centre of the shell and O, Oy, O be three mutually per-
pendicular radii. Then by symmetry
Ios=Io,=Io,
and, in the notation of (20.19), Zmr*=Zma?=Ma?, since every particle of
the shell is distant a from O. Hence the required M.L is §}a*

Example 12

Find the M.1. about a diameter of a thin uniform wire of mass M in the
form of a circle of radius a.

Let O be the centre of the circle, Ox and Oy any two radii at right angles,
and Oz perpendicular to the plane of the wire.

Then Io,=Zma*=Mat, since cvery particle of the ring is distant a
from Oz.

But by symmetry Io,=1Io, and the ring lies in the plane x0y.

Hence by (20.20) To,=2I0:=2I0,

o Tos=iMar,

20.16. The principle of parallel axes

An important relation exists between the moment of incrtia of a
system of particles about any axis and the moment of inertia of the
system about a parallel axis through the centre of mass of the system.

Let G (fig. 83) be the centre of mass of the system and Oz be any
given axis. Draw GZ parallel to Oz and let O be the foot of the perpen-
dicular from G to Oz. Produce OG to y and draw GX and Ox per-
pendicular to plane 20GZ. Then Oz, Oy, Oz form a set of rectangular
axes through O and GX, Gy, GZ are a parallel set through G.
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20.18. A thin uniform rod

To find the M.I. of a uniform rod of mass M and length I about an
axis through one end perpendicular to the rod, we suppose the rod
lics along Ox with one cnd at O and we take Oy as the axis. We
assume that the rod is so thin that it may be regarded as made up of
particles uniformly distributed along Ox and that the line-density of
therodis A Then the mass of an clement whose ends are x and (x-+8%)
from 0 is ASx and the moment of inertia 81(x) of this element about
Oy satisfies the relation

2N <81(x) < (x+82)28x,

d](z)

which leads to =% and so to I(x) =I M,

Hence the total moment of inertia 7 is given by
1__[ Atdx =B,
.

But M=X o I=Mp (20.21)
From the relation Mk*=1I we see that the radius of gyration k is
given by R2=422,

Treating the problem in the same way or using the principle of
parallel axes, we may show that the M.L of the same rod about an
axis which bisects it at right angles, i.c. a parallel axis through G, the
centre of mass, is Yy MP.

20.19. A rectangular lamina
ABCD (fig. 84) is a uniform rectangular lamina of mass M with
AB=I and BC=b. By drawing straight lines parallel to AB
and sufficiently close together we
[} C may divide the lamina into strips so
narrow that each may be regarded as
a thin rod. If m is the mass of any
one of these strips, its M.L about the
side AD is fmi* and, by addition,
it follows for the whole rectangular
lamina that 7, _iap

A Fig. 54 B and, similarly, I,g=3ME2.
By similr consideration, or by using
the principle of parallel axes we may show that the M.L of the
rectangle about an axis bisccting 4B at right angles (i.c. an axis
parallel to 4D through the centroid G) is -z MZ.

By (20.20) it follows that the M.L. of the rectangle about an axis
through any vertex perpendicular to its plane is §M(1-+8%).
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20.20. A right rectangular prism

1f the prism has dimensions /, b and 4, we may divide the solid into
thin rectangular plates of mass  parallel to the faces of area /6, The
M.L of each plate about an edge of the prism perpendicular to the
plate is }m(/*+5?) and by addition we obtain for the whole solid
M@+,

Similarly the M.I. of the prism about an edge perpendicular to the
faces of atea bh is §M(¢*+4) and about an edge perpendicular to
the faces of area Zh the M.L is $M(B-+4%).

20.21. Plane area
Let us consider the uniform lamina AUVB of fig. 77. The M.L
81,(x) about Oy of the typical element PNMQ satisfies the relation

2oy 82) < SI,(#) < (x+ 8)a(y+ &) bz
where o is the surface density of the lamina.

Hence '”v(")

=xlay, L= I Hoyds
and so the total M.I. about Oy is given by
I,= .yJ" Ay, (20.22)
.
By (20.21) the M.I. about O of rectangle PNMR is }{ey8ly? and

the M.I. about Oz of the rectangle SNMQ is §{o(y+8y)ax)(y+8)%
Hence if 85(z) is the M. about O of the clement PNMQ

$oy5% < 81.(3) < do(y+ B)*8x
. dlls) _ r
2oy, L=yt
and so the total M.L. about Oz is given by
Lo yas. (20.29)
The mass M of the lamina is given by M=a| y d and so if &, Ay are
.

the radii of gyration of the lamina about Oz, Oy respectively, we have
from (20.22) and (20.23)

k.'-i] yhds; 4;.,-=J‘ Ayds (20.20)
‘where 4 is the area of the lamina.
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20.22. Gircular lamina

To find the M.I. of a uniform circular disc of surface-density @ and
radius @ about an axis Oz through the centre O perpendicular to the
plane of the disc, we consider the ring clement bounded by circles of
radii 7 and 7+ shaded in fig. 85. The mass of the ring is approxi-
‘mately 2mor & and all points within the ring lie at distances from the
axis Oz of between r and 7+8r. Hence if 8l is the M.I. of the ele-
mentary ring
P(2morsr) <8I, < (r-+ 51} (2mar 7).

Hence  regror, Iy=-r2mrr’dr,
dr o

and so if a is the radius of the lamina and 7 is its
M.I. about 0z

1=2"nj'adr=4naa‘.
o

1f M is the total mass of the lamina, M = roa? and so
I={Ma~ (20.25)
If Ox and Oy are perpendicular radii of the lamina, by symmetry
Tor=I0, and Io,=Io,+1o, by (20.20)

hence the M.L. of the lamina about any diameter is given by
I=1Ma. (20.26)
The M.I. of a solid cylinder of mass M and radius @ about its axis
is found by dividing the cylinder into thin circular laminae by planes
perpendicular to the axis. Then using (20.25) we find by addition
that the M.L is }Ma? 1f the cylinder is hollow, by using the result of
Example 12, we find that the M.L of the cylinder about its axis is Ma?.

20.23. Solid of revolution

Let us consider the solid obtained by rotating through one complete
revolution about Ox the area AUVE of fig. T1. The masses of the
discs generated by rotating the rectangles PNMR and SNMQ about
Oz are pmy? 8z and pr(y+8y)t 83, p being the volume-density of the
solid. By (20.25) 8I5(x), the M.I about 0% of the typical solid
generated by PNMQ satisfies the relation

17*(pmy*8%) < 81(x) <}y + &) *(pr(y + 8y)*82).

Hence %:;ﬂy«, L) =},,uJ' " dx

and so Zs, the M.L of the solid about Oz, is given by
A
1,-},«" ydx. (20.27)
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In the same way, using (20.26), we may show that 87, the M.I. of
the typical solid about a diameter parallel to Oy satisfies the relation

198 pmydx < 81 < §{y-+ By, prly -+ By)1x
and hence, by the principle of parallel axes 37,(z), the M.L of the
same element about Oy satisfies the relation

(8. pry e <BIy(2) <+ 37+ (5 34 pmly+ D)0
and thisleads to 2000 oyt 29, Lyt =p P+
Hence Iy, the M.I. of the solid about Oy, is given by
L i+ dn
20.24. Solid sphere

By (20.27) the M.L. about O of the soli sphere obtained by rotating
through one complete revolution about Ox the circle #3+yt=a? is
given by

I=fpn| (a2—xprax

= p.,j: (a4~ 208+ 29)dx,

=fgpmat
=jMa*
where M =4pna® is the mass ot the sphere.
Example 13
Show that the centroid of the area bounded by the z-axis and the avc of the
curve y=a sin x between the points (0, 0), (m, 0) is the point ('—,' "-E”) Show
also that the vadius of gyration of this arvea about the x-axis is (ay/2)/3.
(LU
‘The area A bounded by the curve y=a sin ¥ between the given points is
4-] a sin # dy=—[a cos 2] =2
o 0
and if (, §) is the centroid of this area, by symmetry #=}= and
Ay-|j 9t dr=ja I sin® x dy =}mat.
o o
S F=ima.
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4. The arca under the curve xy=4 from x=2 to x=4.
5. The arca in the first quadrant bounded by the parabola y'=dz, the
x-axis and the line x =4
For each of the volumes described in Nos. 6-8 find the radii of gyration
(a) about Ox ; and (b) about Oy :

6. The volume generated by revolving about Ox the area under the curve
y=¢% from x=0 to x=1.

7. The volume generated by revolving about Ox the area under the curve
xy=4 from =1 to x=2,

8. The volume generated by revolving about O the area under the curve
y=sin z from x=0 to =m.



CHAPTER 21

APPLICATIONS OF INTEGRATION—POLAR
COORDINATES

21.1. Polar coordinates
Tn Chapter 15 we defined the polar coordinates of a point in a plane
and showed that if the cartesian origin and z-axis are taken respectively
as the pole and initial line of polar coordinates, the two systems of
coordinates are connected by the relations
x=7 cos 6, y=sin § (2L.1)
and r=at4y?, tan O=yfx. (See§165.2.)

21.2. Length of arc of a polar curve
From (211)  dx=—rsin 0 df-+cos 6 dr,
dy=7 cos 0 df+sin 8 dr.
Hence (dx)t-+ (dy)? = r2(db)? + (dr)?
i @5 =r @0+ @r) by (20.1), page 455,

or (ﬁ =ry (d‘a . (21.2)
Hence the length of the arc AB of a polar curve is given by

05 dr\?
= r‘+(7 }dﬂ. 05>,
Im/ { B, 2>

where s is measured to increase with 6.

21.3. Tangents in polar coordinates

The positive tangent at any point P(r, 6) on the curve r=/{6) is drawn
in the direction of s increasing, and N
since s is conventionally measured
50 as to increase with 6, the positive
tangent is drawn in the direction of
9 increasing. The positive normal
at P makes an angle +} with the
positive tangent at P. In fig. 86 TP
and PN are the positive tangent and
normal respectively.

The angle i between the positive
tangent at P and the initial line is
given by

=0+¢ (21.3)
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where ¢ is the angle measured counter-clockwise from the radius
vector OP to the positive tangent TP at P (fig. 86).

Here 4} is not restricted to lie between +4xr as on page 189, but it
is not difficult to see that (20.12), page 455, remains valid.

From (21.3) we may deduce formulae for sin ¢, cos ¢ and tan ¢,

We have cos ¢=cos ($—6)

=cos ¢ cos 8-+sin ¢ sin 6
drx dyy

=22 by (2012 and (2L1).
xdz+ydy
Hence cos 2T
- . xdy—yds
and, similarly, sin ¢ =222,
But #%+yt=r2 so that xdx-+ydy=rdr
- cos =3 (21.4)
Also?=tan 0, 5o that "d";"l"=ml 040
ie. xdy—ydx=r"de. (21.5)
sin ¢=r‘£ (21.6)
a9
From (214) and (216)  tan g=r,. (@17

This result is proved independently in § 21.7, Example 4.

21.4. The perpendicular from the pole to a tangent
1f $ is the length of the perpendicular OY drawn from O to the
tangent at P (fig. 86),

prsing @18
.'.£,=1 cosec? g (1 +cot? ) @19
and so, by (21.7) p, = ',( (@1.10)

Ifweeliminate 6 between (21.10) and 7 =/(6), the equation of the given
curve, we obtain a relation between $ and 7 known as the $, 7 or pm:
thecurve.
6and 4, the p, 7 equation is established by using (21.8). Inoum- cases
we use (21.9), since cot ¢ is immediately obtained in terms of § by
differentiating logarithmically with respect to  the equation 7=/(6).
(21.8) may be written in the form p=7% db/ds using (21.6), and so
with the usual convention as to the sign of s, p is always positive.
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By writing w=1/r we obtain (21.10) in the form

e
=+ (3

21.5. Curve sketching from polar equations

In general, it is useful to tabulate some values of 7 and  when a
curve is given by an equation of the form r=f(6), but much labour
may be saved by applying the following considerations :
1. Symmelry

1f the equation of the curve is unaltered when 4 is replaced by

(—8), the curve is symmetrical about the line #=0. In particular,if r is
a function of cos 0 alone, the curve is symmetrical about the initial line.

If the value of 7 is altered in sign but not in magnitude when 8 is
replaced by (—0) in the equation of the curve, the curve is symmetrical
about the line §=§. For example, the curve r=a tanh 6 is sym-
‘metrical about =4 Again, if the equation of the curve is unaltered
when (- 6) is substituted for §, the curve is symmetrical about = {r.
In particular, if 7 is a function of sin 8 only, the curve is symmetrical
about =4

If only even powers of r occur in its equation, the curve is
symmetrical about the pole.
1. Form of the curve at the pole

In general, if the curve r =/(6) passes through the pole, the directions
of tangents to the curve at the pole are found by solving the equation
f(6)=0, since as 7—0 the curve approaches the pole.

II1. Limitations on the valuc of 7 and 8

These are readily seen in an equation of the form r=f(@). For
example, the curve 7=2+sin 0 lies entirely within the concentric
circles 7=1 and 7=3, while for the curve r*=a? cos 20, ' <a® so that
the curve lies wholly within the circle 7=a ; also when cos 20<0, i.
when }r <0< 3w and when $m <8< there is no real value of .
IV Direction of the tangent

The relation tan ¢='5—f determines the angle between the radius
vector and the tangent to the curve at any point.
V. Asymptotic circles

In some curves, r approaches a limit as 8 tends to infinity ; for
example, the curve r=a tanh 6 tends to the circle 7=a as @ tends to
infinity and is said to have an asymptotic circle r=a.

Linear asymptotes to a polar curve are in general difficult to deal
with, and the problem of finding them is not considered here.
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21.6. Some well-known polar curves
The curves sketched on page 481 are standard polar curves.

1. The limagon and cardioid
By drawing the circle 7=a cos 0 and extending the radius vector
corresponding to each value of 8 by an amount b we construct the
curve (known as the limagon)
r=btacosf . . . . ()
In this formula a and b can be either positive or negative. Fig. 87 ()
shows the limagon when a>b>0; fig. 87 () shows the limacon when
0<a<b. Curves of this type are also obtained from an equation of
the form r=>b+a sin 6.
If in (i) we write b=a, we obtain the equation r=a(l-+cos 6).
This curve, known as the cardioid, is shown in fig.
‘The equation of a cardioid may appear in the forms
r=a(l—cos §) ; r=a(l+sin 0) and r=a(l—sin 6)
and the corresponding graphs are obtained by rotating fig. 88 in its
own planeabout the pole through m, + 3} and — jrradians respectively.

I1. The lemniscate y3=a? cos 26

Since cos 20 may be expressed as a function of cos 8 only, or as a
function of sin 8 only, this curve is symmetrical about the lines §=0,
6=} and we need consider only values of 8 between 0 and 4. As 8
increases from 0 to 3, 7 decreases from a to 0, and the line 8=} is a
tangent to the curve at the pole. Between 0=} and 0=} where
cos 20 (and hence #%) is negative, the curve does not exist. At the
point (a, 0), $=}. The curve is shown in fig. 89. The lemniscate
72=a* sin 20 is obtained by rotating fig. 89 in its own plane through
} radians about 0.
II1. The n-leaved rose

The curves 7=a sin n8, r=a cos né consist of # leaves if n is odd and
2n leaves if 7 is even. The leaves are equal in size and are spaced at
equal intervals round the pole.

Fig. 90 (a) shows the curve =a sin 3; fig. 90 (b) shows the curve
7=a cos 26.

1V. Spirals

These are curves in which, as @ increases without limit, 7 either
steadily increases or steadily decreases so that the curves wind round
and round the pole.

The Archimedean spiral 7=a8 (a>0) is shown in fig. 91 (a).

The logarithmic or equiangular spiral r=¢% (a>0) is shown in
fig. 91 (b).




21) PLANE POLAR CURVES 481

=

D

Fig. 87 (a) Fig. 87 (b))
v
Fig. 88 Fig. 80
Y
"
5 %{x

Fig. 80 (a) Fig. 90 (b)

oy

Fig. 91(a) Fig. 91 (b)

§




482 A COURSE IN PURE MATHEMATICS 21

21.7. Miscellaneous examples
Example 1
Find the total longth of ave of the cardioid r=a(1+cos 8).

r=a(l+cos §), —=—a sin 6,
(ﬂ) =,-+< ) =a*(2-+2 cos 6) =da? cos? 0.
Hence, with the usual convention as to the sign of s,
,-2« cos §6. (0<O<m).
The curve is symmetrical about the initial line and so its total length
of arc is given by-2[" 2 cos §6 dfm bu.
Example 2

Show that, for the cardioid y=a(1+cos 6), =40+ m) and deducs the
p,vqumo/zhamw

r=a(l+cos §) . L 6]
log rlog a-+log (14+cos §)
ldr sin 6
and Y& Theos
ie. cot g=—tan §§ by (21.7)
and we may take  $=}(0+ 7).
By (21.8) p=rsin =17 cos }0
and, from (i), 7=2a cos* §0.
Hence r=2apt.

Note: Since $>0 o must taks $=#(0+m) when 0<O<m, and
$=40—m) whea <0<

Example 3
Find the p, v equation of the spiral r=af where a is constant.
u r=af . . . ]

log r=log a-+log 6,
and by (21.7) cot g=1/=a/r by (i).
11 1/ @
But oot ,4)-'_.(”.;-‘)
”
Le. Lguror
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21.8. Areas in polar coordinates

In fig. 94, HK is an arc of the curve 7=/(9) and we shall suppose

that 7 is a continuous function which increases steadily as  increases
from a at H to fat K.

Py, 6) and Q(r+8r, 6+80) are two
points on the arc HK. With centre O and
radius OP draw an arc of a circle to cut

Q 0QinR; with centre O and radius 0Q draw
anarc of a circle to cut OPin S. Then 34,
the area of the dementary sector OPQ,

/ lies between the areas of the two circular
Z. sectors OPR and 0QS, i.e.
70 H 11780 <34 <}(r+8r)20.

x

By dividing the sector OHK into sectors
Fig. 04 like OPQ and summing over them all we
have

. -
'S 91 80 <area of sector OHK <% §(r+ )78,
Z 2
Hence (see note in § 20.1)
area of sector OHK =Jim 'Z"w ="y an. (21.11)
a similar argument we may establish this formula for an arc
alongwhlch 7 decreases steadily as 0 increases, and so (21.11) is valid

for any arc whieh 18 divisible into a fnite numaber of ses for sach of
which 7 increases or decreases steadily as 8 increases.

21.9, Areas of closed curves in polar coordinates and in para-

metric form
From (21.5) Pdf=zxdy—ydz.
Thus, if a curve is given parametrically by the equations

=xl)y=y) . . . . @
and if ) and , are the values of the parameter at H and K (fig. 94)

asea of sector HOK = [* 429

=I ——y w)"“ (@112)
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Formulae (21.11) and (21.12) may be used to find the area within a

closed curve. There are three cases :

Case I

If the pole O lies within a closed polar curve as in fig. 95, the area
enclosed is, by (21.11),

2
I $r2 do.
o
o=t

fea

3

Fig. 95 Fig. 96
Case 11

1f the pole O lics on the curve as in fig. 96, and if a and B are the
angles made with the initial line by the tangents to the curve at the
pole, the area enclosed is

B
I 1 do.
Case III -

If the pole O lies outside the curve as in fig. 97, let the tangents
04 and OB make angles a and § respectively with the initial line and

0=B

Q

B
£
o
Fig. 97

let the radius vector OPQ be inclined at an angle 8 to the initial line.
Then if 0Q =7, and OP=7, the area enclosed by the curve is by (21.11)

j:}r: a9 j :}r: do= J' :p; do+£p; a.
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In Cases I and II, if the curve is given parametrically by equations
(.), formula (21.12) may be used to find the area enclosed by the curve
as? takes values from ¢, to £y, #, #14,, the curve is described completely

O Case III we suppose that as the arc AQB is described ¢ varies
from ¢, to 7 and as arc BPA is described ¢ varies from 7 to ,, Then the
enclosed area is

i @0 (R dB (e dy
j;w(:) 4 d;+£‘p ) ﬂm_Ep 0% 'ﬂ_Li(‘E v )dt.
In this case also the limits , 4, may be chosen in any way provided
they ensure that the curve is completely described once as ¢ takes

values from f, to 5.
Tn all cases, if, as ¢ varies from £ to f, the curve is described in a
counter-clockwise sense, (21.12) gives a positive value for the area.

21.10. Surface area in polar coordinates

By (20.11) the formula $=2n[yds taken between suitable limits
gives the surface arca of the solid generated when the arc AB of
the curve y=/(x) revolves about Oz. By substituting y=rsin0,
ds= J {ﬂ+(:—;)‘}da we obtain a formula applicable to the solid
generated when the arc 4B of the curve r=/(6) revolves about the

initial line :
o ar\?
rsin EJ{r’+ (ﬁ) }.19. (@21.13)

21.11. Centroid of a plane area

To find the centroid of the uniform lamina OHK shown in fig, 94 we
consider the elementary sector OPQ which is to the first order of small
quantities a triangle of area §% 8 whose centroid (two-thirds along
its median) h: (4 cos , §7 sin 6)
If (% 5) sthecentm(dofhmmOHKwhosenmuA

o= .
Az=lim E (47 86) (37 cos 0) = [** cos 00
A /

. 0B o LY
49=lim Zar o sin a)..;_[ 'sS sin 8 d6.

where by (21.11) A=} J"v- do.
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Example 6
Find the centroid of the area bownded by the cardioid r=a(1—cos 6) and
the lines §=0 and f=4m.
1 4 is the area enclosed by the curve and the given lines
wl2
4 =4L ”n aa=§_|'n “a*(1—cos 0)? dO=}a*(37—8).
If the centroid is (%, 5) ]
.
Az=wj' (1—cos 6)* cos 8 df
o

=5a%(16—6m) by (10.4), page 228.
. #=(16—6m)a/(67—16).

iz i
Ayzwj'o (1—cos 6)? sin 6 df

=4a/(3n—8).
Example 7
Shetch the curve y=a sin* 6, showing that it consists of two loops. Find the
area enclosed by one loop of the curve. Show that the volume of the solid
formed by votating the upper loop through 2m about the tangent at ths point

rema, 6= is
32
.
2me u ws)
Find also the length of one loop of the curve. L]

The curve is symmetrical about the lines §=0 and §=}r and so we
need consider only values of § between 0 and 3.
The line 6=0 is a tangent at the origin, and as 0 varies from 0 to §m,
from 0 to its maximum value 4. The
form of the curve is shown in fig. 98.

The area of the upper loop
=4[ a8
i’

/2
- J’ atsintfdf by symmetry,
o
=3ma¥/16 Dby (10.4).
To find the volume of the solid formed by rotating
the upper loop through 2 radians about the tangent
at r=a, f=}n, we consider the volume generated
by rotating the elementary area bounded by the
radii vectores joining O, the pole, to the points (r, 8), Fig. 98
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(r+87, 0436) on the curve. The centroid of this elementary area may
be taken to lie at a distance (a—{r sin 6) from the axis of rotation and its
area may be taken as §r* 80.

By Pappus’ second theorem, the volume generated by rotating this
elementary area through 2 radians about the tangent at (a, =) is

2m{a—3r sin 6)(1+756)

and the volume obtained by rotating one loop of the curve is the limit
of the sum of all such volumes

ie. Ve lim 5 mra—3r sin 0)50=m J' “y{a—3r sin )d0
Priiegr o

-

= m} by (10.4) and (10.5).

"2
The length s of the upper 1mp=zj' J { "y (:‘T;)'}dd by symmetry

o

and sinco s (:—;)l-n' sin®9(1+3 cos*6)
-

;-zxf sin G4/(1+3 cos? §) df.

o

By the substitution 4/3 cos §=sinh ¢, we have
v
:-"‘T‘/’ coshi dp
o

a- bt
-%‘E‘ " (1-cosh 24) dg

_"—‘\/_3[¢+-inh cosh ¢]':"_""

=2 (iat~t vy +2v3)

—}Q {log (v/3+2)+2v/3).

Example 8
A is the vertex and LL’ is the latus yectum of the parabola r=a sect }6.
Find the surface area of the solid gencrated when the arc AL is rotated through
Jour vight angles about ths axis of the parabola.
‘The axis of the parabola is the initial line. The vertex is at r=a and
by (21.13) the required surface area S is given by

sonf o))

where r=a sect §f.
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4. Show that

r_d) v
olHecos 8 y/(I—¢)
If each focal radius vector of an ellipse is produced a constant
length ¢, show that the area between the curve so formed and the
ellipse is m¢(2b+c), b being the semi-minor axis of the ellipse. [L.U.]

(0<e<1).

5. Prove that the area bounded by the
(et st 0o 5 cont B) (oA —ENA con0, (a6 O) s mba—b). L]

6. O is the pole and OX the initial line of polar coordinates. The straight
line 7 cos §=2 intersects OX at A and the curve r=342 cos§ at B
and C. Prove that the area of the triangle OAB is 24/3.

Find also the area of the smaller of the two portions into which the
line BC divides the area enclosed by the curver=3+2cos 8.  [L.U]

7. Starting from the point whose polar coordinates are (, 0), a point P
moves in a plane in such a way that the direction of its motion always
makkes the same angle }m with the radius vector OP. Prove that the
equation of the locus of P is r=ae®.

Prove that the difference of the areas described by the radius
vector OP as § increases (i) from 2(n—1)r to 2nm, (i) from 2nw to
2{n+ 1) is a7 sinh? 2. Shade on a sketch the area so calculated
when #=2. L.U]

8. Prove that the parabola y*=x divides the circle x1-+y*=2 into two
portions whaose areas are in the ratio 97 —2 : 37-+2. LUl

If the area bounded by the curve r=f(f) and the radii vectores
8, and 6=, be rotated through four right angles about the initial
line, prove that the volume of the resulting solid of revolution is given

by

I '["r- sin 0.d6.
LY
(Use the method of Example 7, page 489).

5

. Sketch the curve whose polar equation is y=cos*. Find the area
of a loop, and the volume of the solid formed by rotating it about the
eaxis, {Durham.]

11. Show that the curve y=12sin § consists of an outer and an inner
loop. Show that the area enclosed by the inner loop is #(2m—3v/3).
Find the volume of the solid formed by the rotation of this area
through two right angles about the line §=}m. U]

12. Trace roughly the curve  cos® §=a cos 26 and show that the volume
generated by revolving the loop about the line §=j is 84w a¥/105.
Lo
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25. A plane curve is given by equations x=/(1), y=g(t). Show that the
volume generated when the sectorial area OPQ is rotated through
27 about the #-axis, O being the origin and P, Q being the points of
the curve where ¢ has the values f, #, respectively, is

(2 g

Prove that the volume generated when the area enclosed by the
curve x=a(1—#), y=24(1-+f) and the y-axis is rotated through 2z
about the s-axis is five times the volume generated when the same
area is rotated about the y-axis. wLu)

26. By expressing the coordinates of a point on the curve (v+y)'=azy
parametrically in the form s=at(1—)3, y=as*(1—f), find the area of
the loop of the curve and the volume of the solid formed by rotating
this area through four right angles about the axis of #. U]

27. Sketch roughly the shape of the curve s¥3-4-yVs=g¥s, any point of
which can be put in the form (a cos* §, a sin®#).

Prove that the curve lies entirely within the annulus formed by
the two circles whose centres are at the origin and whose radii are a
and a.

Show also that, if any tangent to the curve cuts the coordinate

axesin the points 4 and B, then, O being the origin, 043+ OBY =a¥/s.

r.u)
28. Find the area enclosed by the curve
x=3a cos §—a cos 30, y=3a sin §—a sin 30. L.u]
. A circle of radius a rolls, without slipping, inside a circle of radius 4a.
Show that, by a suitable choice of axes, the equation of the curve
described by a point on the circumference of the rolling circle may be
written x=4a cos? §, y=4a sin® § and find its cartesian equation. If
this curve be revolved about the z-axis, show that the surface area of
the solid formed is 192ma%/6. L]
30. If a circle of radius a rolls outside a circle of radius 34, show that the
locus traced out by a fixed point on the rolling circle is given by
*=4 cos §—a cos 40, y=4a sin 0—a sin 40,
the origin being the centre of the fixed circle.
1f 7 be the distance of a point on the locus from the centre of the
fixed circle, and p the perpendicular from this ceatre to the tangent at
the point, prove that r=0a%+16pY/25. LU
31. A circle of radius a rolls externally on a fixed circle of radius 2a. Show
that, referred to axes through the centre of the fixed circle, the equa-
tions of the curve described by a point on the circumference of the
rolling circle can be written in the form
*=3a cos §—a cos 36, y=>3a sin §—a sin 30.
Prove also that in this curve, p=4a sin }, where p is the perpendicular
from the origin to the tangent, and ) is the angle the tangent makes
with the axis OX of the above coordinates. L)

5
8




CHAPTER 22
CURVATURE

22.1. Curvature

Let P and @ (i, 103 be poins on thear f the cuve 3=/t

distances 5 and s-+ 8 measured along the curve from a fixed

Lot the tangents at P and @ malte angles 4 and g1 54 ressetively

with Ox where —jn<$i<jr. Then

8) measures the change of direction

along the curve between P and Q.
W‘ 4 1 defined as the average curvature

o the e PQ, and the curvature at P

(denoted by ) is defined as the limit of

g as Q tends to P along the curve,

i.e. as 8s—0. Hence

3. (22.1)

If ¢ and s increase together, « is positive, otherwise x is negative.

22.2. Curvature of a circle
In the case of a circle of radius p (fig. 103), the angle 8¢ between
the tangents at the extremities of an arc of length s is equal to the
angle subtended by the arc at the centre

y of the circle. Hence
8s=pb,
&
s p=constant
&
and so :_""= 1p.
3 WL It follows that the curvature of a circle

is constant and equal to the reciprocal of
Fig. 103 its radius.
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22.7. Formula for p when the p, r equation of a curve is given

If a curve is given by the equation 7=/(3), we again use the relation
=0+ ¢ to obtain

But since, by §21.3,sin $=r 2 and cos 4=
=l sin gcos 24
=12 sy
-5' :_f by (21.8), page 478.

Hence p=r®, (22.6)

It is often convenient to find the $, 7 equation of a polar curve and
to use (22.6) to find the radius of curvature.

Example 1
Find p at any point of the cycloid x=a(t—sin f), y=a(1—cos #).
#=a(l—cosf)=2asin'}t, y=asins,
F=asint, J=acost,
=51 = 21 —cos f) =da? sin® I,
and #§— 9 =a¥(cos t—1)=—2a? sin® 1.
When 0<t<2m, we must take §=2a sin }¢ since s is conventionally
assumed to increase with £,
sin® ¢

Then, by (223),  pm—re L

When 2 <t <4, we must take $=—2a sin }/, and in this case
p=-4asin .

Continuing in this way we see that for each arch of the cycloid p has a
negative value.
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Example 2
P is the point (v, 6) on a curve given in polar coordinates, and p is the
length of the perpendicular from O, the pole, 1o the tangent at P. Prove that
du\
e (—;) .+ where u=1/r.

Find the p, v equation of the conic a-v(1+z cos 6) and prove that p, the
radius of curvaturs a P, is given by pp®=ar, L.U)

The result $=u‘+ (.T'.;) is proved in § 21.4, and applying it to the
conic
a=r(l42c0s8) . . . . . @)

which may be written u% (1+2cos )
we have —-—‘((I+Zm9)’+4 sint 6}

1
=a(6+4cos o).
Substituting for cos § from (i) we obtain the p, 7 equation of the conic
1 2,3
#a (,+;
Differentiating this equation with respect to p, we have
1_1adr
Pardp

ie. e
Hence by (22.6) ppr=art,

22.8. The circle of curvature

The line which makes an angle +§= with the positive tangent to a
curve at P is called the positive normal at P, and if from P a length
PC equal to the value of p at P is measured along this normal,
Cis called the centre of curvature at P, and the circle with centre C and
radius p is called the circle of curvature at P.

The definition of the centre of curvature at P implies that C always
lies at a distance equal to | p | from P along the normal drawn on the
concave side of the given curve at P.
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lf C (¢ n) is the oenhe of curvature at P(x, ) on a curve y= (x),
see from fig. 104 th
f-‘—rm $u n=y+p cos . (22.7)

In fig. 104, ¢ is a positive acute angle and p is positive, but the

Fig. 104

above formulae are true in all cases if p is given its proper sign and if
—jm<g<in When  is measured in this range

@] T

the positive square root being taken in all cases. Substituting for p

from (22.2) we get . Loy
@) @ L
e » 7 T .

dx?

22.9. The evolute

‘The locus of the centres of curvature of a curve is called the evolute
of the curve. The equation of the evolute may be found by eliminating
z and y between equations (22.8) and the equation of the given curve.
‘Another definition of the evolute of a curve is given in Example 27,
page 427.

22.10. Contact of two curves

Suppose that the two curves y=/(x), y=g(s) intersect at a point P
where z=a. Then, if we write F(x)=/(x)—g(), @ is a root of the
equation

and so, F(a)=0,

F®=0 . . . . @
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1f F(a)=0, F'(a)=0 and F*(a)#0, a is a double root of (i) (see
§2.7) and so the given curves intersect in two coincident points at P,
i.e. they touch at P,

1f F(a) =0, F'(a)=0, F"(a) =0 and F"(a)#0, a is a triple root of (i)
and the given curves intersect in three coincident points at P. They
are said to have three-point contact at P.

The conditions for three-point contact at P are f(e)=g(a),
f'(a)=¢'(a), /*(a) =g"(a) and f(a)#g"(a), i.e. the two curves have

the same values of , g and 52 ’”" J at P. Tt follows from (22.2) that they

have the same curvature at P.

Conversely, if two curves which intersect at P have the same slope
and the same curvature at P they have three-point contact there,
and, in particular, a curve has three-point contact with its circle
of curvature,

22.11. Miscellaneous examples
Example 3

A plane curve touches the x-axis at O, the origin. The langent at P, a
point of the curve, meets Ox at T making an angle  with Ox. If the ordinate
of Pis sin ), show that the length of the arc OP is equal to $PT.

Show also that, if the perpendicular to the s-axis at T meets the noymal at P
in G, the radius of curvature at P is equal to 4PG. LU

Let s be the length of arc of the curve measured from O where =0
up to the point P(x, y) on the curve (fig. 105).

Then

y=:in‘ M P
4 _ g sint  cos ; and since 2 msin
dw s
;-;ssgdﬁumw.m‘/. )
Integrating, we obtain  s=4 sin® g+ C.
But when $=0, s=0 ", C=0. Fig. 105
Hence arc OP=y sin® = 4¢PT,
since, by (i), PT=ycosec y=sin®y . . . (i)

It p is the radius of curvature at P,
p=4 sin? y cos ¢ by (i)
and PG=PT cot =sin? y cos i by (iii)
. p=4PG,
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A point moves so that the product of its distances from two fixed
points, A and B, is constant and equal to 3¢, where c=}4B. By
taking the mid-point of AB as pole, show that the polu equation
of the locus of the point can be expressed in the form
#4—20%1 cos 26— 8c4=0.
Find the (p, r) equation of the curve, and hence show that its curva-
ture at any point is (3r*—8c4)/6c%?. LUl

. Find the radius of curvature at any point of the curve r#=an cos nf,

and show that the length of the intercept made by the circle of curva-
ture on the radius vector is proportional to the length of the radius
vector. L.u]

). Draw a rough sketch of the curve r*=a? sin 30, showing that it consists

of three loops. 1f P is the point (7, 6) on the curve, show that the
tangent at P makes an angle 40 with the initial line, and that p=a%/dr®,
1f the circle of curvature for the point P intersects OP at Q, where O
is the pole, find the ratio of OQ to OP. L.U]

. Show that the locus of ¥, the foot of the perpendicular from the pole

on to the tangent at P to the curve r=a(l4cosf) is the curve
R=2a cos* }i where OY=R, and 4 is the angle between the initial
line and O

Show that the radius of curvature A of the locus of Y at Y is JOP,
and that OY.p is proportional to OPWS, LU

. P is the point (s, ) on the curve whose equation is r=ae? < and I

is the centre of curvature at the point P. Find the length of PI and
show that it subtends a right angle at the origin, O.

Find also the locus of 1 and tho radius of curvatare of this locus ia
terms of OI. L.U]

. A parabola with focus at the origin and latus rectum 4a has equation

7=a sect }0 in polar coordinates. Prove that the angle ¢ between the

tangent to the parabola at any point P and the radius vector at P

is cqual to }(—6), and obtain the relation between 7 and p for this
bola.

Prove that the radii of curvature at the vertex and at one end of
the latus rectum are in the ratio 1:24/2.

. A circle of radius a rolls externally on a fixed circle of radius 2a.

Show that, referred to axes through the centre of the fixed circle,

the parametric equations to the curve described by a point P on the

circumference of the rolling circle may be expressed in the form
x=3a cos f—a cos 36, y=3a sin §—a sin 3.

Show that the radius of curvature at the point 0 is 3a sin 6.

A is the point of contact of the two circles and K is the other point
of intersection of PA with a circle of radius a/2 touching the fixed
circle internally at A. Show that PA is the normal at P to the locus
of P and deduce that K i the ceatre of curvature at P of the locus

Luy
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34. The rectangular coordinates of a point on a curve are given by
#=a sin 1—b sin (at/b), y=a cos !—b cos (at/b).

Find the maximum distance of a point on the curve from the origin,

and show that the curvature at such a point of maximum distance is

(a+b)/4ab. [L.U]
35. The parametric equations of a curve are

x=a(cos 6+ sin 6), y=a(sin §—0 cos 6),
where @ is the parameter and a is a constant.
Find the radius of curvature, p, in terms of 6, and the coordinates
of the centre of curvature. Show that the centre of curvature lies on
a circle of radius a. LU




CHAPTER 23
DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

23.1. Definitions

Any relation between the variables %, y and the derivatives dy/dz,
dy|ds?,. .. is called an ordinary differential equation. The term ordinary
distinguishes it from a partial differential equation which involves
partial derivatives.

‘The order of a differential equation is that of the highest derivative
occurring n it ; the degree of a differential equation is that to which the
derivative of the highest order is raised when the equation s expressed
in a rational integral form.

Throughout this chapter we shall frequently write 3 and y* for
dy|dz and dty|ds* respectively.

23.2. Formation and solution of differential equations

The equation Agpyt=ct . . . 6]
where ¢ is an arbitrary constant or pa.rameter. represents a family of
concentric circles with centres at the origin ; ¢ is constant for each
circle but varies from circle to circle. Differentiating (i) with respect
to x, we have

y=—xly R )
Thxs is the dlﬂerermal eqnzhon of the family of circles given by (i
n to all the members of the family,
viz. that the tangem ot the poin pomt P(x ) on any one of them is perpen-
dicular to the radius which passes through P. The differential equation
is of the first order.
If we start with a relation such as
y=aztdlx . . . (iii)
which contains two arbitrary constants a and b, it is necessary to
differentiate twice before we can eliminate the constants.
We have y=a—b . . . . ()
¥ =2bj5 . LW
and eliminating a and b betwaen (i), (iv) and (v) we < obtain the second
order differential equation
By +xy
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The process of finding a relation from which a given differential
equation is derived is known as solving (or integrating) the differential
equation. The above examples suggest that the differential equation
obtained from a relation involving » arbitrary constants will be of the
nth order. Conversely, it may be expected that if we can solve a
difierential equation of the nth order, the most general solution (or
integral) will contain # arbitrary constants. Such a solution is termed
the general solution or the complete primitive. There may, however,
be other solutions in addition to the complete primitive (cf. § 23.12).

If particular values are assigned to the # arbitrary constants, a
particular solution, called a particular integral, is obtained. For
example, (i) is the general solution of the differential equation (ii) ; the
circle x*+y%=4 is a particular integral of the differential equation.

Below are given methods of solution for some of the simpler,
commonly occurring types of ordinary differential equation.

23.3. Equations of the first order and first degree

This chapter is mainly devoted to the methods of solution of
differential equations of the first order and first degree, i.¢. to equations
which may be written in the alternative forms

M(z, 3)+N(z, y)y'=0,
M(x, y)dx+N(x, y)dy=0,

where M and N do not involve derivatives of y. The general solution
contains one arbitrary constant which we shall denote by C.

23.4. Variables separable
If a differential equation of the first order and first degree can be
written in the form
Xdx+Y dy=0,
where X is a function of x alone, and Y is a function of y alone, the

variables are said to be separable and the solution is obtained by direct
integration :

J‘ Xdx+ J’ Ydy=C.
Example 1
Solue the diffevential equation (1—x")(dy/dx) +1+4y2=0. [Durham.]
This equation may be written in the form

dy 4 dx 0.
Ty =
‘whence, on integration, tan~! y+sin=! ¥=C. This is the general solution
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Example 4
Solus ths equations

@ Ve

s 254y—2°

dy_2w43y+2

dr 4x+6y—3°
() Let Ya=dr—32y+4 and X=2r+y—2; then the given equation
becomes
4y _4x—2y
dXT2X+Y
and the substitution ¥ =vX gives

dv v
Y X
dv  4—dv—v?
XX T
_(2+y)
v dv—4

. dx
ie vy =0.
Integrating, we have
4 10g (v*+4v—4) +log X =log C,
Xy/{r 4 dv—1)

or YiH4XY—4X1 =
Restoring the original variables we obtain

25—y 24 8(2x -y —2)(25 —y +2) — 4(25+y—2)P=C?

and simplifying,
451~ dxy—y* Br+dy=C’, where C'=§Ci4.
@ dy_2r3y+2
ax " drrey—3

Here, since the coefficients of #, y in the numerator and denominator are
in the same ratio, we let z=2s+3y; then the given equation becomes

l(i* ,) 42
3\ax ) T3

which leads to

ie, (2—3/s)de=T7dx.
Integrating, we have

2:—3 log s=75+C,

ie. 1og (25+3y) =2y—5+C’. (C'=—C/3).
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Exercises 23 (b)

Solve the differential equations :

L #{y—3x)y =2y'—9ay+85% (Liverpool.)
2. (3 +yY)y =22y, [L.U]
3. ayty =5ty [Durham.)
4. xly+4x)y +y(-+45) =0. (Sheffield.]
5. (25-+y) y =By —dx. [Durham.]
6. (x+2y—3)y'=2¢—y+1. r.u]
7. (ry—2) ¥ Exty+2. [Durham.)
8. (2r—3)ty'+(x—2)*=0. (Sheffield.]
9. (3x+y+3) y'+2(x+3)=0. [Sheffield.)
10, (2x—4y—8) y' =35 —6y—9. (Sheffield ]
11 y' =[5+ sin (9/2). [Durham.]
12, 421y =4xy—51+y%, given that when x=1, y=2. [Liverpool.]

23.7. Exact equations

The equation

which is solved in § 23.6, Example 4 (i), by the standard method may
be written in the form

(4x—2y+4)dx - (22-+y—2dy=0,
(dx-+4)dx—2(y dx-+x dy) — (y—2)dy =0,

ie d%{ (20 +4%) —21:»—(&y‘—2y)}=°«

Integrating, we have, 2x3+4x—2zy— 3y +2y=C.

The equation &= X+ 1nag be solved in this way if b
dx a'x+by+c

The equation is then said to be exact.
An exact equation is of the form

of oo
&L g ¥ ay—o.
2 g 00

This can be written f(x, ) =0 and so the solution is f(, ) =constant.
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If the equation

Mdz+Ndy=0 . )
is exact, there is a function f(z, y) such that
af of
M= anan-2
£
L M_ oy

% m—y-; by (19.1), page 405.

Hence, if (i) is exact,
oM "
o P )

‘The converse result is true, but is harder to prove ; (i is the condition
for (i) to be exact.

‘The method of solving exact equations is illustrated in the following
example :

Example 5

Solve the equation (3x%+y-+1)dx+(3y*+ x4 1)dy=0.
In the above notation M=3x*+y+1, N=3y*+x+1, and since
oM

By T

the given equation is exact.
Now if f(x, y) =C is its solution,
Maf=dsdy+l . . . . @)

and Ne=fy=3%'+x4+1 . . .o
Integrating (i) with respect to 5, we bave, or cach value o y,
f=#"+xy+x-+constant.
But the value of this constant may depend on the value of y and so
fmsbayrebd) - . . . ()

where $(y) is a function to be determined.
Differentiating (iii) partially with respect to , we obtain

fy=x+4'0).
But from (ii) =3 +atL
Hence #0)=3"+1
and so $0)=r"+y,

the addition of an arbitrary constant being immaterial.
Substituting this value in (iii), we have
S )= tay+atyty:
and so the solution of the given equation is
4y +ay+rty=C.
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Example 7
Show that the equation ds-+{1+(x+3) tan y}dy=0 has an integrating
Jactor of the form (x-+y)", where n is a constan. Solue the equation,

I (x-+)" is an integrating factor, the equation
(430" dx+{1+(x+3) tan y)(x+3)" dy=0

is exact.
e 2 (et =g i+t tn Aetor)
ie. PEEIP L =nlx 414 (2+) tan y} (x4 y)0 tan y
= (49" it (- 1)(x-+5) tan 3),
ne=nt(n1)(s+9) tany
Som=—l

Hence 1/(x-+5) is an integrating factor of the given equation and the
ation

ax 1
5t mﬂmy)dy_o
is exact.
Comparison with f; dx-+f, dy=0 gives
L=lEty) . L L
and S=Ustp+tany . L G

From (i) and (i), /(x, 3)=1og (s-+y)+1og (sec ) and the solution of the
given equation may be written in the form x-+y=C cos y,

23.9. The linear equation of the first order
The equation

Bimeo . . . .

where P and @ are functions of x alone, involves y and dy/dx to the
first degree only and is known as the first-order incar equation,

To find a method of solution, we consider first the particular case
when Q=0. The equation is then

Y py -
RYBY=0 . . L )
which may be written
(1fy)dy+Pdx=0
and integrated to give
log y+ J’ Pdz=log C

o yelPie=C,
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If we verify this solution by differentiating with respect to x we get

gush«)ﬂ. . . PN (i)
Now (:IM)__(.-) --,whereu [Pax

=evP

=PelPis,

o & yetrisy o ptras (Y "

o e =e (E;+Py) F ]
Hence the left-hand side of (iii) is that of (ii) multiplied by ¢/P, 1t
follows that e/P4* is an integrating factor of (ii) and also of (i).

To solve (i) we multiply each side by ¢/P% and obtain

dy
tpax (@Y —=QelPds
e ( h+Py) Qe

ie. £ errsn =gure, vy )
2yl [QelPing . C. (23.1)
The student should verify that it is unnecessary toinclude an arbitrary

constant in J‘ Pdx when determining the integrating factor.

The following esuts ace ueful for expressing the integrating foctor
in its simplest form :

8y BT (OB gn s - iogr =] fonloE=1/x"

Example 8
Solve the equation dy/ds-+y cot x=2 cos .
Here Pucot z, Ide-log sinx
o e/ sin x,

Hence, from (23.1), y sin ,=J'=.iz 2 drtC

ie. sin #=C—} cos 2x.
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Example 9
‘Solue the equation y-+x(x+1)(dy/ds) =x(s-+ 1)te~=" L.U)
This equation may be written in the form
Sy = e
Here P=l/x—1/(s+1),
[Paxtog s—log (s-+1) =tog s(s-+1)

and 50 the integrating factor is #/(x+1).

Hence yal+1)=[xc+ de4+C from (23.1)
=C—jes'
ie ay=(r+1)(C—je=).

Exercises 23 (d)

Solve the differential equations given in Nos. 1-16 :

1. ' sin x—2y cos ¥me® sin® z. L.yl
2. ¥’ cos x—4y sin x=6 cos" ¥ sin x. [Liverpool.]
3. 'y +ay=log x. [Durham.]
4. ' tan x+2y=s cosec x. [Sheffield)
5. x(141) y—y=3x4, [Sheffield.]
8. (1—5% ' +ay=(1—2")¥s goon s 5in , [Durham.]
7. ¥'+xy—3*=0, where y=0 when x=0, [Sheffield.]
8. (¥=2)(x—3) y'+2y=(r~1)(—2). [Liverpool]
9 1= y'+ (@54 Dy =(L+2)2

Find the solution to the equation which remains finite as » tends
to zero, [L.U. Anc.)

10. (+—1) y'~2y=(s—1)* cos? 5. [Dmxnm.]

1. 2y 4 2(3 4 2x)y=e s 4 o3, [Durham.]

12 % y'+(1+x)y=# sin #, [Sheffield.]

13, (1+#) y —sy=(1+47)3%, ru)

14, (1435) y'+ (3—0x)y=3. Lu)
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16. xy’—y=1* cos %, with y=0 when z=m. L)
16. (i) Reduce the differential equation (s+1)yy'—3'=# to a linear
form by writing £=%, and solve it, given that when =0, y=1.
(ii) Solve the equation (2x-+y) y'=x+2y, by writing y=vs, given
that when y=1, y=0. [L.U. Anc]]
23.10. Bernoulli’s equation
The equation
dy
ntPy=or
in which P and Q are functions of x alone and # is constant is known
as Bernoulli's equation and is reducible to linear form.
Suppose first that #»1 and divide throughout by y» so that the
given equation becomes
ds
o d{ +Py-s=Q.
The form of this equation suggests the substitution
yr=v, (1—n)yn dyldx=dvjdx,
which reduces the given equation after multiplication by (1—7) to
the linear equation
dv
T +=n)Pr=(1=n)0.
‘This equation may be solved by the method of § 23.9.
If n=1, the given equation may be solved by separating the
variables.
Example 10
Solve the equation x dyjdz-+y=y's* log x. [1RA]
When this equation is divided throughout by # it is seen to be Bemoulli's

equation with w=1. Procesding ss above, we then divids thronghoat the
equation by y* and put v=y~! so that dv/dx = —y*dy/dx.
v v
The LA J
en Zp=—wlogx @

The integrating factor is ~/5/Z=¢1082=1/x ; hence from (i),
; (v/x)=—log x,
vf=C—(x log x—7),
ie. 1sy=C+s(1=log 2).
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Exercises 23 (¢)
Soive the following differential equations :

1. '+ cot x=y1 sin® 5. ru)
2. y/=y tan x+y? tan® 5. Lu]
3y =sly+y. U]
4 Zy'lmx—yoosx-y'linxeosz
Also find the particular solution for which y=—1 when ¥={a.
[Sheffield.]
5.y +y=x wu]
6. y/=2y tan x+y* tan® 5. Lu)
7. 2y —y(@r+ D/ 2+ 1) =2y¥/(1—3). [®.U)
8. (1) +ry=etyty/(x—1). (Durham.)

23.11. Change of variable

Differential equations of the first order and first degree which are
not of the foregoing types may sometimes be solved by a suitable
change of variable.

Thus, for example, in an equation of the form

dyldx=flax+by+c)
the substitution «=ax+by+c is indicated.
An equation of the form
{5 0) +F(dyldz=(5)
becomes a linear equation if written in the form
$(5)(dx/dy) — 2/ (y) = F(5),
where x is the dependent and y the independent variable.

A few substitutions which are frequently useful are listed below,
but in most cases an appropriate substitution is suggested by the
functions which occur in the equations under consideration, Thus,
for example, the Bernoulli equation solved in § 23.10 may also be
solved by the substitution u=xy. This substitution is suggested by
the presence of the function x%* and by the expression y+x(dy/dz)
which is equivalent to i (23).

The substitution w=23+y* is suggested by xdz+ydy and the
substitution u=y/x by zdy—ydz.

1f both (vdx+ydy) and (xdy—y dz) occur, simplification may be
obtained y a change to polar coordinates, for we have

#A4yt=st and ylr=tan 6
so that xdx+ydy=rdr and zdy—ydx=r3df.
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Example 11
Solve the equation dy/dx=(x+%)/(x—y).
This equation is homogeneous and may be solved by the method of
§23.5. Alternatively it may be written in the form
xdr+ydy=xdy—yds,
‘which, expressed in terms of polar coordinates, reduces to dr/r=df.
‘The general solution, r=C?, is the equation of a family of equiangular
spirals.
Example 12
If dyjdx=(x+y) and yni when x=3}, calculate to thres significant
figures the value of y when x Lu]
‘The substitution x+4y=u, dy/dx=du/dx—1 leads to the equation

du
puagen}
=L
‘The general solution is
tan~! w=x+4C,
ie. tan? (x+y) =x+C.
But when =}, y=} and so C=}n—}.
Hence tam! (x+y)=x+ir—}
ie y=tan (fr+r—§)—x
When #=0.1, tan ($r+-0-2)—
=0.808 from tables.
Example 13

Transform the equation (2xyy’+x'—y})(s*+y ) =x3y' =%, whe
' =dy/dz, into ons involving 6, v and dr/d6. Hence, or otherwise, solve the
equation. (Sheffield.]
‘The given equation may be written in the form

(#*+y") {2y dy+(x*—y")dx} =xy dy—y* dx,
ie. (1 +9YMx(y dy+x dx) +y(x dy—y dx)} =y(x dy—y dx),
and on changing to polar coordinates we obtain

#{r €08 O(r dr) -+ sin 0(s* df)} =r sin 0(r* d6),

which reduces to

dr/df+v tan §=tan 0.
Separating the variables we have

iﬂuﬂdﬂ—ﬂ,

r—1
which leads to (r—1) sec §=C
or r=14C cos 6.

‘The solution is generally left in polar form.
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Miscellaneous Exercises 23
Solve the differential equations given in Nos. 1-24 :
L () (y+3ay'+y—3x=0;
() #y'—2y=sx+1,

given that when 5=}, y=1. (Sheffield.]
2. () (by-+a)y =bx+y:

(i) ¥’ sin #—y cos ¥ =sin® z. [Sheffeld.]

(ii) 4ly—#)y'=3(35+4y). [Leeds.]
4 () y=ytans—2sinx;

(i) (3—3y")x dx=(y*—3x%y dy. [Leeds]

5. (i) y+ytanz=sin2s;
(i) #(x+y)y’=a"+y";

(iii) (cos x—# cos y)dy—(sin y-+y sin x)ds=0. [Leeds.)
6. (i) (*+1) +ry=5(="~1);

(i) #(x*+3y"y" =y(32*+57). [Leeds]
7. (@) ¥ sinx—ycosx=sinx—(1+5) cos s

(ii) 2y’ =2y"—3ay+25% [Sheffield.)
8. () y+ytanz=cos2y;

(if) (4r—3y)y =35+4y. [Durbam.}

9. () &'y =bry—214yt;
(i) (1427’ =2+(1+y+5);

(iii) y'=(x+49)% [Sheffield.]
10. (i) sy =2y+amry—smVe;

() (#+3y+8)y'=3x+y. [L.u]
1L () Yo y=2etat1;

(i) (25—2y—4)y/ =2e+Ty-+5. L)
12, (i) (x4241)y =204y—3;

(ii) 5"+y cot x=y* cos’ . Lu)
13, () S{1—sNy+@—Ly=2Y";

(i) xy'—y=(s2+y9 nu)

W () Br2y—1)y'=st2y—3;
(ii) 4" sin® x—y sin 25 =3* cos x. LU
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0) (o =x"+ay;
(i) (#—y)y'=25+y—

(i) 2(142)y’ —(1+2s)y=5'(1+2)h Lu)
(i) (3x+2y—4)y' =3y—2++7;

(ii) ¥+ tan x=y"sectx. 1Al
(@) (1 —#y'+(1—2r—s"y=1;

(i) Py =ar+ay—y" L)
(i) y'=2v—y;

(i) (x+2y—B)y =2¥—y. mLu)
(i) 5 cos s+ysinx=xsin 2r+2%;

(i) (#—8y+T)y'=2—y. L.u)
(i) (By—2x)y'=2¢+3y;

(i) y'+y =" L)

() (P42l = hay—y's
(i) ¥+ cot =(y sin )}
Show also that the only solution of the latter equation which remains
finite as x>0 is y sin x=sin* z. LU}
(@) (s*—2)y +y=(s"—2) log x;
(il) #y/—y=(+y9};

(i) %y’ +3y=+9" LUl
(i) 2P +2)y =y 42y —xt;

(i) ¥’ sin x+2y cos ¥=cos x. L.u)
@) xyy =yr4ateviz;

(ii) #(1+2)y'+(2+3)y+35+252=0. Lu]

(i) Solve the equation (#*+y)y"+25(s+3) =0.
(ii) Find the integral curves of the equation (y'—y)et+1=0.
Show that, in general, every curve of the system has EITHER a
real point of inflexion, on the line y=0, ok a real point for
which  is a minimum, on the curve y=¢~=. U]
(i) Solve the differential equation 3?5+ 1-+(1—2x)y=0.
(i) Prove that the differential equation Mdx-+Ndy=0, where M
and N are functions of » and , is
aM_oN
N

Show that a constant a can be [aund w0 thnt (:+y)' is -
factor of (442

and hence integrate the equation. [LU]
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27. Show how to solve the differential equation y'--Py=Qy", where
P and Q are functions of  only.
Find the solution of the equation y*y'—2y*=2s%, which is such

that y=1 when s=1. LUl
28. (i) It is known that, when maultiplied by a certain power of e the
equation (5x%-+ 125y —3yt)ds-+ (357 2;7)dy-0 ‘becomes ex:
Find this integrating factor and solve the equation.
(ii) Obtain the solution of the aqu.lnan (x—l)y’+:y—(,v—l)o’ for
which y and » vanish togeth Anc)
20. (i) Solve the equation xyy’=(x+y)"

(ii) Show that the equation #'y’=1—2s%* may be reduced to a
linear differentia equation of the frst order by the substitution
y=1js+1/z.

Hence, or otherwise, solve the equation. L)

30. (i) Solve the equation #(s+1)y'+y=2x.

By means of the substitution y*=u—z, reduce the equation
¥ +#+y"=0 to homogeneous form and hence, or otherwise,

(i) solve it. Lu]
23.12. Clairaut's equation
This equation has the form
y=pH®) . . . . B
where p=dy/ds.

Differentiating (i) with n:spect to %, we have
p=(Ler) o2,

2 weren=o
Hence either :—iﬂﬂ
or =0 . . . . @)
1t :{-o, $=C (constant) and, substituting this value in (i) we have
y=Cx+f©) . . . . ()

This solution which contains one arbitrary constant C is the complete
primitive or general integral of (i). It represents a family of straight
lines with parameter C (cf. § 23.2).

Another solution is obtainable by climinating  between (i) and (ii).
This solution contains no arbitrary constant and is called a singular
solution of (i).
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Differentiating (iii) partially with respect to C, we obtain the relation
H+O=0 . . . . W
and elimination of C between (iii) and (iv) gives the equation of the
envelope of the family of straight lines represented by (iii) (cf.
§19.13). But this equation is the same as that obtained by eliminating
# between (i) and (). Hence the singular solution represents the
envelope of the family of straight lines given by the general integral.
Example 14
Find the geneval ml:;ml and singular solution of the equation y—px-la, p,
where p denotes dy|dx. L.
y=pr—logp. . . . . (i)
Differentiating with respect to x, we have
ap
p=p+(=1p) 5. -
ap

Hence either Ge=vorp=1/x.
4

0, p=C (constant) and from (i) y=Cx—1log C.
“This is the general integral of (i).

Substituting p=1/x in (i), we obtain the singular solution y=1+log .
Exercises 23 (f)

Obtain th imitive and the si solution of
equations in Nos. 1-6 ¢

L y=pxtalp, (p=dy/dz).
2. y=pr+2v/(ap). 4 y=prtay/(14pY.
3. y=pript 5. y=pr+p—pr

6. Show that Clairaut’s equation y=px-+/(p), (p=dy/dx) has a family
of straight lines as its complete primitive and their envelope as its
singular solution.

Solve the differential equation e¥+7 = (1 p)er=. [Durham.]

Obtain the complete primitive and the singular solution of the
differential equation 2y=2px—log sect p, where p=dy/dx. [Sheffield.)
8. By means of the substitution ¥'=X, y*=¥ (or otherwise), reduce the
equation x'+y'—sy(p+1/p)=c* to Chiraut's form and find the
complete primitive and singular solution. LU

. Show that the equation (px—y)(px—2y)+3=0, where p denotes
dy/dz, may be reduced to Clairaut’s form by means of the substittion
y=vs. Hence find its complete primitive and singular solution. [L.U.]

©
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10. The feet of the perpendiculars from the point (¢, 0) to the tangents
t0 a certain curve lie on the circle »!4y'=a?. Obtain the differential
equation of the curve in the form y'—2syp-(s2—a¥)pi4-ci—at=0
where p=dy/dx, and show that y =mx -/{a%(1+m% —c%} is a solution.

L}

23.13. Geometrical applications

Geometrical properties of a curve are sometimes expressible in
terms of a differential equation of the first order. The solution of this
equation represents the family of curves which possesses the given
property.

23.14, Tangents and normals in cartesian coordinates

Let P (fig. 106), be any point on a plane curve and let the tangent
and normal to the curve at P meet the axis of » at T and G respectively.
Then, if PN is the ordinate of P, TN and NG are called the subtangent

Fig. 108

and subnormal at P; the lengths PT and PG are known respectively
as the tangent and normal at P.

If P is the point (¥, ), and (X, Y) are the coordinates of any other
point on the tangent PT to the curve at P, then the equation of PT is
Y—y=y'(X—2).

In this equation (z, y) are the coordinates of the point of contact and
y'=dy|dz is obtained by differentiating the equation of the curve
and substituting in the result the values of x and y.
‘The equation of PG, the normal at P, is (X —2) +5'(¥ —y)=0.
Now y'=tanZzTP=tan/ NPG=tan § (—}= <y <}n), and NP=y.
Hence for the subtangent, subnormal, tangent and normal tha
following expressions are obtained :
TN =y cot y=yly’,
NG=y tan y=yy',
PT=]y cosec § |=| yv/ {1+ (1) .
PG=|ysec ¢ |=|yv(1+y% |



532 A COURSE IN PURE MATHEMATICS 23

It is obtained by writing —1/y’ for y' in the differential equation of
the given family.
For a family of curves given by the polar equation

fr.6.9=0 . .G

we may establish the differential equation of the family
Fr, 8, 7}r') =0,

(where r*=dr|df) and by reasoning similar to that used in the case of a
family of curves given by a cartesian equation, we may show that the
differential equation satisfied by the orthogonal trajectories to family
(i) is Flr, 8, —r'[r)=0.
It is obtained by writing 7df for dr and —dr for 746 in the differential
equation of the given family.

Example 15
The normal at any point Px, y) on a corlain curv meets the axes of x and y
respectively at points Q and R on opposite sidss of P and such that
RP/RQ=3"y*.
Find the equation of the curve, given that it passes through the point (1, 1).
LU

‘The equation of the normal at P is
X—x+y(Y—y)=0.
The normal meets the s-axis at 0, where X=s-+3y’, Y=0. If O is the
origin and P is the projection of P on the s-axis
OP'/0Q=RPIRQ.
Hence #/(x+yy) =sy*
ie. ¥ =(yt—2Y)xy.
‘The substitution y=us reduces this equation to
vdv+dsjx=0
which yields ot =log (C/x)
or yYx=log (CY/3Y).
This curve passes through the point (1, 1) if log C'=1. Hence the
equation of the required curve is y4=s*(1—log #%).
Example 16
The normal at a point P of a curve mests the s-axis af G, and N, the foot of
the ordinate of P, lies between G and the origin O. If OG=OP, find the
differential equation of the system of curves for which this condition holds,
and integrate it. Find also ths equation of the orthogonal trajeciories vf the
system and show that they are parabolas. Ul

Let P(z, y) be any point on a curve of thesystem. Then, umExamph 15
dy.
0G=yL+x
and OP=y/(x*+5).
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1 0G=0P

ydylditr=y/(45Y) . [0}
This i the differential equation of the system. To integrate it let

Apyte=rt
5o that *tydyjds=ydr/d.
The equation then becomes
drjdz=1

Fhyr=(xO)
P=C(C+29) . . )
‘This is the equation of a family of parabolas with a common a focus at the
origin and common axis
By § 23.16 the diflerential equation of the orthogonal trajectories of the
system is
F—y dxjdy=+/(x'+5%)
dyldx=y/{x—+/ (3 +y} ==+ V(= +30)iy
oy dyldstr=—/(R+yY)
and, comparing this equation with (i), we obtain the solution
y=Ald-2) . . . . (i)
This equation represents a family of parabolas with a common focus at
the origin and common axis Ox ; also, if we write 4 = —C we see that (iii)
represents the same system as (ii). On account of this property the given
system is said to be self-orthogonal.
Curves (ii) and (iii) intersect in real points only when A and C have the
same signs and so each member of the system intersects orthogonally an
infinite number (but not all) of the members of the system.

Example 17

Find the equation of the system of orthogonal trajectories of the family of
curves whose equation in polar coordinates is r=a(l—cos 6), where a is a
paramele

Shetch clearly a typical curve of cach systom. L.uy
b r=a(l—cos §)
log r=log a-+log (1—cos §)

1

and hence = sin 6

el

This is the differential equation of the given system. The differential
equation of the system of orthogonal trajectories is

~cot §6

dr
ie. 4 tan 49 doomo.
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16. The tangent to a plane curve at a point P(, y) meets the axes of # and
yin A and B respectively. 1f PA : PB=hx:y, where k is a constant,
find the differential equation of the family to which the curve belongs.

Integrate the equation, and show that the curves of the family are
rectangular hyperbolas with their centres on a fixed straight line. (L.U.]

A plane curve has the property that the tangents from any point on
the y-axis to the curve are of constant length, a. Find the differential
equation of the family o which the curve belongs and Integrate it
Show that the orthogonal trajectories of the curves are circles.
Lu]

The ordinate at a point P on any one of a family of curves meets
the s-axis in 0, and R is the foot of the perpendicular from Q to the
normal at P to this curve. If for all positions of P the length of PR
is b, find the differential equation of the family of curves.

Find also the equation of the particular curve of the family which
passes through the point (0, 4). L.U)
. N is the foot of the ordinate at a point P on a plane curve, and T, U
are the respective points at which the tangent and normal at P meet
the axis of x. 1f TN—NU=20N, where O is the origin, find the
differential equation of the curve, and hence show that the curve
belongs to a family of parabolas.

Find the two members of the family which pass through the poxnt
(=& 1).

20. P is any point on a plane curve, T is the foot of the pexpendmnlar
from P to the #-axis, and O is the origin of coordinates. The per-
pendicular at P to the radius vector OP is met at Q by a line through
0 parallel to the tangent to the curve at P. Given bt PO=OT, find
the equation of the curve if it passes through the point (1, 1) [L.U.]

21. Prove that a differential equation of the form

PHpp(x, y)—1=0, (p=dy/dz)
represents a system of plane curves such that two pass through every
point and intersect at right angles.
Find the system of curves for which $(x, y) =—2y/s. LU

22, The tangent at a point P(x, y) ona phne curve meets the s-axis at T,
1f PT=ay* where a is a constant, find the differential equation of the
family of curves to which this curve belongs and integrate the equation.

Show that the orthogonal trajectories of the family are the curves
ay=cosh (ax-+b). Find the equations of the two curves, one from each
family, which pass through the point (0, 1/a). [LX7]

s
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Hence 9=(A+B) cosh 2s-+(4 —B) sinh 2¢
=a cosh 2+ sinh 2+,
where a and b are arbitrary constants.

Example 3
Solus the equation (D*+-9)y==0.
‘The auxiliary equation is 49 =
Hence the general solution is
y=Aedz i Bettz
But e =cos 3x-+i sin 3% and e-2=cos 3x—i sin 3x.
Hence y=(A+B) cos 3x+i(4—B) sin 3x
ie. y=a cos 3x-+bsin 3x

; its roots are k= 3i.

exponential form as in (i).

541

@

(i)
When the roots of the auxiliary cquation ase purely imaginary, tho
solution should be given in trigonometrical form as in (if) and not in

Useful alternative forms to (ii) are y=R cos (3++a), y=R sin (35+a),

where R and a are arbitrary (see Example 4 of § 1.5).

Example ¢
Solue the equation (D*+4D 4 13)y=0.

The auxiliary equation is A%+ 44-+13=0; its roots are k=—2:43i.

Hence the general solution is
=AML Bel-3-30z
= (AeME 4 Ber)
~33(a cos 3-+b sin 3x), as in Example 3,
or y=Re % sin(3x+a).

Example 5
Solve the equation (D*+D*—D—1)y=0.
The auxiliary equation is A*+A'—k—1=0, or (k—1)(k-+1)*=0;

roots are 1, -1 1
Hence by (24.5) the general solution is y=(A 4 Bx)e-%+Ce=.
Example 6
Solve the equation (D4+8D*+16)y=0.
‘The auxiliary equation is (144)*=0; its roots are
k=2, +2i, 2, —2i.
Hence, by an extension of (24.5) the general solution is
y=(A,+Bx)e"5+ (4, + By)es,
which may be expressed in the form
¥=(@y+byx) €05 22+ (ay+by¥) sin 2x.
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24.7. Solution of the equation $(D)y=f(x) When f(x)#0

Let y=x be the general solution of the reduced equation $(D)y=0,
i.e. the solution containing  arbitrary constants ; and let us adopt as
a trial solution of the equation

$Oy=/x . . . . @
y=u+v where v, like w, is a function of x.
Then D) u+v)=/(x)
ie $(D)u+4(Dv={().
But $(Du=0, o $Dp=f(x) . . . . (i)

Thus v is any function of x which can be found to satisfy (i), and
since the » arbitrary constants required in the general solu?.io'n of (i)
are contained in w, no arbitrary constant need appear in

T other words the general tolution (6.5 of () 5 the sum of two
terms % and v: w, the general solution of the reduced equation
$(D)y=0, which contains » arbitrary constants and is known as the

complementary function (C.F.); v, a partioular integral (P.L), ie. a
function which ‘satisfies (i) and which contains no arbitrary constant.

A particular integral may sometimes be found by inspection, but
since, in general, this is not the case, we go on to consider methods of
finding one for equation (i).

From (ii), $(D)yv=/(x)

and e writesymblicaly w1,

Our problem is to find a meaning for the operator —— ¢(D)

24.8. Inverse operators
We define %D)y as a function z (if one exists) such that $(D)z=y.
According to this definition the operator 4%17) is the inverse of the
operator $(D) and it can be shown that - ¢(n) can be broken up into
factors (which may be taken in any order) or into partial fractions. It
can also be shown that if % and v are functions of %,

1 1 1
m(“H‘)-Tm-&mv (24.6)
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Example 7

Solus the equation (D*—8D -+ 16)y =64-+e%s.

The C.F., being the solution of the reduced equation (D—4)ty=0, is
(4+Bx)ets,

A P.L is given by

=B 7 (B4+¢%7).

1

1
== o

Treating 64 as 64¢°% and applying (24.7), we have

7 by (24.6).

1 1
(DT‘)’W"=(?§‘W"=¢

1
D=5

Hence a P.L is 4+¢% and the G.S. is y=(A 4 Bx)e®p- 44037,

=2 by (24.7),

Example 8
Solue the equation (D*+2D+2)y =5 cos .
The roots of the auxiliary equation F 220 are b1,
Hence the C.F. is e%(a cos +-+b sin 1)
To find & P.I. we assume that (24 7) s valid whea & is complex so that

D'+2D+2 ‘Tzi
=(1-2i)ets
=(1-2)(cos x+isinz) . [t}

Thenmnuﬁcostuﬂnenalpmo[&" the required P.I. uthanalpm
of (,), i.e. 03 ¥+ 2 si
Gs. ny-r’(am:+b sin %)+cos x-+2 sin x.

Example 9

Solve the equation

2% dx
r“,+ g g~ 2r=sin

when x satisfies i ¢ conditions () x=0, =0, (i) defdi=0, 1m0, (i) x
remains finite as - [L.U. Anc.)

The equation is (n'+w-—n_2)z-.in 4, where D=djdt
ie. (D+2)(D—1)(D+ 1w =sin 1.

The C.F. is ¥ = A4 Bet -+ Cet,
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Since sin ¢ is the imaginary part of ¥, we evaluate
(TJ+—2J:‘D:T)'“ 2(2+:) by (G40
= li—2)(cos +isins).
The required P.I. is yly(cos f—2sin ). Hence the G.S. is
xe=Ae~t4 Bet Cot g (cos —2sin 1),

But when {->¢0, ¥ remains finite, ', B=0.

When t=0, ¥=0, [, 0=A+C+d5. . . . . . @)
When ¢=0, dx/dt= 0=—24—C—} . . . . . G
From (i) and {ii) 4 =— 1, C=0

", the solution satisfying the given conditions is x = y(cos f—2 sin f—e~3).

(b) Inverse operators applied to producis of the form ek=V, where k is
a constant and V. is a funclion of x.
By (24.2), if V is a function of x,
D)V =g DLV . . . ()
This result suggests that

(24.8)

To verify (24.8) we have to show that

1
#D) {‘nm v} ey,
Now, by (i), the left-hand side of this equation is equal to
1
D+ g Y
iie. to k=¥ ; hence (24.8) is proved.

Example 10
Solve the equation (D*+-D—2)y=2 cosh 2x.
The C.F. is A4 Bet=,

AP.Lis given by WI(DM (e,

1
s by (41) et =i,
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1
. . .
1f we apply this method to find P=DBTE*™ the denominator of
the operating function vanishes because the factor (D-+2) becomes zero.
We therefore use (24.7) to find
We write

(Di 747 and then use (248).
1 a1 . 1
(TS i rs o L
w+2>‘ 1) by (247)

S S
£ D+ % =0
= -}r“— (1) by (24.8), taking V=1,
=—rr,
Hence a P.L is }¢*— jx¢~% and the G.S. is
y=Aet 4 Beie g jors_ jrets,

Example 11
Solvs the equation (D*+-2D+B)y =4 sin 2+

The roots of the auxiliary equation A'4-24+6 =0 are km —1£2i,
Hence the C.F. is s~%(a cos 2+-+b sin 23),
APLis the i lmagmary part of

DF1-2) (D+l+2x) '="(D+l 2)"—'“"”"' (247)

——ietrrs 1 5 (1) by (24.8), taling V=1,
== —ixe~* (cos 21 sin 2¢).
The required P.1 is —x6-%cos 2r. Hence the G.S. is
y=6%(a cos 2x+b sin 2¢—z cos 2s),

(¢) Inverse operators applied to polynomials
1 /() is a polynomial in = and a0,

s/ = gy =ML+ Dl
-;u —Dja+DYar=D¥at+ .. }. f(x)

This may be shown by operating on the right-hand side with D+a,
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Example 14
jx‘l'“d.v=l—l) -2, where D=d/dx

4 by (24.8)
=—16(1+D/2+D*/4+D*[8+D*/16+...) 5
=34 200+ B0 304

the constant of integration being omitted.

24.11. Simple harmonic motion ; damped harmonic motion

1f a particle moves along the z-axis in such a way that its displace-
ment from O at time ¢ is , the velocity of the particle at time # is # and
its acceleration is £, where dots denote differentiation with respect to ¢.

1f the acceleration of the particle is proportional to its displacement
from O and is directed towards O, the differential equation of the
motion of the particle is £= —n%s.

This is the differential equation of simple harmonic motion. Its
solution may be written in either of the forms
@ cos nt+b sin nt
or R cos (nt+a),
where a, b, R and a are arbitrary constants.

11, in addition, there is a resistance proportional to the velocity,
the motion of the particle is referred to as damped harmonic motion
and the differential equation of the motion is of the form

E42pi+nx=0,
where the constant $ is positive. There are three cases depending
on the nature of the roots of the auxiliary equation.

Example 15
Solve the equation &+ 4%+ 20x=0.
The roots of the auxiliary equation A*44+29=0 are k=—2:5i,

and the G.S. is x=e (a cos 5145 sin 5,
or x=Re~ cos (54-+a).
Example 16

Solue the equation i+ 4i+3x=0.
The roots of the auxiliary equation 4%+4k+3=0 are h=—1, —3,

and the G.S. is F=Agt4 Be ¥,
Example 17
Solue the equation FHAE 4 ar=0,

The roots of the auxiliary equation A44k+4=0 are k=—2, —2
and the G.S. is x=e(A+B1).
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In all three cases, as f-»c0, -0, i.e. the motion ultimately dies out
and the particle tends to a position of rest at the origin.

In Example 15 the motion may be roughly described as being
oscillatory with constant period 2n/5 and with decreasing amplitude
Re*. It can be shown that successive amplitudes form a decreasing
geometrical progression and the motion is said to be slightly damped.

In Example 16 the motion is said to be heavily damped for both
x and 2 tend to zero as /oo and so the particle ultimately comes to
rest at the origin. 1f 4 and B are of opposite sign, the particle may
pass through the origin once before coming to rest, but the motion
is not oscillatory and is known as * dead-beat ™.

In Example 17 the motion is said to be critically damped. 1f A
and B are of opposite sign, the particle may pass through the origin
once before coming to rest there, but the motion is not oscillatory.
It is very similar to that of Example 16.

24.12. Forced oscillations

If, in addition to the force which causes simple harmonic motion
and the force which causes damping, the particle is acted on by any
other force depending only upon the time, the differential equation of
the motion takes the form

E4 2k +ntx=f(1)
and the motion is said to be forced.

In the solution of this equation the complementary function
represents the general solution for free oscillations, i.e. when there is
no applied force (). The particular integral v represents the effect of
the applied force f(/) on the displacement z.

Since x=u+v and we have already shown that ¥—0 as t—>co, it
follows that x—v as t—>co. For this reason v is sometimes called the
steady state and the part « which dies away is called the fransient.
Example 18

1f £+ 45+ 20xcos 8, find x in terms of ¢ and deducs that when tis large
the motion of the particle is

Ve bave shown in Example 18 that the C.F. ia #~a coe 81+ sin ).

P.I is given by the nulp

s sa(b»rw)‘"" where DEait
st

Now 5rEs x)(D+z+sn 4(l+sq 101
and the real part of this expression s y}; (cos 5/-+5 sin &1).

Hence the G.S. is

xme (a 08 1-+b $in 51) 4 (cos 515 sin ).

When ¢ is large, #=y(c0s 5¢-+5 sin &) approximately, i.e. the motion

of the particle is approximately simple harmonic and of period 2n/s.

(1—5i)(cos 5¢+i sin 5¢)
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Example 19

Solue the equation 2-+ntx=a cos pt, given that ¥=2=0 when (=0

The C.F. is A cos nt+B sin nt,

(i) When p#n, a P.I is the real part of

1
o, =
Do where D=djdt.

Now astpt:

1 a
R T s
Hence the required P.L is (a cos pf)/(n*—2") and the G.S. is

x=A cos nt+B sin ni-+(a cos pt)/(nt—pY).
Substituting ¥ =#=0 when =0 we find that
B=0and A =—af(n*—$%),
whence x=a(cos pt—cos nf)/(nt—p%).

(cos pt-+i sin p) by (24.7).

When p=n, a P.L is the real part of
1
D+im)

2” D(I) by (24.8), taking V=1,

= 2—” (cos i1 sin ).
The required P.L is :‘—nﬂnnlnnd the G.S. is
#=A cos ni+B sin nt4 % sin nt,
Substituting ¥ =2#=0 when =0, we find that 4 =B =0
adso = sinwt
The result in (ii) may be deduced as the limit as p—»n of the result in (i)
It will be noted that in case (ii), where the period of the forced oscilla-
tions is the same as the period of the free vibrations, >0 as t->c0. The

condition in which the frequencies of the forced and free vibrations are
equal is known as the state of resonance.

Exercises 24 (a)

For brevity, y", y’ are written for diy/ds, dyldx, and £, # for d¥/dP’, dx/dt
respectively.  Unless otherwise stated, D= d/ds.

Solve the differential equations in Nos. 1-36 :
1. #4+9x=¢"*, given that x=0 and #=1 when {=0. [Durham.]

2. 5 +4y=r—sin 3x. [Liverpool)
3.y +y=e=sing. Lu)



24] LINEAR DIFFERENTIAL EQUATIONS 851

4 F—4243x=ttet. [Durham. ]
5.y +y =1+ Lu]
6. y*+4y 4y =18 L.U)
7. y' =2y’ bymeTcos x. [10A]
8. ¥+ 4y +3y=sinz. [Durham.)
0. y'—by' 4y =xe%. [Durham.]
10, 743y +2y=2x675, [Leeds.]
1. y*+4y' 413y =" cos 5. L.U)
12, y*—3y'+2y=e%(141). LU,
13. y*—4y' —By=cos . Lu)
14, 4j—45-+6y=11 cos , given that y=2, y=—T} when ¢=0.  [Leeds]
16. y"— 5y + 4y =xe%. [Durham.}
16, ' —2y/+2y=sin 2. [Durham.)
17. aty” —2aby’+ dbty =4bt?, where a and b are non-zero constants.
18. 5"+ 4y’ +4y=cosh 2x. [r::gi
10. ' =2y +y=(x+1)%% LUl
20. y+2y'+-3y=eF-tcos 2. [Durbam.)
21, y* 42y +2y=s-tsinx. (Durham,)
22, y"—9y=cosh 3x-+% Lu)
23. §46i-+265=24 cos 4%, [Durham.]
24, y' -4y +by=seZsin 5. [Sheffield.]
25, y"—2y'+2y=e* sin x, given that y=0 when x=0, and y'=0 when
x=2m [Durham.]
26, y+4y’+ by =(1+e%) cos x. [Liverpool.]
21, 2y 43y —2y=xtsin 2. (193]
28. (D*44D)y=sin x—=. [Sheffield.)
20, (D3+42D%+ 4D 8)y=cos x+2 sin x+5+6%. [Sheffield.)
30. (D*—3D'—4D)y=2+"+3-+sin 2+ [Sheffield.]

3L (i) (D+4)(D—1)y=16e+8cos x;
(i) (D*+D*4D+1)y=65+3" [Sheffield.]




24] LINEAR DIFFERENTIAL EQUATIONS 855
17. (i) ¥ +y'+y=es(x+sin2);

(ii) 4xty"+sy’—y=s-+log x. vl

18. (i) y*+y=e% cos x+4;
) #y°dzy’+ 2y =(log 2)/+*. L.U]

19. (i) y"—y'—2y=c"%(1+sinx);

(ii) #%y"+ 62y +3y=(1+1/) log ». L]
20. (i) y"—4y’+13y=etsin 8x;

(i) 0ty" 4+ Bxy’ 4y =x log x. U]
21 (i) ¥ — 4y +By=esinx;

(i) #%"—3xy"+4y=2"log x. U]
22. (i) y"—4y'+4y=cosh 2+ sinh 2+ ;

(i) 3"+ 4y’ + By=r— L/, L)

23. 2574 Axy 4 ay —y=3x.
2. 2y"— 35y +bry'— by =126 =",

24.14. linear with constant

The application of the theory of operators to the solution of simul-
taneous linear equations with constant coefficients is demonstrated in
the following examples.

Example 21
Solve the equations

%+y=:iﬂi+l.
%’1—:,;0; t,

subject to the conditions x=2, y=1, when 1=0.
‘The equations may be written in the form

Dety=sint+1. . . . @
#4Dy=cost . . . .G
where D=d/dt.
Operating on (i) with D, we have
D4 Dy=cost . . . . (i)
and from (i) and (iii)
(D=1)r=0
which yields F=AdiBet L L (i)
But, from (i) ye=sin t41-Dx

i y=sin t41—Aet4Bet,
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The given conditions, ¥=2 and y=1 when ¢=0 lead to the equations
2=A+B and 0=B—A4 so that A=B=1. Hence the particular solutions
are
r=etpet
y=sint41—etyot,
1t should be observed that if  is found from (ii),
Dy=cos t—Ae—Bet
S y=sinf—Aet+Bet+C . .. )
and substituting from (iv) and (v) in (i) we find that C=1.
Again, if y is found by eliminating » between (i) and (i),
(D'—l)y=—2sins—1
Soymastpbetisingbl . . L (v)
Substitution from (iv) and (vi) into (i) or (ii) gives a=—A and b=B,
50 that there are in fact only two independent arbitrary constants in the
solution of (i) and (i).
1t is useful to note that the number of independent arbitrary
constants required in the solution of the equations
Si(D)x+Fy(D)y=44()
Ji(D)x+Fy(D)y=é4(0),
where f,, f,, F, and F, are polynomials with constant coefficients and
‘D=ad|dt, corresponds to the degree in D of the determinant
AD) FyD) |
A(D) FyD)
To avoid introducing more arbitrary constants than are required,
‘when one of the unknowns (in this case x) has been determined, the
other (in this case y) should if possible be found by means of a relation
which does not involve the derivatives of y.

Example 22
Solue the simultansous differential equations

diy . di,
zj+-,+i"_m:.

swbject 10 the conditions that iy=iy=0 when t=0, Lu)
The equations are

(2D+1)i; 4 Diy=cos ¢ . . )

Diy+(2D+1)iy=0 I (]

where D=d/dt.
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We eliminate i, by operating with D on (i), and with (2D+1) on (i)

D(2D+1)iy+(2D+1)%; =
whence (3D%+44D4 1)y
The C.F. is Ae~*+4BeH.
the imaginary part of

APL

1 n
1
3D HAD+1

= — (14 2i)(cos t+i sin §).
— gy (sin #+2 cos £) and the G.S. is
=Aet4 Be~¥—(sin 142 cos ).

The given equations are each of the first order so that the expressions
for 4, and 4, should contain only two arbitrary constants. To avoid
introducing further constants we eliminate Di, between (i) and (i) and
obtain 4, in terms of i, and its derivatives,

‘We multiply (ii) by 2 and subtract from (i) obtaining

—(3D+2)i,=cos t
ie. iy=c08 1+ (3D +2){Ae "+ Bei— iy(sin 142 cos 1)}
=Be~H—Ae=t4 15(3 cos t-+4 sin 1),
Applying the given conditions, we find that
0=B—A-y, 0=A+B—}.

Hence A=}, B=—y},
and iy = ghy (6 o8 £4-8 sin t— e —H—Go~1),

iy=glp{B6~t—e=H—4 cos (—2sin ).

Exercises 24 (c)
For brevity, #, 9 are written for dz/d, dy/dt respectively.

Given that » and y are functions of ¢ such that #=3x—y, y=x+,
and x=1, y=0 at /=0, show that x—y=c¥. {Liverpool]

2. Solve the simultancous equations y--ay=s, #-+as=y, given that
#=0and y=1when #=0. U]

A point (x, ) moves in accordance with the equations

#42y=bet, y—2r=bet.
It is given that ¥=—1 and y=3 when f=0. Show that the point
moves in a straight line. (Shefield.]

4. Find x and y in terms n( £, given that y+y=3, #+2r=2y, and that
#=0and y=} when (= L.U]
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24.15. Change of variable

We have shown how the homogeneous linear equation may be
integrated by means of a change of independent variable. Other
types of change of variable are illustrated in the following examples.
Example 23

By means of the substitution u=cos x, solve the equation

sin 232 _cos # %y simt .
an ax

ds
If u=cos z, o —sin x

&

Hence Yosnr. . .
wa R X

-_m,%-mnu:%. L@

Substituting in the given equation from (i) and (ii), we obtain the equation
@

or where D=d/du.
. v+ B

ie. y=A‘v-K+ Bz,

Example 24

Find n such that the substitution y=1x transforms the differential equation
:‘g+h(a+2)d'+2(x+ 1)ty =e= cos x

into one with constant coefficients. Hence solve the original equation, and
show that in all solutions, y is small when x is large and positive.  [L.U.]

i y=rt, d—”-x'd—‘+nx"‘x
ay -
and _xuz—,-(»zm +n[n— 1an-zz,

With these values, the expression
o i iaerny
dx* dx

becomes on simplification

W'—‘ 2 (ﬁ+ﬂ)xﬂ+’)d,+ {2404 2(n+ 2)4m41 - (4 1) (n 4- 2) 1)
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Thus, if we give # the value —2, the given differential equation reduces to

(D 42D+ 2smescoss . . . ()
where r=x'y and D=d/dx.

The C.F. is s=¢—#(4 cos x+B sin ).
Now &% cos » is the real part of .«-us
—  _gl-u3
and (D+1—x)(D+l+i)'

D+l— by (24.7)

21'

- ;,-.u-n):% 1 by (248)
= }ires(cos x-+isin 2).
The real part of this function is jxe~% sin » and this is a P.L of (i).
Hence £=63{A cos x4 B sin x-+ b sin 5}

e 7= (4 cos s+ Bsin 1)+ 5 sin .

Since, a3 x>0, (6% cos #)/x>0, (== sin x) />0 and (¢~ sin x)/x—>0,
then, in all solutions, y is small when # is large and positive.

Exercises 24 (d)
For brevity, y°, ¥’ are written for dyY/ds*, dy/dx respectively.
By changing the indcpendent variable by means of the transformation
#=2, or otherwise, solve the differential equation

2ey" 4y y=at, LUl
2. Transform the differential equation

2"+ (320 4x)y + (2674 6+ 2)y =0
by the substitution #%y=z.

Hence or otherwise solve the equation, subject to the conditions
y=e when x=1, and y=¢* when 7=—1.

U]

3. By means of the substitution y=z+-'%, transform the differential
equation 4x%” - 4xy'+(4x3—1)y =0, and obtain the solution for which
=0 when ¥=}r and y=1 when z=m. L.U]

4. Transform the equation #%"+ (4%+-6x)y’+ (3524 12+-+6)y=0 by the
substitution y=z/x3.

Hence, or otherwise, solve the equation, given that y=e- and
—4c1 when x=1. L.U]

¥

5. By using the substitution s=x—y, or otherwise, find a function y of x
which satisfies the equation

Yty
and for which y=0 when x=0. (Sheffield]

,-

0
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6. If t=sin x and if y is a function of %, prove that
ay_ay L dy
= cost x— Ll sinx.
Transform the differential equation
3" 4y’ tan x-+y cost x=2e8107 cost x
into an equation connecting y and /, where f=sinx. Solve the
resulting equation, and hence find the solution of the given equation
which satisfies the conditions y=1 and y’=0 when r=0.
. Show that the constant # may be chosen so that, by the substitution
y=x%z, the differential equation xty”-+4x(x+1)y'+(8x+2)y=cos x
reduces to the form 2”+az'+bz=cos %, where a and b are constant.

~

Hence, or otherwise, solve the given equation. L.u)
8. Using the substitution z=1/%, or otherwiss, solve the equation
Sy 21— /2y — by =, Ly
9. Prove that, in general, at every point on any curve in the (z, y) plane
S+ (5)s
H\&/) @
Transform the differential equation
&y (dy)‘_ (dy
2 3(2) ~e-n(2)
so that y is the independent variable and # is the unknown function
of y. Hence obtain the general solution of the given differential
equation. LU,
0. 1f x=cosh z, prove that (s?— 1)y"-+ xy’ =diy/dst,
Solve the equation (x3—1) 3"+ 2y’ —y=x. L]

1. If y is a fanction of » and x=tan u, prove that
a +x-)d’ ’i"

dly :/d‘y

and calculate 52, in terms of x,

s
Find a solution involving two arbitrary constants of the equation
(1501”4 25(1 4 31)y’ =tan- x.
What is the solution for which y=0 and y’=1 when x=0 ? [Sheffield.]

2. Transform the differential equation

" c0s x+y’ sin x+4y cos? x=8 cos® &
into one having ¢ as independent variable, where ¢=sin %, and hence
solve the equation. L.U)
3. By the substitution x=sinh { transform the equation
(20 2y +y =142
and hence solve it.
Find the solution for which y=0 and y’= 0 when #=0.  [L.U.]




CHAPTER 25
SPHERICAL TRIGONOMETRY

25.1. Spherical triangle

A plane cuts a sphere in a circle ; thecm:lzmcalledagratmdm{
the plane passes through the centre of the sphere, otherwise it is
called a small circle.

The figure formed on the surface of a sphere by the minor arcs of
three great circles is known as a spherical triangle. The three arcs
are the sides, the angles between the arcs are the angles, and the points
of intersection of the arcs are the vertices of the spherical triangle.

As in the case of a plane triangle, we denote the angles of a spherical
triangle 4BC (g. 110) by 4, B, C. Thesides BC, CA, AB are measured

%
2

Fig. 110

by the angles a, b, ¢ which they respectively subtend at O, the centre
of the sphere. If the radius of the sphere is taken as the unit of length,
BC=a, CA=b and AB=c; when the radius is 7, the sides are ra, 7b,
7e respectively.

The angle 4 of triangle 4BC is the angle between the tangents at 4
to the arcs AB and AC. These tangents are both perpendicular to 04
and hence angle 4 is the angle between the planes OAB and OAC.
We shall refer to the angle between the arcs AB and AC as the angle
BAC unless confusion with the angle between the straight lines AB
and AC is likely to arise.

25.2. Area of a lune

Planes of two great circles intersect along 2 diameter of a sphere
and cut off on the surface of the sphere two pairs of equal areas called
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lunes. For example, in fig. 111 the great circles ABA'B’ and ACA'C’
divide the sphere into four lunes :— ABA'CA, ACA'B'A, AB'A'C'A
and AC'A'BA. The angle 0 between the plancs of the circles is called

T

VAV

Fig. 111

the angle of the lune and the area of a lune is proportional to its angle.
Hence if 8 is measured in radians and 7 is the radius of the sphere

area of lune

area of surface of sphere 27"

- area of lune= x 4mr*=21%,
2

25.3. Area of a spherical triangle
Let the great circles of which AB, BC, CA are arcs intersect again
at the points 4’, B, C' (fig. 111). Then A, B', C' are the opposite
extremities of the diameters through A, B, C. We shall use AABC to
denote the area of the spherical triangle ABC.
Area of lune ABA'CA=2r*4.

ie. AABC+AABC=24 . . . ()
Area of lune BCB'AB=2r'B.
ie. AABC+ AB'CA=2B . . . (i)
Area of lune CAC'BC=2r°C.
ie. AABC+ AC'AB=2r°C . . . (i)

From (i), (i) and (iii) we have by addition
2AABC+{AABC+ AA'BC+ AB'CA+ AC'AB)=2/A+B+C).
But by symmetry AC'AB= ACA’'B’ and triangles ABC, A'BC,
B'CA, CA'B’ make up a hemisphere
5 28A4BC+2m? =24 +B+C),
AABC=1Y4 +B+C—n).
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A+B+C—n is called the spherical excess of the triangle and is
generally denoted by E. Thus

AABC=riE. (26.1)
If the radius of the sphere is taken as the unit of measurement
8ABC=E.

25.4. The cosine formula

Let ABC be a spherical triangle described on the surface of a
sphere with centre O and radius 7 (fig. 112).

Let the tangent at 4 to the arc AB meet OB produced at D and let
the tangent at 4 to the arc AC meet OC produced at E. Join DE.

A

B

Fig. 112

Then £DAE is angle 4 of the spherical triangle, and from the plane
triangle DAE
AE*+AD'—ED .
WA= L L L
But AE=7 tan b, AD=r tan ¢ and from ADOE
DE*=0E*+0D*~20E.0D cos a
=r(sect b-+sect c—2 sec b sec ¢ cos a).
sec b sec ¢ cos a—1
tan b tan ¢ ’
or, and inator by cos b cos ¢,
cos a—cos b cos ¢
Tsinbsinc
By cyclic interchange of letters corresponding formulac are obtained
for cos B and cos C.
(25.2) is known as the cosine formula and it enables us to find the
angles of a spherical triangle when the three sides are known. Written
in the form

Hence, from (i), cosd="

cos A= (25.9)

cos a=cos b cos c-+sin b sin ¢ cos A (25.3)



566 A COURSE IN PURE MATHEMATICS @25

25.7. The polar triangle

The normal to the planc of a circle through its centre is called the
axis of the circle. The axis of a circle drawn on a sphere is a diameter
of the sphere and its extremities are called the poles of the circle, The
poles of a great circle are equidistant from the plane of the circle, but
in the case of a small circle, the nearer pole is usually called the pole
of the circle.

1f ABC and A’B'C", two triangles on the surface of a sphere, are so
related that A" is the pole of the great circle BC on the same side of
this circle as 4, B'is the pole of the great circle CA on the same side
of this circle as B, and C" s the pole of the great circle 4B on the same
side of this circle as C, 4’B'C’ s called the polar triangle of triangle
ABC (see fig, 113).

If A’B'C’ is the palar triangle of ABC, ABC is the polar triangle of
A'B'C’. For if O is the centre of the sphere, /B'0A =4 since B' is
the pole of CA and /.C'0A=j}n since C'is the pole of AB. Hence OA
is perpendicular to plane B'OC" and so 4 is the pole of B'C’. Similasly
Bis a pole of C'A’ and C is a pole of 4'B".

Also, ZAOA'<}m since A and A’ are on the same side of plane
BOC, and since 40 is perpendicular to plane B'0C’, it follows that 4
and 4" are on the same side of B'OC". Similarly, B and B are on the
same side of C'04’, and C and C’ are on the same side of A'0B".
Hence ABC is the polar triangle of 4'B'C".

A
K,
<
e c
&

Fig. 113 Fig. 114

25.8. Sides and angles of polar triangles
Let arc B'C’, produced if necessary, meet the arcs AB and AC,
produced if necessary, at the points D and E respectively (fig. 114).
Then since B' is the pole of CA
LBOE=}n.



25) SPHERICAL TRIGONOMETRY 567
Similarly £C'0D =4

., LB'OE+£C'OD=
ie LB'OC'+ £LDOE

If we denote the angles and sides of the polar triangle A’B'C’ by

A', B, C' a', b, ¢ respectively this result gives
a'=n—A

and, similarly, 5’ =n—B, ¢'=n—C.

Since ABC is the polar triangle of A’B'C’, it follows that

a=n—A' b=n—B' c=a—C,

ie. A= B'=n—b,C'=n—c.

Because of these relations, a triangle and its polar triangle are called
supplemental triangles.

25.9. Supplemental formulae
By applying to the polar triangle A’B'C’ any formula connecting
sides and angles, a supplemental formula may be obtained for triangle
ABC involving the sides and angles opposite to the angles and sides
which appear in the original formula.
For example, applying (25.3) to triangle 4'B'C’ we have
cos a’=cos b' cos ¢'+sin &' sin ¢’ cos 4*
which since a'=— 4, etc., gives
cos A= —cos B cos C+sin B sin C cos a
cos A+cos B cos C
and so cos a=— e (26.6)
25.10. Right-angled triangles
From the formulac already established we may deduce the following
results in the case when 4 = .
o sinb
From (25.4) sin B=3-2, sin c-;ﬂ . (26.7)
From (25.3) cos a=cos b cos . (25.8)
Substituting from this equation in
cos b=cos ¢ cos a-+sin ¢ sin a cos B

we obtain cos b=cos b costc+sin ¢ sin a cos B
- cos Bemcos pSRE_COSA SINE (o org)
Sina~cos ¢'sina
. an 5
ie. wsEzi;;—ﬂ and, similarly, cos C=m_ (25.9)
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From (25.6)  cosa=cot B cot C, (25.10)
and the corresponding formulae for cos b, cos ¢ give

b—-— _wsC 25.11,

cosb=te, cose=mog. @5.11)

tan c
and so by (25.8) tan B=— tan C=—s (25.12)
1 1
Also tan B tan C=—r——=—— by (25.8)
Cosbcosc cosa
ie. cos a=cot B cot C. (25.13)
The above results may be conveniently listed as shown below :
sin b=sin Bsina | sinc=sin Csina (25.7)
=tan ¢ cot € =tan b cot B (26.12)
cos B=cos bsin C | cos C=cos ¢ sin B (25.11)
=tanccota =tan b cot a (25.9)
cos a=cos b cos ¢ (25.8)
=cot B cot C. (26.10)

25.11. Napier's rules

The results of § 25.10 are embodied in two simple rules given by
Napicr. We define the five cireular parts of a right-angled spherical
triangle (fig. 115 (a)) as the two sides which include the right angle

£

Fig. 115 (a) Fig. 116 (8)

and the complements of the other three parts, the right angle being
omitted.

We arrange these five parts round a circle (fig. 116 (3)) in the order
in which they naturally occur in the triangle. We select any one of
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The ato NP (o, if P les south of the equator, SP) is clled the
co-latitude of P. It is 90°—

The bearing of a place K trom a place H is the angle (measured
clockwise) between the northward drawn meridian through H and
the arc HK of the great circle drawn through H and K.

In figs. 117 (a) and (6) the bearings of K from H are 50° and 220°
respectively. The direction of K from H may also be described as

N
N.
K
H
H
K

Fig. 117 (a) Fig. 117 (8)

N. 50° E. or 50° E. of N. in fig. 117 (a) and S. 40° W. or 40° W. of S.
in fig. 117 (8).

A nautical mile is defined as the mean length of a minute of latitude
between the equator and one of the earth’s poles. A minute of latitude is
the length of an arc of a meridian which subtends an angle of one
minute at the earth’s centre. If the earth were a sphere, every minute
of latitude would be of the same length, but the earth is a spheroid
and the length of a minute increases from 6046 fect at the equator to
6108 feet at the poles. The mean length is 6076:8 feet. Hence
1 nautical mile=6076-8 fect.

Some authorities define a geographical mile as being identical with
the nautical mile; others define it as the length of a minute of
longitude measured at the equator. Defined in this way, the geo-
graphical mile differs only slightly from the nautical mile.

In practice a geographical or nautical mile is taken as 6080 feet.
A knot is a speed of one nautical mile per hour.

25.14. Miscellaneous examples
Example 1
If D is any point on the side BC of a spherical triangle ABC prove that
(a) cos AD sin a==cos b sin BD-cos,c sin DC,
(b) <ot AD sin A =cot b sin LBAD+cot ¢ sin LDAC.
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(a) In fig. 118, LADB+2ADC=x
o.cos LADB4cos LADC=0 . . . . ()
and cot LADB+cot LADC=0 . . . . i)
A
B
c
)
Fig. 118

We apply the cosine formula to A# ADB and ADG

cos ¢—cos AD cos BD
cos LADB=— i D BD
cos b—cos AD cos DC
€08 LADC = e b e DC
Hence by (i)
sin DC (cos c—cos AD cos BD)+sin BD (cos b—cos AD cos DC) =0
.". cos b sin BD+-cos ¢ sin DC=cos AD sin (BD+ DC)

=cos ADsina.
() Formula (25.5) gives

and applying this result to triangles ADB and ADC we have

sin 4D cot c—cos AD cos LBAD
sin ZBAD

cot LADB=:

and  cot LADC=
Hence by (i)
sin £DAC (sin AD cot c—cos AD cos ZBAD)
+sin ZBAD (sin AD cot b—cos AD cos ZDAC)=0
.. cotbsin LBAD+cotcsin LDAC=cot AD sin (LBAD-+ LDAC)
=cot AD sin A.

sin AD cot b—cos AD cos £DAC
sin ZDAC ‘
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Example 2
If ABC is a spherical triangle in which A =, prove that
cos b-cos ¢

sin (B+C)
By (26.8), (25.10) and (25.11)

s B cosC
cosbt+cosc _ sin C sin B
Ltcosbeosc 14cot B oot C
4(sin 2B4-sin 2C)
=S (B=C)
=sin (B+C).

Example 3
1f the sides AB, AC of a spherical triangle ABC are each 90° and BC =135
gnd E is the mid-point of AC, prove that LAEB = L EBC and that the area of
the triangle EBC is twice that of the triangle ABE. L.u)
In fig. 119, 0 is the centre of the sphere, LAOB=£A0C=90°, and
£BOC=LBAE=136°; also LABC=LACB=90°,
Applying the cotangent rule to triangles AEB and EBC in turn we have
cos AE cos LBAE =sin AE cot AB—sin ZBAE cot ZAEB
. cot LAEB=1/y/2.
Also,  cos BC cos £ BCE =sin BC cot EC—sin £BCE cot £ EBC
.. cot LEBC=1//2.
But ZAEB<180° and £ EBC < 90°.
v LEBC=LAEB=a radians (say).

A
[
c
Fig. 119

Hence LABE=}r—a and LBEC=n—a.
The spherical excess of & EBC = -+ (m—a)-+a— 7= radians, and the

spherical excess of A ABE=jmtast 12'— a) —m=}n radians,
Hence by (25.1) AEBC=24ABE.
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Example 4

Assuming the earth to be a sphere of vadius 4000 miles find the great circle
distance between two points A and B whoss latitude and longitude are :
(4) 40° 16" N., 18° 33’ E., and (B) 0°, 68° 12' E. Find aiso in degrees
east of south the angle of departure at A of the great circle youts.  [L.U.]

1§ G represents the north pole, then in the usual notation

b5=00°—40° 16'=49° 44’, a=00° and LACB=30° 30",
Also €08 ¢=cos @ cos b+sin asin b cos C
=sin 49° 44 cos 39° 39’
. c=54° 1'=0.9428 radians,

and AB =4000 x 0-9428 =3771 miles.

By the sine rule

sin asin C_sin 30° 39°

T Tsine T snoe 1l
But since B lies south of A, LCAB is obtuse ', A=127° 57"

i.e. the angle of departure at 4 of the great circle route is 52° 3' E. of S.

sin A= =0.7885.

Example 5
The most southerly latitude veached by the great circle joining a place P on
the equator 10 a place () in north latitude X is . Prove that the difference of
longitude between P and () is sin=t (tan A cof ), and find the angle belween
the meridian through Q and the greal circle PQ. L.u}
Let 4 be the north pole and PR be the equator (fig. 120). Then ¢ is
the angle between the equatorial plane and the plane of the great circle
PQ so that £APQ=90"—¢.
AP=q=90°, AQ=p=00°—
Then by the cotangent formula,
€08 g cos £LPAQ=sin g cot p—-sin £PAQ cot LAPQ,
. sin ZPAQ=cot (90°—)) tan (90°—¢),
£LPAQ=sin™t (tan ) cot §). A
This is the difference in longitude between P and Q.
From the sine formula,
sin LAQP _sin £APQ

sing sinp c
N sin (90°—4)
sin LAQP= o =)
4 P R
LAQP=sin—' (S0P,
. LAQP =sin™ (““‘ ,\) Fig. 120

‘This is the angle between the meridian through @ and the great circle PQ
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Two ports are in the same latitude /, their difference of longitude
being 2X. Show that the distance saved in sailing from one port to
the other along a great circle, instead of due east or west, is
2¢{A cos I—sin~* (sin A cos )},
where 7 is the radius of the earth.
Calculate the distance thus saved if the latitude is 60° and the
dxnmm of longitude 90°, taking the radius of the earth as 3960
LU)
Prove that in any spherical triangle cos a =cos b cos ¢-+-sin bsin ¢ cos 4.
A ship is proceeding uniformly along a great circle. At a given moment
the latitude is observed to be /, ; after the ship has travelled distances
sand 2s th tobel,and . ively. Show that
cos s=sin }(ly+1s) cos §(y—1,)/sin by,
Also express the total change of longitude in terms of the three
latitudes. LU

. Inaspherical triangle X YZ, the angle XZY is aright angle. Prove that

cot XY tan

From the vertex 4 of the spherical triangle ABC a great circle arc is
drawn to meet the side BC at right angles at the point P.

cos BAP_cot BA

Cos CAP cot CA”

Find an expression for sin AP in terms of the sides of triangle 4BC.

Prove that

U]
. (i) If in a spherical triangle ABC the great circle arc AN cuts BC at

right angles at N, establish the results
(@) S3BN _cos 4B

cos CN " cos AC"

(ii) Evaluate NA, NB, NC when BC=54°, AC=06° and C=18°.

(b) tan NC cot AC=cos C.

U]
. 1f ABC is a spherical triangle with a right angle at C, prove the formulae
cos b.

(i) sin a=tan b cot B, (ii) cos c=cos &

An aeroplane fiies in a great circle course from a point 4 (lat. 30° N.,
long. 10° E.) to a point B on the equator, the initial direction of
departure being 20° E. of S. Find the longitude of B, and the length
of the journey, taking the carth to be a sphere of radius 4000 miles,

Prove onE of the following formulae for a spherical triangle s
(i) cos a=cos b cos c-+sin b sin ¢ cos 4,
(u)nnu sin b_sin ¢
sin A B snc’

a great circle route from a point 4 (lat. 0°,
hng 300 W) toa pomt B (lat. 45° N., long. 120° E.). Find (i) the
distance travelled, (ii) the direction in which the acroplane is heading
when it reaches B, (i) the latitude of the most northerly point on the
route. (Take the radius of the earth as 3960 miles.) LU,
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HINTS AND ANSWERS

Exercises 1 (a), p- §
A4=56, B 9,C=2 2. A=
(@) (2 2y+3); (i) Br+2y
(i) (C’f-y)(h—ky—l)
i) R=v/2, a—tB‘; (i) R=2,a=60°; (i) R=5,a=53"8"
a=}, b= f o=y s Sl gni(nk 18 +0nt—nt—dnt2).

Exercises 1(b), p- 7

—2(a+bt)(b—)e~a)(a—b)-
—(b—0)(c—a)(a—b)(be+ca+ab).
(a+b-+c)(a+b+ci—be—ca—ab).
— (b—c)(c—a)(a—b) (@t b+ et be-+ ca+ab).
—-(h—c)(:—n)(a—-b)(b:+:a+nb)

o4 bhcY) B
@ +b+c%) 4 6( )
(6—e)(oma){ab)@h4-b1+ ¢+ ik cackab).
5(5—¢)(c— a)(a—b)(a+ b+ 6 —be—ca—ab).
Sabe(b-+c)(c+a)(a+d).
— (b—C)(c—a)(a—b){a b+ 3+ be(b++ 0) + cale-+a) + abla-+ b) + abe).

Exercises 1 (c), p- 13
r-+4) = 2Y(x+3). 2 2fla= 4 (e
s+ D 2le 1) . B 7)—2(1—).
8/(4—2)—B/(4+x)—x. 1/(;-1)+5/(2x+1) (25 +3).
r—2 42+ 4= 2% 8 Ylr— D+ 2+ 1)+ 3=+ %

s+ 142 -2, 10. 1/(x—2)—2/(x-+ 1) —4/(x+ 1)
1(25=1)=2/(s+ 2% 12. 2/(2e—T)+ V(x4 1 (x+4).
Y(1+2)—#[(1+). 14, Yx—(x+)/(x*+9).

(x4 1)+ (r— DI(z*=5+1).

2x+1/(2—2)+ /(2= 2= 12+~ 12+

15— x](9+43%) — 0x/(9+ )"

1= 15— 2=+ D)+ (1= 29/ (>~ =+ 1)}

{135 —16)/ (s 264 3) + 5/(x+ 1) B/(x+ 1)7).

(o= 1)+2/(s— )042/( =1 2L 25/(14 D+ (=)' + 1%
(142) /(15420 = (L4 5+ + /(A — )= /(1 =)

(4 2)— dx/(*+ 2%

/(1= 2= 1(1+#)*+ 21— 2= 2/(1+2)*.
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Exercises 2, p. 22
L Y13 436=0; x=—1, -2, 3, 4.
40— 13y149=0;
#=2,3, } ¢
(i)
(ii) bx+oy+ar=0; £(5V/2)/8, y= F(/2)/6, 2= F(14/2)/6.
T Qpr— gt (P - 2)r—~1=0;  (2pr—gW)r.
4913004 435 49=0. 9. p(3g—pY)—3r. 10. g=p¥; =1, 2, 6.
(4P —12p" +26%)/(2p* +q)1. 12. Write a+B+y=a—5, etc.
@By =t Byt yatbaifie —2pr;
PPN PP 2rr (2 )= 0,

5. x=—1244/3 352y/2

LR N

2

oo
SE e

15. 3(pg—1)+5*2pg— = 3r) +3(pg— 3r)—r=0.

18. 2, §, 2+ /3. 17. () 2%, (ii) 4, 2, }(5:+i4/11) where i*

19, b= 22— ab)at+a'=0; y'— 1204 4= 0; 2= 4/2, — 4k y/2

20. a+b+c=—p, be+catab=g, abe=—7.

2L () y~5y'+8=0; x=—344/2, —3+4/3,

22 x=y=:=0; s=hkl(a+1), y=A/(b+1), r=A/(c+1) where
h'—(b+l)(x+1)+(:+1)(a+1)+(u+l)(b+l) (a+1)(b+1)(c+1).

23. (i) Calculate 1—a? using a=j(x'—y'—g

Mys
(i) last part: let x=b+c—a, y=c+a—b, 1=n+b—cud use previous
Tesult for (y+2)(r+2)(x+y).
@ Given product= (ﬂ'l‘+b'y’+=':'+d'u'l+(ﬂ’y‘+b‘x’)+. +.
d aty?+ 5% > 2aby,

(i) If Z>x, :‘y}u‘+bx‘ o y;(‘/(n/x)}*-r(\/(bx))'zw(ab)

a'+b*>2ab °, a'—ab+b¥>ab and since a+b>0, a*+b*> ab(a+b)
hence 2(a'+b‘+k‘)>nb(¢+b)+bdb+:)+:a(t+a) and so
3(0’+b'+t‘)>(a+b+=)(a'+b'+:‘) Now put a=y—s, b=y+z
e=24/(y'—.

@ #ly+ylx> 2\/ NVl =2.

S

8

5

Exercises 3 (a), p. 35
¥=%1 -2 4 (i) 1800; (ii) 24. 5. =a,b, —(a+}). 6. £=2,3,6.
@) (¢+2)(ﬂ—1)’ (i) (b—c)(c—a)(a—b);

(i) —(a+b+c)(p—c)(c—a)(a—b).
. () p=g=—2; (i) —(a+b+0)"b—c)(c—a)(a—b).
(i) Add C,+Cy4Cy; —2(a+b)(a—b)%
(i) Add C,+Cy+Cy; (1-a)(1=B)(1+a+2).
Add (Cy+Cy), (Co+Cy) 5 Sabe. 19. #= —ja (thrice).
(@+b4-0)(b—c) (e~ a) (@—B) @ + b+ c*+ bo+ ca-+ab).

©

55

g8
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21. Add Ry+Ry+Ry; 2a+b+of.
23. Multiply R, by abc and take factors out of the resulting columns ;
then cf. § — abe(a-+b-+0)(b—0)(c—a)(a—b).
24. () (wv+1)D; (i) x=2, —5/2, 1/2.
25. (i) Add (Ri+Ry), (Ry+R); 0
(i) Add (Ryx a¥)+ (Ryx ba) + (R; X ca)+ (R, x da).
26. 24. 27. 506. 29. Add aRy+bRy+cR, i — (ax+by+ca)t

Exercises 3 (b), p. 44
1 #=3, y=5, 1=6. 2. #=1,y=2,
a abo+2fgh—afi—bgi—chi=0. 4. A=3, x=4,y
P A==l x=—1/1L, y=—15/11;

8. =0, smymr: 13, the three given equations are identical
7. () x= =06, y=1'1, £=27; (i) x=2,y=3, 1=4.
8. x=12, y=—60, r=60. 9. x=1,y=1,2=1.

Miscellaneous Exercises 3, p. 45
1. Add (b= 0)Ry+ (c—a)Ry+ (a—B)Rs; (i) 2(b—c)(c—a)(a—~b)(a+b+0).
2. (i) (c—a), (a—b), (a*+b*+c*+bo+catab);
(i) cos 2a—cos 2B=2(sin® f—sin* a).
3. ) —2(b—c)lc—a)la—b)a+b+0c); (ii) from R, take R,.
4. (ii) Multiply C, by 2sin (B+C), C, by 2sin (C+4), C, by 2sin (4 +B)
d express resulting elements as sines; then add three resulting
columns using sin (24 +2B)= —sin 2C, etc.
5. (i) #=1,2, —3.
7. (i) sin 2a+3sinta~
i) A=3; #=1/6, y=3/:

i A=14, x=—1/5, y=2/5.

8. (ii) 4a%ich, 9. (i) (b—c)(c—a)(a—b)(a+b+c).
10. () #=—a (thrice); (i) — (a+5%+0%)(a+b+0)(b—0c)(c—a)(a—b).
12. () #=—3, /3. 18. () *=3, (1+/561)/10.

W () ==y r+y+a): (@) x=5 —

16. (i) #=6/3, —1/6. 16. From R, take R, cos 6.

17. () (y=2)le—#)(x—)( 5 () atb ;6:3:-8

18. (i) n(x+y+2)*

19. (i) 2(b—c)(c—a)(@—b)(a+b+c); (ii) x=1 (twice), x=2.

20. (ii) (a) #(x—1)*(s+1, (b) —(a—B)a—y)(a—8)(B—7)(B—)(y—3).
21 p—0)e—a)a—b); —(a—b)}(b—c)(c—a).

22 A=1; 1:—1:0. A=—2; 1:1:§y/2. A=3; 1:1:—2y/2
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Ll

® 4

Bor

RN

L o

N

@) (F+y+22 =2 (=)=

(ii) take 2R, from Ry =0, §(—7++/37).

(i) From C,+C, take 2C, cos ; or expand from R, ; (if) x=b, ¢, a*fbe.
(i) () Inconsistent, (b) consistent; x=4,y=1,7=0; (i) 2(s+y+2)"
2eya(r+y+a)7

() #=—5,y="7,1=2; (ii) ToaC,addbCy+cCyi (a-+b+o)(a+b4+c7).

@) 206—c)(c—a)a—b)y—2)(z—2)(x—2); (ii) a+b; 3

Exercises 4 (a), p- 68

(i) Divergent; (i) P (iv)
(v) divergent ; (vi) convergent ; (vii) dlvvrgunt, (vm) eonvergent.
(ix) convergent; (x) divergent; (xi) divergent; (xii) convergent.

(i) A.C. when | | <1, C.C. when x=—1; (i) A.C. for all values of x;
(iii) A.C. when |#|<1; CC. when s=—1; (iv) AC. for all
values of x; (v) A.C. when | #|<1; C.C. when || =1.

(iv) un—>0 since un <FF™ 5 (v) un<d(E"

Convergent if | #|<1; divergent if | #|> 1.

Exercises 4 (b), p. 73
L 24 3.1 42 50 6 12/s 7 =2 8 s=0
x=2, x=—1 10. (2%+ 1)m/4, & any integer or zero.
24, k any integer or zero. 12. k3, k any integer or zero.

Exercises 5 (a), p. 78
25 r(2rh-1); | x| <}
(5= 2+ )+ 4 x— 2= 1(x—2) ; (n+5)2 24 (— )05 | x| <L
(me+1)(@—b)(an+1+5%43) 4 2ab(b+1— an+1) ;| x| <1/ a | or 1/ b| which-

i T,

=1, b=4, c=1, d=0.
a=48, b=3, c=8; 48/(1—4x)'=32(1—4x)+3/(1 =) 8/(1-2);
L‘ {413 1) +-3n+ 10000 | 5| <}

.ov/u b3)— ab/(1—- ax) +a(a—b)/(1—az)

(nk 1)amt— (n 2)awhib 4 ba3; |x[<l/|a] or 1/| b| whichever is

smaller.
H‘/(’—ﬂ) (=+2/(=+1); | 2] <1

)= — {27+ (- 1)}, (("”‘))=—-f\;{2‘"~’+z(—-l}-)

wme Zy=2(14+3.4xY2143.4.5.65

and F,=2(35+3.4 i x5 )z

then consider the bi of (1+2)%, (-2

Zy=2(1+ 31—, £,=2(1'+2]I(l—x')'
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‘Exercises 5 (b), p- 88

w21+ fr i)

L0 ﬂ(n"’sl Bt it

(i) x+ n“'u*’ e

2 @ 1+—+~—+ ey 2L

() 1+94+——+—+ c DAL

(i) 1—x——+5-£+»~»: (=1 —r =i L

2

3. 1+s+—‘+—x—‘+—5 FL TN

. r=4,a=log 2; ¥=—21log 2.
9. (ii) #=1,8. 11. u=log 0.4
13, (i) When x is large, coth x=x1; »<hwmk I, where } is any integer.

16. nnh 2¢=2//(1++), tanh ax=l(3+t‘)[(l+ 31), t=tanhx, Putu=tanhs
d solve the given equation

‘Exercises 5 (c), p- 93
L W Zx—ix’+i*’—h‘+ (=ym@lrs —k<x<is

@ _(4 *at st ot ) (s —4<x<d;
st
@ h‘;+(! lﬂ 81 32‘+

(Z+%4% B I e S T

(—nmiyrfrs —3<x<3;

(iv) log 2~
(v) 21og ‘+2(7—ﬁ+m7—i374+“‘): _g(— )i
—4<x<4;

I TR A L
(vii) log ((l—t')l(l—l))-x""i——x+T+~~~: 1jr unless r is a
maltiple of 3; —2/r if 7 is @ multiple of 3; —1<#<13

(=(=2}rs —§<s<h

3a 15x¢
L
(vili) 3r— k38— S
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‘Exercises 6, p. 116
1. 14i; modulus 4/2, argument }m.

2. (i) modulus=1, arg —0; (i) 6, arg: [2
3. (a) V2 b V2 im V2 —im
4.1, 4m; Lim 5. 07400 6 x—y=1 7. 4x+8y=3

10. Centre (3R, —4R), radius 5R.
11. 3204 3y'—34x+06=0. 18 (i) #+y*—x—2=0.
(—cos 0-isin ) ; the circle is e(u!+v?) +4u=0.

.| and args—argr=jm Hence ags-ags=a"

o B=—1} etc.

18. p*4r—2pr cos (8—a).

19. (i) Divide AB at C so that AC: CB=p: \. Then 04 +p0B=(A+p)0C
where O is the origin. Thus Asy+puz=s=k0C so that P 1s the
‘point 0n OC such that OP=}0C. Hence P lies on a line parallel to
4B.

20. B=(l4+§v2)—i(1+1v2); D=(1—-§vA—ill—}v2.

Exercises 7 (a), p- 124

1. () Y(2)cis{(8k+1)w/12}, k=0, 1, 2;

(i) $/(2) cis {(8k+ )m/12}, =0, 1, 2.
2. (i) Modulus=2 cos }6, argument=—}0;

(i) v/2cis ((M+3)n/l!). k=0,1,2.
3. 201+, 1+3i.
4 HEV2—9+iB+V) Ho@v2+a+ie-v2)
5 w=%2 +2; s=3} (31 4d).
8. () +i, +3(1£)v/2; (i) —4 H—129), one infinite root.
7. #{1—i cot (4k+1)m/12}, k=12 3.
8. r=i{143i(v/2+ 1} ${1£3ilv/2- D}
9. 1; cis (+2kn/5), k=1, 2.

10. () 143, —1+i;

(i) £ (149, +Hl/3+D=ily3—1} £H3-D-ilv3+ 1}
11 1; cis (4 2km/6), B=1, 2.
18. cis (& 2kmf0), k=1, 2; —cis (£m/9)-
16. + (0-0808+0+1951), & (0-1061—0-98084). 17. 4/2 cis (n]4).
19. () | £|=1; (i) arg £=2pm, where p is any rational number.
20. — 4144 cot {(Zh+1)m/16}), k=0, 1, 2, ..., T
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18. {(x~5) log (1—x)—Bx}/x*.
18. (i) {tan (n+1)$—tan g}fsin ¢
(i) Series is l+’£+3j—‘+...s(u"(x'—l)«{-l)/z‘.
EIAE T
17. (i) e3(x*—x+1)—1; (if) 2¢; 18. (ii) (2 cos 6—1)/(5—4 cos 6).
18. ¢ 2L (i) 4=—3,B=3,C=6, D=1
22. (i) (1—-a)4, validif | x| <1;
@ (=141~ — , validfor all values of x5
(ifi) —{(35°+6) log (1— )+ 6x+357422%)/0x%, valid when —1<x<1.
@ #; (i) e (2 cos §—1) cos (sin f)—cos 6.
Last part: n(n+2) <(n-+1)2, .\ nin+1)(n+2) <(n+1)), ete.
(@) Sa={n(n+2)/(2n+1)(2n+3), So=1/12; (i) 12e—1;
%049 sin (sin §).

®

(i) A=—1,B=4,C=4; (i) A=} 27 (1) 4=6, B=9, C=2.

() 11/98. 20, Sy={1+35— (4n-+ 1)sm+ (dn—Bwm})(1—x)%,

cos (sin 6) cosh (cos 6).

Express uy in the form

{(4n+B)(n-+ 1)(n+4)}+{(Cn+D)/(2n+3)(2n+ 6}

and express each of these fractions in terms of partial fractions;
A=C=0, B=~1, D=b.

@ dn{n+1)/(2n+1)(2n+3).

[0} waéx-t-i(u-{»l)y)ain{nymec 175 (i) cothx—1,5>0; coth#+1,
#<0.

EEBE B

Sw=n(3n-+6)/8(3n-+1)(3n+4), Sw=1/24;
() 8e—1; (ii) }(2 cos §—1)/(5—4 cos ).
() Write (p—2)/p(p-+1)(p+3)=($*—4)[p(p+1)(p+2)(p+3) and ex-
press p—4 in the form Ap(p+1)+Bp+C;
Sp=(1/36)— (6n*+ 15n+ 1)/6(n+ 1)(n+ 2)(n+3) ;
(@) {(#+1) sin 16— sin (n+1)8}/2(1—cos 6).
@) 1=(1—1/x) log (1—3) ; (i) (c0s x—x)/(1—2¥ cos #-+4Y).
@ & (i) fyn(n+1)/(n+5)(n+8).
(1) Sp=4{sin 0—3-" sin (316)}, S=1sin 8;
(i) (cos §6)/+/(2 cos 6) when —jr<f<}m; O when f= & jm.
1 cos 8-e=%#{cos G(sin 6)—cos (—sin B)) ;
€08 {a+§(n—1)B} sin }nf cosec §B.
When #>0, (412> #+n-+1, and 50 cot-Hn-+1)! <cot-1(n +n-+1).
42. (26/48) — H{(4n* +-30m8 1.70n + 50)/ (5 +1)(m +2)(m+3)(n +4) ;
Sa=tanh nfsinh 6; when 6>0, Sp= 2
when 6<0, So=—cosech @; sin §(n-+1)6 sin 8 cosec }6.

& B 88
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22. (i) #=3/5 (max.), ¥=1 (min.), =0 inflexion.

28. Max.=3, Mi The greatest and least values of y are 3 and —1

respectively.

24 x=(27+34/78)} gives max. ; x=(27—34/78)} gives min.
26. Time= (a*+#4)4u+ {(c— )+ 53 v.
31
3.

. V=}ma® tan® a(1+cosec a)?; 257a’[9. 82 b
. For all values of a and B, x= gives min. value ; when a>B, x=0or
21 gives max. value ; when a<f, ¥=0 or 2w gives min. value, and
#=cos™ (a/f) gives max. value.
35. x=aVBY3/ (@ b).
3. The circles are orthogonaland cut at (0, 0). (= 2/(1-+ 1), ~2X%(L+ A9}
area of quxdnlatera length of common chord =2A/y/(1+AY).
37. 4a%/3y/3=max. value, . value,
N e value ryma(l+1/a/3); but v, must lie between the
values a and a(1+¢), where ¢ is the eccentricity of the ellipse. Hence
if e> 1/4/3, a(1+ 1/3/3)is a possible value of », and it gives r,7y(r, —7,)
its max. value. Ife<1/4/3, a{l+1/y/3) is not a possible value of r;,
and the max. value of 7,7,(r,—7,) occurs when 7, takes its highest
possible value a(1+¢).

38. OM=a(y/17-3).
39. (i) min. (0, 8); max. (2, 60/e?) ; (ii) min. value is a+b-+c—3(abe)t.
41. (a+). 42, () V2,35 (i) Ve

Exercises 10 (a), p- 207
1. (2536, 2. §log (Bx—4). 8 1/6(5—3x)% 4. } tant }(5+23).
5. }sint (3+47). 6. § sinht j(4+35). 7.} cosh~t §(6x—1).
8. —1/1(75-2).
9. Hr—2)3+x)¥ 10. V(x'=5). 1L §V/(5+5). 12 }log (5+57).
13 } tan(3#). 14 39495 15 gsinx 16 —}cos’x
17. (5 sin® #—3 sin® #)/15. 18. —} cosec? x. 19. —} log (3—4 tan »).
20. 26v7. 21 Y(sini). 22 H(logx)t 28 flog(l+x). 24 V/(4+xY).
25. }log (x+4x—B). 26. v/(s*+4x—5). 27. logsinx. 28. } logsin 3x.
29. —}logcosdr. 30. —}log (243 cosz). 3L }log (1+2 tans),
82. § log (1+6*4).

Exercises 10 (b), p- 210

{3 log (2r—3)+2 log (x+1)}/10. 2. (7 log (35+5)—3 log s—1)}/12.
—{log (3x— 1) +1og (x—1)}. 4. {310g x— 1010 (x—2)+7 log (x— 4)}/8.
3 log x+4 log (x*+4)—} tan? (§2).

8. — 3{log (3—#)+10g (3+2)+4/(3+)}.

7. x—4log (+2)—58/(x+2). 8. log (¥—1)—Iog #+2/x—2/(x—1).

L
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Exercises 10 (£), p- 223

1.3 2 Doesnmotexist. 3 jm 4 fm 5.1 8 4 7.m
8. Does not exist. 9. 2. 10. 7/20. 1. 0. 12. (2+m)/8.

Esercises 10 (g), p- 230
1. 16/35. 2. 6mf32. 8. 2/15. 4. w32 5. 35m[8. 6. /1.
7. } tant x—} tan? x—log cos x.
8. tan x (1610 tan® x+3 tan #)/15.

Exercises 10 (h), p. 233
1. (16e—38)fet. 2. (i) (s— 1)1 (i) 357/256.
3. m(2p)! (29) (2Pt L gl (phg)l. 4 2timInl [(mint L
5. 6m/286. 7. (14 mIp=x(a'+ )Pt atnlny
8. w(2n+1)lj29n | (n+2)L 9. 23/15.
10. m(2m)l[2m0m 1 (m e+ DL 11. § cosh
12, () In—nlpoy=—e-2x"; (i) B(km)*—60(Fm)*+120.
Miscellaneous Exercises 10, p. 234
1. (i) dlsinht w-bxy/(140),  sink s—cosh x5 () §3 ()
2. /(¥ +4r+8)—2 log {(r+2+/(31+4x+8) ¢
log (+ 1)+ 2/(x-+ D)= 1(s+1)*; — e 3(sin x+cos 1); 103,
3. (i) (1) sim (bx]a), log {e=/(1-+e?)}, H2—108 3): (i) 2 log (2++/3).
4. (i) Express sin 2x-++/3 cos 2x in the form R sin (2¢+0)
tlog tan (x+}m): (i) J(1+e7).
5. log ((v—2)[(x— 1)}, {84% cosh? #—(*+ 2/ (= 1)/0:
(= D+ 1).

6. () my/3; (i) 2a(By/3-=1). 7. () 2—dmi G V2 log (1+v2).
8. () Express denominator as § cos(f—tan™* (4/3}; § 1og 3
(i) —{sin (1og #)+cos (log x)}/2+.
9. (i) (br—6y/3+8)/12; (i) (n—21og 2)/8.
11 () (By2—41/10; () §y/26—+/10)+10g ((3++/10)/(5+/26)}:
(i) (264 m)/(4+7%).
12, } log (x—1)—} log (x+ 1)+ tan! s+1/x;
let 2=ef, 2*(9(1og #)*—9(10g )*+6 log ¥—2)/27; Tm/3.
13. () 4 sim? §(2e— 1)—2y/(2+x—2") 5 (i) 54{8(log 2)*—41og x+1)/32.
14. (iil) cos x-+1log tan fx—cos x log (sin ).
15. () (3m—4)/18; (i) do* sin™ (xfa)+#y/(a*="} 5 (i) dme
16. (i) 3(x—5)y/(1+3), ees(a sin bx—b cos bx)/(a'+b%),
(4/v/5) taat {(1/4/6) tan $3}3 () dlatd)m
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()  sin x—} sin® x5 (i) tan-? (14 tan 2).
(i) Ha® sin™ (/o) +xv/(@* =21} 5
(i) H{(x—4a)y/(a?—5%)—a* sin™? (+/a)}.
(i) V@ +x+1)—} log (r+ i+ /(3 +x+ 1}
(i) §10g 33 {10 tan~? (& tan §x)— 12 sin #/(5+4 cos A}/27.
(i) log tan (dx+3m): (i) (1/+/3) sin™! §(3x+2)
(iii) (1/4/8) tan~ (xv/6) 3
(iv) log {(s-+ 1)Y(x*— 5+ D} — (8/y/3) tan™ {(2x=D1)/v/3}-
(i) — (5 sin 4+ 4 cos 4x)es7[41
(i) {6 108 (x+1)—3 log (+*+1)—2 tan 3} i (i) tan~* }y/(x—1):
(iv) #{x—3)y/ (21425 —8)+ 15 log (x+ L+ /{x*+25—8})).

L (i) 3 tan? (v )=+ log (1426420} 5 — (1 269/60+ 1)

(i) w42
(i) cosht (2¥—3); (i) #/v/(1+27)
(iii) § sec x tan -+ } log tan (d+42).

. (i) {2 log (v—1)~log (x*+1)+2 tan 3};

(i) log (1+tan 3) 5 dftan—? x+ (2634 £ —1)/(1+59.
${tan—t Jx-+10g (31+4)—2 log (s— l) 2f(x—=1}:
{(x+a)¥*+ (x—a)*"}/3a ; m/la—

. x—log (¥*+2)— (ll\/Z) tan~ (’I\/ZH 7 log (25+1);

—cosh-1 {(1+)
(i) —}r"(l+x') 37/15, (ii) (8 log 4—m)/12.
(i) 3 sin™ §(x—1)+/(3+25—31) ; (i) log x— (1+1/x) log (1+2).
(i) 3/(14+26)—2/(1+2) 5 } log (1+2%)—2log (1+2):
i) 1+ua/(t—2>+(zx D=+ 1)
+1{8 log (x~2)+1og (x*+1)—tan™ x}.
@ §. (@) 15 i) 4.
(i) (m—4)/16; (i) log {/(x+2)—1}—log {v/(x+2)+1};
(i) cosh~! (25— 3).
)l {m+1)(2m+1). .. (em4 1)

‘Write uy= j"" (% cos™1 x)(cos 2)dx ; u,= (3n%—18)/64;
o
y= (607 — 149)/225.
Consider J’ {cos nB-+cos (n—2)0) sec 040; .

. (8 tanct (x/a) +3ax](s+ a%) — Bals/(x*+a%)?— 8as*/(x*+a%)’} /48a%.

16/315. 64. 3(16—5m)/32. 85. (w'— 48m>+384)/16.
1 I is the given integral, (2n-+3)n=2nlp-;.
Substitute for Zu4y, I and I, in L.ELS. of given reduction formula.
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68. {(2n—1)(2n—3)...5.3.Jamn/n . 69. 16/15.
70. Tyn= {x(2"+a)04 Ty} (1)
72 {14+3y/210g (1+/2))/64a%. 3. 1) 32615/3003; (i) sgpyy = 2t
4. mf32.
Exercises 11 (a), p. 250

1 2
gl F, #
4. {1 St +}

6480
8 Thit— ot 8 2llog (s o/ (14 s8] (L,
13. 1+x-%:--f;;»4-...; 05 % cosh #={s* cos 5-+4- cos ().

14. 10g (1+66%)=log 2+ iz—a'— ot .
108 (14¢%)=log 23— fis— 321 1] )
1+cos x=§(1+642)(1+6717); log (1+cos =log 2—}s'— Joxtm .

16 log {l—log (L—sl}=x+]2*+ ....; log {L+1og (1+8)=t—t gy ...

16. 147 o o+ (x* c0s 2a)/2 I+ (x* cos 3a)/3 I+ ... ; a7 sin (s sin ).

14
17 Lt et

18. Expand :—{
8. (i) log2—§+"; (ii) —.

(1=)(1—#*)"1 and integrate the result.

Exercises 11 (b), p. 254

1 1
Ly=r—33+ae 87
2. (143t t (214 Daynsy (a3 = 1)y =0,
# o1 13.5
. al -
e Lt 3 Fh e

1.3.5.7...(2n—3)

= = e

B y=lbat o e it gL

& y=axdetban3 14202004 14 x5 14 41,20, 208 14 .,
(7)) =2((2p— 22— a). ... 20/ (2p) i p> 1 ; py2
(=24 =af(2p—1)%2p—3)2.. 6%, 3 /(2p+ 1)1 it #>1; py=a.

7. —1/45.

9. 401+ 2)yn1a+ 220+ Dysy+ niyp=0.
¥= = L 2B 316+ m}(16— m3)24/384t . . ..

10. y=5x+2054 165%.
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PO}y —2ar +eg')=0;

8. #(ar’—2gpr+cp*)+ 2xylhr'—r(gq+ fp)
r{a+8)—2r(gp+fg)+c(p*+ %) =0.

7. Eliminate y between the equations as'+ 2hxy—ayt=0 and pr+gy=r;
the sum of the roots of the resulting equation in » must be zero.

8. Let the line ix+my+n=0 meet the given line pair at P(x,, myz,)
and Q(s,, myx,). Then #,= —n/(I4+-mm,), 5= —n/(I+-mm,) where
Myt my=— 24/, mymy=alb.

9. The line drawn through the origin perpendicular to gs-+py=pq is
one of the bisectors of the angles between the given line,

10. The line-pair through 4 (a, B)is b(s— o)~ 2h(s —a) (y— ) + a(y— B)*=0.

1L Let (a, ) be the vertex. Eliminate y between the equations
Lx4+my+n=0 and ax'4 2hsy+by'=0; then a is the sum of the

roots of the resultant equation ;
{2n(hm—"bD)[p, 2n(hi—am)[p}, p=am®—2him+bi2,

12. 284 Tay—2y*— 105+ 15y — 20=0.

14. 2g5+2fy+c=0; (fh—bg)y=(gh—af).

15. 3x1—8xy—3y1=0; 2'+y'—2:—dy=0.

16. A=0, —685/14; 3s—y=1, 3r4y=14,

17. (J(1—m*)jm?, (14 m%)/m}.

18. The rotation of the given lines is equivalent to a rotation of the axes

— 80"

through :
#M(a—2¢/3h+ 35) + 2y(+/3a— 2h— 1/35)+y*(3a-+ 24/3h 4 b)= 0 ;
Y—y/3zy=0.
19. 3} 5q. units. 20. cos™* . 21. c=20,

Exercises 12 (b), p. 204

L #14y = 26— 1=0, ' +y'4 6+ 7=0. 2. x14y'—2—y=0,

3. #1435 —Ty+ 14=0, 4 Y14 2y dy—3=0.

4. 55146y —85~8y/3y+ 12=0. 5. h=6; (3, 1); 3r—dy=5.

6. (1—mt)(e™+ ) +dntrx=st 7. (1, 1); 24yt 2x—2y—5=0,

8. 24yi-2y—1=0; (4, —6); M+y1—8x+12y+16=0.

10. cis the square of the length of the tangent drawn from the origin to

the circle ; x14+y1=3.

1L (=2, 3). 12, 2fy+o=gr; {—¢, (g—0)/f).

18, 5451 1554 4=0, 3x04 314 20y 12. 14, 2745120 3y=0,

15 (L 1) (3, 8); #'45'— 26— 6y46=0, 57+ y'— Gr— 2+ 6.

17. 1f st y04 2gr =0, x';}-y‘{- 2g’s+c=0 are the circles, the limiting
—o)).

points are (0, + /(.

19. If P=(0, y). the circle is g(x'+3")+/(f+3)x+/gy=0 and the
common points are (0, 0) and (0, —f).

21. 4B is the diameter of circle ABCD.
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Exercises 16 (a), p. 353
75 (2 =2 —9): (x+2)(—2)=(y—9B=(—3)/0.
63— 2y—2+16=0; 3xi43ytH 304 185 —20y—20:4102=0.
(=22, ~9). 4 (r—0)/(=B)=(y—2/B=(=3/
(3, —86,0);
1677, =27, 3715 (6 =L 7 . 8. cost (£1/v/2)
3,3, 2¢/3; cos™ (1/y/3), cos™ (U/3), cos™ (1f3). 10. 2.
O 4 —8).

Exercises 16 (b), p- 360
(3, —4,4). 2. 14 3. 2r4y—3r=4.
3y+a=6, 6x—2=16, 2r+y=T. 5. #/2+y3+1/4=1;
(=7, 11, =2). 7. 25+3y+06:=38; sin™! 3/7. 8. dy—
1,2 -3
vie |
4 3y—20417=0; [1:1:2] 18 2r—2y—s+3=0; 2.
4x—by—br=0. 16 4x—10y+2+13=0. 16.(5, 0, 6); (3ELYT.
Jx—D=y—2=s+1
/4=y[(~6)=1; the shortest distance is equal to the perpendicular
distance of the origin from the first plane ; 5/y/14.
L P=(2, 3, —1); Q=(=6 L 3); (++21=p-2/(-D=(=1/1;
(= ))(=3)=ly—D/1=(e+4)/5.
. 3xdy+1=0; 35+2y—8s46=0.

x—3y—20411=0. 10. 1. x—2=y—3=1—4.

Miscellaneous Exercises 16, p. 367
Jv/36. 2. xby—6r419=0. 3. x+y+e=11; Uy/3.
. Pis (1fap, 1/bp, 1/cp) where p=1/a*+1/t*+1/c%.
Fh2y+2e=115 (1,2 9).

[5:/_%_‘!] * [\/(a'i”?‘]

N divides AB externally in the ratio 18: 6.

rty+2u=1, bx+by+2:=6. 10. 2y/17; (-2, 3, —5).

(3,1, 1); Sr—1Ty410:=17. 12 0={a d0nta), d0nta)}
R={a+i2n—n—n) a+Hn—n—x) o+ Hes—n—y}i
8(a—x)'+3(z—y) =23 — (x+y+a1

. (d—a)rk o= bly+ ([~ Jr=H@+ e+ 1=t =t o).

. (ax+by+ertd)y/(@'+ B0+ cY)= & (@ + by+cs+d) /(@ + b0+,

. Q=(—1,1,85), R=(3, 6, 3). 17. 69x—35y—8:=0; (18, 30, 24).
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. The two positions of 4 are (0, 2, 1), (0, —F, —}).

The line through (1, A, 0) is (¥—1)/A= =1+ 2428 = — /(14 2).
#[b=y/(~10)=2/9; (10/7, —20/7, 18/7).

The straight line x/T=y[(—13)=2[5. 24. Ts-+y—Gr416=0,

BE

& BB

2,4,5

(4, 3, 2); br+2y—3z=20. 927, |2 45[

4.3, 2)5 srezy [ ws]

(4.2, —1); x—y—s=3; sriby_s=21.

Tx—8y+31=0; 20y+23s=0, 13r=122.

(L, 23); L'isx=1, y+2=06; 30°; If L' is the line of greatest slope
in 7, the plane through L’ perpendicular to » contains the
vertical. [1/3/2, —1/v/2, 0] or [~ 1/3/3, 0, 1/3/2].

1,1,6
= [15]
82 ("4 mb 4 ax-+ by + cr-+-d) = (la+ mbok-ne) (@5 + By 4 24 &).

g8y

Exercises 16 (c), p. 372
1. 2v/20; (+—5)/2=(y—4)/3=(s—4)/4. 2. /3; (2,2,2), (L 1, 1).
4. /59 (x—8)/5=(y—1)/(—3)=(s—3)/5.
5. 13; (v—1)/3=(y—1)/4=(s=2)/12. 6.13; [3:4:12].
7. 3; (x=2)/2=(y—=1)/(=1)=(s41)/2.
9.
1

- 435 (2 0L 8) (F §4) 10,225 (5= 1)/6=(y+ 1)/6=(s—4)/T.
L P=(0,0,0), 0=(1, 1, -1).
13. (¥=7 cos a)/sin a=(y—7 sin a)/(—cos a)=s/cot y ;
{2r sin {a—B))/v/{1+tan? y cost §(a— ).
14 (=40, 0, —1). 15. x/a+yfo+zfe=1.

Exercises 18 (d), p. 376
8. Q lies in the plane r=c(n—m)/(n+m) which is normal to AA’. Its
locus in this plane is (m+n)}(s1~y' cott a)=4ctmn cos® a when
the equations of 4P, A’P’ are chosen as in § 16,21,
10. mrr=cy.
Exercises 17, p. 383

Centre (20/9, 2/9, —35/9), radius 12,

(3,7, 4); 3y+4r=27, 3y+4s+3=0,

(L,0,0),(0,1,0), (0,0, 1); centre (}, §, §), radius 4/6/3.

‘The equation of the given sphere is of the form S-+AP=0, where S=0
is the equation of the sphere with centre (1, 2, — 1), radius 2, and
P=0 is the equation of the plane. Distance §4/3; plane is
H+By—3r=m0,

LR R



HINTS AND ANSWERS 603
98. (i) V=log ar® where a and » are constants ;
(i) V=r"(4 cos n+B sin nf), where 4 and B are constants.
() 2y=st; (i) 2y=x; (@) P=detd; (v) Htyi=at

8

Exercises 19 (d), p. 437
(a) Volume=0a%2. (8) PG, : PG,: PGy=at:b*:¢%
xlxtyly+ale=3at
satylBtaly=3; ols—a)=Bl—H=rle=y:
ity at=at,
ek et byt eobe=0; T2 0 0 5
0=(m—21= 20 1= 20— 25y 5= 20— %) 5 R= (Oxy B, Om)
6. et~ hyds—2pys Ay + 1=y o= 2=
o sl — k)= — =3I Orsk b= = )52t
7. x42y—2=2; (—D=40-1=—(=1.
8. 2afir+ (o= 2yly— (B4 2hr=r'=3:
(s—a)/2af=(y— B)(e*= 2y = — (e=PI(B+29)-
9. (L4+ Ntxt (1= A)ty+ 162=da.
10. (s a)ff= (- Afa=—(e=1)f.
11. x+3 touches at (18, —86, 0), x—3y=0 touches at (—18, -8, 0);
y=2f3, = £V
12. 2aBx+aly—a's=2a'p.
18. (x—4a)=(y— §a)/8=(s—}a)/8:
{(31+8+/16)a/18, (— 16+ 44/15)a, (— 16+ 44/15)a),
{(31—84/16)a/16, (— 16— 4¢/16)a, (—16—4y/15)a}.
15. a(b’—z')z+b(='+n‘)y—z(n‘-—b‘+25'-I)x+a'-—
17, @en—aye— @t anly+ (0= ye—n) =
I s AR TSR O R RS
Use inequality a*+2c*> 2¥/%ac.
kTl e —yln= = sy dxky=Tr= 2

ERCER

88

21, x—248a=0, x+a=—(1—a)/2, y=
x—2y+3a=0, x+a=—(y—a)/2 = —a; 27+}’+1+2a=0

Exercises 20 (a), p. 450
1. Area=8a%/15; volume=ma®/12. 2. 8a*/15, ma’/4.
3. y—datx+8a3=0. 8. (i) a*(log 2— ).
1. Area=dmat4; volume=n%a¥/4. 13. ma® (log 4—1).
14. lim (1—y) log (1—y)= lim £ log z=0. (See § 11.12, Example 12.)
y1— 04
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